
# **Soft-Starter**

SSW-06 V1.6X

# Guia de Aplicação Multimotores

Idioma: Português

Documento: 10000601966 / 00





# **Guia de Aplicação Multimotores**

Série: SSW-06 V1.6X

Idioma: Português

 $N^{\circ}$  do Documento: 10000601966 / 00

Data da Publicação: 08/2009



# ÍNDICE

| ۱N | IFORM            | IAÇÕES SOBRE O MANUAL                                                                                    | 6        |
|----|------------------|----------------------------------------------------------------------------------------------------------|----------|
|    |                  | ÇÕES E DEFINIÇÕESENTAÇÃO NUMÉRICA                                                                        |          |
| 1  | INTR             | ODUÇÃO AO CONTROLE MULTIMOTORES                                                                          | 7        |
|    | 1.1 MU           | JLTIMOTORES EM PARALELO                                                                                  | 7        |
|    | 1.2 MU           | JLTIMOTORES EM CASCATA                                                                                   | 7        |
|    | 1.2.1            | Vantagens                                                                                                | 8        |
|    | 1.2.2            | Desvantagens                                                                                             | 8        |
| 2  | CON.             | TROLE MULTIMOTOR COM A SSW-06                                                                            | 9        |
|    | 2.1 VA<br>2.2 DE | NTAGENSSVANTAGENS                                                                                        | 9        |
|    |                  | ÇÃO SOFTWARE PLC - SOFTPLC                                                                               |          |
|    | •                | •                                                                                                        |          |
|    |                  | OCO DE FUNÇÃO MMC - MULTIMOTOR CONTROL                                                                   | 10       |
|    | 3.1.1            | Motores Utilizados                                                                                       |          |
|    | 3.1.2            | Entradas                                                                                                 |          |
|    | 3.1.2.<br>3.1.2. |                                                                                                          |          |
|    | 3.1.2.           |                                                                                                          |          |
|    | 3.1.3            | Saídas                                                                                                   |          |
|    | 3.1.3            |                                                                                                          |          |
|    | 3.1.3            |                                                                                                          |          |
|    | 3.1.4            | Alteração dos Dados da Partida                                                                           |          |
|    | 3.1.4            | .1 Alteração dos Dados Não Utilizados                                                                    | 13       |
|    | 3.1.5            | Motor Fixo                                                                                               |          |
|    | 3.1.6            | Condições Mínimas de Funcionamento                                                                       |          |
|    | 3.2 MC           | DNITORAÇÃO                                                                                               | 15       |
| 4  | PARA             | AMETRIZAÇÃO DA SOFT-STARTER SSW-06                                                                       | 16       |
|    |                  | 40 – CONTATOR DE BY-PASS EXTERNO                                                                         |          |
|    |                  | 20 - SELEÇÃO DA FONTE LOCAL/REMOTO                                                                       |          |
|    |                  | 21 – CONTATOR DE BY-PASS FECHADO                                                                         |          |
|    |                  | 50 – HABILITAÇÃO DO SOFTWARE PLC<br>51 - HABILITAÇÃO DO CARTÃO DE EXPANSÃO DE ENTRADAS E SAÍDAS DIGITAIS |          |
| 5  | CAR              | ΓÃΟ IOS6 – KIT K-IOE                                                                                     | 18       |
|    |                  | STALAÇÃO MECÂNICA                                                                                        |          |
|    |                  | STALAÇÃO ELÉTRICA                                                                                        |          |
|    | 5.2.1            | Entradas Digitais                                                                                        |          |
|    | 5.2.2            | Saídas Digitais a Relé                                                                                   |          |
| 6  | 5.2.3            | Alimentação Externa do Cartão IOS6                                                                       |          |
| 6  |                  | MPLOS DE PROJETOS                                                                                        |          |
|    |                  | OJETO 1 - CASCATA SEQÜENCIAL DOIS MOTORES                                                                |          |
|    | 6.1.1<br>6.1.2   | SoftPLC do Projeto 1                                                                                     |          |
|    |                  | Esquema Elétrico do Projeto 1                                                                            | 24<br>25 |
|    | 6.2.1            | SoftPLC do Projeto 2                                                                                     |          |
|    | 6.2.2            | Esquema Elétrico do Projeto 2                                                                            |          |
|    |                  | OJETO 3 – CASCATA SEQÜENCIAL FIXA TRÊS MOTORES                                                           |          |
|    | 6.3.1            | SoftPLC do Projeto 3                                                                                     |          |
|    | 6.3.2            | Esquema Elétrico do Projeto 3                                                                            | 28       |
|    | 6.4 PR           | OJETO 4 - CASCATA INDIVIDUAL TRÊS MOTORES                                                                | 29       |

#### 



## **INFORMAÇÕES SOBRE O MANUAL**

Este manual fornece a descrição necessária para a operação da Soft-Starter SSW-06 utilizada na aplicação multimotores com o auxílio do cartão de expansão de entradas e saídas digitais IOS6 (opcional) e a função SoftPLC (padrão na SSW-06). Este manual deve ser utilizado em conjunto com o manual do usuário da SSW-06, do manual da SoftPLC e do software WLP.

## **ABREVIAÇÕES E DEFINIÇÕES**

CLP Controlador Lógico Programável

RAM Random Access Memory

WLP Software de Programação em Linguagem Ladder

USB Universal Serial Bus

## REPRESENTAÇÃO NUMÉRICA

Números decimais são representados através de dígitos sem sufixo. Números hexadecimais são representados com a letra 'h' depois do número.



## 1 INTRODUÇÃO AO CONTROLE MULTIMOTORES

O controle multimotores utilizando soft-starter é o acionamento de mais de um motor pela mesma soft-starter. Ainda é utilizado nas indústrias com o intuito de reduzir o custo do sistema de acionamento dos motores. Pode ser realizado de duas formas, em paralelo ou em cascata.

### 1.1 MULTIMOTORES EM PARALELO

Todos os motores são conectados em paralelo, partindo e parando simultaneamente.

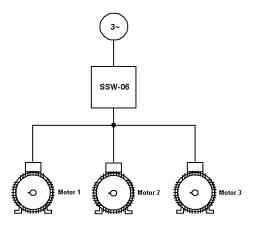



Figura 1.1: Multimotores em paralelo

A soft-starter deve dimensionada de forma a suportar a soma das correntes dos motores, tanto em regime, como na partida. Torna-se viável para aplicações de baixa potência, onde o custo dos motores é inferior ao custo da soft-stater. Todas as soft-starters possibilitam este tipo de aplicação.

Algumas das proteções da soft-stater podem ser utilizadas como, falta de fase – se a detecção de falta de fase for realizada por tensão. Outras como, sobrecarga devem ser realizadas por relés de sobrecarga individuais para cada motor.

