
Преобразователь частоты

CFW500 V3.9X

Руководство по программированию

Руководство по программированию

Серия: CFW500

Язык: Русский

Номер документа: 10002879160 / 02

Версия программного обеспечения: V3.9X

Дата публикации: 09/2024

Резюме обзоров

Информация ниже описывает обзоры, сделанные в этом руководстве.

Версия	Пересмотр	Описание
V1.5X	R00	Первое издание
V3.8X	R01	Общий пересмотр
V3.9X	R02	Новая коммуникационная принадлежность CFW500-CETH2 Изменение конфигурации управления: Бит 6 из команды STO/Fault Edge в команду STO/SS1-t Edge Новая конфигурация управления: Бит 7 команды Fault Edge Новая конфигурация управления: Бит 8 Пожарного режима Dlx Изменить в неисправности потери фазы Изменение в области памяти параметров Внесены улучшения в систему управления VVW PM - предварительное намагничивание, ток I/f, торможение постоянным током Включение управления VVW HSRM для реактивных электродвигателей с гибридной коммутацией

СПРАВОЧНИК ПАРАМЕТРОВ, АВАРИЙНЫХ СИГНАЛОВ, ОТКАЗ КОНФИГУРАЦИЙ	
КРАТКИЙ СПРАВОЧНИК ПАРАМЕТРОВ ВАРР	0-31
	0 0 .
1 MUCTOVELIMM TO TEVUME FESOTACHOCTM	4.4
1.1 ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНОСТИ В ДАННОМ РУКОВОДСТВЕ	
1.2 ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНОСТИ В ДАННОМ РУКОВОДСТВЕ	
1.3 ПРЕДВАРИТЕЛЬНЫЕ РЕКОМЕНДАЦИИ	
поти едол ительные текомендации	I-Z
2 ОБЩАЯ ИНФОРМАЦИЯ	2-1
2.1 ИНФОРМАЦИЯ О ДАННОМ РУКОВОДСТВЕ	2-1
2.2 ТЕРМИНОЛОГИЯ И ОПРЕДЕЛЕНИЯ	
2.2.1 Используемые термины и определения	
2.2.2 Числовое представление	
2.2.3 Символы, описывающие свойства параметров	2-3
2.3 СОВМЕСТИМОСТЬ ПРОШИВОК	2-3
3 ОБ УСТРОЙСТВЕ CFW500	3-1
4 ЧМИ И БАЗОВОЕ ПРОГРАММИРОВАНИЕ	4-1
4.1 СЕГМЕНТНЫЙ ЛОКАЛЬНЫЙ ЧМИ	
4.1.1 Использование ЧМИ Для Работы С Преобразователем	
4.1.2 Индикация на Экране ЧМИ	
4.2 БУКВЕННО-ЦИФРОВОЙ ЧМИ	
4.2.1 Использование буквенно-цифрового ЧМИ4.3 РЕЖИМЫ РАБОТЫ ЧМИ	
5 ОСНОВНЫЕ ИНСТРУКЦИИ ПО ПРОГРАММИРОВАНИ	
НАСТРОЙКАМ	
5.1 СТРУКТУРА ПАРАМЕТРОВ	5-1
5.2 ПАРАМЕТРЫ, ВЫБИРАЕМЫЕ В МЕНЮ ЧМИ	
5.3 ЧМИ5.4 РЕЗЕРВНЫЕ ПАРАМЕТРЫ	5-2
5.4 РЕЗЕРВНЫЕ ПАРАМЕТРЫ 5.5 НАСТРОЙКА ИНДИКАЦИИ ДИСПЛЕЯ В РЕЖИМЕ МОНИТОРИНГА	
5.6 ИНДИКАЦИЯ НА ДИСПЛЕЕ В НАСТРОЙКАХ РЕЖИМА МОНИТОРИНГА	5-11 5-11
5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ	5-11
5.8 ТЕХНИЧЕСКИЕ ЕДИНИЦЫ SOFTPLC	
6 ИДЕНТИФИКАЦИЯ МОДЕЛИ ПРЕОБРАЗОВАТЕЛЯ	
ДОПОЛНИТЕЛЬНЫХ ПРИНАДЛЕЖНОСТЕЙ	6-1
6.1 ДАННЫЕ ПРЕОБРАЗОВАТЕЛЯ	6-1
7 ЛОГИЧЕСКАЯ КОМАНДА И УСТАВКА СКОРОСТИ	7-1
7.1 ВЫБОР ЛОГИЧЕСКОЙ КОМАНДЫ И УСТАВКИ СКОРОСТИ	7-1
7.2 УСТАВКА СКОРОСТИ	
7.2.1 Ограничения уставки скорости	
7.2.2 Резервное копирование уставок скорости	
7.2.3 Параметры уставки скорости	
7.2.4 Уставка через электронный потенциометр7.2.5 Аналоговый вход Alx и частотный вход Fl	
7.2.5 Аналоговый вход Аіх и частотный вход гі	

7.3 УПРАВЛЯЮЩЕЕ СЛОВО И СОСТОЯНИЕ ПРЕОВРАЗОВАТЕЛЯ	
· · · · · · · · · · · · · · · · · · ·	
7.3.1 Управление через входы ЧМИ	7-20
8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ	8-1
	0.4
ВЫХОДНОГО ТОКА	9-9
9.3.1 Ограничение напряжения промежуточного звена постоянного тока с п	
9.3.2 Ограничение напряжения промежуточного звена пост. тока с помощью «Ус	корение
9.3.4 Ограничение выходного тока с помощью функции «Замедление кривой» Р015 1	
9.4 СОХРАНЕНИЕ ЭНЕРГИИ	9-15
40 V/III A II I	
10.2 ЗАПУСК В РЕЖИМЕ VVW	10-5
11 ΥΠΡΔΒΠΕΗΜΕ VVW PM	11-1
11 1 ΗΔCΤΡΟЙΚΑ ΠΑΡΑΜΕΤΡΟΒ ΥΠΡΑΒΠΕΗΝЯ VVW PM	11-3
11.3 ПАРАМЕТРЫ ДЛЯ НАСТРОЙКИ УПРАВЛЕНИЯ VVW РМ	
40 VODA D OCI 1145 VAAA LIODAA	40.4
12.3.2 Руководство по устранению неполадок	12-10
13 ВЕКТОРНОЕ УПРАВЛЕНИЕ	13-1
13.4 РЕГУЛИРОВАНИЕ КРУТЯШЕГО МОМЕНТА	13-6
13.7.6 Ограничение тока крутящего момента	
13.7.7 Контроль фактической скорости двигателя	
13.7.8 Регупятор канала пост. тока	

13.8 ПУСК В БЕССЕНСОРНОМ ВЕКТОРНОМ РЕЖИМЕ И В ВЕКТОРНОМ РЕЖИМЕ ПОЛОЖЕНИЯ	
14 ОБЩИЕ ФУНКЦИИ ДЛЯ ВСЕХ РЕЖИМОВ УПРАВЛЕНИЯ	14-1
14.1 КРИВЫЕ14.2 РЕЖИМ ОЖИДАНИЯ	14-1
14.2 РЕЖИМ ОЖИДАНИЯ14.2 РЕЖИМ ОЖИДАНИЯ14.3 ПУСК С ХОДА / УСТОЙЧИВОСТЬ ПО НАПРЯЖЕНИЮ V/F ИЛИ VVW	14-5
14.3.1 Функция пуска с хода	
14.3.2 Функция компенсации провалов напряжения в сети	
14.4 ПУСК С ХОДА / КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ К Е УПРАВЛЕНИЮ	
14.4.1 Пуск с хода в векторном режиме	
14.4.1.1 Р0202 = 3	
14.4.1.2 P0202 = 4	
14.4.2 Компенсация провалов напряжения в сети в векторном режиме	
14.5 ТОРМОЖЕНИЕ ПОСТОЯННЫМ ТОКОМ	
14.6 АЛЬТЕРНАТИВНАЯ ЧАСТОТА	
14.7 РЕЖИМ СЖИГАНИЯ	
14.7 F EXCIN CAN ALIVA	
15 ЦИФРОВЫЕ И АНАЛОГОВЫЕ ВХОДЫ И ВЫХОДЫ	15-1
15.1 АНАЛОГОВЫЕ ВХОДЫ	
15.2 АНАЛОГОВЫЕ ВЫХОДЫ	
15.3 ЧАСТОТНЫЙ ВХОД	15-9
15.4 ЧАСТОТНЫЙ ВЫХОД	15-11
15.5 ЦИФРОВЫЕ ВХОДЫ	15-14
15.6 ЦИФРОВЫЕ ВЫХОДЫ	15-23
40 FMF KOUTDORFF	40.4
16 ПИД-КОНТРОЛЛЕР	16-1
16.1 ОПИСАНИЯ И ОПРЕДЕЛЕНИЯ	
16.2 ЗАПУСК	
16.3 РЕЖИМ ОЖИДАНИЯ С ПИД	
16.4 ЭКРАН РЕЖИМА МОНИТОРИНГА	
16.5 ПАРАМЕТР ПИД	
16.6 АКАДЕМИЧЕСКИЙ ПИД	16-14
17 РЕОСТАТНОЕ ТОРМОЖЕНИЕ	17-1
18 ОТКАЗЫ И АВАРИЙНЫЕ СИГНАЛЫ	10_1
18.1 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРУЗОК (F0072 И A0046)	
18.2 ЗАЩИТА ОТ ПЕРЕГРУЗОК БТИЗ (F0048 И A0047)	
18.2 ЗАЩИТА ОТ ПЕРЕГРУЗОК ВТИЗ (F0046 И A0047)	
18.4 ЗАЩИТА ОТ ПЕРЕГРЕВА БТИЗ (F0076)	
18.5 ЗАЩИТА ОТ ПЕРЕГРЕВА БТИЗ (F005Т И A0050)	
18.6 КОНТРОЛЬ НАПРЯЖЕНИЯ ПРОМЕЖУТОЧНОГО ЗВЕНА (F0021 И F0022)	
18.7 СБОЙ СВЯЗИ ПОДКЛЮЧАЕМОГО МОДУЛЯ (F0031)	
18.8 СБОЙ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ В Р ЕЖИМЕ УПРАВЛЕНИЯVVW (F00	10-9
18.9 СИГНАЛ ТРЕВОГИ. СБОЙ СВЯЗИ С УДАЛЕННЫМ ЧМИ (А0700)	
18.10 ОТКАЗ. ОШИБКА СВЯЗИ С УДАЛЕННЫМ ЧМИ (F0700)	
18.11 ОШИБКА ИДЕНТИФИКАЦИИ ОБОРУДОВАНИЯ ПИТАНИЯ (F0084)	
18.11 ОШИВКА ИДЕПТИФИКАЦИИ ОВОРУДОВАНИЯ ПИТАНИЯ (F0004)	
18.13 НЕСОВМЕСТИМАЯ ВЕРСИЯ ОСНОВНОГО ПО (F0151)	
18.14 ВНУТРЕННЯЯ ЗАЩИТА ОТ ПЕРЕГРЕВА (A0152 И F0153)	
18.15 ОШИБКА СКОРОСТИ ВЕНТИЛЯТОРА (F0179)	
18.16 ОТКАЗ В ОБРАТНОЙ СВЯЗИ ИМПУЛЬСОВ (F01/9)	
18.17 ЖУРНАЛ ОТКАЗОВ	
18.18 АВТОМАТИЧЕСКИЙ СБРОС ОТКАЗОВ	
	10-13

19 ПАРАМЕТРЫ СЧИТЫВАНИЯ	19-1
20 СВЯЗЬ	20-1
20.1 ПОСЛЕДОВАТЕЛЬНЫЙ USB, ИНТЕРФЕЙС RS-232 И RS-485	20-1
20.2 BLUETOOTH	
20.3 ИНТЕРФЕЙС CAN – CANOPEN / DEVICENET	20-5
20.4 ИНТЕРФЕЙС PROFIBUS DP	
20.5 СВЯЗЬ BACNET	
20.6 КОММУНИКАЦИЯ СИМБИНЕТ	
20.7 ИНТЕРФЕЙС ETHERNET	20-8
20.8 КОМАНДЫ И СОСТОЯНИЕ ОБМЕНА ДАННЫМИ	
04.00======	04.4
21 SOFTPLC	
21.1 РЕЗИДЕНТНОЕ ПРИЛОЖЕНИЕ - РЕЗПРИЛОЖ	
21.1.1 Безмасляный насос	
21.1.2 Оборванный ремень	
21.1.3 Сигнализация о необходимости технического обслуживания фильтра	
21.1.4 Внутренний ПИД-контроллер – ПИДВнутр	
21.1.5 Режим ожидания ПИД	
21.1.6 Внешний ПИД-контроллер	
21.1.7 Логическое состояние функций РезПрилож	
21.1.8 Последовательность запуска внутреннего ПИД	21-26
21.1.8.1 Запуск (Внутренний ПИД)	
21.1.9 Последовательность запуска внешнего ПИД	
21.1.9.1 Запуск (Внешний ПИД)	21-28
22 ФУНКЦИОНАЛЬНАЯ БЕЗОПАСНОСТЬ	22-1

СПРАВОЧНИК ПАРАМЕТРОВ, АВАРИЙНЫХ СИГНАЛОВ, ОТКАЗОВ И КОНФИГУРАЦИЙ

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0000	Доступ к параметрам	От 0 до 9999	0				5-2
P0001	Уставка скорости	От 0 до 65535			ro	READ	19-1
P0002	Выходная скорость (двигатель)	От 0 до 65535			ro	READ	19-1
P0003	Ток двигателя	От 0,0 до 400,0 А			ro	READ	19-1
P0004	Напряжение в канале пост. тока (Ud)	От 0 до 2000 В			ro	READ	19-2
P0005	Выходная частота (двигатель)	От 0,0 до 500,0 Гц			ro	READ	19-2
P0006	Состояние преобразователя	0 = Готов 1 = Работа 2 = Пониженное напряжение 3 = Отказ 4 = Самонастройка 5 = Конфигурация 6 = Торможение пост. током 7 = Безопасное отключение крутящего момента 8 = Режим сжигания 9 = Зарезервировано 10 = Режим ожидания			ro	READ	19-2
P0007	Выходное напряжение	От 0 до 2000 В			ro	READ	19-4
P0009	Крутящий момент двигателя	От -1000,0 до 1000,0 %			ro	READ	19-4
P0010	Выходная мощность	От 0,0 до 6553,5 кВт			ro	READ	19-5
P0011	Коэффициент мощности	От -1,00 до 1,00			ro	READ	19-5
P0012	Состояние DI8-DI1	Бит 0 = DI1 Бит 1 = DI2 Бит 2 = DI3 Бит 3 = DI4 Бит 4 = DI5 Бит 5 = DI6 Бит 6 = DI7 Бит 7 = DI8			ro	READ, I/O	15-15
P0013	Состояние DO5-DO1	Бит 0 = DO1 Бит 1 = DO2 Бит 2 = DO3 Бит 3 = DO4 Бит 4 = DO5			ro	READ, I/O	15-23
P0014	Значение АО1	От 0,0 до 100,0 %			ro	READ, I/O	15-6
P0015	Значение АО2	От 0,0 до 100,0 %			ro	READ, I/O	15-6
P0016	Значение FO в %	От 0,0 до 100,0 %			ro	READ, I/O	15-12
P0017	Значение FO, Гц	От 0 до 20000 Гц			ro	READ, I/O	15-12
P0018	Значение АІ1	от -100,0 до 100,0 %			ro	READ, I/O	15-1
P0019	Значение AI2	от -100,0 до 100,0 %			ro	READ, I/O	15-1
P0020	Значение Al3	от -100,0 до 100,0 %			ro	READ, I/O	15-1
P0021	Значение FI, %	от -100,0 до 100,0 %			ro	READ, I/O	15-10
P0022	Значение FI, Гц	От 0 до 20000 Гц			ro	READ, I/O	15-10
P0023	Основная версия ПО	От 0,00 до 655,35			ro	READ	6-1
P0024	Вспомогательная версия ПО	От 0,00 до 655,35			ro	READ	6-1

0

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0027	Настройка подключаемого модуля	0 = Без подключаемого модуля 1 = CFW500-IOS 2 = CFW500-IOD 3 = CFW500-IOAD 4 = CFW500-IOR 5 = CFW500-CUSB 6 = CFW500-CCAN 7 = CFW500-CRS232 8 = CFW500-CPDP 9 = CFW500-CRS485 10 = CFW500-CRS485 10 = CFW500-CETH			ro	READ	6-1
P0028	Модуль функций безопасности	0 = перемычка STO 1 = CFW500-SFY2			ro	READ	22-1

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0029	Конфигурация силового оборудования	0 = He Oпределено 1 = 200-240 В / 1,6 A 2 = 200-240 В / 2,6 A 3 = 200-240 В / 7,0 A 5 = 200-240 В / 9,6 A 6 = 380-480 В / 1,0 A 7 = 380-480 В / 1,6 A 8 = 380-480 В / 1,6 A 8 = 380-480 В / 2,6 A 9 = 380-480 В / 6,1 A 11 = 200-240 В / 10,0 A 13 = 200-240 В / 10,0 A 13 = 200-240 В / 10,0 A 13 = 200-240 В / 10,0 A 14 = 380-480 В / 2,6 A 15 = 380-480 В / 4,3 A 16 = 380-480 В / 4,3 A 16 = 380-480 В / 10,0 A 18 = 200-240 В / 10,0 A 18 = 200-240 В / 10,0 A 19 = 380-480 В / 14,0 A 20 = 380-480 В / 14,0 A 20 = 380-480 В / 16,0 A 21 = 500-600 В / 1,7 A 22 = 500-600 В / 1,7 A 22 = 500-600 В / 7,0 A 23 = 500-600 В / 7,0 A 25 = 500-600 В / 7,0 A 26 = 500-600 В / 10,0 A 27 = 200-240 В / 28,0 A 28 = 200-240 В / 28,0 A 28 = 200-240 В / 33,0 A 29 = 380-480 В / 14,0 A 30 = 380-480 В / 17,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 33,0 A 29 = 380-480 В / 24,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 33,0 A 29 = 380-480 В / 30,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 30 = 380-480 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 31 = 500-600 В / 17,0 A 32 = 500-600 В / 17,0 A 33 = 200-240 В / 36,0 A 34 = 200-240 В / 36,0 A 35 = 200-240 В / 36,0 A 36,0 A A B / 36,0 A 36,0 A / 36,0 A 3	В соответствии с моделью преобразователя		ro	READ	6-2
P0030	Температура модуля	От -20 до 150 °C			ro	READ	19-6
P0034	Внутренняя темп.	От -20 до 150 °C			ro	READ	19-6
P0036	Внутр. Скорость вентилятора	От 0 до 15000 об/мин			ro	READ	19-7
P0037	Перегрузка двигателя lxt	От 0 до 100 %			ro	READ	18-3

Тараметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0038	Скорость датчика положения	От 0 до 65535 об/мин			ro	READ	19-7
P0039	Число импульсов датчика положения	От 0 до 40000			ro	READ	19-7
P0040	Переменная процесса ПИД	От 0,0 до 3000,0			ro	READ	16-9
P0041	Значение уставки ПИД	От 0,0 до 3000,0			ro	READ	16-9
P0042	Время работы под напряжением	От 0 до 65535 ч			ro	READ	19-8
P0043	Время работы во включенном состоянии	От 0,0 до 6553,5 ч			ro	READ	19-8
P0044	Энергия на выходе, кВт/ч	От 0 до 65535 кВт/ч			ro	READ	19-8
P0047	Состояние КОНФИГУРАЦИИ	От 0 до 999			ro	READ	19-9
P0048	Текущий аварийный сигнал	От 0 до 999			ro	READ	18-10
P0049	Текущий отказ	От 0 до 999			ro	READ	18-11
P0050	Последний отказ	От 0 до 999			ro	READ	18-11
P0051	Ток при последнем отказе	От 0,0 до 400,0 А			ro	READ	18-11
P0052	Напряжение в канале пост. тока при последнем отказе	От 0 до 2000 В			ro	READ	18-11
P0053	Частота при последнем отказе	От 0,0 до 500,0 Гц			ro	READ	18-12
P0054	Температура при последнем отказе	От -20 до 150 °C			ro	READ	18-12
P0055	Логический статус припоследнем отказе	От 0000h до FFFFh			ro	READ	18-12
P0060	Второй отказ	От 0 до 999			ro	READ	18-11
P0061	Ток при втором отказе	От 0,0 до 400,0 А			ro	READ	18-11
P0062	Вставка постоянного тока при втором отказе	От 0 до 2000 В			ro	READ	18-11
P0063	Частота при втором отказе	От 0,0 до 500,0 Гц			ro	READ	18-12
P0064	Температура при втором отказе	От -20 до 150 °C			ro	READ	18-12
P0065	Логический статус при втором отказе	От 0000h до FFFFh			ro	READ	18-12
P0070	Третий отказ	От 0 до 999			ro	READ	18-11
P0071	Ток при третьем отказе	От 0,0 до 400,0 А			ro	READ	18-11
P0072	Вставка постоянного тока при третьем отказе	От 0 до 2000 В			ro	READ	18-12
P0073	Частота при третьем отказе	От 0,0 до 500,0 Гц			ro	READ	18-12
P0074	Температура при третьем отказе	от -20 до 150 °C			ro	READ	18-12
P0075	Логический статус при третьем отказе	От 0000h до FFFFh			ro	READ	18-13
P0080	Режим сжигания 1 ^{ый} отказ	От 0 до 999	0		ro	READ	18-13
	0111010						

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0082	Режим сжигания З ^{ий} отказ	От 0 до 999	0		ro	READ	18-13
P0083	ток F0070	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-13
P0084	Ток 2°й F0070	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-13
P0085	Ток 3 ^{ий} F0070	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-13
P0086	ток F0073	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-13
P0087	Ток 2 ^{ой} F0073	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-13
P0088	Ток 3 ^{ий} F0073	От 0,0 до 6553,5 А			ro, VVW HSRM	READ	18-14
P0100	Время разгона	От 0,1 до 999,0 с	10,0 c			BASIC	14-1
P0101	Время замедления	От 0,1 до 999,0 с	10,0 c			BASIC	14-2
P0102	Время ускорения 2	От 0,1 до 999,0 с	10,0 c				14-2
P0103	Время замедления 2	От 0,1 до 999,0 с	10,0 c				14-2
P0104	S-образная кривая	0 = He активно 1 = Активно	0		cfg		14-3
P0105	Выбор 1-й/²-й кривой	0 = 1-я кривая 1 = 2-я кривая 2 = Dlx 3 = Последовательный интерфейс/ USB 4 = Зарезервировано 5 = CO/DN/PB/Eth 6 = SoftPLC	2			1/0	14-4
P0106	Время 3-й кривой	От 0,1 до 999,0 с	5,0 c				14-4
P0108	Время SS1-t	От 0 до 999 с			sy		22-2
P0109	Время подтверждения SS1-t	От 0 до 999 с			ro, sy		22-2
P0120	Уставка скорости Резервное копирование	0 = Не активно 1 = Активно 2 = Резервн. копир. Р0121	1				7-11
P0121	Уставка через ЧМИ	От 0,0 до 500,0 Гц	3,0 Гц				7-11
P0122	Уставка JOG	От -500,0 до 500,0 Гц	5,0 Гц				7-12
P0124	Многоскоростная уставка 1	От -500,0 до 500,0 Гц	3,0 Гц				7-12
P0125	Многоскоростная уставка 2	От -500,0 до 500,0 Гц	10,0 (5,0) Гц				7-12
P0126	Многоскоростная уставка 3	От -500,0 до 500,0 Гц	20,0 (10,0) Гц				7-12
P0127	Многоскоростная уставка 4	От -500,0 до 500,0 Гц	30,0 (20,0) Гц				7-12
P0128	Многоскоростная уставка 5	От -500,0 до 500,0 Гц	40,0 (30,0) Гц				7-12
P0129	Многоскоростная уставка 6	От -500,0 до 500,0 Гц	50,0 (40,0) Гц				7-12
P0130	Многоскоростная уставка 7	От -500,0 до 500,0 Гц	60,0 (50,0) Гц				7-12
P0131	Многоскоростная уставка 8	От -500,0 до 500,0 Гц	66,0 (55,0) Гц				7-13
P0132	Максимальный уровень превышения скорости	От 0 до 100 %	10%		cfg	BASIC	7-10
P0133	Минимальная скорость	От 0,0 до 500,0 Гц	3,0 Гц			BASIC	7-10
P0134	Максимальная скорость	От 0,0 до 500,0 Гц	66,0 (55,0) Гц			BASIC	7-10

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0135	Максимальный выходной ток	От 0,0 до 400,0 А	В зависимости от модели и области применения преобразо- ватель		V/f, VVW, VVW PM, VVW HSRM	BASIC, MOTOR	9-14
P0136	Ручное увеличение крутящего момента	От 0,0 до 30,0 %	В соответствии с моделью преобразо-вателя		V/f, VVW PM, VVW HSRM	BASIC, MOTOR	9-4
P0137	Автоматическое усиление крутящего момента	От 0,0 до 30,0 %	0,0 %		V/f	MOTOR	9-6
P0138	Компенсация скольжения	от -10,0 до 10,0 %	0,0 %		V/f	MOTOR	9-7
P0139	Фильтр выходного тока	От 0 до 9999 мс	50 мс		V/f, VVW		8-2
P0140	Комп. скольжения Фильтр	От 0 до 9999 мс	500 мс		VVW		8-2
P0142	Максимальное выходное напряжение	От 0,0 до 100,0 %	100,0 %		cfg, V/f, VVW PM, VVW HSRM		9-5
P0143	Промежуточное выходное напряжение	От 0,0 до 100,0 %	66,7 %		cfg, V/f, VVW PM, VVW HSRM		9-5
P0144	Минимальное выходное напряжение	От 0,0 до 100,0 %	33,3 %		cfg, V/f, VVW PM, VVW HSRM		9-5
P0145	Начальная частота ослабления поля	От 0,0 до 500,0 Гц	60,0 (50,0) Гц		cfg, V/f, VVW PM, VVW HSRM		9-5
P0146	Промежуточная частота	От 0,0 до 500,0 Гц	40,0 (33,3) Гц		cfg, V/f, VVW PM, VVW HSRM		9-5
P0147	Низкая частота	От 0,0 до 500,0 Гц	20,0 (16,7) Гц		cfg, V/f, VVW PM, VVW HSRM		9-5
P0148	Действие V/f	0 = Стандартное V/f 1 = Устройство плавного пуска (напряжение)	0		cfg, V/f		9-6
P0150	Регулятор вставки V/f пост. тока	0 = hold_Ud и decel_LC 1 = accel_Ud и decel_LC 2 = hold_Ud и hold_LC 3 = accel Ud и hold LC	0		cfg, V/f, VVW	MOTOR	9-10