### 1.2 MULTIMOTORES EM CASCATA

A soft-starter é utilizada para partir individualmente cada motor, sendo logo após "by-passada" – os motores são conectados diretamente a rede de alimentação. A partida em cascata pode ser realizada de duas formas: em seqüência – os motores são acionados em seqüência um após o outro e desacionados ao mesmo tempo, ou individualmente – os motores são acionados ou desacionados individualmente.

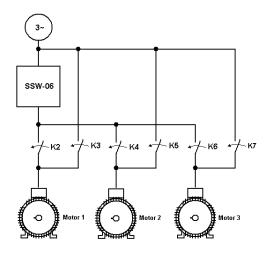



Figura 1.2: Multimores em cascata

## Introdução ao Controle Multimotores



A soft-starter deve dimensionada de forma a suportar o regime de partidas dos motores – corrente de partida por tempo e quantas partidas por hora de todos os motores.

Necessita de contatores auxiliares para o acionamento dos motores, sendo os contatores K2, K4 e K6 utilizados para partir os motores individualmente pela soft-starter e logo após desconectá-la dos motores. Os contatores K3, K5 e K7 são utilizados para conectar os motores a rede de alimentação após a partida de cada um deles.

A grande maioria das soft-starter mais avançadas do mercado não possibilitam mais este tipo de aplicação, pois cada vez mais são desenvolvidas para a proteção dos motores e da instalação elétrica e não apenas para partir motores.

## 1.2.1 Vantagens

■ Redução do custo do sistema de acionamento, utilizando-se apenas uma soft-starter para a partida de mais de um motor, quando o custo da soft-starter é significativo em relação ao custo de todo o sistema de acionamento e dos motores.

#### 1.2.2 Desvantagens

- As proteções dos motores implementadas nas soft-starter não são utilizadas.
- Necessidade da utilização de proteções para cada motor a ser acionado, como: relés térmicos, relés de falta de fase, fusíveis...
- Possibilita apenas a partida dos motores. Não possibilita a parada controlada dos motores utilizada em aplicações com bombas hidráulicas centrífugas.
- Mesmos dados de partidas para todos os motores, o que limita sua aplicação a motores idênticos.
- Grande complexidade do sistema de acionamento dos motores, como: fiações, contatores, temporizadores ou CLPs utilizados.



## 2 CONTROLE MULTIMOTOR COM A SSW-06

Utilizando a soft-starter SSW-06 com o cartão IOS6 do Kit K-IOS e o SoftPLC em aplicações multimotores em cascata.

#### 2.1 VANTAGENS

- Possibilita o controle de até três motores com apenas uma soft-starter SSW-06.
- Partidas e paradas em cascata següencial ou individual.
- Permite a alteração de algumas características de partida para cada um dos três motores. Através da alteração de até três parâmetros para cada motor. Como por exemplo: corrente de partida e corrente do motor. Possibilitando assim a partida de três motores diferentes dentro de uma escala de 30% a 100% da corrente nominal da SSW-06.
- Possibilita a partida e parada controlada dos motores acionados, possibilitando assim, a utilização em aplicações com bombas hidráulicas centrífugas.
- Redução do custo de instalação e manutenção devido a simplicidade do acionamento dos motores concentrado dentro da Soft-Starter SSW-06, através do cartão IOS6 e SoftPLC.
- Facilidade de implementação e alteração de funções e proteções através do SoftPLC utilizando o software de projeto WLP.

#### 2.2 DESVANTAGENS

- Muitas das proteções dos motores, implementadas nas Soft-Starter SSW-06, não são utilizadas.
- Necessidade da utilização de proteções para cada motor a ser acionado, como: relés térmicos, relés de falta de fase, fusíveis...



## 3 FUNÇÃO SOFTWARE PLC - SOFTPLC

A Soft-Starter SSW-06 possui a capacidade de implementação de um software de controlador lógico programável em linguagem de contato – "ladder", o SoftPLC, com uma capacidade de 1k bytes de programa aplicativo.

Com o SoftPLC podem ser criadas lógicas de intertravamento, entre as entradas e saídas digitais, saídas analógicas, lógicas de acionamento de motores, entre outros. Este SoftPLC é programável através do software WLP. O WLP também permite a monitoração "on-line" do programa desenvolvido pelo usuário, o que facilita o seu desenvolvimento.

O software WLP é fornecido gratuitamente em conjunto com a Soft-Stater SSW-06 ou pode ser baixado do site da Weg. Informações de utilização podem ser obtidas no manual do software WLP para a Soft-Starter SSW-06.

## 3.1 BLOCO DE FUNÇÃO MMC - MULTIMOTOR CONTROL

Para o acionamento multimotor foi desenvolvido um bloco de função chamado de MMC – "MultiMotor Control", que possibilita, em conjunto com o cartão IOS6, o acionamento automático de até três motores.

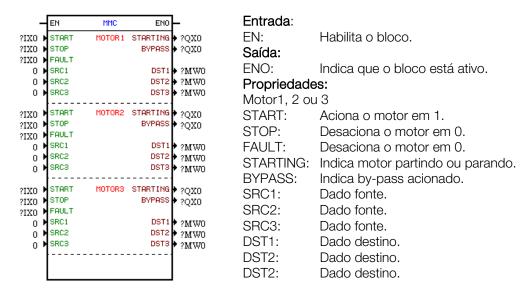



Figura 3.1: Bloco de função MMC

#### 3.1.1 Motores Utilizados

O bloco é dividido em três sub-blocos: Motor 1, Motor 2 e Motor 3, com as características de cada motor. Inicialmente, os motores não utilizados devem ser desabilitados dentro do bloco, através das propriedades de cada motor. Para ter acesso a estas propriedades basta "clicar duas vezes no bloco".



Figura 3.2: Motor 3 não utilizado



#### 3.1.2 Entradas

A lógica de acionamento de cada motor é realizada por três entradas: **Gira**, **Pára** e **Falha**. As quais possibilitam todo o tipo de lógica de acionamento, dois e três fios.

### 3.1.2.1 **Dois Fios**

No exemplo abaixo a entrada digital 7 (DI7=**Gira/Pára**) do cartão IOS6 aciona (fechada) e desaciona (aberta) o Motor1. Entradas **Gira**, **Pára** e **Falha** são programadas para a mesma DI.

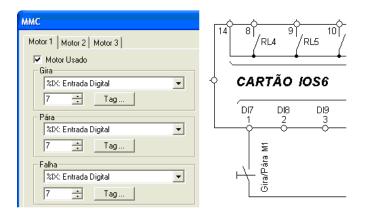



Figura 3.3: Acionamento a dois fios

#### 3.1.2.2 Três Fios

No exemplo abaixo a entrada digital 7 (DI7=Gira) aciona (pulso - fechada) e entrada digital 8 (DI8=Pára) desaciona (pulso - aberta) o Motor 1. Entradas Gira e Falha são programadas para a mesma DI.

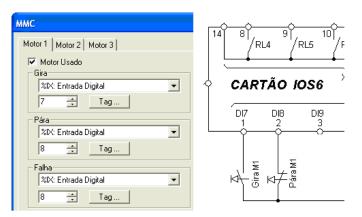



Figura 3.4: Acionamento a três fios

### 3.1.2.3 Proteção

No exemplo abaixo a entrada digital 9 (DI9=Falha) possibilita a instalação de algum tipo de proteção, que ao atuar (abrir) desabilitará o motor. Esta entrada de Falha apenas desabilita o motor ou não possibilita habilitar o motor, não causa falha na Soft-Starter SSW06.



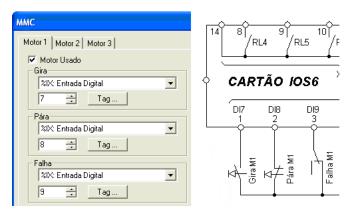



Figura 3.5: Entrada de proteção

Um exemplo de utilização e a colocação de um sensor de temperatura no motor, o qual, quando atuar desaciona o motor e ao esfriar permite o acionamento do motor.

Outro exemplo é a colocação de sensores de nível, bóias, para a utilização com bombas centrifugas hidráulicas. Quando o nível estiver alto ou baixo as bóias irão atuar desacionando o motor e ao retornar ao nível correto permitem o acionamento do motor.

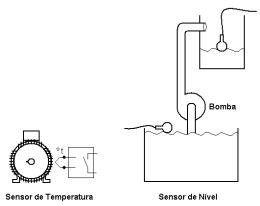



Figura 3.6: Exemplos de proteção

## 3.1.3 Saídas

São utilizadas para acionar os contatores de potência que irão conectar os motores à Soft-Starter SSW-06, durante suas partidas e paradas e, logo após, conectar estes motores a rede de alimentação liberando a soft-starter.

#### 3.1.3.1 Saída de Partida e Parada

Utilizada para conectar e desconectar os motores à Soft-Starter SSW-06, durante suas partidas e paradas. No exemplo da Figura 3.7 a saída digital 4 (RL4=**Partindo**) aciona o contator K2, responsável pela conexão da soft-starter ao motor M1 durante sua partida e parada deste motor.

#### 3.1.3.2 Saída de By-pass

Utilizada para conectar os motores diretamente a rede de alimentação após suas partidas. No exemplo da Figura 3.7 a saída digital 5 (RL5=**By-pass**) aciona o contator K3, responsável pela conexão motor M1 à rede de alimentação após sua partida.



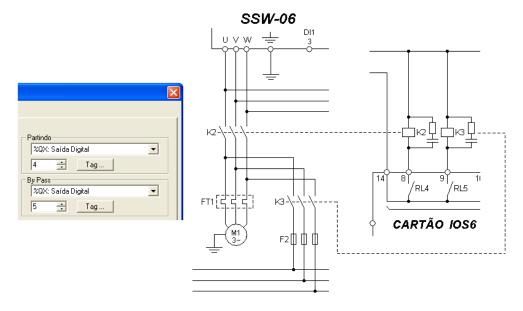



Figura 3.7: Saídas de partindo e by-pass

## 3.1.4 Alteração dos Dados da Partida

O bloco MMC possibilita a alteração de até três dados para cada motor. Estes dados são carregados da fonte para o destino (Fonte 1, 2 e 3 para Destino 1, 2 e 3), em toda a partida e parada do respectivo motor. No exemplo abaixo a corrente do Motor 1 (P401) é carregado com 100,0A (1000) e a limitação de corrente é carregada com 2,7xln do motor (270).



Figura 3.8: Alteração de dados do Motor 1

## 3.1.4.1 Alteração dos Dados Não Utilizados

Quando não houver alteração de dados, entre um motor e outro, deve ser reservado um Marcador de Word como destino. No exemplo abaixo o **Marcador de Word %MW 8000** foi reservado. Todos os motores utilizados podem usar este mesmo Marcador de Word.



Figura 3.9: Alteração de dados não utilizados



## 3.1.5 Motor Fixo

Através desta propriedade pode-se determinar se, após o acionamento do último motor, a SSW deve ser "by-passada" através do contator de by-pass ou se deve permanecer acionando este motor. Existem algumas restrições para a utilização desta propriedade, como: apenas o último motor da seqüência pode ser fixado; todos os motores devem ser acionados e ou desacionados no mesmo instante; as entradas de falha devem desacionar todos os motores. No item 6.3 é mostrado um exemplo de utilização.

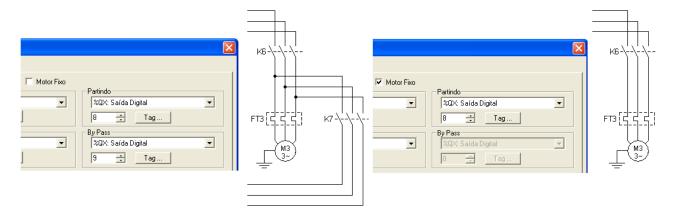



Figura 3.10: MOTOR3 fixo

## 3.1.6 Condições Mínimas de Funcionamento

A seguir é mostrado um exemplo da partida de dois motores com acionamento a três fios através das DI7 e DI8 para o Motor 1 e DI9 e DI10 para o Motor 2.

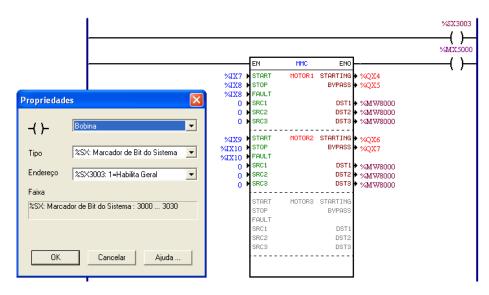



Figura 3.11: Condições mínimas de funcionamento

Para colocar este exemplo, em funcionamento, basta seguir os seguintes passos:

- Inserir-Bobinas-COIL para Habilita Geral da Soft-Starter via SoftPLC, %SX3003: 1= Habilita Geral.
- Inserir-Bloco de Função-MMC.
- Habilitar o bloco MMC na entrada EN.
- Inserir-Bobinas-COIL na saída do bloco MMC ENO e reservar um Marcador de Bit %MX5000 para esta bobina.
- Programar as propriedades do bloco MMC.
- Os seguintes parâmetros devem ser alterados: P140=1, P220=9, P621=0, P950=1 e P951=1. Estes parâmetros são detalhados no capítulo seguinte.
- Copilar o projeto e transferir para a Soft-Starter.