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр
P0151	Регулятор промежуточного звена постоянного тока Уровень	От 339 до 1200 В	400 B (P0296 = 0) 800 B (P0296 = 1) 800 B (P0296 = 2) 800 B (P0296 = 3) 800 B (P0296 = 4) 1000 B (P0296 = 5) 1000 B (P0296 = 6) 1000 B (P0296 = 7)		V/f, VVW, VVW PM, VVW HSRM		9-11
P0152	Регулятор вставки пост. тока, пропорциональное усиление	От 0,00 до 9,99	1,50		V/f, VVW, VVW PM, VVW HSRM		9-11
P0153	Уровень реостатного торможения	От 339 до 1200 В	375 B (P0296 = 0) 750 B (P0296 = 1) 750 B (P0296 = 2) 750 B (P0296 = 3) 750 B (P0296 = 4) 950 B (P0296 = 6) 950 B (P0296				17-1
P0156	Токи перегрузки	От 0,0 до 400,0 А	= 7) 1,1xl _{HOM}				18-1
	100 %	. , , ,					
P0157	Токи перегрузки 50 %	От 0,0 до 400,0 А	1,0xl _{HOM}				18-1
P0158	Токи перегрузки 20 %	От 0,0 до 400,0 А	0,8xI _{ном}				18-2
P0161	Пропорциональное усиление скорости	От 0,0 до 63,9	7,0		Vector		13-14
P0162	Интегрирующее усиление скорости	От 0,000 до 9,999	0,005		Vector		13-14
P0165	Фильтр скорости	От 0,012 до 1,000 с	0,012 c		Vector		13-15
P0166	Дифференциальное увеличение скорости	От 0,00 до 7,99	0,00		Vector		13-15
P0167	Пропорциональное усиление тока	От 0,00 до 1,99	0,50		Vector		13-16
P0168	Интегральное усиление тока	От 0,000 до 1,999	0,010		Vector		13-16
P0169	Максимальный положительный ток крутящего момента	От 0,0 до 350,0 %	125,0 %		Vector	BASIC	13-24
P0170	Максимальный отрицательный ток крутящего момента	От 0,0 до 350,0 %	125,0 %		Vector	BASIC	13-24
P0175	Пропорциональное увеличение потока	От 0,0 до 31,9	2,0		Vector		13-16
P0176	Интегральное усиление потока	От 0,000 до 9,999	0,020		Vector		13-16
P0177	Конф. насыщения стабилизатора тока	От 0,0 до 10,0 %	5,0 %		cfg, VVW PM, VVW HSRM	BASIC	12-6
P0178	Номинальный поток	От 0,0 до 150,0 %	100,0 %				13-17
P0179	Перемодуляция	От 100,0 до 110,0%	100,0 %				9-8

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0181	Режим намагничивания	0 = Общее включение 1 = Пуск / Останов	0		cfg, Vector		13-17
P0182	Скорость для включения режима I/f	От 0 до 180 об/мин	30 об/мин		Sless	MOTOR	13-18
P0183	Ток в режиме I/f	От 15,0 до 300,0 %	120,0 %		Sless	MOTOR	13-19
P0184	Режим регулировки промежуточного звена пост. тока	0 = С потерями 1 = Без потерь 2 = Включить/Выключить Dlx	1		cfg, Vector	MOTOR	13-26
P0185	Режим регулятора промежуточного звена постоянного тока	От 339 до 1000 В	400 B (P0296= 0) 800 B (P0296= 1) 800 B (P0296 = 2) 800 B (P0296 = 3) 800 B (P0296 = 4) 1000 B (P0296 = 5) 1000 B (P0296 = 6) 1000 B (P0296 = 7)		Vector		13-26
P0186	Пропорциональное увеличение промежуточного звена постоянного тока	От 0,0 до 63,9	18,0		Vector		13-27
P0187	Интегральное усиление в канале пост. тока	От 0,000 до 9,999	0,002		Vector		13-27
P0188	Пропорциональное усиление напряжения	От 0,000 до 7,999	0,200		Vector		13-17
P0189	Интегральное усиление напряжения	От 0,000 до 7,999	0,001		Vector		13-17
P0190	Максимальное выходное напряжение	От 0 до 600 В	P0400		Vector		13-18
P0193	День недели	0 = Воскресенье 1 = Понедельник 2 = Вторник 3 = Среда 4 = Четверг 5 = Пятница 6 = Суббота	0			ЧМИ	5-2
P0194	День	От 01 до 31	01			ЧМИ	5-2
P0195	Месяц	От 01 до 12	01			ЧМИ	5-3
P0196	Год	От 00 до 99	20			ЧМИ	5-3
P0197	Час	От 00 до 23	00			ЧМИ	5-3
P0198	Минуты	От 00 до 59	00			ЧМИ	5-3
P0199	Секунды	От 00 до 59	00			ЧМИ	5-3
P0200	Пароль	0 = Не активно 1 = Активно От 1 до 9999 = Новый пароль	0			ЧМИ	5-4
P0201	Язык	0 = Português 1 = English 2 = Español	0			ЧМИ	5-4

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр
P0202	Тип управления	0 = V/f 1 и 2 = Не используется 3 = Бессенсорный 4 = Векторное управление с помощью датчика 5 = VVW 6 и 7 = Не используется 8 = VVW PM 9 = Зарезервировано 10 = VVW HSRM	0		cfg	STARTUP	8-1
P0203	Выбор специальной функции	0 = Нет 1 = ПИД через Al1 2 = ПИД через Al3 3 = ПИД через Fl	0		cfg		16-9
P0204	Загрузка/сохранение параметров	О и 1 = Не используется 2 = Сброс Р0045 3 = Сброс Р0043 4 = Сброс Р0044 5 = Загрузка 60 Гц 6 = Загрузка 50 Гц 7 = Загрузка параметров пользователя 1 8 = Загрузка параметров пользователя 2 9 = Сохранение параметров пользователя 1 10 = Сохранение параметров пользователя 2 11 = Загрузить SoftPLC по умолчанию От 12 до 15 = Зарезервированные	0		cfg		5-8
P0205	Параметр основного экрана	От 0 до 1500	2			ЧМИ	5-4
P0206	Параметр дополнительного экрана	От 0 до 1500	1			ЧМИ	5-4

ı	-	ĸ.
ľ	a	١
L	U	,

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0207	Параметр для шкального индикатора	От 0 до 1500	3			ЧМИ	5-5
P0208	Базовая шкала	От 1 до 65535	600 (500)			ЧМИ	5-5
P0209	Этал. един. измер.	0 = Heт 31 = MПа 1 = B 32 = мвс 2 = A 33 = mса 3 = об/мин 34 = гал 4 = с 35 = л 5 = мс 36 = дюйм 6 = H 37 = фут 7 = м 38 = м₃ 8 = H⋅м 39 = ft₃ 9 = мА 40 = гал/с 10 = % 41 = гал/мин 11 = °C 42 = гал/ч 12 = CV 43 = л/с 13 = Гц 44 = л/мин 14 = л. с. 45 = л/ч 15 = ч 46 = м/с 16 = Bт 47 = м/мин 17 = кВт 48 = м/ч 18 = кВт⋅ч 49 = фут/с 19 = ч 50 = фут/мин 20 = P0510 51 = фут/ч 21 = P0512 52 = м³/с 22 = P0514 53 = м³/мин 23 = P0516 54 = м³/ч 24 = мин 55 = фут³/кин 26 = бар 57 = фут³/ч 27 = мбар 58 = К 28 = пси 29 = Па 30 = кПа	13			ЧМИ	5-6
P0210	Форма индикации уставки	0 = wxyz 1 = wxy.z 2 = wx.yz 3 = w.xyz	1			ЧМИ	5-6
P0213	Множитель шкалы столбчатой диаграммы	От 1 до 65535	В соответствии с моделью преобразователя			ЧМИ	5-7
P0215	Выбор удаленного ЧМИ	0 = Сегмент 1 = Буквенно-цифровой	0		cfg	ЧМИ	5-7
P0216	Задняя подсветка ЧМИ	0 = Выкл 1 = Вкл	1			ЧМИ	5-8
P0217	Частота режима ожидания	От 0,0 до 500,0 Гц	0,0 Гц		cfg		14-5
P0218	Время режима ожидания	От 0 до 999 с	0 c				14-5
P0220	Источник выбора режима локального (LOC) или дистанционного (REM) управления	0 = Всегда локальный 1 = Всегда дистанционный 2 = Клавиша ЧМИ (LOC) 3 = Клавиша ЧМИ (REM) 4 = Dlx 5 = Последовательный интерфейс/ USB (LOC) 6 = Последовательный интерфейс/ USB (REM) 7 = Не используется 8 = Не используется 9 = CO/DN/PB/Eth (LOC) 10 = CO/DN/PB/Eth (REM) 11 = SoftPLC	2		cfg	I/O	7-5

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0221	Выбор уставки LOC	0 = Клавиши ЧМИ 1 = Al1 2 = Al2 3 = Al3 4 = Fl 5 = Al1 + Al2 > 0 6 = Al1 + Al2 7 = Электронный потенциометр (Е.Р.) 8 = Многоскоростной режим 9 = Последовательный интерфейс/ USB 10 = Не используется 11 = CO/DN/PB/Eth 12 = SoftPLC 13 = Не используется 14 = Al1 > 0 15 = Al2 > 0 16 = Al3 > 0 17 = Fl > 0	0		ofg	I/O	7-6
P0222	Выбор уставки REM	См. опции в Р0221	1		cfg	I/O	7-6
P0223	Выбор вращения в режиме LOC	0 = по часовой стрелке 1 = против часовой стрелки 2 = Клавиша ЧМИ (Н) 3 = Клавиша ЧМИ (АН) 4 = Dlx 5 = Последовательный интерфейс/ USB (Н) 6 = Последовательный интерфейс/ USB (АН) 7 и 8 = Не используется 9 = CO/DN/PB/Eth (Н) 10 = CO/DN/PB/Eth (АН) 11 = Не используется 12 = SoftPLC	2		ofg	I/O	7-7
P0224	Выбор Пуска/ Останова в режиме LOC	0 = Клавиши ЧМИ 1 = Dlx 2 = Последовательный интерфейс/ USB 3 = He используется 4 = CO/DN/PB/Eth 5 = SoftPLC	0		cfg	I/O	7-8
P0225	Выбор функции JOG в режиме LOC	0 = Выкл. 1 = Клавиши ЧМИ 2 = Dlx 3 = Последовательный интерфейс/ USB 4 = Не используется 5 = CO/DN/PB/Eth 6 = SoftPLC	1		cfg	I/O	7-9
P0226	Выбор вращения в режиме REM	См. опции в Р0223	4		cfg	I/O	7-7
P0227	Выбор пуска/ останова в режиме REM	0 = Клавиши ЧМИ 1 = Dlx 2 = Последовательный интерфейс/ USB 3 = He используется 4 = CO/DN/PB/Eth 5 = SoftPLC	1		cfg	I/O	7-8
P0228	Выбор функции JOG в режиме REM	См. опции в Р0225	2		cfg	I/O	7-9
P0229	Выбор режима останова	0 = Плавное снижение до останова 1 = Останов по инерции 2 = Быстрый останов	0		cfg	I/O	7-19

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0230	Зона нечувствительности аналоговых входов (Al)	0 = He активно 1 = Активно	0		cfg	I/O	15-2
P0231	Функция сигнала AI1	0 = Уставка скорости 1 = Не используется 2 = Максимальный ток крутящего момента 3 = Номинальный поток V/f 4 = РТС 5 и 6 = Не используется 7 = Использование SoftPLC 8 = Применение функции 1 9 = Применение функции 2 10 = Применение функции 3 11 = Применение функции 4 12 = Применение функции 5 13 = Применение функции 7 15 = Применение функции 7 15 = Применение функции 8 16 = Обратная связь внутреннего ПИД 1 17 = Обратная связь внутреннего ПИД 2 18 = Обратная связь внешнего ПИД 2	0		cfg	I/O	15-2
P0232	Усиление входного сигнала Al1	От 0,000 до 9,999	1,000			I/O	15-4
P0233	Входной сигнал Al1	0 = ot 0 до 10 B/20 мA 1 = ot 4 до 20 мA 2 = ot 10 B/20 мA до 0 3 = ot 20 до 4 мA	0			I/O	15-5
P0234	Смещение входного сигнала Al1	от -100,0 до 100,0 %	0,0 %			I/O	15-4
P0235	Фильтр входного сигнала Al1	От 0,00 до 16,00 с	0,00 c			I/O	15-4
P0236	Функция сигнала Al2	См. опции в Р0231	0		cfg	I/O	15-2
P0237	Усиление входного сигнала Al2	От 0,000 до 9,999	1,000			I/O	15-4
P0238	Входной сигнал Al2	См. опции в Р0233	0			I/O	15-5
P0239	Смещение входного сигнала Al2	от -100,0 до 100,0 %	0,0 %			I/O	15-4
P0240	Фильтр входного сигнала Al2	От 0,00 до 16,00 с	0,00 c			I/O	15-4
P0241	Функция сигнала Al3	Все опции Р0231, кроме 4 = РТС	0		cfg	I/O	15-3
P0242	Усиление входного сигнала Al3	От 0,000 до 9,999	1,000			I/O	15-4
P0243	Входной сигнал Al3	0 = от 0 до 10 B/20 мА 1 = от 4 до 20 мА 2 = от 10 B/20 мА до 0 3 = от 20 до 4 мА 4 = от -10 до +10 B	0			I/O	15-5
P0244	Смещение входного сигнала Al3	от -100,0 до 100,0 %	0,0 %			I/O	15-4
P0245	Фильтр входного сигнала Al3	От 0,00 до 16,00 с	0,00 c			I/O	15-4
P0246	Входной сигнал FI частоты	0 = Не активно 1 = Активно 2 = Подсчет импульсов DI2	0			I/O	15-10
P0247	Усиление входного сигнала FI	От 0,000 до 9,999	1,000			I/O	15-11
P0248	Минимальный входной сигнал FI	От 10 до 20000 Гц	10 Гц			I/O	15-11
P0249	Смещение входного сигнала FI	от -100,0 до 100,0 %	0,0 %			I/O	15-11
P0250	Максимальный входной сигнал FI	От 10 до 20000 Гц	10000 Гц			I/O	15-11

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0251	Функция выхода АО1	0 = Уставка скорости 1 = Не используется 2 = Действительная скорость 3 = Уставка тока крутящего момента 4 = Ток крутящего момента 5 = Выходной ток 6 = Переменная процесса 7 = Активный ток 8 = Выходная мощность 9 = Уставка ПИД 10 = Сила тока крутящего момента > 0 11 = Крутящий момент двигателя 12 = SoftPLC От 13 до 15 = Не используется 16 = Двигатель Іхт 17 = Не используется 18 = Значение Роб96 19 = Значение Роб96 19 = Значение Роб98 21 = Применение функции 1 22 = Применение функции 2 23 = Применение функции 3 24 = Применение функции 4 25 = Применение функции 5 26 = Применение функции 6 27 = Применение функции 7 28 = Применение функции 8	2			I/O	15-7
P0252	Усиление на выходе АО1	От 0,000 до 9,999	1,000			1/0	15-8
P0253	Выходной сигнал AO1	0 = от 0 до 10 В 1 = от 0 до 20 мА 2 = от 4 до 20 мА 3 = от 10 до 0 В 4 = от 20 до 0 мА 5 = от 20 до 4 мА	0			I/O	15-8
P0254	Функция выхода АО2	См. опции в Р0251	5			I/O	15-7
P0255	Усиление на выходе AO2	От 0,000 до 9,999	1,000			1/0	15-8
P0256	Выходной сигнал AO2	См. опции в Р0253	0			1/0	15-8
P0257	Функция выхода FO	См. опции в Р0251	15			I/O	15-13
P0258	Усиление на выходе FO	От 0,000 до 9,999	1,000			1/0	15-14
P0259	Минимальный выходной сигнал FO	От 10 до 20000 Гц	10 Гц			1/0	15-14
P0260	Максимальный выходной сигнал FO	От 10 до 20000 Гц	10000 Гц			I/O	15-14

n					۱
	,	ŕ	7	١	
	l	ı		ı	

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0263	Функция входа DI1	0 = Не используется 1 = Пуск/Останов 2 = Общее включение 3 = Быстрый останов 4 = Ход вперед 5 = Запуск назад 6 = Трехпроводной останов 8 = Направление вращения по часовой стрелке 9 = Режим управления LOC/REM 10 = JOG 11 = Ускорить электронн. потенциометр 12 = Замедлить электронн. потенциометр 13 = Многоскоростной режим 14 = 2-я кривая От 15 до 17 = Не используется 18 = Без расширения Аварийный сигнал 19 = Без расширения Неисправность 20 = Сброс 21 = SoftPLC 22 = Ручн/Автом ПИД 23 = Не используется 24 = Выкл. пуск с хода 25 = Регулятор промежуточного звена пост. тока 26 = Заблокировать прогр. 27 = Загрузка параметров пользователя 1 28 = Загрузка параметров пользователя 2 29 = РТС 30 и 31 = Не используется 32 = 2-а кривая в многоскоростном режиме 33 = 2-а кривая электр. потенц. уск. 34 = 2-а кривая пр. хода 36 = 2-а кривая электр. потенц. уск. 34 = 2-а кривая пр. хода 36 = 2-а кривая пр. хода 37 = Включить / Переменный ток. Е.Р. 38 = De. Е.Р. / Выключить 39 = Применение функции 1 40 = Применение функции 2 41 = Применение функции 3 42 = Применение функции 4 43 = Применение функции 5 44 = Применение функции 1 40 = Применение функции 1 41 = Применение функции 6 45 = Применение функции 7 46 = Применение функции 6 45 = Применение функции 7 46 = Применение функции 7 46 = Применение функции 8 47 = Авт/Ручн внутреннего ПИД 48 = Авт/Ручн внутреннего ПИД 48 = Авт/Ручн внутреннего ПИД 49 = Не используется 50 = Режим сжигания 51 = Пуск/С. На блокировке 52 = НПуск На блокировке	1		cfg	I/O	15-16
P0264	Функция входа DI2	53 = АНПуск На блокировке Все опции Р0263, кроме 29 = РТС	8		cfg	I/O	15-16
P0265	Функция входа DI3	См. опции в Р0263	20		cfg	I/O	15-16
P0266	Функция входа DI4	См. опции в Р0263	10		cfg	I/O	15-16
P0267	Функция входа DI5	См. опции в Р0263	0		cfg	1/0	15-16
P0268	, , , , , , , , , , , , , , , , , , , ,	<u> </u>	0				15-16
	DVHKI ING BYONG LING					1/()	
P0269	Функция входа DI6 Функция входа DI7	См. опции в Р0263 См. опции в Р0263	0		cfg cfg	I/O I/O	15-16

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0271	Сигнал DIs	0 = (DI1DI8) NPN 1 = DI1 PNP 2 = (DI1DI2) PNP 3 = (DI1DI3) PNP 4 = (DI1DI4) PNP 5 = (DI1DI5) PNP 6 = (DI1DI6) PNP 7 = (DI1DI7) PNP 8 = (DI1DI8) PNP	0		cfg	I/O	15-14
P0275	Функция выхода DO1	0 = Не используется 1 = F* > Fx 2 = F > Fx 3 = F < Fx 4 = F = F* 5 = Не используется 6 = Is > Ix 7 = Is < Ix 8 = Крутящий момент > Тх 9 = Крутящий момент < Тх 10 = Дистанционное управление 11 = Работа 12 = Готов 13 = Нет отказа 14 = Нет F0070 15 = Не используется 16 = Нет F0021/22 17 = Не используется 18 = Нет F0072 19 = 4-20 мА в норме 20 = Значение Р0695 21 = По часовой стрелке 22 = Проц. V. > VPx 23 = Проц. V. < VPx 24 = Компенсация провалов напряжения в сети 25 = Предварительная зарядка в норме 26 = С отказом 27 = Не используется 28 = SoftPLC От 29 до 34 = Не используется 35 = Нет сигнала тревоги 36 = Нет отказа/сигнала тревоги 37 = Применение функции 1 38 = Применение функции 1 38 = Применение функции 3 40 = Применение функции 4 41 = Применение функции 5 42 = Применение функции 6 43 = Применение функции 7 44 = Применение функции 7 44 = Применение функции 8 45 = Безмасляный насос F/A 46 = Обрыв ремня F/A 47 = Ручн. фильтр F/A 48 = Режим ожидания MP 49 и 50 = Зарезервированные	13			I/O	15-24
		51 = Режим сжигания 52 = Против часовой стрелки					
P0276	Функция выхода DO2	См. опции в Р0275	2			I/O	15-24
P0277	Функция выхода DO3	См. опции в Р0275	0			I/O	15-24
P0278	Функция выхода DO4	См. опции в Р0275	0			I/O	15-24
P0279	Функция выхода DO5	См. опции в Р0275	0			I/O	15-24
P0287	Гистерезис Fx	От 0,0 до 10,0 Гц	0,5 Гц			I/O	15-26
P0288	Скорость Fx	От 0,0 до 500,0 Гц	3,0 Гц			I/O	15-26
P0290	Ток Ix	От 0,0 до 400,0 А	1,0xl _{HOM}			I/O	15-26
P0293	Крутящий момент Тх	От 0 до 200 %	100%			I/O	15-26

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0295	Преобр. Номинальный ток	От 0,0 до 400,0 А	В соответствии с моделью преобразователя		ro	READ	6-3
P0296	Номинальное линейное напряжение	0 = 200 - 240 B 1 = 380 B 2 = 400 - 415 B 3 = 440 - 460 B 4 = 480 B 5 = 500 - 525 B 6 = 550 - 575 B 7 = 600 B	В соответствии с моделью преобразо- вателя		cfg		6-3
P0297	Частота переключения	От 2000 до 15000 Гц	5000 Гц		cfg		6-4
P0298	Применение	0 = Норм. 1 = Повышенная нагрузка (HD)	Режим (ND)	0	cfg		6-4
P0299	Время торможения пуска	От 0,0 до 15,0 с	0,0 c		V/f, VVW, VVW PM, VVW HSRM, Sless		14-14
P0300	Время торможения останова	От 0,0 до 15,0 с	0,0 c		V/f, VVW, VVW PM, VVW HSRM, Sless		14-14
P0301	Частота пуска	От 0,0 до 500,0 Гц	3,0 Гц		V/f, VVW, VVW PM, VVW HSRM, Sless		14-15
P0302	Напряжение при торможении постоянным током	От 0,0 до 100,0 %	20,0 %		V/f, VVW, VVW PM, VVW HSRM		14-15
P0303	Нежелательная частота 1	От 0,0 до 500,0 Гц	20,0 Гц				14-16
P0304	Нежелательная частота 2	От 0,0 до 500,0 Гц	30,0 Гц				14-16
P0306	Диапазон пропуска	От 0,0 до 25,0 Гц	0,0 Гц				14-16
P0308	Адрес последовательного интерфейса	От 1 до 247	1			NET	20-2
P0310	Скорость передачи данных в бодах по последовательному интерфейсу	0 = 9600 бит/с 1 = 19200 бит/с 2 = 38400 бит/с	1			NET	20-2
P0311	Конфигурация байтов последовательного интерфейса	0 = 8 бит, нет, 1 1 = 8 бит, чет.,1 2 = 8 бит, нечет., 1 3 = 8 бит, нет, 2 4 = 8 бит, чет.,2 5 = 8 бит, нечет., 2	1			NET	20-2

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0312	Протокол последовательного интерфейса (1)(2)	0 = ЧМИ (1) 1 = SymbiNet (1) 2 = Modbus RTU (1) 3 = BACnet (1) 4 = Зарезервировано 5 = Master RTU (1) 6 = ЧМИ (1) + Modbus RTU (2) 7 = Modbus RTU (2) 8 = ЧМИ (1) + BACnet (2) 9 = BACnet (2) От 10 до 11 = Зарезервированные 12 = HMI (1) / RTU Master (2) 13 = RTU Master (2) 14 = ЧМИ (1) / SymbiNet (2) 15 = SymbiNet (2)	2		cfg	NET	20-3
P0313	Действие при ошибкесвязи	0 = Не активно 1 = Плавное снижение до останова 2 = Общее отключение 3 = Переход в режим локального управления (LOC) 4 = Режим локального управления (LOC) во включ. сост 5 = Причина отказа	1			NET	20-3
P0314	Самоконтроль последовательного интерфейса	От 0,0 до 999,0 с	0,0 c			NET	20-4
P0316	Состояние последовательного интерфейса	0 = Не активно 1 = Активно 2 = Ошибка самоконтроля			ro	NET	20-4
P0317	Ориентированный запуск	0 = Нет 1 = Да	0		cfg	STARTUP	5-9
P0318	Загрузка плагина	0 = He активно 1 = Активная загрузка			cfg		5-10
P0319	Копирование функции Альфа ЧМИ	0 = Выкл. 1 = Преобразователь -> ЧМИ 2 = ЧМИ -> Преобразователь	0		cfg	ЧМИ	5-10
P0320	Пуск с хода / Компенсация провалов напряжения в сети	0 = Не активно 1 = Пуск с хода (FS) 2 = Пуск с хода / Компенсация провалов напряжения в сети 3 = Компенсация провалов напряжения в сети (RT)	0		cfg		14-6
P0321	Потеря мощности канала пост. тока	От 178 до 770 В	252B(P0296=0) 436B(P0296=1) 436B(P0296=3) 436B(P0296=3) 436B(P0296=4) 659B(P0296=5) 659B(P0296=6) 659B(P0296=7)		Vector		14-12
P0322	Компенсация провалов напряжения в канале пост. тока	От 178 до 770 В	243B(P0296=0) 420B(P0296=1) 420B(P0296=2) 420B(P0296=3) 420B(P0296=4) 636B(P0296=5) 636B(P0296=6) 636B(P0296=7)		Vector		14-12
P0323	Возврат мощности канала пост. тока	От 178 до 770 В	267 B (P0296=0) 461 B (P0296=1) 461 B (P0296=2) 461 B (P0296=3) 461 B (P0296=4) 698 B (P0296=5) 698 B (P0296=6) 698 B (P0296=7)		Vector		14-12

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0325	Пропорциональное увеличение напряжения при компенсации провалов напряжения в сети	От 0,0 до 63,9	22,8		Vector		14-13
P0326	Интегральное увеличение напряжения при компенсации провалов напряжения в сети	От 0,000 до 9,999	0,128		Vector		14-13
P0327	Изменение тока I/f FS	От 0,000 до 1,000	0,070		Sless		14-8
P0328	Фильтр пуска с хода	От 0,000 до 1,000	0,085		Sless		14-9
P0329	Изменение тока I/f FS	От 2,0 до 50,0	6,0		Sless		14-9
P0331	Кривая напряжения	От 0,2 до 60,0 с	2,0 c		V/f, VVW		14-6
P0339	Компенсация выходного напряжения V/f	0 = He активно 1 = Активно	0		cfg		9-8
P0340	Время автоматического сброса	От 0 до 255 с	0 c				18-14
P0343	Маска отказа / сигнала тревоги	Бит 0 = F0074 Бит 1 = F0048 Бит 2 = F0078 Бит 3 = F0079 Бит 4 = F0076 Бит 5 = F0179 Бит 6 = Зарезервировано Бит 7 = F0700/A0700 Биты с 8 по 15 = Зарезервированные	008Fh		cfg		18-6
P0345	Приоритетный останов ЧМИ	0 = Выкл. 1 = Вкл.	0				7-8
P0349	Уровень сигнала тревоги lxt	От 70 до 100 %	85 %		cfg		18-2
P0352	Конфигурация вентилятора радиатора	0 = Всегда ВЫКЛ 1 = Всегда ВКЛ 2 = Контроль 60 °C 3 = Контроль 70 °C 4 = Контроль 60 °C ПУСК 5 = Контроль 70 °C ПУСК 6 = Контроль ПУСК+60 с	4		cfg		18-4
P0357	Время потери фазы источника питания	От 0 до 60 с	В соответствии с номинальной				18-4
P0360	Гистерезис скорости	От 0,0 до 100,0 %	10,0 %		Vector		13-25
P0361	Время со скоростью, отличной от эталонной	От 0,0 до 999,0 с	0,0 c		Vector		13-25
P0372	Уровень бессенсорного торможения постоянным током	От 0,0 до 90,0 %	40,0 %		Sless		14-16

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0397	Конфигурация управления	Бит 0 = Реген. Комп. скольжения Бит 1 = Компенсация времени простоя Бит 2 = Стабилизация Io Бит 3 = Red. Р0297 до A0050 Бит 4 = Зарезервировано Бит 5 = Компенсация Ud для VWV PM Бит 6 = Команда STO/SS1-t Edge Бит 7 = Команда Fault Edge Бит 8 = Пожарный режим Dlx Бит 9 = MTPA VVW PM/HSRM Бит 10 = I/f VVW PM/HSRM Бит 11 = F0076 VWW HSRM	0E6F	•	cfg		8-2
P0398	Коэффициент перегрузки электродвигателя	От 1,00 до 1,50	1,00		cfg	MOTOR, STARTUP	10-4
P0399	Номинальный КПД двигателя	От 50,0 до 99,9 %	75,0 %		Конфиг, VVW	MOTOR, STARTUP	10-4
P0400	Номинальное напряжение двигателя	От 200 до 600 В	200-240 B (P0296 = 0) 380 B (P0296 = 1) 400 - 415 B (P0296 = 2) 440 - 460 B (P0296 = 3) 480 B (P0296 = 4) 500 - 525 B (P0296 = 5) 550 - 575 B (P0296 = 6) 600 B (P0296 = 7)		cfg	MOTOR, STARTUP	13-10
P0401	Номинальный ток двигателя	От 0,0 до 400,0 А	1,0xl _{HOM}		cfg	MOTOR, STARTUP	13-10
P0402	Номинальное вращение двигателя	От 0 до 30000 об/мин	1710 (1425) об/мин		cfg	MOTOR, STARTUP	13-11
P0403	Номинальная частота двигателя	От 0 до 500 Гц	60 (50) Гц		cfg	MOTOR, STARTUP	13-11
P0404	Номинальная мощность двигателя	0 = 0,16 π. c. (0,12 κΒτ) 1 = 0,25 π. c. (0,19 κΒτ) 2 = 0,33 π. c. (0,25 κΒτ) 3 = 0,50 π. c. (0,37 κΒτ) 4 = 0,75 π. c. (0,55 κΒτ) 5 = 1,00 π. c. (0,75 κΒτ) 6 = 1,50 π. c. (1,10 κΒτ) 7 = 2,00 π. c. (1,50 κΒτ) 8 = 3,00 π. c. (2,20 κΒτ) 9 = 4,00 π. c. (3,70 κΒτ) 10 = 5,00 π. c. (3,70 κΒτ) 11 = 5,50 π. c. (4,00 κΒτ) 12 = 6,00 π. c. (4,50 κΒτ) 13 = 7,50 π. c. (5,50 κΒτ) 14 = 10,00 π. c. (7,50 κΒτ) 15 = 12,50 π. c. (9,00 κΒτ) 16 = 15,00 π. c. (11,00 κΒτ) 17 = 20,00 π. c. (15,00 κΒτ) 18 = 25,00 π. c. (15,00 κΒτ) 19 = 30,00 π. c. (22,00 κΒτ) 20 = 40,00 π. c. (37,00 κΒτ) 21 = 50,00 π. c. (37,00 κΒτ) 22 = 60,00 π. c. (45,00 κΒτ) 23 = 75,00 π. c. (55,00 κΒτ) 24 = 100,00 π. c. (75,00 κΒτ) 25 = 125,00 π. c. (93,75 κΒτ) 26 = 150,00 π. c. (112,50 κΒτ) 27 = 175,00 π. c. (112,50 κΒτ)	В соответствии с моделью преобразователя		cfg	MOTOR, STARTUP	13-11

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0405	Количество импульсов датчика	От 100 до 9999	1024		cfg	MOTOR, STARTUP	13-11
P0406	Вентиляция двигателя	0 = Естественная вентиляция 1 = Отдельная вентиляция	0		cfg	MOTOR, STARTUP	13-12
P0407	Номинальный коэффициент мощности двигателя	От 0,50 до 0,99	0,80		cfg, V/f, VVW, VVW PM, VVW HSRM	MOTOR, STARTUP	10-5
P0408	Самонастройка	0 = Нет 1 = Без вращения 2 = Запуск для I _m 3 = Запуск для T _m 4 = Оценка T _m	0		cfg, VVW, Vector	STARTUP	10-5
P0409	Сопротивление статора	От 0,01 до 99,99 Ом	В соответствии с моделью преобразователя		cfg, V/f, VVW, Vector	MOTOR, STARTUP	10-5
P0410	Ток намагничивания	От 0,0 до 100,0 А	0,0 A		Vector	MOTOR, STARTUP	13-21
P0411	Индуктивность рассеяния	От 0,00 до 99,99	0,00		cfg, Vector	MOTOR, STARTUP	13-21
P0412	Т, Постоянная времени	От 0,000 до 9,999 с	0,000 c		Vector	MOTOR, STARTUP	13-22
P0413	Т _т Постоянная времени	От 0,00 до 99,99 с	0,00 c		Vector	MOTOR, STARTUP	13-23
P0431	Число полюсов	От 2 до 24	6		cfg, Vector, VVW, VVW PM, VVW HSRM	STARTUP	11-3
P0435	Электродвижущая константа Ке	От 0 до 6000	0		cfg, VVW PM, VVW HSRM	STARTUP	11-4
P0445	Коэффициент усиления при регулировке МТРА	От 0,00 до 4,00	0,50		VVW PM, VVW HSRM	MOTOR	11-6
P0446	Пропорциональное усиление МТРА	От 0,00 до 5,00	0,50		VVW PM, VVW HSRM	MOTOR	11-6
P0447	Интегральное усиление МТРА	От 0,000 до 0,500	0,012		VVW PM, VVW HSRM	MOTOR	11-7
P0448	Стабилизатор тока	От 0,00 до 30,00	0,75		VVW PM, VVW HSRM	MOTOR	11-7
P0449	Tok I/f	От 0,0 до 200,0 %	100,0 %		cfg, VVW PM, VVW HSRM	MOTOR	12-7
P0450	Время перед запуском	От 0,0 до 15,0 с	2,0 c		cfg, VVW PM, VVW HSRM	MOTOR	12-8
P0451	Начальная скорость разгона	От 0,0 до 100,0 %	8,0 %		VVW PM, VVW HSRM	MOTOR	11-7
P0452	- Фильтр тока DQ	От 1 до 10000	1 мс		VVW PM, VVW HSRM	MOTOR	11-7
P0453	Начальное время разгона	От 0 до 999,0 с	3,0 c		VVW PM, VVW HSRM	MOTOR	11-8
P0454	Минимальное напряжение МТРА	От 0,0 до 100,0 %	70,0 %		VVW PM, VVW HSRM	MOTOR	11-8
P0455	Постоянный тормозной ток	От 0,0 до 200,0 %	20,0 %		cfg, VVW PM, VVW HSRM	MOTOR	12-9
P0456	Пропорциональное усиление I/f	От 0,00 до 1,99	0,50		VVW PM, VVW HSRM	MOTOR	12-10
P0457	Интегральное усиление I/f	От 0,000 до 1,999	0,010		VVW PM, VVW HSRM	MOTOR	12-10

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0458	Скорость срабатывания режима I/f	От 0,0 до 100,0 %	30,0 %		VVW PM, VVW HSRM	MOTOR	11-8
P0470	Текущий уровень F0073	От 100,0 до 250,0 %	200,0 %		cfg, VVW HSRM	MOTOR	12-3
P0471	Постоянная времени F0073	От 0 до 1000 мс	0 мс		cfg, VVW HSRM	MOTOR	12-3
P0510	Техн. единица 1 SoftPLC	0 = HeT 31 = MПа 1 = B 32 = мвс 2 = A 33 = mса 3 = об/мин 34 = гал 4 = с 35 = л 5 = мс 36 = дюйм 6 = H 37 = фут 7 = м 38 = м³ 8 = H·м 39 = ft³ 9 = мА 40 = гал/с 10 = % 41 = гал/мин 11 = °C 42 = гал/ч 12 = CV 43 = л/с 13 = Гц 44 = л/мин 14 = л. с. 45 = л/ч 15 = ч 46 = м/с 16 = Вт 47 = м/мин 17 = кВт 48 = м/ч 18 = кВт·ч 49 = фут/с 19 = ч 50 = фут/мин 20 = P0510 51 = фут/ч 21 = P0512 52 = м³/с 22 = P0514 53 = м³/мин 23 = P0516 54 = м³/ч 24 = мин 55 = фут³/мин 26 = бар 57 = фут³/ч 27 = мбар 58 = К 28 = пси 29 = Па 30 = кПа	10			ЧМИ, SPLC	5-12
P0511	Десят. точка техн. единицы 1 SoftPLC	0 = wxyz 1 = wxy.z 2 = wx.yz 3 = w.xyz	1			ЧМИ, SPLC	5-13
P0512	Texн. единица 2 SoftPLC	См. опции в Р0510	10			ЧМИ, SPLC	5-13
P0513	Десят. точка техн. единицы 2 SoftPLC	См. опции в Р0511	1			ЧМИ, SPLC	5-14
P0514	Texн. единица 3 SoftPLC	См. опции в Р0510	13			ЧМИ, SPLC	5-14
P0515	Десят. точка техн. единицы 3 SoftPLC	См. опции в Р0511	1			ЧМИ, SPLC	5-15
P0516	Техн. единица 4 SoftPLC	См. опции в Р0510	13			ЧМИ, SPLC	5-15
P0517	Десят. точка техн. единицы 4 SoftPLC	См. опции в Р0511	1			ЧМИ, SPLC	5-16
P0520	Пропорциональное усиление ПИД	От 0,000 до 9,999	1,000				16-10
P0521	Интегральное усиление ПИД	От 0,000 до 9,999	0,430				16-10
P0522	Дифференциальное усиление ПИД	От 0,000 до 9,999	0,000				16-10
P0525	Значение уставки ПИД по ЧМИ	От 0,0 до 100,0 %	0,0 %				16-11
P0526	Фильтр уставки ПИД	От 0 до 9999 мс	50 мс				16-11
P0527	Тип действия ПИД	0 = Прям. 1 = Обратн.	0				16-11

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0528	Множитель шкалы переменной процесса	От 10 до 30000	1000			ЧМИ	16-12
P0529	Форма индикации переменной процесса	0 = wxyz 1 = wxy.z 2 = wx.yz 3 = w.xyz	1			ЧМИ	16-12
P0533	Значение переменной процесса X	От 0,0 до 100,0 %	90,0 %			I/O	16-12
P0535	Диапазон перезапуска	От 0,0 до 100,0 %	0,0 %			I/O	16-13
P0536	Автоматическая настройка Р0525	0 = He активно 1 = Активно	0		cfg		16-13
P0580	Конфигурация Пожарного режима	0 = Не активно 1 = Активно 2 = Активно / Р0134 3 = Активно / Р0581 4 = Активный / Ген. Отключить	0		cfg	cfg	14-18
P0581	Уставка ПИД режима сжигания	от -100,0 % до 100,0 %	100,0 %				14-19
P0582	Конфигурация автоматического сброса настроек	0 = Ограничено 1 = Без ограничений	0		cfg	HVAC	14-19
P0588	Максимальный уровень крутящего момента	От 0 до 85 %	0 %		V/f	MOTOR, NET	9-15
P0589	Уровень минимального приложенного напряжения	От 8 до 40 %	40 %		V/f	MOTOR, NET	9-16
P0590	Минимальный уровень скорости	От 360 до 18000 об/мин	600 об/мин		V/f	MOTOR, NET	9-16
P0591	Гистерезис для максимального уровня крутящего момента	От 0 до 30 %	10%		V/f	MOTOR, NET	9-16
P0613	Версия программного обеспечения	От -32768 до 32767	Согласно версии программного обеспечения		ro	READ	6-5
P0639	Уровень пониженного напряжения	От 50,0 до 100,0 %	100,0 %		cfg		6-3
P0680	Состояние логики управления	От 0000h до FFFFh Бит 0 = STO Бит 1 = Команда Пуск Бит 2 = Режим сжигания Бит 3 = Зарезервировано Бит 4 = Быстрый останов Бит 5 = 2 ^{-е} линейное изменение Бит 6 = Статус конфиг. Бит 7 = Сигнал тревоги Бит 8 = Работа Бит 9 = Включенное сост. Бит 10 = По часовой стрелке Бит 11 = JOG Бит 12 = Дистанционное управление Бит 13 = Пониженное напряжение Бит 14 = Автомат. (ПИД) Бит 15 = Отказ			ro	READ, NET	7-15
P0681	Скорость при 13 битах	От -32768 до 32767			ro	READ, NET	20-12

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0682	Управление через последовательный интерфейс/ USB	От 0000h до FFFFh Бит 0 = Пуск/Стоп Бит 1 = Общее включение Бит 2 = Запуск по часовой стрелке Бит 3 = Включение ЈОС Бит 4 = Дистанционное управление Бит 5 = 2° линейное изменение Бит 6 = Быстрый останов Бит 7 = Сброс отказа Биты с 8 по 12 = Зарезервированный бит Бит 13 = Внутренний PID Бит 14 = Внешний PID Бит 15 = Зарезервировано			ro	NET	7-17
P0683	Уставка скорости через последовательный интерфейс/ USB	От -32768 до 32767			ro	NET	20-4
P0684	Контроль CO/DN/ PB/Eth	От 0000h до FFFFh Бит 0 = Пуск/Стоп Бит 1 = Общее включение Бит 2 = Вращение вперед Бит 3 = Включение JOG Бит 4 = Дистанционное управление Бит 5 = 2° линейное изменение Бит 6 = Быстрая остановка Бит 7 = Сброс отказа Биты с 8 по 15 = Зарезервированные			ro	NET	7-18
P0685	Скорость справ. CO/ DN/PB/Eth	От -32768 до 32767			ro	NET	20-5

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0690	Состояние логикиуправления 2	Бит 0 = Активный высокий уровень блока питания Бит 1 = Предварительная зарядка ОК Бит 2 = Зарезервировано Бит 3 = Режим I/f (без датчика) активен Бит 4 = Уменьшение Fs Бит 5 = Режим ожидания Бит 6 = Замедл. Кривая Бит 7 = Ускор. Кривая Бит 7 = Ускор. Кривая Бит 8 = Фикс. линейное изменение Бит 9 = Уставка в норме Бит 10 = Регулирование линии постоянного тока или ограничение тока Бит 11 = Конфигурация при 50 Гц Бит 12 = Компенсация провало в напряженияв сети Бит 13 = Пуск с хода Бит 14 = Торможение постоянным током Бит 15 = Импульсы ШИМ			ro	READ, NET	7-16
P0695	Значение DOx	Бит 0 = DO1 Бит 1 = DO2 Бит 2 = DO3 Бит 3 = DO4 Бит 4 = DO5			HMI ro	NET	20-12
P0696	Значение АОх 1	От -32768 до 32767			HMI ro	NET	20-12
P0697	Значение АОх 2	От -32768 до 32767			HMI ro	NET	20-12
P0698	Значение АОх 3	От -32768 до 32767			HMI ro	NET	20-12
P0700	Протокол CAN	1 = CANopen 2 = DeviceNet 3 = Зарезервировано	2			NET	20-5
P0701	Адрес CAN	От 0 до 127	63			NET	20-5
P0702	Скорость передачи данных в бодах по интерфейсу CAN	0 = 1 Мбит/с/Автомат. 1 = Зарезервировано/Авто 2 = 500 Кбит/с 3 = 250 Кбит/с 4 = 125 Кбит/с 5 = 100 Кбит/с/Автомат. 6 = 50 Кбит/с/Автомат. 7 = 20 Кбит/с/Автомат. 8 = 10 Кбит/с/Автомат.	0			NET	20-5
P0703	Сброс выкл. шины	0 = Ручн. 1 = Автомат.	0			NET	20-5
P0705	Состояние контроллера CAN	0 = Выкл. 1 = Автомат. регул. скорости передачи данных в бодах 2 = Включ. сост. САN 3 = Предупреждение 4 = Пассивная ошибка 5 = Выкл. шины 6 = Нет подачи питания на шину			ro	NET	20-5
P0706	Блоки данных RX по протоколу CAN	От 0 до 65535			ro	NET	20-5
P0707	Блоки данных ТХ по протоколу CAN	От 0 до 65535			ro	NET	20-5
P0708	Счетчик отключений шины	От 0 до 65535			ro	NET	20-5
P0709	Потерянные сообщения CAN	От 0 до 65535			ro	NET	20-5

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0710	Варианты входов/ выходов DeviceNet	0 = ODVA основной 2 Вт 1 = ODVA расширенный 2 Вт 2 = Завод, специф. 2 Вт 3 = Завод, специф. 3 Вт 4 = Завод, специф. 4 Вт 5 = Завод, специф. 5 Вт 6 = Завод, специф. 6 Вт	0	·		NET	20-5
P0711	Считывание DeviceNet № 3	От 0 до 1199	0			NET	20-6
P0712	Считывание DeviceNet № 4	От 0 до 1199	0			NET	20-6
P0713	Считывание DeviceNet № 5	От 0 до 1199	0			NET	20-6
P0714	Считывание DeviceNet № 6	От 0 до 1199	0			NET	20-6
P0715	Запись DeviceNet № 3	От 0 до 1199	0			NET	20-6
P0716	Запись DeviceNet № 4	От 0 до 1199	0			NET	20-6
P0717	Запись DeviceNet № 5	От 0 до 1199	0			NET	20-6
P0718	Запись DeviceNet № 6	От 0 до 1199	0			NET	20-6
P0719	Состояние сети DeviceNet	0 = Не в сети 1 = В сети, без подкл. 2 = В сети, подкл. 3 = Время ожидания подключения истекло 4 = Неисправность канала связи 5 = Автомат. регул. скорости передачи данных в бодах			ro	NET	20-6
P0720	Основное состояние DNet	0 = Работа 1 = Режим холостого хода			ro	NET	20-6
P0721	Состояние связи CANopen	0 = Выкл. 1 = Зарезервировано 2 = Перед. данных Включено 3 = Мониторинг ошибок Включение 4 = Ошибка предохранительного устройства 5 = Ошибка тактирования			ro	NET	20-6
P0722	Состояние узла CANopen	0 = Выкл. 1 = Инициализация 2 = Остановлен 3 = Работает 4 = Готовность к работе			ro	NET	20-6
P0740	Состояние связи Profibus	0 = Выкл. 1 = Ошибка доступа 2 = Не в сети 3 = Ошибка конфигурации 4 = Ошибка параметра 5 = Режим очистки 6 = В сети			ro	NET	20-6
P0741	Профиль данных Profibus	0 = PROFIdrive 1 = Производитель	1			NET	20-6
P0742	Считывание Profibus № 3	От 0 до 1199	0			NET	20-6

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0743	Считывание Profibus № 4	От 0 до 1199	0			NET	20-6
P0744	Считывание Profibus № 5	От 0 до 1199	0			NET	20-6
P0745	Считывание Profibus № 6	От 0 до 1199	0			NET	20-6
P0746	Считывание Profibus № 7	От 0 до 1199	0			NET	20-6
P0747	Считывание Profibus № 8	От 0 до 1199	0			NET	20-6
P0750	Запись Profibus № 3	От 0 до 1199	0			NET	20-6
P0751	Запись Profibus № 4	От 0 до 1199	0			NET	20-6
P0752	Запись Profibus № 5	От 0 до 1199	0			NET	20-6
P0753	Запись Profibus № 6	От 0 до 1199	0			NET	20-7
P0754	Запись Profibus № 7	От 0 до 1199	0			NET	20-7
P0755	Запись Profibus № 8	От 0 до 1199	0			NET	20-7
P0760	BACnet-устройство выс. экз.	От 0 до 419	0			NET	20-7
P0761	BACnet-устройство низ. экз.	От 0 до 9999	0			NET	20-7
P0762	Максимальное количество ведущих устройств	От 0 до 127	127			NET	20-7
P0763	Макс информация о раме MS/TP	От 1 до 65535	1			NET	20-7
P0764	Передача сообщения I-AM	0 = Включить питание 1 = Непрерывный	0			NET	20-7
P0765	Токен RX Qtde	От 0 до 65535			ro	NET	20-7
P0766	Количество регистров для отправки	От 0 до 36	0		ro	NET	20-7
P0767	Статус групп	От 0 до 15	0		ro	NET	20-7
P0768	Группа1: Адрес источника	От 0 до 63	0			NET	20-7
P0769	Группа1: Регистр источника	От 0 до 65535	0			NET	20-7
P0770	Группа1: Регистр назначения	От 0 до 65535	0			NET	20-7
P0771	Группа1: Группа	От 0 до 6	1			NET	20-7
P0772	Группа2: Адрес источника	От 0 до 63	0			NET	20-8
P0773	Группа2: Регистр источника	От 0 до 65535	0			NET	20-8
P0774	Группа2: Регистр назначения	От 0 до 65535	0			NET	20-8
P0775	Группа2: Группа	От 0 до 6	1			NET	20-8
P0776	Группа3: Адрес источника	От 0 до 63	0			NET	20-8
P0777	Группа3: Регистр источника	От 0 до 65535	0			NET	20-8
P0778	Группа3: Регистр назначения	От 0 до 65535	0			NET	20-8
P0779	Группа3: Группа	От 0 до 6	1			NET	20-8
P0780	Группа4: Адрес источника	От 0 до 63	0			NET	20-8
P0781	Группа4: Регистр источника	От 0 до 65535	0			NET	20-8
P0782	Группа4: Регистр назначения	От 0 до 65535	0			NET	20-8
P0783	Группа4: Группа	От 0 до 6	1			NET	20-8

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0796	Выше допустимый адрес	От 0 до 63	63			NET	20-8
P0797	Количество полученных токенов	От 0 до 65535	0			NET	20-8
P0798	Следующий обнаруженный адрес	От 0 до 63	0			NET	20-8
P0800	Eth: Идентификация модуля	0 = He определено 1 = Modbus TCP 2 = EtherNet/IP 3 = PROFINET IO			ro	READ, NET	20-9
P0801	Eth: Состояние связи	0 = Настройка 1 = Иниц 2 = Ожидание комм 3 = Простой 4 = Данные активны 5 = Ошибка 6 = Зарезервировано 7 = Исключение 8 = Ошибка доступа			ro	READ, NET	20-9
P0803	Eth: Скорость передачи данных	0 = Авто 1 = 10 Мбит, полудуплекс 2 = 10 Мбит, полный дуплекс 3 = 100 Мбит, полудуплекс 4 = 100 Мбит, полный дуплекс	0			NET	20-9
P0805	Eth: Профиль данных	0 = Производитель 1 = Профиль преобразователя переменного тока ODVA 3 = PROFIdrive	0			NET	20-9
P0806	Eth: Истечение времени ожидания соединения по Modbus TCP	От 0,0 до 65,5	0,0		cfg	NET	20-10
P0810	Eth: Конфиг IP- адреса	0 = Параметры 1 = DHCP 2 = DCP	1		cfg	NET	20-10
P0811	Eth: IP-адрес 1	От 0 до 255	192		cfg	NET	20-10
P0812	Eth: IP-адрес 2	От 0 до 255	168		cfg	NET	20-10
P0813	Eth: IP-адрес 3	От 0 до 255	0		cfg	NET	20-10
P0814	Eth: IP-адрес 4	От 0 до 255	14		cfg	NET	20-10
P0815	Eth: Подсеть CIDR	От 1 до 31	24		cfg	NET	20-10
P0816	Eth: Шлюз 1	От 0 до 255	0		cfg	NET	20-10
P0817	Eth: Шлюз 2	От 0 до 255	0		cfg	NET	20-10
P0818	Eth: Шлюз 3	От 0 до 255	0		cfg	NET	20-10
P0819	Eth: Шлюз 4	От 0 до 255	0		cfg	NET	20-10
P0820	Eth: Слово считывания #3	От 0 до 9999	0			NET	20-10
P0821	Eth: Слово считывания #4	От 0 до 9999	0			NET	20-10
P0822	Eth: Слово считывания #5	От 0 до 9999	0			NET	20-10
P0823	Eth: Слово считывания #6	От 0 до 9999	0			NET	20-10
P0824	Eth: Слово считывания #7	От 0 до 9999	0			NET	20-10
P0825	Eth: Слово считывания #8	От 0 до 9999	0			NET	20-10
P0826	Eth: Слово считывания #9	От 0 до 9999	0			NET	20-10
P0827	Eth: Слово считывания #10	От 0 до 9999	0			NET	20-10
P0828	Eth: Слово считывания #11	От 0 до 9999	0			NET	20-10