## 3.2 MONITORAÇÃO

O WLP possui monitoração "on-line" do software aplicativo desenvolvido para o SoftPLC, o que facilita o desenvolvimento e verificação de falhas do projeto. Na Figura 3.12 é mostrada a monitoração das entradas e saídas digitais.

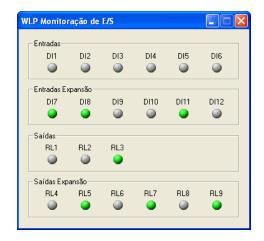



Figura 3.12: Monitoração das entradas e saídas digitais

Na Figura 3.13 é mostrada a monitoração de um bloco MMC.

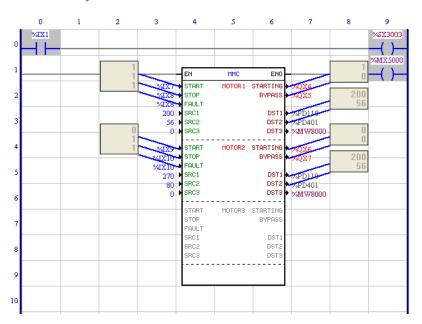



Figura 3.13: Monitoração de um bloco MMC



## 4 PARAMETRIZAÇÃO DA SOFT-STARTER SSW-06

A seguir serão descritos os parâmetros relacionados com o acionamento multimotores utilizando o cartão IOS6 do Kit K\_IOS da Soft-Starter SSW-06.

#### 4.1 P140 - CONTATOR DE BY-PASS EXTERNO

Utilizado nesta aplicação para indicar ao SoftPLC que o contator de by-pass será acionado, 1 = Ativo.

| Faixa de valores | Padrão      | Acesso           |
|------------------|-------------|------------------|
| 0 = Inativo      | 1 = Inativo | Leitura/ escrita |
| 1 = Ativo        |             |                  |

- 0 Inativo: Sem contator de By-pass externo.
- 1 Ativo: Com contator de By-pass externo.

## 4.2 P220 - SELEÇÃO DA FONTE LOCAL/REMOTO

Deve ser programada para possibilitar o acionamento dos motores via SoftPLC, 9 = SoftPLC Local.

| Faixa de valores    | Padrão      | Acesso           |
|---------------------|-------------|------------------|
| 0 = Sempre          | 2 = HMI (L) | Leitura/ escrita |
| 1 = Sempre Remoto   |             |                  |
| 2 = HMI(L)          |             |                  |
| 3 = HMI(R)          |             |                  |
| 4 = DI4 a DI6       |             |                  |
| 5 = Serial (L)      |             |                  |
| 6 = Serial (R)      |             |                  |
| 7 = Fieldbus (L)    |             |                  |
| 8 = Fieldbus (R)    |             |                  |
| 9 = SoftPLC Local   |             |                  |
| 10 = SoftPLC Remoto |             |                  |

#### 4.3 P621 - CONTATOR DE BY-PASS FECHADO

Utilizado nesta aplicação para possibilitar a desabilitação da proteção de contator de by-pass fechado – em curto-circuito. Nesta aplicação a proteção iria atuar devido ao curto-circuito realizado pelo contator de by-pass externo acionado pelo SoftPLC, que não foi aberto no instante em que a Soft-Stater SSW-06 foi retirada do circuito após a partida de um dos motores.

| Faixa de valores | Padrão    | Acesso           |
|------------------|-----------|------------------|
| 0 = Inativa      | 1 = Ativa | Leitura/ escrita |
| 1 = Ativa        |           |                  |

- 0 Inativa: Possibilita a utilização da Soft-Starter SSW-06 em aplicações multimotores.
- 1 Ativa: Proteção ativa, padrão de fábrica.



### NOTA!

Desabilitar esta proteção somente para possibilitar a utilização da SSW-06 em aplicações multimotores, ou seja, quando uma SSW-06 aciona mais de um motor.

## 4.4 P950 - HABILITAÇÃO DO SOFTWARE PLC

Permite habilitar a execução do software aplicativo de usuário do SoftPLC, 1 = Sim.

| Faixa de valores | Padrão  | Acesso           |
|------------------|---------|------------------|
| 0 = Não          | 0 = Não | Leitura/ escrita |
| 1 = Sim          |         |                  |

■ 0 - Não: Aplicativo do SofPLC desabilitado.





■ 1 - Sim: Aplicativo do SofPLC habilitado.

## 4.5 P951 - HABILITAÇÃO DO CARTÃO DE EXPANSÃO DE ENTRADAS E SAÍDAS DIGITAIS

Sua função é habilitar o cartão de expansão de entradas e saídas digitais IOS6 do kit K-IOE. Este cartão somente pode ser utilizado através do SoftPLC, 1 = Sim.

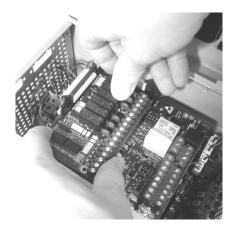
| Faixa de valores | Padrão  | Acesso           |
|------------------|---------|------------------|
| 0 = Não          | 0 = Não | Leitura/ escrita |
| 1 = Sim          |         |                  |

0 - Não: Cartão IOS6 não habilitado.
1 - Sim: Cartão IOS6 habilitado.



## 5 CARTÃO IOS6 - KIT K-IOE

Cartão opcional com seis entradas digitais e seis saídas digitais a relé isoladas galvanicamente, conectado internamente no produto, possibilita expandir a quantidade de entradas e saídas da SSW-06. Utilizado em conjunto com o SoftPLC permite otimizar todo o sistema de acionamento elétrico, eliminando grande parte das fiações, relés, relés de tempo, contatores e micro CLPs. Reduzindo, assim, os custos de instalação e manutenção.




#### NOTA!

Ao se utilizar este cartão não é mais possível utilizar os cartões opcionais de comunicação fieldbus dos Kits KFB.

## 5.1 INSTALAÇÃO MECÂNICA

O cartão IOS6 é facilmente instalado dentro da SSW-06, possibilitando robustez mecânica e simplicidades na instalação.