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0829	Eth: Слово считывания #12	От 0 до 9999	0			NET	20-10
P0830	Eth: Слово считывания #13	От 0 до 9999	0			NET	20-11
P0831	Eth: Слово считывания #14	От 0 до 9999	0			NET	20-11
P0835	Eth: Слово записи #3	От 0 до 9999	0			NET	20-11
P0836	Eth: Слово записи #4	От 0 до 9999	0			NET	20-11
P0837	Eth: Слово записи #5	От 0 до 9999	0			NET	20-11
P0838	Eth: Слово записи #6	От 0 до 9999	0			NET	20-11
P0839	Eth: Слово записи #7	От 0 до 9999	0			NET	20-11
P0840	Eth: Слово записи #8	От 0 до 9999	0			NET	20-11
P0841	Eth: Слово записи #9	От 0 до 9999	0			NET	20-11
P0842	Eth: Слово записи #10	От 0 до 9999	0			NET	20-11
P0843	Eth: Слово записи #11	От 0 до 9999	0			NET	20-11
P0844	Eth: Слово записи #12	От 0 до 9999	0			NET	20-11
P0845	Eth: Слово записи #13	От 0 до 9999	0			NET	20-11
P0846	Eth: Слово записи #14	От 0 до 9999	0			NET	20-11
P0849	Eth: Обновление конфигурации	0 = Нормальная работа 1 = Обновление конфигурации	0			NET	20-10
P0856	Eth: Конечный ток IP 1	От 0 до 255			ro	READ, NET	20-11
P0857	Eth: Конечный ток IP 2	От 0 до 255			ro	READ, NET	20-11
P0858	Eth: Конечный ток IP 3	От 0 до 255			ro	READ, NET	20-11
P0859	Eth: Конечный ток IP 4	От 0 до 255			ro	READ, NET	20-11
P0860	МВТСР: Состояние связи	0 = Выкл. 1 = Нет соединения 2 = Подключено 3 = Ошибка истечения времени			ro	READ, NET	20-11
P0863	МВТСР: Активные соединения	От 0 до 4			ro	READ, NET	20-11
P0865	МВТСР: ТСР-порт	От 0 до 9999	502		cfg	NET	20-11
P0869	EIP: Состояние ведущего устройства	0 = Работа 1 = Режим холостого хода			ro	READ, NET	20-11
P0870	ЕІР: Состояние связи	0 = Выкл. 1 = Нет соединения 2 = Подключено 3 = Тайм-аут соединения вводавывода вывода 4 = Дублирующий IP			ro	READ, NET	20-11
P0871	EIP: Профиль данных	От 0 до 3 = Зарезервированные 4 = 120/170: Базовая скорость CIP + ввод-вывод 5 = 121/171: Расширенная скорость CIP + ввод-вывод От 6 до 7 = Зарезервированные 8 = 100/150: Произв. Скорость + Ввод/Вывод От 9 до 10 = Зарезервированные	8		cfg	NET	20-12
P0886	EIP: Топология DLR	0 = Линейный 1 = Кольцо			ro	READ, NET	20-12
P0887	EIP: Состояние DLR	0 = Состояние простоя 1 = Нормальное состояние 2 = Состояние неисправности			ro	READ, NET	20-12

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P0889	Eth: Состояние интерфейса	от 0 до 3 (шестн.) Бит 0 = Канал 1 Бит 1 = Канал 2			ro	READ, NET	20-12
P0890	Eth: Управление интерфейсом	от 0 до 3F (шестн.) Бит 0 = Канал автоматического согласования 1 Бит 1 = Скоростной канал 1 Бит 2 = Принудительный дуплексный канал 1 Бит 3 = Канал автоматического согласования 2 Бит 4 = Скоростной канал 2 Бит 5 = Принудительный дуплексный канал 2	9			NET	20-12
P0918	Адрес Profibus	От 1 до 126	1			NET	20-7
P0922	Выбор блока данных Profibus	2 = Стандартный блокданных 1 3 = Блок данных 103 4 = Блок данных 104 5 = Блок данных 105 6 = Блок данных 106 7 = Блок данных 107 8 = Блок данных 108	2			NET	20-7
P0963	Скорость передачи данных в бодах по интерфейсу Profibus	0 = 9,6 Кбит/с 1 = 19,2 Кбит/с 2 = 93,75 Кбит/с 3 = 187,5 Кбит/с 4 = 500 Кбит/с 5 = Не обнаруж. 6 = 1500 Кбит/с 7 = 3000 Кбит/с 8 = 6000 Кбит/с 9 = 12000 Кбит/с 10 = Зарезервировано 11 = 45,45 Кбит/с			ro	NET	20-7
P0967	Управляющее слово 1	Бит 0 = ВКЛ. Бит 1 = Останов по инерции Бит 2 = Быстрый останов Бит 3 = Выкл. режима работы Бит 4 = Сброс кривой Бит 5 = Зарезервировано Бит 6 = Уставка выключения Бит 7 = Подтверждение отказа Бит 8 = ЈОС 1 ВКЛ Бит 9 = Зарезервировано Бит 10 = Нет запроса на управление Биты с 11 по 15 = Зарезервированные			ro	NET	20-7
P0968	Слово состояния 1	Бит 0 = Готов к включению Бит 1 = Готов к работе Бит 2 = Выкл. режима работы Бит 3 = Нет отказа Бит 4 = Включение останова по инерции Бит 5 = Включение быстрого останова Бит 6 = Включение заблокировано Бит 7 = Нет предупреждения Бит 8 = Зарезервировано Бит 9 = Запрошено управление Биты с 10 по 15 = Зарезервированные			ro	NET	20-7
P0990	Локальное имя Bluetooth	От 0 до 9999	Серийный номер преобразователя			NET	20-5
P0991	PIN-номер Bluetooth	От 0 до 9999	1234			NET	20-5
P1000	Состояние SoftPLC	0 = Нет прилож. 1 = Установка прилож. 2 = Несовместим прилож. 3 = Остановлено прилож. 4 = Работает прилож.	0		ro	SPLC	21-1

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P1001	Команда SoftPLC	0 = Остановка программы 1 = Запуск программы 2 = Остановка программы 3 = Остановка программы 4 = Остановка программы 5 = Удаление программы	0		cfg	SPLC	21-1
P1002	Время цикла сканирования	От 0 до 65535 мс			ro	SPLC	21-2
P1003	Выбор аппликатора SoftPLC	0 = Пользователь 1 = РезПрилож	0		cfg	SPLC	21-3
P1004	Действие для приложения SoftPLC не запускается	0 = Не активно 1 = Генерировать сигнал тревоги 2 = Генерировать ошибку	0			SPLC	21-2
P1008	Ошибка задержки	От -9999 до 9999			ro, Enc	SPLC	21-2
P1009	Усиление позиции	От 0 до 6553,5	10,0		Enc	SPLC	21-2
P1010	Параметр SoftPLC 1	От -32768 до 32767	0			SPLC	21-3
P1011	Параметр SoftPLC 2	От -32768 до 32767	0			SPLC	21-3
P1012	Параметр SoftPLC 3	От -32768 до 32767	0			SPLC	21-3
P1013	Параметр SoftPLC 4	От -32768 до 32767	0			SPLC	21-3
P1014	Параметр SoftPLC 5	От -32768 до 32767	0			SPLC	21-3
P1015	Параметр SoftPLC 6	От -32768 до 32767	0			SPLC	21-3
P1016	Параметр SoftPLC 7	От -32768 до 32767	0			SPLC	21-3
P1017	Параметр SoftPLC 8	От -32768 до 32767	0			SPLC	21-3
P1018	Параметр SoftPLC 9	От -32768 до 32767	0			SPLC	21-3
P1019	Параметр SoftPLC 10	От -32768 до 32767	0			SPLC	21-3
P1020	Параметр SoftPLC 11	От -32768 до 32767	0			SPLC	21-3
P1021	Параметр SoftPLC 12	От -32768 до 32767	0			SPLC	21-3
P1021	Параметр SoftPLC 13	От -32768 до 32767	0			SPLC	21-3
P1022	Параметр SoftPLC 14	От -32768 до 32767	0			SPLC	21-3
P1024	Параметр SoftPLC 15	От -32768 до 32767	0			SPLC	21-3
P1025	Параметр SoftPLC 16	От -32768 до 32767	0			SPLC	21-3
P1025	Параметр SoftPLC 17	От -32768 до 32767	0			SPLC	21-3
P1020	Параметр SoftPLC 18		0			SPLC	21-3
		От -32768 до 32767					
P1028 P1029	Параметр SoftPLC 19	От -32768 до 32767	0			SPLC	21-3
	Параметр SoftPLC 20	От -32768 до 32767	0			SPLC	21-3
P1030	Параметр SoftPLC 21	От -32768 до 32767	0			SPLC	21-3
P1031	Параметр SoftPLC 22	От -32768 до 32767	0			SPLC	21-3
P1032	Параметр SoftPLC 23	От -32768 до 32767	0			SPLC	21-3
P1033	Параметр SoftPLC 24	От -32768 до 32767	0			SPLC	21-3
P1034	Параметр SoftPLC 25	От -32768 до 32767	0			SPLC	21-3
P1035	Параметр SoftPLC 26	От -32768 до 32767	0			SPLC	21-3
P1036	Параметр SoftPLC 27	От -32768 до 32767	0			SPLC	21-3
P1037	Параметр SoftPLC 28	От -32768 до 32767	0			SPLC	21-3
P1038	Параметр SoftPLC 29	От -32768 до 32767	0	<u> </u>		SPLC	21-3
P1039	Параметр SoftPLC 30	От -32768 до 32767	0			SPLC	21-3
P1040	Параметр SoftPLC 31	От -32768 до 32767	0			SPLC	21-3
P1041	Параметр SoftPLC 32	От -32768 до 32767	0			SPLC	21-3
P1042	Параметр SoftPLC 33	От -32768 до 32767	0			SPLC	21-3
P1043	Параметр SoftPLC 34	От -32768 до 32767	0			SPLC	21-3
P1044	Параметр SoftPLC 35	От -32768 до 32767	0			SPLC	21-3
P1045	Параметр SoftPLC 36	От -32768 до 32767	0			SPLC	21-3
P1046	Параметр SoftPLC 37	От -32768 до 32767	0			SPLC	21-3
P1047	Параметр SoftPLC 38	От -32768 до 32767	0			SPLC	21-3
P1048	Параметр SoftPLC 39	От -32768 до 32767	0			SPLC	21-3
P1049	Параметр SoftPLC 40	От -32768 до 32767	0			SPLC	21-3
P1050	Параметр SoftPLC 41	От -32768 до 32767	0			SPLC	21-3

Параметр	Описание	Регулируемый диапазон	Заводская настройка	Пользова- тельские настройки	Свойства	Группы	Стр.
P1051	Параметр SoftPLC 42	От -32768 до 32767	0			SPLC	21-3
P1052	Параметр SoftPLC 43	От -32768 до 32767	0			SPLC	21-3
P1053	Параметр SoftPLC 44	От -32768 до 32767	0			SPLC	21-3
P1054	Параметр SoftPLC 45	От -32768 до 32767	0			SPLC	21-3
P1055	Параметр SoftPLC 46	От -32768 до 32767	0			SPLC	21-3
P1056	Параметр SoftPLC 47	От -32768 до 32767	0			SPLC	21-3
P1057	Параметр SoftPLC 48	От -32768 до 32767	0			SPLC	21-3
P1058	Параметр SoftPLC 49	От -32768 до 32767	0			SPLC	21-3
P1059	Параметр SoftPLC 50	От -32768 до 32767	0			SPLC	21-3

КРАТКИЙ СПРАВОЧНИК ПАРАМЕТРОВ ВАРР

Параметр	Описание	Регулируемый Диапазон	Заводские Настройка	Пользоват. настройки	Свойства	Группы	Стр.
P1010	Версия Карр	От 0,00 до 9,99	Зависит от версии РезПрилож		HMI ro	SPLC	21-4
P1011	Автоматическая настройка PIDInt-контроллера	(От -32768 до 32767)	0			SPLC	21-9
P1012	Ручная настройка PIDInt-контроллера	От 0,0 до 100,0 %	0,0 %			SPLC	21-9
P1013	Переменная процесса внутреннего ПИД-контроллера	(От -32768 до 32767)			HMI ro	SPLC	21-10
P1014	Управление действием PIDInt-контроллера	0 = Отключить PID 1 = Прямой режим 2 = Обратный режим	0		cfg	SPLC	21-10
P1015	Режим работы внутреннего ПИД-контроллера	От 0 до 5	0			SPLC	21-11
P1016	Время выборки внутреннего ПИД-контроллера	От 0,10 до 60,00 с	0,10 c			SPLC	21-12
P1017	Пропорциональное усиление внутреннего ПИД-контроллера	От 0,000 до 32,767	1,000			SPLC	21-12
P1018	Интегральное усиление внутреннего ПИД-контроллера	От 0,000 до 32,767	0,430			SPLC	21-12
P1019	Производное усиление внутреннего ПИД-контроллера	От 0,000 до 32,767	0,000			SPLC	21-12
P1020	Конфигурация переменной процесса внутреннего ПИД-контроллера	От 0 до 2	0		cfg	SPLC	21-13
P1021	Минимальный уровень переменной процесса внутреннего ПИД-контроллера	(От -32768 до 32767)	0			SPLC	21-13

го = Параметр только для чтения.

НМІ го = параметр НМІ, доступный только для чтения.

У/f = Параметр доступен только в режиме У/f.

Конфиг. = Параметр конфигурации. Значение этого параметра может быть изменено только при оста-новленном двигателе.

WW = Параметр доступен только в режиме VW.

WW PM = Параметр доступен только в режиме VW PM.

Vector = Параметр доступен в векторном режиме без датчиков.

Sless = Параметр доступный только в режиме без датчиков.

Sless = Параметр, доступный только в режиме без датчиков. Enc = Параметр, доступный только в векторном режиме с датчиком положения.

sy = Параметр доступен только в том случае, если модуль функций безопасности находится в режиме программирования.

Тараметр	Описание	Регулируемый Диапазон	Заводские Настройка	Пользоват. настройки	Свойства	Группы	Стр.
P1022	Максимальный уровень переменной процесса внутреннего ПИД-контроллера	(От -32768 до 32767)	1,000			SPLC	21-14
P1023	Конфигурация сигналов обратной связи ПИДВнутр.	0 = Отключить 1 = Включить сигнал тревоги 2 = Включить неисправность	0			SPLC	21-14
P1024	Значение для сигнализации низкого уровня переменной процесса внутреннего ПИД-контроллера	(От -32768 до 32767)	50			SPLC	21-15
P1025	Время для сигнализации низкого уровня переменной процесса внутреннего ПИД-контроллера	От 0,00 до 650,00 с	5,00 c			SPLC	21-15
P1026	Значение сигнализации высокого уровня переменной процесса внутреннего ПИД-контроллера	(От -32768 до 32767)	900			SPLC	21-16
P1027	Время сигнализации высокого уровня переменной процесса внутреннего ПИД-контроллера	От 0,00 до 650,00 с	5,00 c			SPLC	21-16
P1028	Скорость спящего режима PIDInt-контроллера	От 0 до 18000	350			SPLC	21-17
P1029	Время режима ожидания внутреннего ПИД-контроллера	От 0,00 до 650,00 с	5,00 c			SPLC	21-17
P1030	Процентное отклонение перезапуска внутреннего ПИД-контроллера	От 0,0 до 100,0 %	5,0 %			SPLC	21-17
P1031	Время перезапуска внутреннего ПИД-контроллера	От 0,00 до 650,00 с	10,00 c			SPLC	21-18
P1032	Логическое состояние функций РезПрилож	От 0000h до FFFFh			HMI ro	SPLC	21-26
P1033	Конфигурация обнаружения безмасляного насоса	0 = Отключить 1 = Включить сигнал тревоги 2 = Включить неисправность	0			SPLC	21-4
P1034	Скорость обнаружения безмасляного насоса	От 0 до 18000	400			SPLC	21-5
P1035	Крутящий момент для обнаружения безмасляного насоса	От 0,0 до 350,0 %	20,0 %			SPLC	21-5
P1036	Время обнаружения безмасляного насоса	От 0,00 до 650,00 с	20,00 c			SPLC	21-5
P1037	Конфигурация обнаружения обрыва ремня	0 = Отключить 1 = Включить сигнал тревоги 2 = Включить неисправность	0			SPLC	21-6
P1038	Скорость обнаружения обрыва ремня	От 0 до 18000	400			SPLC	21-6

Параметр	Описание	Регулируемый Диапазон	Заводские Настройка	Пользоват. настройки	Свойства	Группы	Стр.
P1039	Крутящий момент двигателя обнаружения обрыва ремня	От 0,0 до 350,0 %	20,0 %			SPLC	21-7
P1040	Время обнаружения обрыва ремня	От 0,00 до 650,00 с	20,00 c			SPLC	21-7
P1041	Конфигурация сигнализации о необходимости технического обслуживания фильтра	0 = Отключить 1 = Включить сигнал тревоги 2 = Включить неисправность	0			SPLC	21-7
P1042	Время сигнализации о необходимости технического обслуживания фильтра	От 0 до 32000 ч	5000 ч			SPLC	21-8
P1043	Время срабатывания сигнализации о необходимости обслуживания фильтра	От 0 до 32000 ч				SPLC	21-8
P1044	Автоматическая уставка внешнего ПИД-контроллера	(От -32768 до 32767)	0			SPLC	21-20
P1045	Ручная уставка внешнего ПИД-контроллера	От 0,0 до 100,0 %	0,0 %			SPLC	21-20
P1046	Переменная процесса внешнего ПИД-контроллера	(От -32768 до 32767)			ro	SPLC	21-20
P1047	Управление действиями внешнего ПИД-контроллера	0 = Отключить PID 1 = Прямой режим 2 = Обратный режим	0			SPLC	21-21
P1048	Режим работы внешнего ПИД- контроллера	От 0 до 5	0			SPLC	21-21
P1049	Время выборки внешнего ПИД- контроллера	От 0,10 до 60,00 с	0,10 c			SPLC	21-22
P1050	Пропорциональное усиление внешнего ПИД-контроллера	От 0,000 до 32,767	1,000			SPLC	21-22
P1051	Интегральное усиление внешнего ПИД-контроллера	От 0,000 до 32,767	0,430			SPLC	21-23
P1052	Производное усиление внешнего ПИД-контроллера	От 0,000 до 32,767	0,000			SPLC	21-23
P1053	Минимальный уровень обратной связи контроллера внешнего ПИД-контроллера	(От -32768 до 32767)	0			SPLC	21-23
P1054	Максимальный уровень переменной процесса внешнего ПИД-контроллера	(От -32768 до 32767)	1000			SPLC	21-23
P1055	Конфигурация сигналов тревоги для переменных процесса внешнего ПИД-контроллера	0 = Отключить 1 = Включить сигнал тревоги 2 = Включить неисправность	0			SPLC	21-24
P1056	Значение для сигнализации низкого уровня переменной процесса внешнего ПИД-контроллера	(От -32768 до 32767)	2			SPLC	21-24

Параметр	Описание	Регулируемый Диапазон	Заводские Настройка	Пользоват. настройки	Свойства	Группы	Стр.
P1057	Время для сигнализации низкого уровня переменной процесса внешнего ПИД-контроллера	От 0,00 до 650,00 с	5,00 c			SPLC	21-25
P1058	Значение для сигнализации высокого уровня переменной процесса внешнего ПИД-контроллера	(От -32768 до 32767)	900			SPLC	21-25
P1059	Время для сигнализации высокого уровня переменной процесса внешнего ПИД-контроллера	От 0,00 до 650,00 с	5,00 c			SPLC	21-25

ro = Параметр только для чтения.

HMI ro = параметр HMI, доступный только для чтения.

Конфиг. = Параметр конфигурации. Значение этого параметра может быть изменено только при остановленном двигателе.

Отказ / Сигнал тревоги	Описание	Возможные причины
А0046 Перегрузка двигателя	Сигнал о перегрузке двигателя.	 Значения настроек Р0156, Р0157 и Р0158 слишком низкие для используемого двигателя. Перегрузка на вале двигателя.
А0047 Перегрузка БТИЗ	Сигнал о перегрузке на силовойустановке с БТИЗ.	■ Перегрузка по току на выходе преобразователя.
А0050 Перегрев силового модуля	Сигнал о перегреве с датчика температуры силового модуля (NTC).	 Высокая температура окружающей среды преобразователя (> 50 °C) (> 122 °F)) и большой выходной ток. Вентилятор заблокирован или неисправен. Радиатор загрязнен и это препятствует потоку воздуха.
A0090 Внешний аварийный сигнал	Внешний аварийный сигнал через Dlx (опция «Без внешнего аварийного сигнала» в Р026х).	■ Проводка на входах DI1–DI8 разомкнута или имеет пло-хой контакт.
А0098 Прерывание самонастройки	Это указывает на прерывание самонастройки.	■ Это указывает на то, что привод отключен DIх при запуске самонастройки (Р0408).
A0128 Истечение срока ожидания приема блока данных	Аварийный сигнал, указывающий на наличие сбоя при последовательной передаче данных. Он указывает, что оборудование перестало принимать допустимые блоки данных по последовательному интерфейсу на период, превышающий значение в P0314.	 Проверить установку сети, обрыв кабеля или неисправность/ плохой контакт на соединениях с сетью, заземление. Убедитесь, что ведущее устройство всегда отправляетблоки данных на оборудование за период, который мень-ше значения параметра в Р0314. Эту функцию можно отключить, задав Р0314 = 0.
A0133 На интерфейс САПне подается питание	Сигнал указывает, что на интерфейс CAN не подается питание между 1 и 5 контактами разъема.	 Измерьте напряжение в разрешенном диапазоне между контактами 1 и 5 разъема интерфейса CAN. Убедитесь, что силовые кабели правильно подключены. Проверьте наличие проблем подключения на кабеле или разъеме интерфейса CAN.
А0134 Шина выключена	В интерфейсе CAN обнаружена ошибка выключения шины.	 Проверьте наличие короткого замыкания в кабеле канала передачи САN. Убедитесь, что кабели правильно подключены. Убедитесь, что все сетевые устройства используют одинаковую скорость в бодах. Проверьте, чтобы оконечные резисторы с правильным значением были установлены в конце основной шины. Проверьте правильность монтажа сети САN.

Отказ / Сигнал тревоги	Описание	Возможные причины
А0135 Защита и тактирование узла	Средство контроля ошибок связи САNореп обнаружило с помощью механизма защиты ошибку передачи данных.	 Проверьте значения времени, установленные на ведущем и ведомом устройствах для обмена сообщениями. Чтобы избежать проблем из-за задержки в каналах передачи и расчета времени, рекомендуется умножать значения, установленные для определения ошибок ведомым устройством, на значения времени, установленные для обмена сообщениями на ведущем устройстве. Проверьте, отправляет ли ведущий узел защитные пакеты данных в определенный период времени. Проверьте наличие проблем в канале передачи данных, которые могут вызывать потерю пакетов данных или задержки при их передаче.
А0136 Ведущий узел в режиме простоя	Сигнал указывает, что ведущий узел сети DeviceNet работает в режиме простоя.	■ Установите переключатель, который управляет работой ведущего узла, в положение запуска или соответствующий бит на слово конфигурации основного ПО. Еслипонадобится дополнительная информация, см. докумен-тацию используемого ведущего узла.
A0137 Истечение срока ожидания подключения к DeviceNet	Сигнал, который указывает, что время ожидания одного или нескольких подключений DeviceNet истекло.	 ■ Проверьте состояние ведущего узла сети. ■ Проверьте настройку сети, наличие оборванного кабеля или неправильный/плохой контакт на соединениях с сетью.
A0138 Интерфейс Profibus DP в режиме очистки	Сигнал указывает на то, что преобразователь получил команду от ведущего узла сети Profibus DP о входе в режим очистки.	■ Проверьте состояние ведущего узла сети и убедитесь, что он работает надлежащим образом.
A0139 Интерфейс Profibus DP не в сети	Сигнал указывает на прерывание передачи данных между ведущим узлом сети Profibus DP и преобразователем. Интерфейс связи Profibus DP перешел в автономный режим.	 Убедитесь в правильности конфигурации и нормальной работе ведущего узла сети. Проверьте наличие короткого замыкания или плохого контакта в кабелях связи. Убедитесь, что кабели правильно подключены. Проверьте, чтобы оконечные резисторы с правильным значением были установлены в конце основной шины. Проверьте правильность монтажа сети в целом — прокладку кабелей, заземление.
A0140 Ошибка доступа к модулю Profibus DP	Сигнал указывает на ошибку доступа к данным модуля связи Profibus DP.	 ■ Проверьте правильность подключения модуля Profibus DP. ■ Причиной этой ошибки могут быть аппаратные ошибки, возникающие в результате неправильной установки периферийных устройств или неправильного обращения с ними. При возможности проведите тестирование, заменив периферийное устройство для передачи данных.
A0147 EtherNet/IP офлайн	Это указывает на сбой циклической передачи данных с ведущим устройством EtherNet/IP. Это происходит, когда по какой-то причине после начала циклической связи между ведущим устройством и изделием эта связь прерывается. Эта неисправность характерна только для вспомогательного устройства CFW500-CETH2.	 ■ Проверить статус ведущего сети. ■ Проверить установку сети, обрыв кабеля или сбой/плохой контакт в сетевых соединениях.
A0148 Ошибка доступа к интерфейсу Ethernet	Указывает на ошибку обмена данными между преобразователем частоты CFW500 и модулем Ethernet.	 Проверьте, правильно ли подключен модуль Ethernet к изделию. Проверьте, поддерживает ли версия прошивки оборудования вспомогательное устройство Ethernet. Причиной этой ошибки могут стать аппаратные ошибки, вызванные неправильным обращением или установкой вспомогательного устройства. Если возможно, проверьте это, заменив модуль связи.

Отказ / Сигнал тревоги	Описание	Возможные причины
A0149 Ethernet офлайн	Если PROFINET IO или EtherNet/IP, это указывает на сбой циклической передачи данных с ведущим устройством. Это происходит, когда по какой-то причине после начала циклической связи между ведущим устройством и изделием эта связь прерывается. Вспомогательные устройства CFW500-CEPN-IO и CFW500-CETH-IP. Если это Modbus TCP, это означает, что оборудование перестало получать допустимые телеграммы на период, превышающий настройку в Р0806. Отсчет времени начинается с момента получения первой действительной телеграммы. Вспомогательные устройства CFW500-CETH2 и CFW500-CEMB-TCP.	 Проверить установку сети, обрыв кабеля или неисправность плохой контакт на соединениях с сетью, заземление. Убедитесь в правильности конфигурации и нормальной работе ведущего узла сети. Убедиться, что клиент Modbus TCP всегда отправляет телеграммы оборудованию за время, меньшее указанного в Р0806. Отключите эту функцию в Р0806.
А0152 Высокая Внутренняя Температура	Высокая внутренняя температура	 Высокая температура окружающей среды преобразова-теля (>50 °C (>122 °F)). Радиатор загрязнен и это препятствует потоку воздуха.
А0160 Безопасное состояние активно	Указывает пользователю, что модуль функций безопасности включил безопасное состояние преобразователя (безопасное отключение крутящего момента).	 Активация входных сигналов STO. Входные сигналы STO не установлены. Входные сигналы STO обесточены.
A0161 SS1-t Тайминг Активен	Указывает пользователю, что модуль функций безопасности выполняет синхронизацию функции безопасности SS1-t.	 Активация входных сигналов STO с программированием функции безопасности SS1-t.
А0162 Модуль функций безопасности в режиме программирования	Указывает пользователю, что модуль функций безопасности находится в режиме программирования функций безопасности.	■ Активация DIP-переключателей программирования модуля.
A0163 Отказ сигнала Alx 420 мА	Аналоговый входной сигнал Alx при от 4 до 20 мА или от 20 до 4 мА ниже 2 мА.	 Токовый сигнал на аналоговом входе Alx прерван или отсутствует. Ошибка установки параметров аналогового входа Alx.
A0168 Слишком высокая ошибка скорости	Разница между опорной скоростью и эффективной скоростью больше, чем настройка в Р0360.	■ Преобразователь в режиме ограничения крутящего момента.
А0181 Неверное показание часов	Сигнал о неверном показании часов.	 Необходимо задать дату и время для параметров Р0194- Р0199. Батарея клавишной панели разряжена, неисправна или не установлена.
A0211 Привод в Пожарном режиме	Указывает, что диск находится в Пожарном режиме.	 Цифровой вход, запрограммированный на активацию Пожарного режима огня, активен.
А0700 Сбой связис удаленным ЧМИ	Нет связи с удаленным ЧМИ, но для этого источника нет команды о скорости или уставки.	 Убедитесь, что интерфейс передачи данных с ЧМИ правильно настроен в параметре Р0312. Кабель НМІ отсоединен.
А0702 Преобразователь выключен	Этот сбой происходит, когда активен блок движения (блок REF) SoftPLC, а команда «Общее включение» отключена.	■ Убедитесь, что активна команда общего включения при вода.
А0704 Два движ. Включено	Этот сбой происходит, когда одновременно включено 2 или больше блоков движения (блок REF) SoftPLC.	■ Проверьте пользовательскую логику программы.
A0706 Артик. Не Прогр. SPLC	Этот сбой происходит, когда блок движения SoftPLC включен, а уставка скорости не запрограммирована для SoftPLC.	■ Проверьте запрограммированные уставки в локальном и/ или удаленном режимах (Р0221 и Р0222).
A0708 Приложение SPLC остановлено	Приложение SoftPLC не запущено.	 Приложение SoftPLC остановлено (Р1001 = 0 и Р1000 = 3). ■ Состояние SoftPLC представляет собой несовместимое приложение с версией прошивки CFW500.

Отказ / Сигнал тревоги	Описание	Возможные причины
А0750 Программа Alx для переменной процесса Внутреннего ПИД-контроллера	Сигнал тревоги, указывающий на то, что аналоговый вход не был запрограммирован для переменной процесса внутреннего ПИД-контроллера.	■ Параметр Р0231 или Р0236 не был запрограммирован на 16 или 17.
А0752 Программа Dlx для автоматического/ ручного выбора внутреннего ПИД-контроллера	Сигнал тревоги, указывающий на то, что цифровой вход не был запрограммирован на автоматический/ручной выбор внутреннего ПИД-контроллера.	■ Параметр Р0263 или Р0264 или Р0265 или Р0266 не был запрограммирован для 47.
A0754 Программа ЛОКАЛЬНОЙ ссылки (Р0221) для SoftPLC	Сигнал тревоги, указывающий на источник задания скорости в ЛОКАЛЬНОМ режиме, не была запрограммирована для SoftPLC.	■ Внутренний ПИД-контроллер включен (Р1014 в положении 1 или 2), преобразователь частоты CFW500 управляет двигателем в ЛОКАЛЬНОМ режиме, а параметр Р0221 не запрограммирован на значение 12.
A0756 Программа УДАЛЕННАЯ Ссылка (Р0222) для SoftPLC	Сигнал тревоги, указывающий на источник задания скорости в УДАЛЕННОМ режиме, не была запрограммирована для SoftPLC.	■ Внутренний ПИД-контроллер включен (Р1014 в положении 1 или 2), преобразователь частоты CFW500 управляет двигателем в ДИСТАНЦИОННОМ режиме, а параметр Р0222 не запрограммирован на значение 12.
А0758 Запрограммировать непрямую техническую единицу 4 (Р0516) для Гц или об/мин	Сигнал тревоги, указывающий, что параметр для технической единицы измерения скорости двигателя не был запрограммирован на Гц или об/мин.	■ Параметр Р0516 не был запрограммирован на 13 (Гц) или 3 (об/мин).
А0760 Низкий уровень переменной процесса внутреннего ПИД- контроллера	Сигнал тревоги, указывающий на то, что переменная процесса внутреннего ПИД-контроллера имеет низкое значение.	■ Параметр Р1023 запрограммирован на 1, и значение переменной процесса внутреннего ПИД-контроллера оставалось ниже значения, запрограммированного в Р1024, в течение времени, запрограммированного в Р1025.
А0762 Высокий уровень переменной процесса внутреннего ПИД- контроллера	Сигнал тревоги, указывающий на то, что переменная процесса внутреннего ПИД-контроллера имеет высокое значение.	■ Параметр Р1023 запрограммирован на 1, и значение переменной процесса внутреннего ПИД-контроллера оставалось выше значения, запрограммированного в Р1026, в течение времени, запрограммированного в Р1027.
А0764 Преобразователь частоты в спящем режиме	Сигнал тревоги, указывающий на то, что преобразователь частоты CFW500 находится в спящем режиме.	■ Внутренний ПИД-контроллер включен и находится в автоматическом режиме, а скорость двигателя остается ниже скорости, запрограммированной в Р1028, в течение времени, запрограммированного в Р1029.
А0766 Обнаружен сухой насос	Сигнал тревоги, указывающий на состояние сухого насоса , которое было обнаружено для насоса , приводимого в действие преобразователем частоты CFW500.	■ Параметр Р1033 запрограммирован на 1, насос, приводимый в действие преобразователем частоты СFW500, работает со скоростью, превышающей скорость, запрограммированную в Р1034, а крутящий момент двигателя остается ниже значения, запрограммированного в Р1035, в течение времени, запрограммированного в Р1036.
А0768 Обнаружен обрыв ремня	Сигнал тревоги, указывающий на то, что был обнаружен обрыв ремня на двигателе, приводимом в действие преобразователем частоты CFW500.	■ Параметр Р1037 запрограммирован на 1, двигатель, приводимый в действие преобразователем частоть СГW500, работает со скоростью, превышающей скорость, запрограммированную в Р1038, а крутящий момент двигателя остается ниже значения, запрограммированного в Р1039, в течение времени, запрограммированного в Р1040.
А0770 Техническое обслуживание фильтра	Сигнал тревоги, указывающий на необходимость замены фильтра системы.	■ Параметр Р1041 запрограммирован на 1, а время работь двигателя, приводимого в действие преобразователем частоты CFW500, показанное в Р1043, превышает значение, запрограммированное в Р1042.
А0780 Программа Alx для переменной процесса внешнего ПИД- контроллера	Сигнал тревоги, указывающий на то, что аналоговый вход не был запрограммирован для переменной процесса внешнего ПИД-контроллера.	■ Параметр Р0231 или Р0236 не был запрограммирован на 18.

Отказ / Сигнал тревоги	Описание	Возможные причины
А0782 Программа DIх для автоматического/ ручного выбора внешнего ПИД-контроллера	Сигнал тревоги, указывающий на то, что цифровой вход не был запрограммирован на автоматический/ручной выбор внешнего ПИД-контроллера.	■ Параметр Р0263 или Р0264 или Р0265 или Р0266 не был запрограммирован для 48.
А0784 Программа АОх для выхода внешнего ПИД-контроллера	Сигнал тревоги, указывающий на то, что аналоговый выход не был запрограммирован для выхода внешнего ПИД-контроллера.	■ Параметр Р0251 или Р0254 не был запрограммирован на 29.
А0786 Низкий уровень переменной процесса внешнего ПИД- контроллера	Сигнал тревоги, указывающий на то, что переменная процесса внешнего ПИД-контроллера имеет низкое значение.	■ Параметр Р1055 запрограммирован на 1, а значение переменной процесса внешнего ПИД-контроллера оставалось ниже значения, запрограммированного в Р1056, в течение времени, запрограммированного в Р1057.
А0788 Высокий уровень переменной процесса внешнего ПИД-контроллера	Сигнал тревоги, указывающий на то, что переменная процесса внешнего ПИД-контроллера имеет высокое значение.	■ Параметр Р1055 запрограммирован на 1, и значение переменной процесса внешнего ПИД-контроллера оставалось выше значения, запрограммированного в Р1058, в течение времени, запрограммированного в Р1059.
F0006 Дисбаланс Потеря фазы линии	Неисправность из-за несбалансированности источника питания или потери фазы. Примечание: - В случае отсутствия нагрузки на двигатель или низкой нагрузки на вал, эта неисправность может не возникнуть Время срабатывания указано в Р0357. Р0357=0 ошибка отключения.	 ■ Потеря фазы на входе преобразователя. ■ Сбой в цепи предварительного заряда.
F0021 Понижение напряжения вставки постоянного тока	Отказ из-за пониженного напряжения в промежуточном контуре.	 ■ Неправильная подача напряжения — убедитесь, что данные на технической этикетке преобразователя соответствуют данным системы электропитания и параметру Р0296. ■ Напряжение питания слишком низкое, в результате чего подаваемое напряжение на вставке постоянного тока ниже минимального значения (в Р0004): Ud < 200 В пост. т. при 200–240 В перем. т. (Р0296 = 0). Ud < 360 В пост. т. при 380–480 В перем. т. (Р0296 = 1, 2, 3 или 4). Ud < 500 В пост. т. при 500–600 В перем. т. (Р0296 = 5, 6 или 7). ■ Межфазное КЗ на входе. ■ Сбой в цепи предварительного заряда.
F0022 Повышение напряжения вставки постоянного тока	Отказ из-а повышенного напряжения в промежуточном контуре.	 ■ Неправильная подача напряжения — убедитесь, что данные на технической этикетке преобразователя соответствуют данным системы электропитания и параметру Р0296. ■ Напряжение питания слишком низкое, в результате чего подаваемое напряжение на вставке постоянного тока ниже минимального значения (в Р0004): Ud > 410 В пост. т. при 200–240 В перем. т. (Р0296 = 0). Ud > 810 В пост. т. при 380–480 В перем. т. (Р0296 = 1, 2, 3 или 4). Ud > 1000 В пост. т. при 500–600 В перем. т. (Р0296 = 5, 6 или 7). ■ Слишком большое значение момента инерции нагрузки или слишком быстрое изменение кривой замедления. ■ Значение Р0151, Р0153 или Р0185 слишком велико.
F0031 Сбой связи с подключаемым модулем	Главному управляющему блоку не удается установить канал связи с подключаемым модулем.	 ■ Подключаемый модуль поврежден. ■ Подключаемый модуль неправильно подключен. ■ Проблема идентификации подключаемого модуля. См. Р0027, чтобы получить дополнительную информацию.
F0033 Сбой самонастройки	Сбой настройки сопротивления статора P0409.	 Значение сопротивления статора в Р0409 не соответствует мощности преобразователя. Ошибка подключения двигателя. Отключите подачу питания и проверьте коробку зажимов двигателя и соединения с зажимами. Мощность двигателя слишком низкая или высокая по отношению к преобразователю.

Отказ / Сигнал тревоги	Описание	Возможные причины
F0048 Перегрузка на БТИЗ	Перегрузка блока питания с IGBT (3 с в 2 х I _{помно}).	■ Перегрузка по току на выходе преобразователя (> 1,5 x I _{номно}).
F0051 Отказ вследствие перегрева, Перегрев БТИЗ зарегистрированного температурным датчиком силовой установки.		 Высокая температура окружающей среды преобразователя (> 50 °C) (> 122 °F)) и большой выходной ток. Вентилятор заблокирован или неисправен. Радиатор загрязнен и это препятствует потоку воздуха.
F0068 Неисправность в виде перегрева, измеренная датчиком температуры двигателя (Тройной РТС) через специальную схему в схеме питания.		 Перегрузка на вале двигателя. Слишком интенсивный цикл нагрузки (большое число запусков и остановок в минуту). Высокая температ ура окружающей среды вокруг электродвигателя. Плохой контакт или короткое замыкание (3k9 < RPTC < 0k1). Термистор двигателя не установлен. Заклинило вал двигателя.
F0070 Перегрузка по току / Короткое замыкание	Перегрузка по току или короткое замыкание на выходе, во вставке постоянного тока или в резисторе для динамического торможения.	 Короткое замыкание между двумя фазами двигателя. Короткое замыкание в соединительных кабелях реостатного резистора для динамического торможения. Короткое замыкание в модуле БТИЗ, или он поврежден. Запуск со слишком коротким линейным ускорением. Запуск с вращающимся двигателем без использования функции пуска с хода.
F0072 Перегрузка двигателя	Сбой вследствие перегрузки двигателя (60 с в 1,5 х РО401).	 Значения параметров Р0156, Р0157 и Р0158 слишком низкие по отношению к рабочему току двигателя. Перегрузка на вале двигателя.
F0073 Перегрузка по току/ короткое замыкание HSRM	Указывает пользователю на то, что произошла перегрузка по току/ короткое замыкание, превышающее пиковый ток используемого двигателя HSRM. Уровень неисправности определяется в соответствии с уравнением: √2 x P0401 x P0470 x P0471	 Короткое замыкание между двумя фазами двигателя. Короткое замыкание соединительных кабелей динамического торможения. Короткое замыкание в модуле БТИЗ, или он поврежден. Запуск со слишком коротким линейным ускорением. Запуск с вращающимся двигателем без использования функции пуска с хода.
F0074 Сбой замыкания на землю	Сбой токовой защиты от замыканийна землю. Примечание: Его можно отключить, установив бит 0 в Р0343 равным 0.	 Короткое замыкание на землю в одной или несколькихфазах выходного напряжения. Электростатическая емкость кабеля двигателя слишком высокая, что обуславливает пики тока на выходе.
F0076 Ошибка подключения к электродвигателю	Этот сбой указывает, что в электродвигателе произошел обрыв фазы, обнаружен несбалансированный фазный ток или он отключен. Эта защита будет действовать только в соответствии со следующими условиями эксплуатации: 1. Преобразователь включен. 2. Выходная частота вращения > 10 % от номинальной частоты двигателя. 3. Выходной ток > 20 % от номинального тока двигателя.	 Ошибка вследствие неполадок в проводке или подключения к электродвигателю. Потеря подключения электродвигателя к приводу или поврежденная проводка.
F0078 Перегрев двигателя	Сбой вследствие перегрева, определенного датчиком температуры электродвигателя (тройной РТС) через аналоговый вход Alx или цифровой вход Dlx.	 Перегрузка на вале двигателя. Слишком интенсивный цикл нагрузки (большое число запусков и остановок в минуту). Высокая температ ура окружающей среды вокруг электродвигателя. Плохой контакт или короткое замыкание. Термистор двигателя не установлен. Заклинило вал двигателя.
F0079 Отказ сигнала датчика	Сбой из-за отсутствия сигналов датчика положения.	 Нарушена проводка между датчиком положения и датчиком положения интерфейса вспомогательного устройства. Датчик положения неисправен.
F0080 Отказ центрального процессора (самоконтроль)	Отказ, связанный с алгоритмом контроля центрального процессора преобразователя.	Электрический шум.Отказ микропрограммы преобразователя.

Отказ / Сигнал тревоги	Описание	Возможные причины
F0081 Обновление прошивки	Ошибка обновления прошивки устройства.	 Проверьте, настроен ли последовательный интерфейс 1. Проверьте, есть ли в конфигурации последовательный порт WPS и последовательный интерфейс преобразователя 1: [38400 бит/с, 8 бит, четность, 2 стопа]. Проверьте наличие проблем в канале передачи данных, которые могут вызывать потерю пакетов данных или задержки при их передаче. Проверьте, чтобы версия плагина была больше или равна 1.03.
F0083 Ошибка идентификации оборудования	Активный уровень ШИМ, ранее установленный на преобразователе, не соответствует идентифицированному оборудованию. После замены оборудования питания необходимо загрузить заводские настройки по умолчанию.	 Замена силовой части на модель с активным уровнем ШИМ, отличным от предыдущей модели. Плохой контакт в соединениях между главным блоком управления и блоком питания. Неисправность во внутренней схеме преобразователя.
F0084 Ошибка идентификации силового оборудования	Неисправность, связанная с алгоритмом автоматической идентификации блока питания преобразователя.	 ■ Плохой контакт в соединении между главным блоком управления и блоком питания. ■ Аппаратное обеспечение несовместимо с версией прошивки. ■ Неисправность во внутренних цепях преобразователя.
F0085 Подключаемый модуль не запускается	Сбой инициализации подключаемого модуля.	 Дефект подключаемого модуля. Плохой контакт в соединениях подключаемого модуля с преобразователем. Подключаемый модуль без прошивки.
F0086 Ошибка идентификации модуля	Неисправность, связанная с алгоритмом автоматической идентификации модуля функций безопасности.	 Плохой контакт в соединениях между преобразователем и модулем функций безопасности. Разъем перемычки STO отсутствует, если модуль функций безопасности не используется. Дефект внутренних цепей преобразователя или модуля функций безопасности.
F0087 Ошибка смещения тока lu	Неисправность, связанная с измерением смещения тока lu.	Электрический шум.Внутренние кабели преобразователя отсоединены.Неисправность во внутренней схеме преобразователя.
F0088 Ошибка смещения тока Iv	Неисправность, связанная с измерением смещения тока lv.	 Электрический шум. Внутренние кабели преобразователя отсоединены. Неисправность во внутренней схеме преобразователя.
F0089 Ошибка смещения тока lw	Неисправность, связанная с измерением смещения тока lw.	 Электрический шум. Внутренние кабели преобразователя отсоединены. Неисправность во внутренней схеме преобразователя.
F0091 Внешний отказ	Внешний отказ через Dlx («Без внешнего отказа» в Р026х).	■ Проводка на входах DI1–DI8 разомкнута или имеет пло-хой контакт.
F0100 Ошибка EEPROM	Эта неисправность возникает при возникновении проблем с загрузкой параметров в областях памяти RAM и EEPROM.	 Повреждена плата управления. Отказ микропрограммы преобразователя. Неисправность во внутренних цепях преобразователя.
F0101 Ошибка флэш-памяти данных	Эта ошибка возникает при превышении времени отклика чтения или записи флэш-памяти данных.	 Повреждена плата управления. Отказ микропрограммы преобразователя. Неисправность во внутренних цепях преобразователя.
F0150 Отказ с превышением скорости.		■ Неверные настройки Р0161 и/или Р0162.■ Проблема с нагрузкой поднятия.
F0153 Внутренний перегрев	Температура внутреннего воздуха преобразователя в Р0034 превышает 85 °C.	 Высокая температура окружающей среды преобразователя (>50 °C). Радиатор загрязнен и это препятствует потоку воздуха.
Р0158 Несоответствие. Основная версия ПО Основная версия ПО Основная версия ПО		 Пустая память на подключаемом модуле (1[∞] включение). Ошибка резервного копирования данных при отключении питания. Версия параметров, скопированная из ММГ в СГW500, несовместима с текущей версией продукта. Более подробную информацию см. в Раздел 2.3 СОВМЕСТИМОСТЬ ПРОШИВОК на странице 2-3.

Отказ / Сигнал тревоги	Описание	Возможные причины	
РО160 Модуль функций безопасности в состоянии неисправности		 Неправильная установка входных сигналов STO. Расхождение между входными сигналами STO более 1 с. DIP-переключатели программирования модуля функций безопасности (S2) активируются в рабочем состоянии. Неправильное программирование функции безопасности или программирование тайм-аута (2 мин). Повреждена электронная схема модуля функций безопасности. 	
F0161 Ошибка связи модуля функций безопасности	Указывает пользователю, что преобразователь потерял связь с модулем функций безопасности.	 Плохой контакт между модулем функций безопасности и управлением преобразователя. Повреждение электронной цепи модуля управления преобразователем или функций безопасности. 	
F0162 Несовместимость оборудования	Недопустимая конфигурация модуля STO с преобразователем 600 В.	Измените напряжение преобразователя.Снимите модуль STO.	
F0169 Слишком высокая ошибка скорости	Разница между опорной скоростью и эффективной скоростью больше настройки в Р0360 дольше, чем Р0361.	■ Преобразователь слишком долго находится в режиме ограничения крутящего момента.	
F0179 Низкая скорость вентилятора	Внутренний вентилятор со скоростью (Р0036) ниже 2/3 номинальной скорости вентилятора.	 Отказ внутреннего вентилятора. Проверьте правильность подключения вентилятора. Вентилятор засорен грязью. 	
F0182 Отказ в обратной связи импульсов	Отказ цепи обратной связи импульсов напряжения на выходе. Примечание: Его можно отключитьв Р0397.	 Отказ идентификации аппаратного обеспечения — сравните значения Р0295 и Р0296 с данными, указанными на идентификационной этикетке преобразователя. Отказ внутренней цепи обратной связи импульсов преобразователя. 	
F0228 Истечение срока ожидания приема блока данных	Указывает отказ в канале последовательной связи. Он указывает, что оборудование перестало принимать допустимые блоки данных по последовательному интерфейсу на период, превышающий значение в РОЗ14.	 Отказ входной цепи обратной связи импульсов. Проверить установку сети, обрыв кабеля или неисправнос плохой контакт на соединениях с сетью, заземление. Убедитесь, что ведущее устройство всегда отправляетбло данных на оборудование за период, который мень- 	
F0233 На интерфейс САNне подается питание	233 Этот отказ указывает, что на интерфейс □ Измерьте напряжение в разрешенном д контактами 1 и 5 разъема интерфейса СА		
Розз4 Шина выключена В интерфейсе CAN обнаружена ошибка выключения шины. Проверьте наличие короткого замыкания передачи CAN. Убедитесь, что кабели правильно подклю Убедитесь, что все сетевые устройс одинаковую скорость в бодах. Проверьте, чтобы оконечные резисторь значениями были установлены только в шины.		передачи САN. Убедитесь, что кабели правильно подключены. Убедитесь, что все сетевые устройства используют одинаковую скорость в бодах. Проверьте, чтобы оконечные резисторы с правильными значениями были установлены только в конце основной	
F0235 Защита и тактирование узла	235 Средство контроля ошибок связи шита и САNореп обнаружило с помощью □ Проверьте значения времени, установленные и ведомом устройствах для обмена сообщен		
F0236 Ведущий узел в режиме простоя	Отказ указывает, что ведущий узел сети DeviceNet работает в режиме простоя.	■ Установите переключатель, который управляет работой ведущего узла, в положение запуска или соответствующий бит на слово конфигурации основного ПО. Еслипонадобится дополнительная информация, см. докумен-тацию используемого ведущего узла.	

Отказ / Сигнал тревоги	Описание	Возможные причины
F0237 Истечение срока ожидания подключения к DeviceNet	Отказ, который указывает, что время ожидания одного или нескольких подключений DeviceNet истекло.	 Проверьте состояние ведущего узла сети. Проверьте настройку сети, наличие оборванного кабеля или неправильный/плохой контакт на соединениях с сетью.
F0238 Интерфейс Profibus DP в режиме очистки	Сигнал указывает на то, что преобразователь получил команду от ведущего узла сети Profibus DP о входе в режим очистки.	■ Проверьте состояние ведущего узла сети и убедитесь, что он работает надлежащим образом.
F0239 Интерфейс Profibus DP не в сети	Сигнал указывает на прерывание передачи данных между ведущим узлом сети Profibus DP и преобразователем. Интерфейс связи Profibus DP перешел в автономный режим.	 Убедитесь в правильности конфигурации и нормальной работе ведущего узла сети. Проверьте наличие короткого замыкания или плохого контакта в кабелях связи. Убедитесь, что кабели правильно подключены. Проверьте, чтобы оконечные резисторы с правильным значением были установлены в конце основной шины. Проверьте правильность монтажа сети в целом — прокладку кабелей, заземление.
F0240 Отказ в доступе к модулю Profibus DP	Отказ указывает на ошибку доступа к данным модуля связи Profibus DP.	 ■ Проверьте правильность подключения модуля Profibus DP. ■ Аппаратные ошибки, возникающие в результате неправильной установки или работы с периферийными устройствами, могут обусловить эту ошибку. При возможности проведите тестирование, заменив периферийное устройство для передачи данных. При возможности проведите тестирование, заменив периферийное устройство для передачи данных.
F0247 EtherNet/IP офлайн Это указывает на сбой циклической передачи данных с ведущим устройством EtherNet/IP. Это происходит, когда по какой-то причине после начала циклической связи между ведущим устройством и изделием эта связь прерывается. Эта неисправность характерна только для вспомогательного устройства СРW500-СЕТН2. ■ Проверить статус ведущего сети. Проверить установку сети, обрыв ка контакт в сетевых соединениях.		■ Проверить установку сети, обрыв кабеля или сбой/плохой
F0248 Ошибка доступа к интерфейсу Ethernet	Указывает на ошибку обмена данными между преобразователем частоты CFW500 и модулем Ethernet.	 Проверьте, правильно ли подключен модуль Ethernet к изделию. Проверьте, поддерживает ли версия прошивки оборудования вспомогательное устройство Ethernet. Причиной этой ошибки могут стать аппаратные ошибки, вызванные неправильным обращением или установкой вспомогательного устройства. Если возможно, проверьте это, заменив модуль связи.
Если PROFINET IO или EtherNet/IP, это указывает на сбой циклической передачи данных с ведущим устройством. Это происходит, когда по какой-то причине после начала циклической связи между ведущим устройством и изделием эта связь прерывается. Вспомогательные устройства CFW500-CEPN-IO и CFW500-CETH-IP. Если это Modbus TCP, это означает, что оборудование перестало получать допустимые телеграммы на период, превышающий настройку в Р0806. Отсчет времени начинается с момента получения первой действительной телеграммы. Вспомогательные устройства CFW500-CETH2 и CFW500-CEMB-TCP.		 Проверить установку сети, обрыв кабеля или неисправность/ плохой контакт на соединениях с сетью, заземление. Убедитесь в правильности конфигурации и нормальной работе ведущего узла сети. Убедиться, что клиент Modbus TCP всегда отправляет телеграммы оборудованию за время, меньшее указанного в Р0806. Отключите эту функцию в Р0806.
F0700 Сбой связис удаленным ЧМИ	Нет связи с удаленным ЧМИ, но для этого источника нет команды о скорости или уставки.	 Убедитесь, что интерфейс передачи данных с ЧМИ правильно настроен в параметре Р0312. Кабель НМІ отсоединен.
F0709 Приложение SPLC остановлено	Приложение SoftPLC не запущено.	 Приложение SoftPLC остановлено (Р1001 = 0 и Р1000 = 3). Состояние SoftPLC представляет собой несовместимое приложение с версией прошивки CFW500.