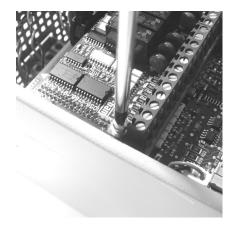



Figura 5.1: Instalação mecânica do cartão IOS6

## 5.2 INSTALAÇÃO ELÉTRICA

As conexões de sinal, entradas e saídas digitais, e a alimentação externa são feitas no conector X4 do cartão

| Cone | ctor X4 | Descrição                         | Especificações                                   |  |
|------|---------|-----------------------------------|--------------------------------------------------|--|
| 1    | DI7     |                                   |                                                  |  |
| 2    | DI8     |                                   | 6 entradas digitais isoladas                     |  |
| 3    | DI9     | Entradas Digitais                 | Nível alto mínimo: 18Vcc                         |  |
| 4    | DI10    | 1                                 | Nível baixo máximo: 3Vcc<br>Tensão máxima: 30Vcc |  |
| 5    | DI11    |                                   | Corrente de entrada: 11ma@24Vcc                  |  |
| 6    | DI12    |                                   | Continue de Chinada. 1 maez 1700                 |  |
| 7    | DI COM  | Ponto comum das entradas digitais | Utilizar somente para as entradas digitais       |  |
| 8    | RL4 NA  |                                   |                                                  |  |
| 9    | RL5 NA  |                                   |                                                  |  |
| 10   | RL6 NA  | Saídas digitais a relé            | Capacidade dos contactos: 1A @ 240Vca            |  |
| 11   | RL7 NA  | Saidas digitais a reie            |                                                  |  |
| 12   | RL8 NA  |                                   |                                                  |  |
| 13   | RL9 NA  |                                   |                                                  |  |
| 14   | RL COM  | Ponto comum das saídas a relé     | Utilizar somente para as saídas a relé           |  |
| 15   | +24Vdc  | Alimentação externa do cartão     | 24Vcc, (20 to 30)Vcc / 150mA)                    |  |
| 16   | 0Vdc    | Alli Heritação externa do Cartao  | 24700, (20 to 30,700 / 13011A)                   |  |

NA = Contacto Normalmente Aberto, COM = Comum





#### NOTA!

Bitolas dos cabos (0,5 a 1,0)mm2. Torque máximo: 0,50N.m (4,50 ibf.in).

### 5.2.1 Entradas Digitais

As entradas digitais devem ser alimentadas com uma fonte externa de +24Vcc utilizando o 0V, ou o +24Vcc, como ponto comum.

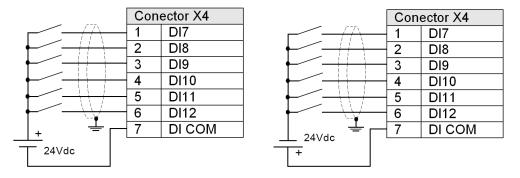



Figura 5.2: Esquema de conexão das entradas digitais



#### NOTA!

As fiações das entradas digitais devem ser feitas com cabos blindados e separadas das demais fiações (potência, comando em 110V/220V, etc.).

### 5.2.2 Saídas Digitais a Relé

As saídas digitais são a relés com contatos normalmente abertos. Quando acionados fecham os contados.

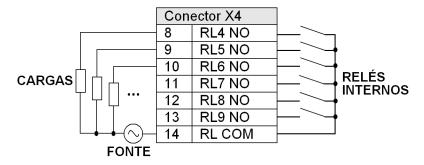



Figura 5.3: Esquema das saídas digitais a relé



#### NOTA!

Relés, contatores, solenóides ou bobinas de freios eletromecânicos conectados as saídas digitais a relés podem eventualmente gerar interferências no circuito de controle. Para eliminar este efeito, supressores RC devem ser conectados em paralelo com as bobinas destes dispositivos, no caso de alimentação CA, e diodos de roda-livre no caso de alimentação CC.

### 5.2.3 Alimentação Externa do Cartão IOS6

O cartão IOS6 necessita ser alimentado externamente, tanto para o funcionamento das saídas digitais a relé, como para as entradas digitais. A alimentação deve ser fornecida por uma fonte de 24Vcc com capacidade de corrente superior a 150mA. A mesma fonte de alimentação pode ser utilizada para alimentação das entradas digitais.



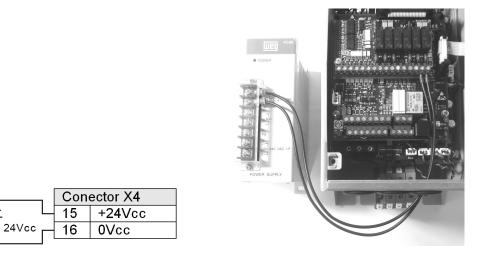



Figura 5.4: Alimentação externa do cartão IOS6



## 6 EXEMPLOS DE PROJETOS

Neste item são apresentados alguns acionamentos sugestivos, os quais podem ser usados inteiramente ou em parte para montar o acionamento desejado.

Estes exemplos de projetos estão disponíveis no WLP relacionados com o mesmo nome descritos neste guia, conforme mostra a figura abaixo:



Figura 6.1: Acessando os exemplos no WLP



#### NOTAS!

As principais notas de advertência, para todos os acionamentos sugestivos, listados abaixo, estão relacionadas nos esquemas através dos seus respectivos números.

- O emprego de fusíveis de ação ultra-rápida não é necessário para o funcionamento da Soft-Starter SSW-06, porém a sua utilização é recomendada para a completa proteção dos tiristores.
- O transformador "T1" é opcional e deve ser utilizado quando houver diferença entre a tensão da rede de alimentação e a tensão de alimentação da eletrônica e ventiladores.
- Na eventualidade de danos no circuito de potência da Soft-Starter SSW-06, que mantenham o motor acionado por curto-circuito, a proteção do motor nesta situação só é obtida com a utilização do contator (K1). Este contator deve suportar a corrente de partida dos motores utilizados.
- (4) X1E (33 e 34) apenas está disponível nos modelos com ventilador.
- Para a proteção dos motores é recomendada a utilização de relés de sobrecarga, termistores ou termostatos para cada motor utilizado. Ao se utilizar termistores ou termostatos estes devem possuir contatos normalmente fechados e devem ser conectados a entrada de falha do bloco MMC.
- 6 Lembre-se que ao utilizar comando por entrada digital a dois fios (chave normalmente aberta com retenção) sempre que retornar a energia elétrica, após uma falta, o motor irá partir imediatamente se a chave permanecer fechada.
- (7) Em caso de manutenção, na Soft-Starter SSW-06 ou nos motores, é necessário seccionar a entrada de alimentação para garantir a completa desconexão de todos os equipamentos da rede de alimentação.
- A emergência pode ser implementada cortando-se a alimentação de todo o sistema de acionamento.
- (9) Os contatores (K2 até K7) devem suportar a corrente de partida dos motores acionados por eles.
- É recomendada a utilização de fusíveis de ação retardada para a proteção individual dos motores no caso de curtos-circuitos.
- Verificar a capacidade de corrente das saídas digitais a relé ao acionar os contatores de potência.