Отказ / Сигнал тревоги	Описание	Возможные причины
F0710 Размер приложения SoftPLC	Размер программы пользователя SoftPLC превысил максимальный объем памяти.	■ Логика, реализованная в WPS/WLP, слишком велика (> 8 кб). Проверьте размер проекта.
F0711 Ошибка приложения SoftPLC	Обнаружена ошибка в пользовательской программе SoftPLC.	 Программа пользователя SoftPLC, хранящаяся во флэш- памяти, повреждена. Истекло время ожидания во время выполнения цикла сканирования SoftPLC.
F0712 Незаконная загрузка SPLC	Эта ошибка возникает при попытке загрузить пользовательское приложение во время работы резидента. После возникновения F0712 выбор приложения SoftPLC меняется с резидентного на пользовательский – P1003 с 1 на 0.	■ Загружает пользовательское приложение, когда работает резидент – P1000 = 4 и P1003 = 1.
А0761 Низкий уровень переменной процесса внутреннего ПИД- контроллера	Неисправность, указывающая на то, что изменение процесса внутреннего ПИД-контроллера имеет низкое значение.	■ Параметр Р1023 запрограммирован на 2, и значение изменения процесса внутреннего ПИД-контроллера оставалось ниже значения, запрограммированного в Р1024, в течение времени, запрограммированного в Р1025.
F0763 Высокий уровень переменной процесса внутреннего ПИД-контроллера	Неисправность, указывающая на то, что изменение процесса основного ПИД-контроллера имеет высокое значение.	■ Параметр Р1023 запрограммирован на 2, и значение изменения процесса внутреннего ПИД-контроллера оставалось выше значения, запрограммированного в Р1026, в течение времени, запрограммированного в Р1027.
F0767 Обнаружен сухой насос	Для насоса, приводимого в действие преобразователем частоты CFW500, обнаружена неисправность, указывающая на состояние сухого насоса.	■ Параметр Р1033 запрограммирован на 2, насос, приводимый в действие преобразователем частоты СFW500, работает сс скоростью, превышающей скорость, запрограммированную в Р1034, а крутящий момент двигателя остается ниже значения, запрограммированного в Р1035, в течение времени, запрограммированного в Р1036.
F0769 Обнаружен обрыв ремня Для двигателя, приводимого в действие преобразователем частоты CFW500, обнаружена неисправность, указывающая на обрыв ремня.		■ Параметр Р1037 запрограммирован на 2, двигатель, приводимый в действие преобразователем частоть СFW500, работает со скоростью, превышающей скорость, запрограммированную в Р1038, а крутящий момент двигателя остается ниже значения, запрограммированного в Р1039, в течение времени, запрограммированного в Р1040.
F0771 Техническое обслуживание фильтра	Неисправность, указывающая на необходимость замены фильтра системы.	■ Параметр Р1041 запрограммирован на 2, а время работы двигателя, приводимого в действие преобразователем частоты CFW500, показанное в Р1043, превышает значение, запрограммированное в Р1042.
F0787 Высокий уровень переменной процесса внешнего ПИД-контроллера	Неисправность, указывающая на то, что обратная связь внешнего ПИД-контроллера имеет низкое значение.	■ Параметр Р1055 запрограммирован на 2, и значение изменения процесса внешнего ПИД-контроллера оставалось ниже значения, запрограммированного в Р1056, в течение времени, запрограммированного в Р1057.
F0789 Высокий уровень переменной процесса внешнего ПИД-контроллера	Неисправность, указывающая на высокое значение обратной связи внешнего ПИД-контроллера.	■ Параметр Р1055 запрограммирован на 2, и значение изменения процесса внешнего ПИД-контроллера оставалось выше значения, запрограммированного в Р1058, в течение времени, запрограммированного в Р1059.

Таблица 0.1: Ситуации для состояния НАСТРОЙКИ

	Таблица 0.1: Ситуации для состояния НАСТРОИКИ		
P0047	Исходная ситуация состояния НАСТРОИКИ		
0	Вне состояния НАСТРОЙКИ, ЧМИ, Р0006 и Р0680 не должно указываться СОNF		
1	Два или более Dix (Р0263–Р0270) запрограммированы на прямой ход (4)		
2	Два или более Dix (Р0263–Р0270) запрограммированы на обратный ход (5)		
3	Два или более Dix (Р0263–Р0270) запрограммированы на пуск (6)		
4	Два или более Dix (Р0263–Р0270) запрограммированы на останов (7)		
5	Два или более Dlx (P0263–P0270) запрограммированы на направление вращения (8). Dl устанавливается в направлении вращения с помощью Dl прямого хода (4) или обратного хода (5) одновременно		
6	Два или более Dlx (P0263–P0270) запрограммированы на LOC/REM (9)		
7	Два или более Dlx (P0263–P0270) запрограммированы на ускорение Е.Р. (11)		
8	Два или более Dlx (P0263–P0270) запрограммированы на замедление Е.Р. (12)		
9	Два или более Dlx (P0263–P0270) запрограммированы на 2-е линейное изменение (14)		
10	Два или более Dlx (P0263–P0270) запрограммированы на Ручн/Автом ПИД (22)		
11	Два или более Dlx (P0263–P0270) запрограммированы на выкл. пуска с хода (24)		
12	Два или более Dlx (P0263–P0270) запрограммированы на блокировку программирования (26)		
13	Два или более Dlx (P0263–P0270) запрограммированы на загрузку параметров пользователя 1 (27)		
14	Два или более Dlx (P0263–P0270) запрограммированы на загрузку параметров пользователя 2 (28)		
15	Dix (P0263–P0270) запрограммировано на прямой ход (4) без Dix (P0263–P0270), запрограммированного на обратный ход (5) или противоположное значение		
16	Dix (P0263–P0270) запрограммировано на пуск (6) без Dix (P0263–P0270), запрограммированного на останов (7) или противоположное значение		
17	Dix (P0221-P0222) запрограммировано на многоскоростной режим (8) без Dix (P0263-P0270), запрограммированного		
18	на многоскоростной режим (13) или противоположное значение Уставка (Р0221 или Р0222) запрограммирована на электронный потенциометр (7) без DIx (Р0263-Р0270),		
	запрограммированного на 11 = Ускорить Э.П. или противоположное значение		
19	Команда «Пуск/Останов» (Р0224 или Р0227), запрограммирована на DIx (1) без DIx (Р0263–Р0270), запрограммированного на (1 = Пуск/Останов) и без DIx (Р0263–Р0270), запрограммированного на общее включение (2), без DIx (Р0263–Р0270), запрограммированного на быстрый останов (3), без DIx (Р0263–Р0270), запрограммированного на прямой ход (4) и без		
20	Dix (P0263–P0270), запрограммированного на пуск (6) Цифровой вход DI2 (P0264), запрограммированный на РТС (29), или аналоговый вход AI3 (P0241), запрограммированный		
21	на РТС (4) D0202 - опростору и и россии и й на ПИП народ Alt (1) и натариа (D0201 или D0202) - опростору и и россии и допростору и и допр		
22	Р0203, запрограммированный на ПИД через Al1 (1), и уставка (Р0221 или Р0222), запрограммированная на Al1 (1) Р0203, запрограммированный на ПИД через Al3 (2), и уставка (Р0221 или Р0222), запрограммированная на Al3 (3)		
23	Розоз, запрограммированный на Пид через яю (z), и уставка (гозот или гозог), запрограммированная на яю (s) Розоз, запрограммированный на ПИД через FI (3), и уставка (Розот или Розог), запрограммированная на FI (4)		
24	Р0203, запрограммированный на ТИД через IT(0), и уставка (годетилит 0222), запрограммированная на ТТ(4)		
25	Уставка (Р0221 или Р0222), запрограммированная на Al2 (2) или Al3 (3), а подключаемый модуль не содержит Al2 и Al3		
26	Р0312, запрограммированный на удаленный ЧМИ (0, 6, 8, 12 или 14), без подключенного ЧМИ		
27	Неправильная конфигурация кривой V/f (параметры P0142–P0147 приводят к скачку напряжения на выходе)		
28	Выполняется самонастройка (Р0408)		
	Активен режим Запуска с хода или Поддержания непрерывности электроснабжения с функцией торможения		
29	постоянным током		
30	Ориентированный запуск активен		
31	Векторное управление активно при нулевом значении одного из параметров двигателя (Р0409, Р0410, Р0411, Р0412 или Р0413)		
32	Два или более Dlx, запрограммированных на многоскоростной режим MS2 (Dl1, Dl2, Dl5 и Dl6) или MS1 (Dl3 и Dl7) или MS0 (Dl4 и Dl8)		
33	Р0104 запрограммирован на S-рампу, а опорный сигнал (Р0221 или Р0222) запрограммирован на аналоговый вход или частотный вход		
34	Запуск с хода не был реализован для управления VVW PM и VVW HSRM		
35	Поддержание непрерывности электроснабжения не было реализовано для управления VVW PM и VVW HSRM		
36	Энергосбережение не было реализовано для управления VVW PM и VVW HSRM		
37	Управление VVW PM и VVW HSRM недоступно для преобразователей с типоразмером A IP20		
38	Число полюсов двигателя устанавливается нечетным числом или нулевым		
39	«Пожарный режим» настроен без цифрового входа, настроенного на «Активацию пожарного режима» Более одного цифрового входа, настроенного на «Активацию пожарного режима» Более одного цифрового выхода, настроенного на «Пожарный режим активен» Цифровой вход настроен на «Пожарный режим» с отключенной функцией «Пожарный режим» Цифровой выход настроен на «Пожарный режим» при отключенной функции «Пожарный режим»		
40	Два или более Dlx (Р0263Р0270), запрограммированных для выбора направления движения (10)		
41	Аіх (Р0231, Р0236 или Р0241) запрограммирован на номинальный поток V/f (3) с управлением, отличным от V/f (Р0202 = 0)		
71			

1 ИНСТРУКЦИИ ПО ТЕХНИКЕ БЕЗОПАСНОСТИ

В данном руководстве содержится необходимая информация для правильной настройки преобразователя частоты CFW500.

Оно разработано для квалифицированного персонала с соответствующим образованием или технической подготовкой для работы с данным типом оборудования. Эти специалисты должны выполнять правила техники безопасности, определенные локальными нормативами. Невыполнение данных инструкций может привести к риску гибели персонала и/или повреждению оборудования.

1.1 ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНОСТИ В ДАННОМ РУКОВОДСТВЕ

ОПАСНОСТЬ!

Цель процедур, рекомендованных в этом предупреждении, — защита пользователя от смерти, серьезных травм и значительного материального ущерба.

ВНИМАНИЕ!

Процедуры, рекомендованные в данном предупреждении, предназначены для предотвращения случаев материального ущерба.

ПРИМЕЧАНИЕ!

Информация, содержащаяся в настоящем предупреждении, является важной для правильного понимания и хорошей работы изделия.

1.2 ПРЕДУПРЕЖДЕНИЯ ОБ ОПАСНОСТИ НА ИЗДЕЛИИ

Следующие символы прикреплены к изделию, выступая в качестве предупреждений об опасности:

Имеются источники высокого напряжения.

Компоненты, чувствительные к электростатическому разряду. Прикасаться к ним запрещено.

Обязательное подключение к защитному заземлению (РЕ).

Подключение экрана к заземлению.

Горячая поверхность.

1.3 ПРЕДВАРИТЕЛЬНЫЕ РЕКОМЕНДАЦИИ

ОПАСНОСТЬ!

Планировать и осуществлять установку, запуск и техническое обслуживание данногоо борудования, должен только квалифицированный персонал, ознакомленный с работой преобразователя CFW500 и соответствующего оборудования.

Персонал должен выполнять требования инструкций по безопасности, описанных в данном руководстве, и/или всех местных нормативных актов.

Невыполнение данных инструкций может привести к риску гибели персонала и/или повреждению оборудования.

ПРИМЕЧАНИЕ!

В рамках области применения данного руководства квалифицированным персоналом считаются подготовленные специалисты, способные выполнить следующее:

- 1. Монтаж, заземление, подключение к источнику питания и управление CFW500 в соответствии с данным руководством и действующими, установленными законом, правилами техники безопасности.
- 2. Использование защитного оборудования на основе соответствующих стандартов.
- 3. Оказание первой медицинской помощи.

ОПАСНОСТЬ!

Следует обязательно отключать основной источник питания, прежде чем прикасаться к какимлибо электрическим компонентам, связанным с преобразователем.

Многие компоненты могут оставаться под высоким напряжением и/или продолжать работу (вентиляторы) даже после отключения от сети переменного тока или выключения. Необходимо подождать не менее десяти минут, пока полностью не разрядятся конденсаторы. Рама оборудования должна всегда быть заземлена подключением к защитному заземлению (РЕ) в подходящей точке.

ВНИМАНИЕ!

На электронных платах находятся компоненты, чувствительные к электростатическим разрядам. Прямое касание к таким компонентам или разъемам запрещено. При необходимости коснитесь сначала заземленного металлического корпуса или используйте подходящий заземленный антистатический браслет.

Проведение любых применимых испытаний на электрическую прочность преобразователя запрещено!

При необходимости обратитесь в компанию WEG.

ПРИМЕЧАНИЕ!

Преобразователи частоты могут создавать помехи для другого электронного оборудования. Соблюдайте рекомендации главы 3 «Установка и подключение» руководства пользователя CFW500, чтобы свести к минимуму эти эффекты.

Перед установкой или эксплуатацией данного преобразователя внимательно ознакомьтесь с руководством пользователя CFW500, которое можно скачать на веб-сайте: **www.weg.net**.

2 ОБЩАЯ ИНФОРМАЦИЯ

2.1 ИНФОРМАЦИЯ О ДАННОМ РУКОВОДСТВЕ

В данном руководстве представлена необходимая информация для конфигурации всех функций и параметров преобразователя частоты CFW500. Данное руководство необходимо использовать совместно с руководством пользователя CFW500.

Текст составлен с целью предоставления дополнительной информации для упрощения использования и программирования CFW500 в определенных сферах применения.

2.2 ТЕРМИНОЛОГИЯ И ОПРЕДЕЛЕНИЯ

2.2.1 Используемые термины и определения

 $I_{\text{ном-ND}}$: номинальный ток преобразователя для использования в нормальном режиме (HP) работы. Перегрузка: 1,1 х $I_{\text{ном-TP}}$ / 1 минута.

Тяжелый режим (ТР) работы: режим работы преобразователя, определяющий максимальные значения тока дляпостоянной работы $I_{\text{ном-HD}}$ и перегрузки 150 % в течение 1 минуты. Выбор режима осуществляется посредством программирования Р0298 (приложение) = 1 (повышенная нагрузка (НD)). Его следует использовать для привода двигателей, которые в процессе эксплуатации подвержены высоким перегрузочным моментам по сравнению с их номинальным крутящим моментом, при работе с постоянной частотой вращения, при запуске, ускорении или замедлении.

 $I_{\text{nom-HD}}$: номинальный ток преобразователя для работы в тяжелых условиях (HD). Перегрузка: 1,5 х $I_{\text{ном-TP}}/$ 1 минута.

Выпрямитель: входная схема преобразователей, преобразующая напряжение переменного токана входе в напряжение постоянного тока. Он состоит из силовых диодов.

БТИЗ: биполярный транзистор с изолированным затвором - это основной компонент преобразо-вательного моста на выходе. Он работает как электронный коммутатор в насыщенном режиме (замкнутый коммутатор) и в режиме отсечки (разомкнутый коммутатор).

Вставка постоянного тока: промежуточная схема преобразователя с постоянным напряжением и током, полученными в результате выравнивания сетевого напряжения переменного тока или из внешнего источника; она снабжает преобразовательный мост БТИЗ на выходе.

Схема предварительной зарядки: заряжает конденсаторы вставки пост. тока ограниченным током, таким образом предотвращая появление пиков тока при включении преобразователя.

Тормозящий БТИЗ: он работает как коммутатор для включения резистора торможения. Управление осуществляется на уровне вставки постоянного тока.

РТС: резистор, сопротивление которого в омах увеличивается пропорционально росту температуры; он используется в двигателях в качестве температурного датчика.

NTC: это резистор, сопротивление которого в омах уменьшается пропорционально увеличению температуры; он используется в силовых агрегатах в качестве температурного датчика.

ЧМИ: человеко-машинный интерфейс. Это устройство, позволяющее управлять двигателем, наглядно представлять и изменять параметры преобразователя. Здесь расположены клавиши команд управления двигателем, навигационные клавиши и графический ЖК-дисплей.

РЕ: защитное заземление.

PWM: широтно-импульсная модуляция - модуляция по ширине импульса; импульсное напряжение,которое подается к двигателю.

Частота переключения: частота переключения БТИЗ преобразовательного моста, обычно выражаемая в кГц.

Nsync: Синхронная скорость работы электродвигателя, выраженная в оборотах в минуту.

Общее включение: при активации выполняется разгон двигателя с помощью линейного ускорения при условии, что Пуск/Останов = Пуск. Непосредственно после выключения происходит блокировка импульсов ШИМ. Управлять им можно с помощью цифрового входа, настроенного для этой функции, сетей связи или SoftPLC.

Пуск/Останов: функция преобразователя, которая при активации (Пуск) выполняет разгон двигателя согласно линейному ускорению до достижения уставки скорости, а при выключении (Останов) выполняет замедление двигателя согласно линейному замедлению. Управлять им можно с помощью цифрового входа, настроенного для этой функции, сетей связи или SoftPLC.

Радиатор: металлическая деталь, предназначенная для рассеивания тепла, вырабатываемого силовыми полупроводниковыми приборами.

Ампер, А: ампер.

°C: градусы Цельсия.

°F: градусы Фаренгейта.

АС: переменный ток.

DC: постоянный ток.

CV: метрическая лошадиная сила = 736 Вт (бразильская единица измерения, обычно используемая для указания механической мощности электрических двигателей).

л. с.: лошадиная сила = 746 Вт (единица измерения, обычно используемая для указания механической мощности электрических двигателей).

Fmin: минимальная частота или скорость вращения (P0133).

Fmax: максимальная частота или скорость вращения (P0134).

Dix: цифровой вход «х».

Alx: аналоговый вход «х».

АОх: аналоговый выход «х».

DOx: цифровой выход «х».

lo: ток на выходе.

Iu: ток в фазе и (rms).

Iv: ток в фазе v (rms).

Iw: ток в фазе w (rms).

la: выходной активный ток (среднеквадратичное значение).

Гц: герц.

кГц: килогерц = 1000 Гц.

мА: миллиампер = 0.001 ампера.

мин: минута. 2-2 | CFW500

мс: миллисекунда = 0,001 секунды.

Нм: ньютон-метр; единица измерения крутящего момента.

rms: среднеквадратичное значение; эффективная величина.

об/мин: оборотов в минуту; единица измерения скорости вращения.

с: секунда.

В: вольт.

Ом: омы.

CO/DN/PB/Eth: интерфейс CANopen, DeviceNet, Profibus DP или EtherNet.

2.2.2 Числовое представление

Десятичные числа представлены цифрами без индекса. Шестнадцатеричные числа представлены с буквой «h», стоящей после цифры.

2.2.3 Символы, описывающие свойства параметров

ro Параметр только для чтения.

HMI ro Параметр ЧМИ доступен только для чтения.

cfg Параметр, который можно изменить только с остановленным двигателем.

V/f Параметр, отображаемый на клавишной панели (ЧМИ) только в режиме V/f: P0202 = 0.
 VVW РМ Параметр, отображаемый на клавишной панели (ЧМИ) только в режиме VVW: P0202 = 5.
 VVW РМ Параметр, отображаемый на клавишной панели (ЧМИ) только в режиме VVW РМ: P0202 = 8.

Вектор Параметр ЧМИ отображается только в векторном режиме: P0202 = 3 или 4. **Sless** Параметр, отображаемый на ЧМИ только в режиме без датчиков: P0202 = 3.

Enc Параметр, отображаемый на ЧМИ только в векторном режиме с датчиком положения: P0202 = 4.

Параметр доступен только в том случае, если модуль функций безопасности находится в

режиме программирования.

2.3 СОВМЕСТИМОСТЬ ПРОШИВОК

Функция совместимости прошивки была добавлена в версии 3.5Х. Эта функция обеспечивает совместимость между различными версиями продукта. Теперь после обновления продукта до более новой версии параметризация не возвращается к значениям по умолчанию. Существующие параметры сохраняют значения, а новые загружаются с соответствующими им значениями по умолчанию.

Совместимость действительна только между совместимыми версиями программного обеспечения в соответствии с определенным форматом «Vx.yz». В стандартных версиях продукта, где цифра «x» меньше 10, одинаковой должна быть только цифра «x», независимо от «y» и «z». Специальные версии, где значение «x» больше 10, несовместимы.

Например: Стандартная версия 3.0z будет совместима с версиями 3.1z, 3.2z, 3.3z вплоть до 3.9z; то же правило применяется к следующим стандартным версиям.

Специальная версия 13.00 и другие версии выше 10.00 совместимы только сами с собой.

Версия V3.50 является первой, имеющей такую совместимость, поскольку она совместима с версиями 2.0X, 2.2X, 3.2x и 3.3X; предыдущие версии несовместимы друг с другом.

ПРИМЕЧАНИЕ!

Если версия продукта понижена и записана версия, цифра «х» или «у» которой меньше текущей версии, все параметры вернутся к заводским значениям по умолчанию. Несовместимо с функцией.

3 ОБ УСТРОЙСТВЕ CFW500

Преобразователь частоты CFW500 — это высокопроизводительное изделие, позволяющее регулировать скорость и крутящий момент трехфазных асинхронных двигателей и двигателей с постоянными магнитами. Этот продукт предлагает до пяти вариантов управления двигателем: Скалярное управление V/f, управление VWW, векторное управление с датчиком и векторное управление без датчика для асинхронных двигателей и управление VVW РМ для двигателей с постоянными магнитами.

В векторном режиме работа оптимизируется для используемого двигателя, что обеспечивает максимальную производительность с точки зрения управления частотой вращения и крутящим моментом. Функция «Самонастройка», которая доступна для векторного управления, позволяет выполнять автоматическую настройку регуляторов и параметров управления по результатам выяснения параметров двигателя.

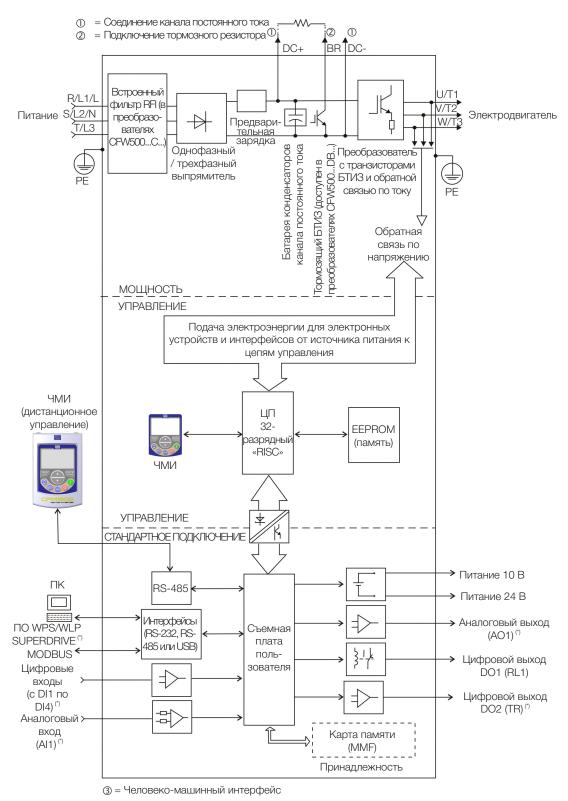
Управление VVW (Voltage Vector WEG) обеспечивает производительность и точность между скалярным управлением V/f и векторным управлением; при этом оно обеспечивает надежность и простоту управления двигателями без датчиков скорости. Функция самонастройки также доступна в системе управления VVW.

Скалярное управление (V/f) рекомендуется для более простых назначений, таких как работа большинства насосов и вентиляторов. В таких случаях можно уменьшить потери двигателя, отрегулировав параметры кривой V/f так, чтобы они аппроксимировали квадратичную кривую зависимости V/f, что приводит к экономии энергии. Режим V/f используется при одновременной активации преобразователем нескольких двигателей (варианты применения с использованием нескольких двигателей). Кроме того, при этом типе управления можно использовать функцию энергосбережения, что позволяет CFW500 минимизировать мощность, затрачиваемую на двигатель. В зависимости от региона эксплуатации это снижение может быть весьма значительным при применении к квадратичным нагрузкам, а также при изменении скорости и крутящего момента.