## **Exemplos de Projetos**



- A alimentação deve ser fornecida por uma fonte de 24Vcc com capacidade de corrente superior a 150mA.
- É recomendada a utilização de fusíveis de ação retardada para a proteção de todo o sistema contra curtos-circuitos. Estes fusíveis devem suportar a corrente total consumida pelo sistema mais a corrente de partida do maior motor acionado.
- Prever um disjuntor para proteção do sistema de acionamento e corte da alimentação do circuito de acionamento do contator K1.
- O contator K1 será desenergizado quando a SSW-06 indicar algum erro, protegendo assim o sistema de acionamento. Este contator deve suportar a corrente de partida do maior motor mais a corrente dos motores acionados ao mesmo instante.



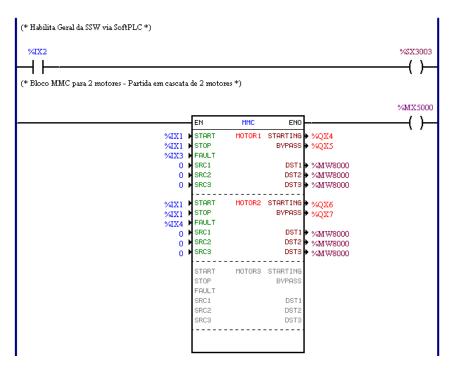
## 6.1 PROJETO 1 - CASCATA SEQÜENCIAL DOIS MOTORES

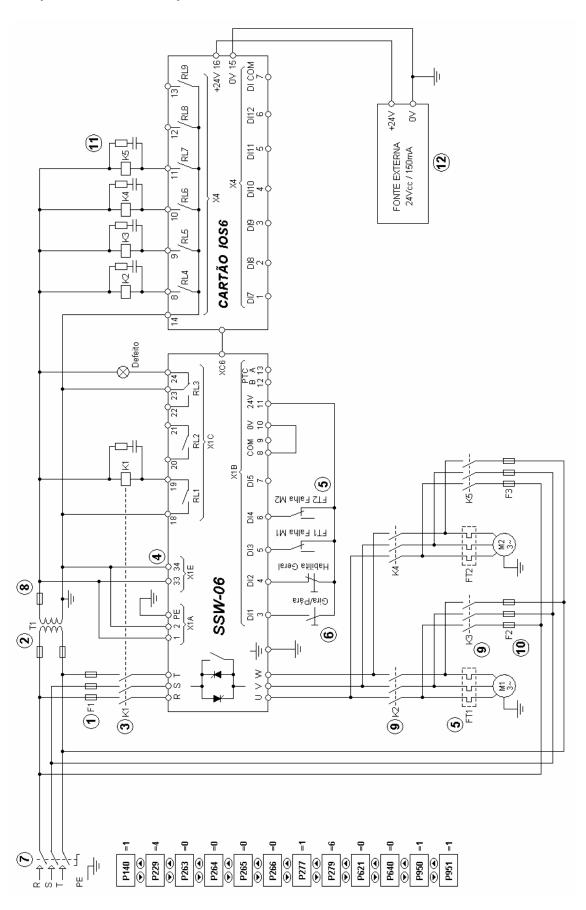
Exemplo com acionamento de dois motores em cascata - partida seqüencial um após o outro.

#### Possui:

- dois motores:
- comando único aciona sempre os dois motores um após o outro;
- com desaceleração controlada através da entrada de gira/pára desaciona um motor de cada vez;
- sem desaceleração controlada através da entrada de habilita/desabilita geral desaciona os dois motores juntos via abertura dos contatores;
- entrada de falha desaciona o motor que está com falha.

## 6.1.1 SoftPLC do Projeto 1





Figura 6.2: SoftPLC Projeto 1

#### Descrição:

- %IX2 (SSW-06) = entrada digital para habilita geral (fechada) e desabilita geral (aberta);
- %SX3003 = Habilita geral via SoftPLC;
- %MX5000 = Marcador de Bit reservado para saída do bloco MMC;
- %IX1 (SSW-06) = entrada digital de aciona (fechada) e desacioma (aberta);
- %IX3, %IX4 (SSW-06) = entradas digitais de falha (fechada sem falha);
- %QX4, %QX6 (IOS6), saídas digitais de partida;
- %QX5, %QX7 (IOS6), saídas digitais de by-pass;
- %MW8000 = Marcador de Word reservado para alteração de parâmetros não utilizados.



## 6.1.2 Esquema Elétrico do Projeto 1





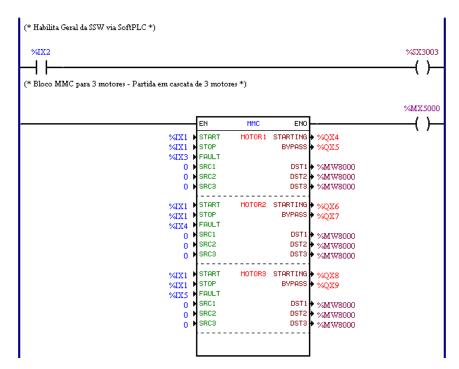
## 6.2 PROJETO 2 - CASCATA SEQÜENCIAL TRÊS MOTORES

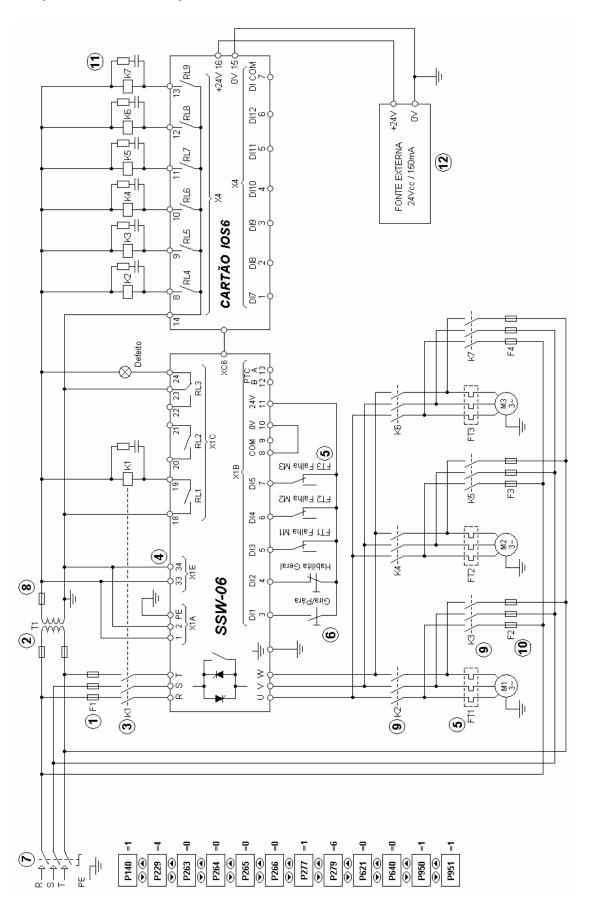
Exemplo com acionamento de três motores em cascata - partida seqüencial um após o outro.

#### Possui:

- três motores:
- comando único aciona sempre os três motores um após o outro;
- com desaceleração controlada através da entrada de gira/pára desaciona um motor de cada vez;
- sem desaceleração controlada através da entrada de habilita/desabilita geral desaciona os três motores juntos via abertura dos contatores;
- entrada de falha desaciona o motor que está com falha.

### 6.2.1 SoftPLC do Projeto 2





Figura 6.3: SoftPLC Projeto 2

#### Descrição:

- %IX2 (SSW-06) = entrada digital para habilita geral (fechada) e desabilita geral (aberta);
- %SX3003 = Habilita geral via SoftPLC;
- %MX5000 = Marcador de Bit reservado para saída do bloco MMC;
- %IX1 (SSW-06) = entrada digital de aciona (fechada) e desacioma (aberta);
- %IX3, %IX4, %IX5 (SSW-06) = entradas digitais de falha (fechada sem falha);
- %QX4, %QX6 (IOS6), saídas digitais de partida;
- %QX5, %QX7 (IOS6), saídas digitais de by-pass;
- %MW8000 = Marcador de Word reservado para alteração de parâmetros não utilizados.



## 6.2.2 Esquema Elétrico do Projeto 2





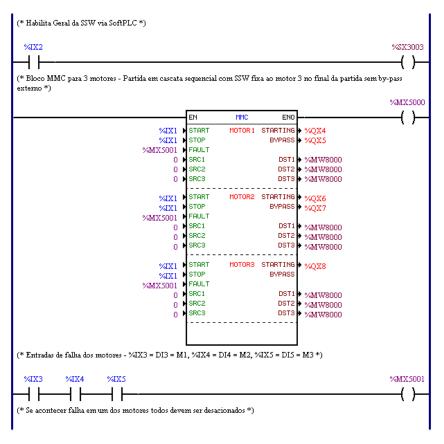
## 6.3 PROJETO 3 - CASCATA SEQÜENCIAL FIXA TRÊS MOTORES

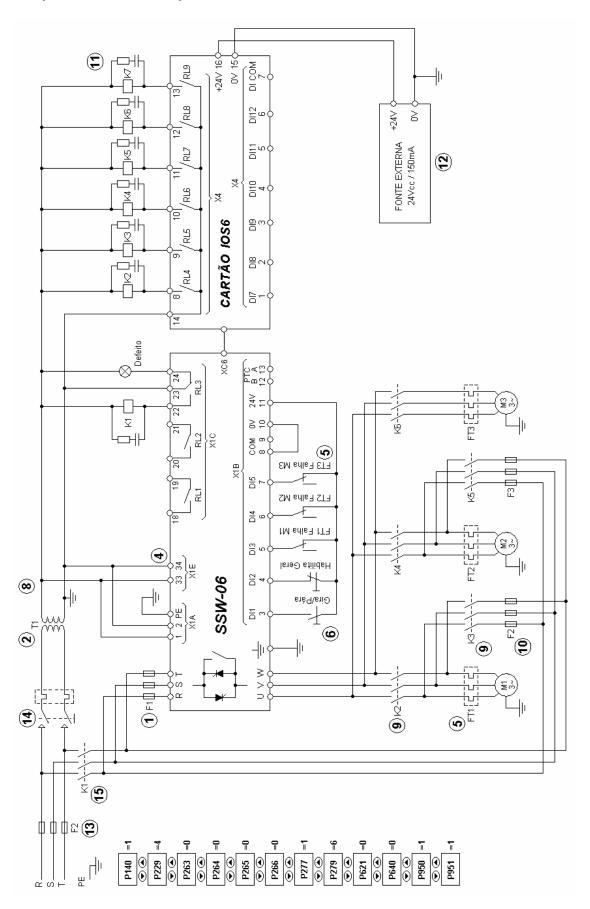
Exemplo com acionamento de três motores em cascata – partida na seqüência M1, M2 e M3 com motor M3 fixo a SSW sem contator de by-pass externo.

#### Possui:

- três motores;
- comando único aciona sempre os três motores um após o outro na seqüência M1, M2 e M3;
- com desaceleração controlada através da entrada de gira/pára desaciona um motor de cada vez, na seqüência M3, M2 e M1;
- sem desaceleração controlada através da entrada de habilita/desabilita geral desaciona os três motores juntos via abertura dos contatores;
- entrada de falha desaciona todos os motores quando houver falha em um dos motores.

## 6.3.1 SoftPLC do Projeto 3





Figura 6.4: SoftPLC Projeto 3

#### Descrição:

- %IX2 (SSW-06) = entrada digital para habilita geral (fechada) e desabilita geral (aberta);
- %SX3003 = Habilita geral via SoftPLC;
- %MX5000 = Marcador de Bit reservado para saída do bloco MMC;
- %IX1 (SSW-06) = entrada digital de aciona (fechada) e desacioma (aberta);
- %IX3, %IX4, %IX5 (SSW-06) = entradas digitais de falha (fechada sem falha);
- % MX5001 = Marcador de Bit reservado para indicação de falha;
- %QX4, %QX6 (IOS6), saídas digitais de partida;
- %QX5, %QX7 (IOS6), saídas digitais de by-pass;
- %MW8000 = Marcador de Word reservado para alteração de parâmetros não utilizados.



## 6.3.2 Esquema Elétrico do Projeto 3





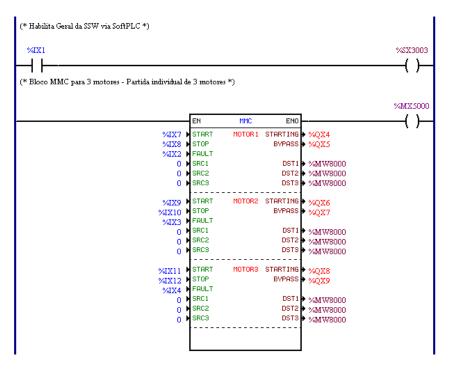
## 6.4 PROJETO 4 - CASCATA INDIVIDUAL TRÊS MOTORES