Управление VVW PM (Voltage Vector WEG для PM) для двигателей с постоянными магнитами рекомендуется для простых применений с медленной динамикой, таких как приводы насосов, вентиляторов и компрессоров. При этом управлении можно уменьшить потери, отрегулировав регулятор «Максимальный крутящий момент на ампер» (МРТА). Эта настройка значительно увеличивает коэффициент мощности или производительность двигателей с постоянными магнитами при изменениях нагрузки и/или скорости.

Преобразователь частоты CFW500 также содержит функции PLC (программируемый логический контроллер), реализуемые с помощью интегрированных возможностей SoftPLC. Дополнительные сведения о программировании этих функций в CFW500 см. в руководстве по связи SoftPLC преобразователя CFW500.

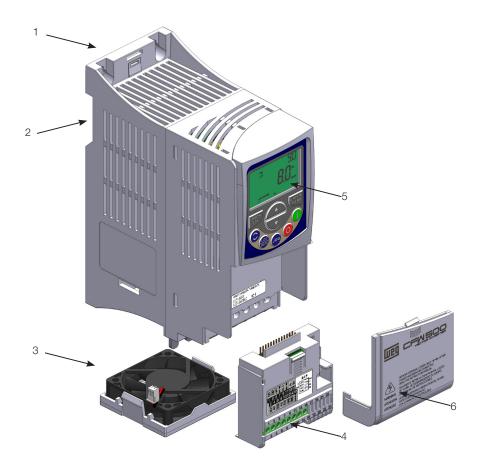
Основные компоненты преобразователя CFW500 см. на блок-схеме Рисунок 3.1 на странице 3-2 и Рисунок 3.2 на странице 3-3. Механический проект разработан для упрощения подключения и обслуживания, а также для обеспечения безопасности изделия.


Преобразователь CFW500 разработан в соответствии с основными технологическими требованиями рынка и оснащается съемным модульным интерфейсом, который адаптируется к типу использования. Как показано в пункте 4 Рисунок 3.2 на странице 3-3, подключаемый модуль позволяет CFW500 удовлетворять требованиям простых приложений, а также приложений с высокопроизводительными интерфейсами.

Все модели интерфейса CFW500 предусматривают передачу данных в физической среде RS-485 с Modbus RTU и ресурсы для передачи данных с помощью карты памяти.

CFW500 поддерживает протоколы сетей связи Modbus RTU, CANopen, DeviceNet, Profibus-DP, EtherNet, BACNet и SymbiNet.

CFW500 соответствует стандарту IEC 61800-5-2 с функциями безопасности STO и SS1-t через сменный модуль CFW500-SFY2.



(*) Количество аналоговых и цифровых входов и выходов может быть разным и зависит от используемого подключаемого модуля. Дополнительную информацию см. в руководстве по установке, настройке и эксплуатации дополнительного оборудования с используемым подключаемым модулем.

Рисунок 3.1: Блок-схема CFW500

- 1 Крепежная опора (для внешнего монтажа)2 Крепежная опора (для монтажа на рейке DIN)3 Вентилятор с крепежной опорой
- 4 Подключаемый модуль 5 ЧМИ
- 6 Передняя крышка

Рисунок 3.2: Основные компоненты преобразователя CFW500

4 ЧМИ И БАЗОВОЕ ПРОГРАММИРОВАНИЕ

С выпуском версии 3.5X стало возможным использовать буквенно-цифровой удаленный ЧМИ с сегментным локальным ЧМИ в преобразователе. Этот ЧМИ имеет те же режимы, меню и навигацию, что и локальный ЧМИ, но отображает информацию в виде текста, поэтому изменения отражаются в обоих ЧМИ.

ПРИМЕЧАНИЕ!

Также поддерживается оригинальный Сегментный удаленный ЧМИ.

4.1 СЕГМЕНТНЫЙ ЛОКАЛЬНЫЙ ЧМИ

4.1.1 Использование ЧМИ Для Работы С Преобразователем

С помощью ЧМИ можно просматривать и устанавливать все параметры. Для ЧМИ предусмотрены два рабочих режима: мониторинг и параметризация. Функции ключей и активных полей на экране ЧМИ зависят от режима работы. Режим настройки состоит из трех уровней.

Weg

- В режиме настройки, уровень 1: нажмите эту клавишу, чтобы перейти в режим мониторинга.
- В режиме настройки, уровень
- 2: нажмите эту клавишу, чтобы перейти на **уровень 1** режима настройки.
- В режиме настройки, **уровень**
- 3: нажмите эту клавишу, чтобы отменить новое значение (новое значение не сохранено) и перейти на **уровень 2** режима настройки.
- В режиме мониторинга: нажмите эту клавишу, чтобы увеличить скорость.
- В режиме настройки, уровень
- **1**: нажмите эту клавишу, чтобы перейти к предыдущей группе.
- В режиме настройки, **уровень**
- 2: нажмите эту клавишу, чтобы перейти к следующему параметру.
- В режиме настройки, **уровень**
- **3**: нажмите эту клавишу, чтобы увеличить отображение содержимого параметра.

Нажмите эту клавишу, чтобы определить направление вращения двигателя.

Клавиша активна, если:

P0223 = 2 или 3 в режиме LOC и/

P0226 = 2 или 3 в режиме REM.

Нажмите эту клавишу, чтобы перейти из режима LOCAL в REMOTE или наоборот. Клавиша активна, если:
Р0220 = 2 или 3.

- В режиме мониторинга: нажмите эту клавишу, чтобы перейти в режим настройки.
- В режиме настройки, уровень 1: нажмите эту клавишу, чтобы выбрать группу параметров – отобразится выбранная группа.
- В режиме настройки, **уровень 2**: нажмите эту клавишу, чтобы отобразить параметр отобразится содержимое параметра для изменения.
- В режиме настройки, уровень 3: нажмите эту клавишу, чтобы сохранить содержимое параметра – будет выполнен переход на уровень 2 режима настройки.
- В режиме мониторинга: нажмите эту клавишу, чтобы уменьшить скорость.
- В режиме настройки, **уровень 1**: нажмите эту клавишу, чтобы перейти к следующей группе.
- В режиме настройки, **уровень 2**: нажмите эту клавишу, чтобы отобразить предыдущий параметр.
- В режиме настройки, уровень 3: нажмите эту клавишу, чтобы уменьшить отображение содержимого параметра.

Нажмите эту клавишу, чтобы ускорить двигатель на период, определенный на кривой ускорения. Клавиша активна, если:

P0224 = 0 в режиме LOC или

P0227 = 0 в режиме REM.

Нажмите эту клавишу, чтобы замедлить двигатель на период, определенный на кривой замедления. Клавиша активна, если:

P0224 = 0 в режиме LOC или

P0227 = 0 в режиме REM.

Нажмите эту клавишу, чтобы ускорить двигатель до уставки скорости в Р0122 за период, определенный на кривой ускорения. Пока эта клавиша нажата скорость электродвигателя сохраняется неизменной. После отпускания клавиши скорость двигателя уменьшится за период, определенный на кривой замедления, до его полного останова.

Эта функция активна, когда выполняются все указанные ниже условия:

- 1. Пуск/Останов = Останов.
- 2. Общее включение = Активно.
- 3. P0225 = 1 в режиме LOC и/или P0228 = 1 в режиме REM.

Рисунок 4.1: Клавиши ЧМИ

4.1.2 Индикация на Экране ЧМИ

Информация, отображаемая на ЖК-экране ЧМИ, разделена на шесть областей: меню, состояние, дополнительный экран, единица измерения, основной экран и шкальный индикатор. Эти поля определены на Рисунок 4.2 на странице 4-2. Основной и дополнительный экраны позволяют изменять фокус для перехода к определенному параметру или его значению в соответствии с уровнями 2 и 3 соответственно в режиме параметризации.

Рисунок 4.2: Области отображения

Группы параметров, которые доступны в области «Меню»:

- PARAM: все параметры.
- READ: параметры только для чтения.
- **MODIF:** параметры, измененные по отношению к заводским значениям по умолчанию.
- **BASIC:** параметры для основного типа использования.
- MOTOR: параметры, связанные с управлением электродвигателем.
- I/O: параметры, относящиеся к цифровым и аналоговым входам и выходам.
- **NET:** параметры, связанные с сетями передачи данных.
- HMI: параметры для настройки ЧМИ.
- **SPLC:** параметры, относящиеся к SoftPLC.
- STARTUP: параметры для ориентированного запуска.

Состояние преобразователя:

- **LOC:** источник команды или локальные уставки.
- REM: источник команды или удаленные уставки.
- З: направление вращения с помощью стрелок.
- CONF: состояние НАСТРОЙКИ активно.
- SUB: пониженное напряжение.
- RUN: выполнение.

4.2 БУКВЕННО-ЦИФРОВОЙ ЧМИ

4.2.1 Использование буквенно-цифрового ЧМИ

С помощью буквенно-цифровой клавиатуры (ЧМИ) можно управлять преобразователем, визуализировать и настраивать все его параметры. Представленный на клавиатуре способ навигации схож с методом, используемым в мобильных телефонах, с опциями последовательного доступа к параметрам или с помощью групп (меню).

Этот ЧМИ работает с сегментным локальным ЧМИ в преобразователе, поэтому форма навигации и информация в обоих случаях одинаковы.

Рисунок 4.3: Клавиши ЧМИ

Батарея:

Ожидаемый срок службы батареи составляет около 10 лет. Чтобы извлечь батарею, поверните крышку, расположенную с обратной стороны клавишной панели (ЧМИ). При необходимости замените батарею на другую типа CR2032.

ПРИМЕЧАНИЕ!

Батарея необходима только для выполнения функций, связанных с работой часов. Если батарея разряжена или не установлена в клавишной панели (ЧМИ), часы будут показывать неверное время и при каждом включении преобразователя будет появляться сигнал тревоги А0181 — «Неверное показание часов».

Крышка доступа к батарее

Нажмите на крышку и поверните ее против часовой стрелки

Снимите крышку

Извлеките батарею с помощью отвертки, расположенной справа

ЧМИ без батареи

Установите новую батарею, вставив ее сначала с левой стороны

Нажмите на батарею, чтобы ее вставить

Вставьте крышку обратно и поверните ее по часовой стрелке

Рисунок 4.4: Замена батареи ЧМИ

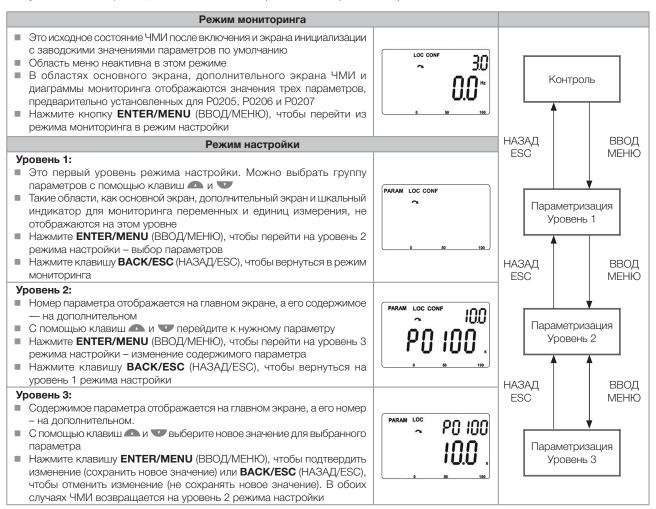
ПРИМЕЧАНИЕ!

По истечении срока годности батареи не выбрасывайте ее в мусорный контейнер, а отнесите в место, отведенное для утилизации использованных батарей.

4.3 РЕЖИМЫ РАБОТЫ ЧМИ

Режим мониторинга позволяет пользователю просматривать до трех переменных на главном экране, дополнительном экране и шкальном индикаторе. Указанные поля дисплея показаны на Рисунок 4.2 на странице 4-2.

При использовании буквенно-цифрового удаленного ЧМИ эта информация отображается на главном дисплее, как показано на Рисунок 5.2 на странице 5-11.


Режим настройки состоит из трех уровней:

Уровень 1 позволяет пользователю выбирать пункты меню, соответствующие определенным группам параметров.

Уровень 2 позволяет переходить к параметрам группы, выбранной на уровне 1.

Уровень 3, в свою очередь, позволяет изменить параметр, выбранный на **уровне 2**. На завершающем этапе работы на этом уровне измененное значение сохраняется (при нажатии клавиши ENTER [Ввод]) или не сохраняется (при нажатии клавиши ESC).

Рисунок 4.5 на странице 4-5 показан обзор основных режимов работы в ЧМИ.

Рисунок 4.5: Режимы работы ЧМИ

ПРИМЕЧАНИЕ!

Когда преобразователь находится в состоянии отказа, на главном экране отображается номер отказа в формате **Fxxxx**. Переход разрешен после нажатия клавиши ESC, а индикация **Fxxxx** переходит на дополнительный экран до сброса отказа.

ПРИМЕЧАНИЕ!

Когда преобразователь находится в состоянии сигнализации, на главном экране отображается номер отказа в формате **Ахххх**. Переход разрешен после нажатия клавиши ESC, а индикация **Ахххх** переходит на дополнительный экран до решения проблемы, на которую указывает аварийный сигнал.

5 ОСНОВНЫЕ ИНСТРУКЦИИ ПО ПРОГРАММИРОВАНИЮ И НАСТРОЙКАМ

5.1 СТРУКТУРА ПАРАМЕТРОВ

С целью упрощения процесса параметризации параметры CFW500 разбиты на десять групп, которые можно выбирать по отдельности в области «Меню» экрана ЧМИ. Нажмите клавишу ENTER/MENU (Ввод/Меню) ЧМИ в режиме мониторинга, чтобы перейти на уровень 1 режима настройки. В этом режиме можно выбрать нужную группу параметров с помощью клавиш «•» и «•». Дополнительную информацию об использовании ЧМИ см. Глава 4 ЧМИ И БАЗОВОЕ ПРОГРАММИРОВАНИЕ на странице 4-1.

ПРИМЕЧАНИЕ!

Для преобразователя заданы заводские настройки частоты (режим V/f 50/60 Гц) и напряжения, настроенные в соответствии с рынком сбыта.

Сброс заводских настроек по умолчанию может привести к изменению содержимого параметров, связанных с частотой, в соответствии с Р0204. В детальном описании некоторые параметры имеют значения в скобках, это значения по умолчанию для работы в режиме 50 Гц. Соответственно значение вне скобок – значение по умолчанию для работы в режиме 60 Гц.

5.2 ПАРАМЕТРЫ, ВЫБИРАЕМЫЕ В МЕНЮ ЧМИ

На первом уровне режима настройки выберите группу, чтобы перейти на следующие уровни в соответствии с таблицей, которая представлена ниже.

Таблица 5.1: Группа параметров, доступная из меню ЧМИ

	Таблица 5.1: Группа параметров, доступная из меню ЧМИ	
Группа	Содержащиеся параметры	
PARAM	Все параметры.	
READ	Параметры только для чтения: P0001, P0002, P0003, P0004, P0005, P0006, P0007, P0009, P0010, P0011, P0012, P0013, P0014, P0015, P0016, P0017, P0018, P0019, P0020, P0021, P0022, P0023, P0024, P0027, P0028, P0029, P0030, P0034, P0036, P0037, P0038, P0039, P0044, P0041, P0042, P0043, P0044, P0047, P0048, P0049, P0050, P0051, P0052, P0053, P0054, P0055, P0060, P0061, P0062, P0063, P0064, P0065, P0070, P0071, P0072, P0073, P0074, P0075, P0080, P0081, P0082, P0083, P0084, P0085, P0086, P0087, P0088, P0295, P0613, P0680, P0681, P0690, P0692, P0765, P0766, P0767, P0797, P0798, P0800, P0801, P0856, P0857, P0858, P0859, P0860, P0863, P0869, P0870, P0884, P0885, P0886, P0887, P0889	
MODIF	Только параметры, содержание которых отличается от заводских настроек	
BASIC	Параметры для простых приложений: кривые, минимальная и максимальная скорость, максимальный ток и увеличение крутящего момента: P0100, P0101, P0132, P0133, P0134, P0135, P0136, P0169, P0170, P0177	
MOTOR	Параметры, связанные с управлением электродвигателем: Р0135, Р0136, Р0137, Р0138, Р0150, Р0182, Р0183, Р0184, Р0398, Р0399, Р0400, Р0401, Р0402, Р0403, Р0404, Р0405, Р0406, Р0407, Р0409, Р0410, Р0411, Р0412, Р0413, Р0431, Р0435, Р0445, Р0446, Р0447, Р0448, Р0449, Р0450, Р0451, Р0452, Р0453, Р0454, Р0455, Р0456, Р0457, Р0458, Р0470, Р0471, Р0588, Р0589, Р0590, Р0591	
I/O	Группы, относящиеся к цифровым и аналоговым входам и выходам: Р0012, Р0013, Р0014, Р0015, Р0016, Р0017, Р0018, Р0019, Р0020, Р0021, Р0022, Р0105, Р0220, Р0221, Р0222, Р0223, Р0224, Р0225, Р0226, Р0227, Р0228, Р0229, Р0230, Р0231, Р0232, Р0233, Р0234, Р0235, Р0236, Р0237, Р0238, Р0239, Р0240, Р0241, Р0242, Р0243, Р0244, Р0245, Р0246, Р0247, Р0248, Р0249, Р0250, Р0251, Р0252, Р0253, Р0254, Р0255, Р0256, Р0257, Р0258, Р0259, Р0260, Р0264, Р0265, Р0266, Р0267, Р0268, Р0269, Р0270, Р0271, Р0275, Р0276, Р0277, Р0278, Р0279, Р0287, Р0288, Р0290, Р0293, Р0318, Р0345, Р0533, Р0535	
NET	Параметры, связанные с сетями передачи данных: Р0308, Р0310, Р0311, Р0312, Р0313, Р0314, Р0316, Р0680, Р0681, Р0682, Р0683, Р0684, Р0685, Р0690, Р0692, Р0693, Р0695, Р0696, Р0697, Р0698, Р0700, Р0701, Р0702, Р0703, Р0705, Р0706, Р0707, Р0708, Р0709, Р0710, Р0711, Р0712, Р0713, Р0714, Р0715, Р0716, Р0717, Р0718, Р0719, Р0720, Р0721, Р0722, Р0740, Р0741, Р0742, Р0743, Р0744, Р0745, Р0746, Р0747, Р0750, Р0751, Р0752, Р0753, Р0754, Р0755, Р0760, Р0761, Р0762, Р0763, Р0764, Р0765, Р0766, Р0767, Р0768, Р0769, Р0770, Р0771, Р0772, Р0773, Р0774, Р0775, Р0776, Р0777, Р0778, Р0779, Р0780, Р0781, Р0782, Р0783, Р0796, Р0797, Р0798, Р0800, Р0801, Р0803, Р0805, Р0806, Р0810, Р0811, Р0812, Р0813, Р0814, Р0815, Р0816, Р0817, Р0818, Р0819, Р0820, Р0821, Р0822, Р0823, Р0824, Р0825, Р0826, Р0827, Р0828, Р0829, Р0830, Р0831, Р0835, Р0836, Р0837, Р0838, Р0840, Р0841, Р0841, Р0843, Р0844, Р0845, Р0846, Р0849, Р0856, Р0857, Р0858, Р0859, Р0860, Р0863, Р0869, Р0870, Р0871, Р0884, Р0885, Р0886, Р0887, Р0889, Р0890, Р0918, Р0922, Р0963, Р0967, Р0968, Р0990, Р0991	
НМІ	Параметры для настройки ЧМИ: P0193, P0194, P0195, P0196, P0197, P0198, P0199, P0200, P0201, P0205, P0206, P0207, P0208, P0209, P0210, P0213, P0215, P0216, P0319, P0510, P0511, P0512, P0513, P0514, P0515, P0516, P0517, P0528, P0529	

SPLC	Параметры, относящиеся к SoftPLC: Р0510, Р0511, Р0512, Р0513, Р1000, Р1001, Р1002, Р1004, Р1008, Р1009, Р1010Р1059
STARTUP	Параметры для ввода VVW в режиме ориентированного запуска: P0202, P0296, P0298, P0317, P0398, P0399, P0400, P0401, P0402, P0403, P0404, P0405, P0406, P0407, P0408, P0409, P0410, P0411, P0412, P0413, P0431, P0435

ПРИМЕЧАНИЕ!

Кроме выбранной группы в области меню ЧМИ, представление параметров в ЧМИ зависит от установленного оборудования и рабочего режима CFW500. Поэтому смотрите подсоединенный подключаемый модуль и активный режим управления. Например, если подключаемый модуль оснащен только аналоговым входом АІ1, параметры, связанные с другими аналоговыми входами, не отображаются. То же самое происходит с параметрами, относящимися исключительно к различным режимам управления двигателем.

5.3 ЧМИ

В группе ЧМИ можно найти параметры, связанные с отображением информации на экране, задней подсветки и пароля ЧМИ. См. ниже подробное описание возможных настроек для таких параметров.

Р0000 – Доступ к параметрам

Регулируемый диапазон:	От 0 до 9999	Заводские настройки:	0
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Ввод пароля для разблокирования доступа к параметрам. После сохранения пароля в Р0200 доступ к параметрам разрешается только в том случае, если этот пароль установлен в Р0000.

После установки Р0000 со значением пароля Р0000 отобразит «1» или «0», сохраняя установленное значение пароля скрытым. Где «1» разрешает доступ к параметрам, а «0» блокирует доступ к параметрам.

ПРИМЕЧАНИЕ!

Доступ к параметрам и Р0000 сбрасывается после выключения преобразователя.

Р0193 – День недели

Регулируемый диапазон:	0 = Воскресенье 1 = Понедельник 2 = Вторник	Заводские настройки:	0
	3 = Среда 4 = Четверг 5 = Пятница 6 = Суббота		

Р0194 - День

Регулируемый	От 01 до 31	Заводские	01
диапазон:		настройки:	

Р0195 - Месяц

 Регулируемый
 От 01 до 12
 Заводские
 01 до таки:

 диапазон:
 настройки:

Р0196 - Год

 Регулируемый
 От 00 до 99
 Заводские
 20

 диапазон:
 настройки:

Р0197 - Часы

 Регулируемый
 От 00 до 23
 Заводские
 00 до 23

 диапазон:
 настройки:

Р0198 – Минуты

P0199 – Секунды

 Регулируемый диапазон:
 От 00 до 59 настройки:
 00 настройки:

 Свойства:
 НМІ нерез ЧМИ:

Описание:

Эти параметры устанавливают дату и время часов реального времени буквенно-цифрового удаленного ЧМИ. Важно настроить их на правильную дату и время, чтобы функции SOFTPLC выполнялись с фактической информацией о дате и времени.

Доступ к параметрам установки даты и времени можно получить через меню «ВСЕ ПАРАМЕТРЫ» или «ЧМИ». После того как пользователь подтвердит изменения, часы реального времени на буквенноцифровом удаленном ЧМИ будут скорректированы. Эту настройку можно подтвердить с помощью часов непосредственно на экране ЧМИ.

ПРИМЕЧАНИЕ!

Эти параметры видны, когда настроен удаленный буквенно-цифровой ЧМИ (Р0215 = 1).

ПРИМЕЧАНИЕ!

Часы реального времени работают только с буквенно-цифровым удаленным ЧМИ, подключенным к продукту. При отключении параметры сохраняют последнее считанное значение.

Р0200 - Пароль

Регулируемый 0 = He активно **Заводские** 0 **диапазон:** 1 = Активно **настройки:**

От 1 до 9999 = Новый пароль

Свойства:

Группы доступа НМІ через ЧМИ:

Описание:

Позволяет активировать пароль (путем ввода нового значения) или отключить его. Дополнительную информацию об использовании этого параметра, см. Таблица 5.2 на странице 5-4.

Таблица 5.2: Обязательная процедура для каждого действия

Tability of the constraint is a second of the constraint of the co		
Действие	Процедура	
	1. Установите для Р0200 нужное значение пароля (Р0200 = пароль)	
Активация пароля	2. После выполнения этой процедуры активируется новый пароль, а для параметра Р0200 будет автоматически	
	установлено значение 1 (пароль активен) (1)	
	1. Установите текущее значение пароля (Р0000 = пароль)	
Изменение пароля	2. Установите нужное значение для нового пароля в Р0200 (Р0200 = новый пароль)	
изменение пароля	3. После выполнения этой процедуры активируется новый пароль, а для параметра Р0200 будет автоматически	
	установлено значение 1 (пароль активен) (1)	
	1. Установите текущее значение пароля (Р0000 = пароль)	
Отключение пароля	2. Установите неактивный пароль (Р0200 = 0)	
	3. После выполнения этой процедуры пароль будет отключен [©]	
OTHER DESIGNATION OF THE PROPERTY.	1. Активируйте значение по умолчанию в Р0204	
Отключение пароля	2. После выполнения этой процедуры пароль будет отключен [©]	

Примечания:

- (1) Он позволяет только изменять содержимое параметров, если Р0000 не отличается от значения пароля.
- (2) Можно изменить содержимое параметров, а параметр Р0000 недоступен.

Р0201 - Язык

 Регулируемый диапазон:
 0 = Português
 Заводские настройки:
 00

 1 = English 2 = Español
 настройки:
 1

 Свойства:

 Группы доступа через ЧМИ:
 НМІ

Описание:

Он определяет язык, на котором информация будет представлена на буквенно-цифровом пульте дистанционного управления ЧМИ.

Доступ к этому параметру можно получить через меню «ВСЕ ПАРАМЕТРЫ» или «ЧМИ». После того, как пользователь подтвердит изменение, тексты ЧМИ изменятся на язык, выбранный пользователем.

ПРИМЕЧАНИЕ!

Этот параметр виден, когда настроен удаленный буквенно-цифровой ЧМИ (Р0215 = 1).

Р0205 – Выбор параметров на главном экране

Р0206 - Выбор параметров на дополнительном экране

Р0207 – Выбор параметров на шкальном индикаторе

Регулируемый диапазон:	От 0 до 1500	Заводские настройки:	
Свойства:			
Группы доступа через ЧМИ:	HMI		

Описание:

Эти параметры определяют опции, отображаемые на экране ЧМИ в режиме мониторинга. Более подробная информация по данному виду программирования представлена в Раздел 5.5 НАСТРОЙКА ИНДИКАЦИИ ДИСПЛЕЯ В РЕЖИМЕ МОНИТОРИНГА на странице 5-11.