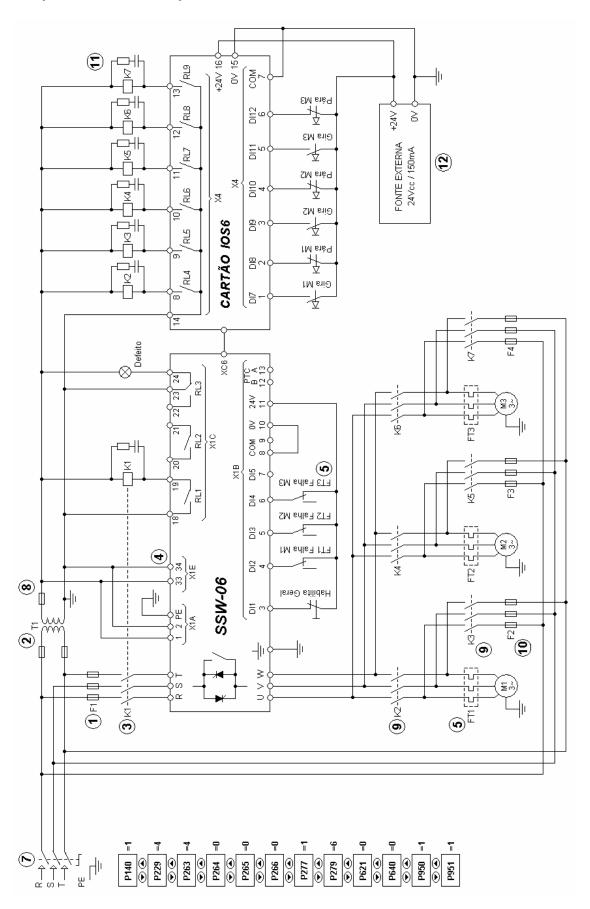
Exemplo com acionamento individual de três motores, que possibilita o controle individual da partida e parada de cada motor.

#### Possui:

- três motores:
- comando individual a três fios via entradas digitais (gira e pára separados);
- sem desaceleração controlada através da entrada de habilita/desabilita geral desaciona os três motores juntos via abertura dos contatores;
- entrada de falha desaciona o motor que está com falha.

### 6.4.1 SoftPLC do Projeto 4





Figura 6.5: SoftPLC Projeto 4

#### Descrição:

- %IX1 (SSW-06) = entrada digital para habilita geral (fechada) e desabilita geral (aberta);
- %SX3003 = Habilita geral via SoftPLC;
- %MX5000 = Marcador de Bit reservado para saída do bloco MMC;
- %IX7, %IX9, %IX11 (IOS6), entradas digitais de gira (fechada);
- %IX8, %IX10, %IX12 (IOS6), entradas digitais de pára (aberta);
- %IX2, %IX2, %IX4 (SSW-06), entradas digitais de falha (aberta com falha);
- %QX4, %QX6, %QX8 (IOS6), saídas digitais de partida;
- %QX5, %QX7, %QX9 (IOS6), saídas digitais de by-pass;
- %MW8000 = Marcador de Word reservado para alteração de parâmetros não utilizados.



## 6.4.2 Esquema Elétrico do Projeto 4





## 6.5 PROJETO 5 - MULTIBOMBAS

Exemplo com acionamento multibombas, que possibilita o controle automático de três bombas com rodízio, para aplicações de baixas potências.

#### Possui:

- três motores, três bombas centrifugas;
- comando manual e automático: manual via três entradas digitais (aciona e desaciona separados para cada motor), automático com rodízio via entrada digital para sensores de níveis;
- rodízio: no modo automático a cada acionamento via sensores de nível aciona duas bombas das três;
- seleção de manual automático via entrada digital aberta manual, fechada automática;
- acionamento manual só é permitido em modo manual e com sensores de nível fechados;
- entrada de desabilita geral possibilita desacionar todos os motores imediatamente;
- proteção de falta de fase via SoftPLC, E03, mesmo com os motores "by-passados";
- restet automático dos erros programados na soft-starter SSW-06;

#### 6.5.1 Sistema Multibombas

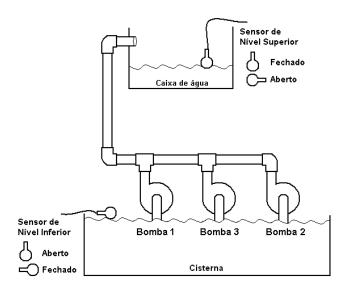
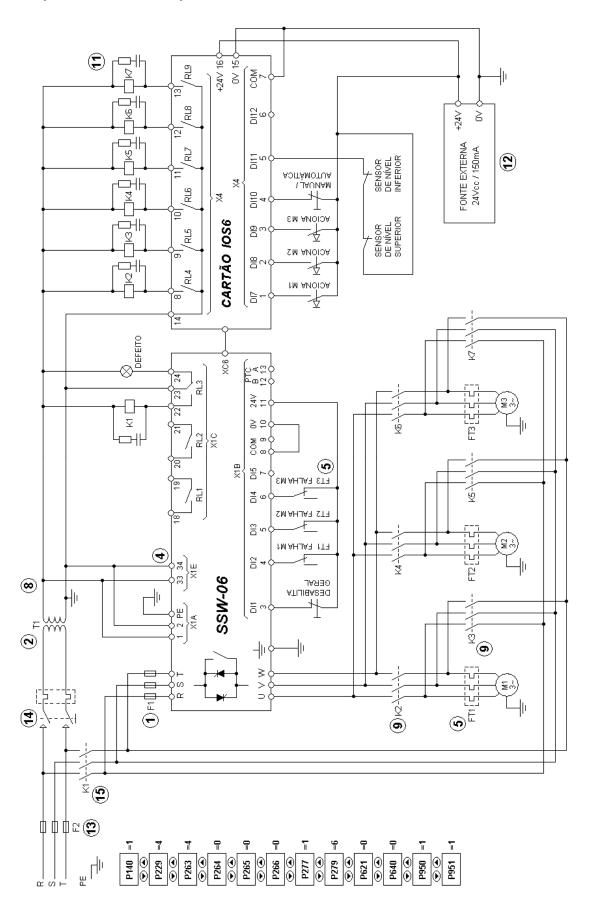



Figura 6.6: Sistema Multibombas


O sistema da Figura 6.6 é muito utilizado em prédios residenciais e comerciais, onde necessita-se manter a caixa de água cheia através do acionamento, com rodízio, de duas das três bombas centrífugas utilizadas. Neste sistema necessita-se de apenas duas bombas, sendo a terceira uma reserva no caso de alguma falha, sendo assim há necessidade do rodízio para se manter esta bomba em prefeitas condições de funcionamento.

## 6.5.2 SoftPLC do Projeto 5

O software aplicativo deste projeto pode ser visualizado diretamente no WLP devido ao seu tamanho.

# Шед

## 6.5.3 Esquema Elétrico do Projeto 5