Р0208 - Базовая шкала

Регулируемый диапазон:	От 1 до 65535	Заводские настройки:	600 (500)
Свойства:			
Группы доступа через ЧМИ:	НМІ		

Описание:

Этот параметр позволяет настроить шкалу уставки параметров скорости Р0001 и выходную скорость (двигателя) Р0002 для точки номинальной частоты двигателя для Р0403. Следовательно можно настроить индикацию Р0001 и Р0002 для любого масштаба, например выходную частоту (Гц), скорость двигателя (об/мин) или значение в процентах (%).

Вместе с единицей в Р0209 и десятичными знаками в Р0210, номинальная уставка (Р0208) определяет индикацию скорости в ЧМИ преобразователя. Согласно заводским значениям этих параметров, предварительно установленная шкала преобразователя отображается в герцах с десятичным знаком (60,0 Гц или 50,0 Гц). С другой стороны, настройки Р0208 = 1800 или 1500, Р0209 = 3 или Р0210 = 0 предусматривают шкалу в оборотах в минуту без десятичного знака (1800 об/мин или 1500 об/мин).

Р0209 – Техническая единица уставки

Регулируемый диапазон:	0 = HeT 1 = B 2 = A 3 = об/мин 4 = с 5 = мс 6 = H 7 = м 8 = H·м 9 = мА 10 = % 11 = °C 12 = CV 13 = Гц 14 = л. с. 15 = ч 16 = BT 17 = кВТ 18 = кВТ·ч 19 = ч 20 = P0510 21 = P0512 22 = P0514 23 = P0516 24 = мин 25 = °F 26 = бар 27 = мбар 28 = пси 29 = Па	30 = кПа 31 = МПа 32 = мвс 33 = mса 34 = гал 35 = л 36 = дюйм 37 = фут 38 = м³ 39 = ft³ 40 = гал/с 41 = гал/мин 42 = гал/ч 43 = л/с 44 = л/мин 45 = л/ч 46 = м/с 47 = м/мин 48 = м/ч 49 = фут/с 50 = фут/мин 51 = фут/ч 52 = м³/с 53 = м³/мин 54 = м³/ч 55 = фут³/с 56 = фут³/мин 57 = фут³/ч 58 = K	Заводские настройки:	13
Свойства:				
Группы доступа через ЧМИ:	HMI			

Описание:

С помощью этого параметра можно установить техническую единицу, которая будет отображаться в параметрах Р0001 и Р0002.

Р0210 – Форма индикации уставки

Регулируемый диапазон:	0 = wxyz 1 = wxy.z 2 = wx.yz 3 = w.xyz	Заводские настройки:	1
Свойства:			
Группы доступа через ЧМИ:	НМІ		

Описание:

Этот параметр позволяет установить форму индикации параметров Р0001 и Р0002.

Р0213 - Коэффициент масштабирования шкального индикатора

Регулируемый диапазон:	От 1 до 65535	Заводские настройки:	В соответствии с моделью преобразователя
Свойства:			
Группы доступа через ЧМИ:	HMI		

Описание:

Этот параметр настраивает полный масштаб (100 %) шкального индикатора для индикации параметра, выбранного в Р0207.

ПРИМЕЧАНИЕ!

Шкальный индикатор обычно отображает значение, определенные параметрами Р0207 и Р0210. Однако в некоторых ситуациях, например при загрузке параметра, передаче данных или самонастройке, функция шкального индикатора изменяется для отображения хода этих операций.

Р0215 - Выбор удаленного ЧМИ

Регулируемый диапазон:	0 = Сегмент 1 = Буквенно-цифровой	Заводские 0 настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:	НМІ		

Описание:

Определяет, какой удаленный ЧМИ пользователь хочет использовать. Сегментный ЧМИ без текста (0) или буквенно-цифровой ЧМИ с текстом (1).

ПРИМЕЧАНИЕ!

Рекомендуется настроить параметр Р0312 для любой из опций удаленного ЧМИ (0, 6, 12 или 14), прежде чем он будет изменять этот параметр.

Р0216 - Задняя подсветка дисплея ЧМИ

 Регулируемый
 0 = Bыкл
 Заводские
 1

 диапазон:
 1 = Bкл
 настройки:

Свойства:

Группы доступа НМІ

через ЧМИ:

Описание:

Функция этого параметра – включение или выключение задней подсветки экрана ЧМИ.

ПРИМЕЧАНИЕ!

Когда удаленный ЧМИ подключен и активирован с помощью параметра Р0312, задняя подсветка локального ЧМИ CFW500 выключается, а параметр Р0216 начинает управлять удаленным ЧМИ.

ПРИМЕЧАНИЕ!

Эта функция недоступна для буквенно-цифрового удаленного ЧМИ.

5.4 РЕЗЕРВНЫЕ ПАРАМЕТРЫ

Функция РЕЗЕРВНОГО КОПИРОВАНИЯ CFW500 позволяет сохранять содержимое текущих параметров преобразователя в специальный в разделе памяти (EEPROM) или перезаписать текущие значения параметров значениями из указанной памяти.

Р0204 - Загрузка / сохранение параметров

 Регулируемый
 0 и 1 = Не используется
 Заводские
 0

 диапазон:
 2 = Сброс P0045
 настройки:

3 = Сброс Р0043 4 = Сброс Р0044 5 = Загрузка 60 Гц 6 = Загрузка 50 Гц

7 = Загрузка параметров пользователя 1 8 = Загрузка параметров пользователя 2 9 = Сохранение параметров пользователя 1 10 = Сохранение параметров пользователя 2

11 = Загрузить SoftPLC по умолчанию От 12 до 15 = Зарезервированные

Свойства: cfg

Группы доступа через ЧМИ:

Описание:

Он позволяет сохранять текущие параметры преобразователя в долговременную память (EEPROM) управляющего модуля или, наоборот, загружать параметры с содержимым этой области. Таблица 5.3 на странице 5-9 описаны действия, выполняемые каждой опцией.

Таблица 5.3: Опция параметра Р0204

P0204	Действие
0и1	Не используется: без действия
2	Сброс Р0045: Сбрасывает значение параметра Р045 – Часы с включенным вентилятором
3	Сброс Р0043: Сбрасывает счетчик включенного времени
4	Сброс Р0044: Сбрасывает счетчик кВт/ч
5	Загрузить WEG 60 Гц: выполняется загрузка параметров по умолчанию в преобразователь с заводскими настройками для 60 Гц
6	Загрузить WEG 50 Гц: выполняется загрузка параметров по умолчанию в преобразователь с заводскими настройками для 50 Гц
7	Загрузить пользователя 1: выполняется передача содержимого памяти параметров 1 в текущие параметры преобразователя
8	Загрузить пользователя 2: выполняется передача содержимого памяти параметров 2 в текущие параметры преобразователя
9	Сохранить пользователя 1: выполняется передача текущего содержимого параметров в память параметров 1
10	Сохранить пользователя 2: выполняется передача текущего содержимого параметров в память параметров 2
11	Загрузить SoftPLC по умолчанию: загружает заводские настройки по умолчанию в параметрах SoftPLC (P1010 –P1059)
От 12 до 15	Резервный

Для загрузки параметров пользователя 1 и/или пользователя 2 в рабочую область CFW500 (P0204 = 7 или 8) необходимо, чтобы эти параметры были предварительно сохранены.

Загрузка одного из этих наборов памяти (P0204 = 7 или 8) также может быть выполнена через цифровые входы (Dlx). Дополнительную информацию об этом типе программирования, см. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.

ПРИМЕЧАНИЕ!

Если P0204 = 5 или 6, параметры P0296 (номинальное напряжение), P0297 (частота переключения) и P0308 (адрес последовательного интерфейса) не сбрасываются до заводских значений.

Р0317 - Ориентированный запуск

Регулируемый	0 = Нет	Заводские 0
диапазон:	1 = Да	настройки:
Свойства:	cfg	
Группы доступа	STARTUP	
через ЧМИ:		

Описание:

Если изменить этот параметр на «1», запустится программа ориентированного запуска. Преобразователь CFW500 переходит в состояние «CONF», о чем указывается в ЧМИ. При выполнении программы ориентированного запуска пользователь получает доступ к важным параметрам конфигурации CFW500 и двигателя для типа управления, который будет использоваться в этой сфере применения. Дополнительную информацию об использовании этого параметра см. в следующих в разделах:

Раздел 9.2 ЗАПУСК В РЕЖИМЕ V/f на странице 9-8.

Раздел 10.2 ЗАПУСК В РЕЖИМЕ VVW на странице 10-5.

Раздел 11.2 ЗАПУСК В РЕЖИМЕ VVW РМ на странице 11-4

Раздел 13.8 ПУСК В БЕССЕНСОРНОМ ВЕКТОРНОМ РЕЖИМЕ И В ВЕКТОРНОМ РЕЖИМЕ С ДАТЧИКОМ ПОЛОЖЕНИЯ на странице 13-27.

Р0318 - Загрузка плагина

 Регулируемый
 0 = Не активно
 Заводские
 00

 диапазон:
 1 = Активная загрузка
 настройки:

Свойства: cfg

Группы доступа РАРАМ

через ЧМИ:

Описание:

Позволяет пользователю вызвать загрузку данных из подключаемого модуля в преобразователь. Благодаря этой функции пользователь может передавать все данные, программу SoftPLC и набор параметров с одного преобразователя на другой без модуля CFW500-MMF.

ПРИМЕЧАНИЕ!

- При каждом изменении параметра данные подключаемого модуля изменяются при выключении преобразователя. Поэтому для последовательной передачи данных между преобразователями необходимо всего лишь изменить параметр Р0318, что позволит избежать повреждения данных.
- Следующая загрузка будет выполнена с использованием последних данных преобразователя.
- Правила совместимости версий прошивки такие же, как у CFW500-MMF, Раздел 2.3 СОВМЕСТИМОСТЬ ПРОШИВОК на странице 2-3.

Р0319 – Копирование функции Альфа ЧМИ

 Регулируемый
 0 = Выкл. Заводские
 0

 диапазон:
 1 = Преобразователь -> ЧМИ настройки:

2 = ЧМИ -> Преобразователь

Свойства:

Группы доступа НМІ

через ЧМИ:

Описание:

Функция копирования буквенно-цифрового ЧМИ используется для переноса содержимого параметров и пользователей 1 и 2 с одного преобразователя на другой.

Правило совместимости версий прошивки описано в Раздел 2.3 СОВМЕСТИМОСТЬ ПРОШИВОК на странице 2-3.

Если версии несовместимы, при программировании P0319 = 2 на ЧМИ отобразится следующее сообщение: «Несовместимая версия программного обеспечения». После исчезновения сообщения с ЧМИ значение параметра P0319 возвращается к нулю.

P0319	Действие
0	Выключить: нет действия
1	Преобразователь -> ЧМИ: переносит текущее содержание параметров преобразователя и пользователей 1 и 2 в буквенно-цифровую память ЧМИ (1)
2	ЧМИ -> Преобразователь: передает содержимое буквенно-цифровой памяти ЧМИ к текущим параметрам преобразователя и пользователям 1 и 2. После завершения передачи преобразователь сбрасывается (1)

(1) Значение параметра РОЗ19 возвращается к 0.

ПРИМЕЧАНИЕ!

Пока ЧМИ выполняет процедуру чтения или записи управление им невозможно.

ПРИМЕЧАНИЕ!

Функция копирования буквенно-цифрового ЧМИ передает текущее содержание параметров преобразователя в дополнение к пользователю 1 и 2, не копируя приложение SoftPLC.

5.5 НАСТРОЙКА ИНДИКАЦИИ ДИСПЛЕЯ В РЕЖИМЕ МОНИТОРИНГА

При каждом включении преобразователя экран ЧМИ переходит в режим мониторинга. Чтобы упростить процесс считывания параметров преобразователя, на экране можно одновременно отобразить три параметра на усмотрение пользователя. Два из этих параметров (главный и дополнительный экраны) отображаются в виде чисел, а третий – в виде шкального индикатора. Выбор этих параметров осуществляется с помощью Р0205, Р0206 и Р0207, как указано на Рисунок 5.1 на странице 5-11.

Рисунок 5.1: Экран в областях инциализации и отображения

При использовании буквенно-цифрового ЧМИ в режиме мониторинга также используются параметры Р0205, Р0206 и Р0207. Эта информация показана согласно рисунку.

5.6 ИНДИКАЦИЯ НА ДИСПЛЕЕ В НАСТРОЙКАХ РЕЖИМА МОНИТОРИНГА

При каждом включении преобразователя дисплей переходит в режим мониторинга. Чтобы упростить процесс считывания основных параметров двигателя, для дисплея клавишной панели (ЧМИ) можно настроить отображение параметров в 3 разных режимах.

Содержание 3 параметров в числовом виде:

Выбор параметров через Р0205, Р0206 и Р0207. Этот режим отображен на Рисунок 5.2 на странице 5-11.

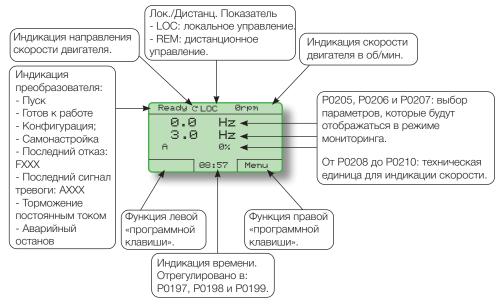


Рисунок 5.2: Экран режима мониторинга с заводскими настройками

5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ

Состояние НАСТРОЙКИ отображается в ЧМИ как CONF, а также в параметрах Р0006 и Р0680. Такое состояние указывает, что преобразователю CFW500 не удается включить выходные импульсы ШИМ, поскольку конфигурация преобразователя неправильная или неполная.

В Таблица 0.1 на странице 0-44 ниже представлены ситуации состояния НАСТРОЙКИ, когда пользователь может определить исходное условие с помощью параметра Р0047.

5.8 ТЕХНИЧЕСКИЕ ЕДИНИЦЫ SOFTPLC

Эта группа параметров позволяет пользователю настроить техническую единицу для отображения в ЧМИ пользовательских параметров модуля SoftPLC.

Р0510 – Техническая единица 1 для SoftPLC

Регулируемый диапазон:	11 = °C 12 = CV 13 = Γц 14 = π. c. 15 = ч 16 = BT 17 = κBT 18 = κBT·ч 19 = ч 20 = P0510 21 = P0512 22 = P0514	30 = кПа 31 = МПа 32 = мвс 33 = мса 34 = гал 35 = л 36 = дюйм 37 = фут 38 = м³ 39 = ft³ 40 = гал/с 41 = гал/мин 42 = гал/ч 43 = л/с 44 = л/мин 45 = л/ч 46 = м/с 47 = м/мин 48 = м/ч 49 = фут/с 50 = фут/мин 51 = фут/ч 52 = м³/с 53 = м³/мин 54 = м³/ч 55 = фут³/кин 57 = фут³/ч 58 = K	Заводские настройки:	10
Свойства:				
Группы доступа через ЧМИ:	HMI, SPLC			

Описание:

Этот параметры выбирает техническую единицу, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 1, будет отображаться в этом формате.

ПРИМЕЧАНИЕ!

Параметры единиц выше 19 следует использовать только с буквенно-цифровым удаленным ЧМИ. В сегментном локальном ЧМИ эти опции работают как единица «нет».

E

Р0511 – Техническая единица 1 с десятичной запятой для SoftPLC

Регулируемый	0 = wxyz	2 = wx.yz	Заводские 1
диапазон:	1 = wxy.z	3 = w.xyz	настройки:
Свойства:			
Группы доступа	HMI, SPLC		
через ЧМИ:			

Описание:

Этот параметры выбирает десятичную точку, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 1, будет отображаться в этом формате.

Р0512 - Техническая единица 2 для SoftPLC

Регулируемый диапазон:	0 = HeT 1 = B 2 = A 3 = об/мин 4 = c 5 = мс 6 = H 7 = м 8 = H·м 9 = мА 10 = % 11 = °C 12 = CV 13 = Гц 14 = л. с. 15 = ч 16 = BT 17 = кВТ 18 = кВТ·ч	$29 = \Pi a$ $30 = \kappa \Pi a$ $31 = M\Pi a$ $32 = MBC$ $33 = mca$ $34 = \Gamma a \pi$ $35 = \pi$ $36 = \mu \ddot{\alpha}$ $37 = \mu \ddot{\alpha}$ $39 = \pi \ddot{\alpha}$ $40 = \Gamma a \pi / c$ $41 = \Gamma a \pi / m u + d u$ $42 = \Gamma a \pi / u$ $43 = \pi / c$ $44 = \pi / m u + d u$ $45 = \pi / u$ $46 = m / c$ $47 = m / m u + d u$	Заводские настройки:	1
Спойотпо	20 = P0510 21 = P0512 22 = P0514 23 = P0516 24 = мин 25 = °F 26 = бар 27 = мбар 28 = ПСИ	49 = фут/с 50 = фут/мин 51 = фут/ч 52 = м³/с 53 = м³/мин 54 = м³/ч 55 = фут³/с 56 = фут³/мин 57 = фут³/ч 58 = K		
Свойства:				
Группы доступа через ЧМИ:	HMI, SPLC			

Описание:

Этот параметры выбирает техническую единицу, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 2, будет отображаться в этом формате.

P0513 – Техническая единица 2 с десятичной запятой для SoftPLC

2 = wx.yzРегулируемый 0 = wxyzЗаводские 1 диапазон: 1 = wxy.z3 = w.xyzнастройки: Свойства: Группы доступа HMI, SPLC через ЧМИ:

Описание:

Этот параметры выбирает десятичную точку, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 2, будет отображаться в этом формате.

ПРИМЕЧАНИЕ!

Технические единицы 1 и 2 можно настроить с помощью параметров, описанных выше, или в окне «Настройки параметров пользователя SoftPLC» в программе WPS/WLP.

Р0514 - Техническая единица 3 для SoftPLC

Регулируемый диапазон:	0 = HeT 1 = B 2 = A 3 = об/мин 4 = C 5 = MC 6 = H 7 = M 8 = H·м 9 = MA 10 = % 11 = °C 12 = CV 13 = Гц 14 = Л. С. 15 = Ч 16 = BT 17 = кВТ 18 = кВТ·Ч 19 = Ч 20 = P0510 21 = P0512 22 = P0514 23 = P0516 24 = Мин 25 = °F 26 = бар 27 = мбар 28 = ПСИ 29 = Па	30 = кПа 31 = МПа 32 = мвс 33 = mca 34 = гал 35 = л 36 = дюйм 37 = фут 38 = м³ 39 = ft³ 40 = гал/с 41 = гал/мин 42 = гал/ч 43 = л/с 44 = л/мин 45 = л/ч 46 = м/с 47 = м/мин 48 = м/ч 49 = фут/с 50 = фут/мин 51 = фут/ч 52 = м³/мин 54 = м³/ч 55 = фут³/с 56 = фут³/мин 57 = фут³/ч 58 = K	Заводские настройки:	13
Своиства:				

Группы доступа HMI, SPLC через ЧМИ:

Этот параметры выбирает техническую единицу, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 3, будет отображаться в этом формате.

P0515 – Техническая единица 3 с десятичной запятой для SoftPLC

Регулируемый	0 = wxyz	2 = wx.yz	Заводские 1
диапазон:	1 = wxy.z	3 = w.xyz	настройки:
Свойства:			
Группы доступа	HMI, SPLC		
через ЧМИ:			

Описание:

Этот параметры выбирает десятичную точку, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 3, будет отображаться в этом формате.

через ЧМИ:

ПРИМЕЧАНИЕ!

Технические единицы 1 и 2 можно настроить с помощью параметров, описанных выше, или в окне «Настройки параметров пользователя SoftPLC» в программе WPS/WLP.

Р0516 - Техническая единица 4 для SoftPLC

Регулируемый диапазон:	0 = HeT 1 = B 2 = A 3 = 0б/мин 4 = C 5 = мС 6 = H 7 = м 8 = H·м 9 = мА 10 = % 11 = °C 12 = CV 13 = ГЦ 14 = л. с. 15 = ч 16 = BT 17 = кВТ 18 = кВТ·ч 19 = ч 20 = P0510 21 = P0512 22 = P0514 23 = P0516 24 = Мин 25 = °F 26 = бар 27 = мбар 28 = ПСИ 29 = Па	30 = кПа 31 = МПа 32 = мвс 33 = mса 34 = гал 35 = л 36 = дюйм 37 = фут 38 = м³ 39 = ft³ 40 = гал/с 41 = гал/мин 42 = гал/ч 43 = л/с 44 = л/мин 45 = л/ч 46 = м/с 47 = м/мин 48 = м/ч 49 = фут/с 50 = фут/мин 51 = фут/ч 52 = м³/с 53 = м³/мин 54 = м³/ч 55 = фут³/к 56 = фут³/ч 57 = фут³/ч 58 = K	Заводские настройки:	13
Свойства:				
Группы доступа	HMI, SPLC			
uonee UMIA	I IIVII, OI LO			

Описание:

Этот параметры выбирает техническую единицу, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 4, будет отображаться в этом формате.

P0517 - Техническая единица 4 с десятичной запятой для SoftPLC

Регулируемый	0 = wxyz	2 = wx.yz	Заводские 1
диапазон:	1 = wxy.z	3 = w.xyz	настройки:
Свойства:			
Группы доступа	ЧМИ, SPLC		
через ЧМИ:			

Описание:

Этот параметры выбирает десятичную точку, которая будет отображаться в ЧМИ, т. е. любой пользовательский параметр SoftPLC, который связан с технической единицей 4, будет отображаться в этом формате.

ПРИМЕЧАНИЕ!

Технические единицы 1 и 2 можно настроить с помощью параметров, описанных выше, или в окне «Настройки параметров пользователя SoftPLC» в программе WPS/WLP.

6 ИДЕНТИФИКАЦИЯ МОДЕЛИ ПРЕОБРАЗОВАТЕЛЯ И ДОПОЛНИТЕЛЬНЫХ ПРИНАДЛЕЖНОСТЕЙ

Чтобы проверить модель преобразователя, см. код на идентификационной этикетке изделия. На преобразователе размещены две идентификационные этикетки: с полной информацией на боковой поверхности инвертора и краткая – под экраном ЧМИ.

После проверки кода идентификации модели преобразователя необходимо расшифровать его, чтобы определить модель. См. в главе 2 Общая информация в руководстве пользователя CFW500.

Ниже представлены параметры, связанные с моделью преобразователя, которые меняются в соответствии с моделью и версией преобразователя. параметры должны соответствовать данным на идентификационной этикетке изделия.

6.1 ДАННЫЕ ПРЕОБРАЗОВАТЕЛЯ

Р0023 - Основная версия ПО

Р0024 - Дополнительная версия ПО

Регулируемый диапазон:	От 0,00 до 655,35	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Эти параметры указывают версии ПО микропроцессора: основная версия (на приборной панели CFW500) и вспомогательная (на подключаемом модуле). данные хранятся в памяти EEPROM, расположенной на приборной панели.

ПРИМЕЧАНИЕ!

Параметр Р0613 также показывает контрольный номер основной версии программного обеспечения.

Р0027 - Настройка подключаемого модуля

Регулируемый диапазон:	От 0 до 17	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Этот параметр определяет подключаемый модуль, подключенный к управляющему модулю. Таблица 6.1 на странице 6-2 содержит интерфейсы, доступные для CFW500.

Таблица 6.1: Идентификация подключаемых модулей для CFW500

Наименование	Описание	P0027
	Подключаемый модуль не подсоединен	0
CFW500-IOS	Стандартный подключаемый модуль (стандартный ввод-вывод)	1
CFW500-IOD	Подключаемый модуль с добавлением цифровых входов и выходов (цифровой вводвывод)	
CFW500-IOAD	Подключаемый модуль с добавлением аналоговых и цифровых входов и выходов (аналоговый и цифровой ввод-вывод)	3
CFW500-IOR	Подключаемый модуль с добавлением релейных цифровых выходов (релейный вводвывод)	4
CFW500-CUSB	Подключаемый модуль с добавлением порта связи USB	5
CFW500-CCAN	Подключаемый модуль с добавлением порта связи CAN	6
CFW500-CRS232	Подключаемый модуль с добавлением порта связи RS-232	7
CFW500-CPDP	Подключаемый модуль с каналом связи PROFIBUS	8
CFW500-CRS485	Подключаемый модуль с добавлением порта связи RS-485	9
CFW500-ENC	Подключаемый модуль с входом датчика ENC	10
CFW500-CETH-IP CFW500-CEMB-TCP CFW500-CEPN-IO	Подключаемый модуль с каналом связи EtherNet	11
CFW500-ENC2	Подключаемый модуль с входом датчика ENC2	12
CFW500-IOSP	Стандартный подключаемый модуль PNP (стандартный ввод-вывод)	13
CFW500-ENC1	Подключаемый модуль с входом датчика ENC1	14
CFW500-CRS485P	Подключаемый модуль с входом/выходом PNP и дополнительным портом связи RS-485	15
CFW500-CETH2	Двухпортовый подключаемый модуль с поддержкой Modbus TCP и EtherNet/IP	16
CFW500-IORP	Подключаемый модуль PNP с дополнительными цифровыми релейными выходами (релейный ввод-вывод)	17

Р0029 - Конфигурация силового оборудования

 Регулируемый диапазон:
 От 0 до 255
 Заводские настройки:
 В соответствии с моделью преобразователя

 Свойства:
 го

 Группы доступа через ЧМИ:
 READ

Описание:

Этот параметр определяет модель преобразователя в зависимости от корпуса, напряжения питания и номинального тока.

Значение в Р0029 указывает на автоматическую идентификацию силового оборудования преобразователя и определяет параметры тока и напряжения в зависимости от идентификации модели. С другой стороны, это действие выполняется только в момент загрузки заводских настроек по умолчанию (Р0204 = 5 или 6).

ПРИМЕЧАНИЕ!

Подробные характеристики каждой аппаратной конфигурации CFW500 описаны в руководстве пользователя CFW500, а также взаимосвязь с P0029 в Глава 2 ОБЩАЯ ИНФОРМАЦИЯ на странице 2-1.

Р0295 - Номинальный ток преобразователя

Регулируемый диапазон:	От 0,0 до 400,0 А	Заводские настройки:	В соответствии с моделью преобразователя
Свойства:	ro		
Группы доступа через ЧМИ:	READ		

Описание:

Этот параметр определяет номинальный ток преобразователя. Дополнительную информацию см. в «Справочнике параметров» или в руководстве пользователя CFW500, которое можно загрузить на сайте **www.weg.net**.

Р0296 - Номинальное напряжение линии

Регулируемый диапазон:	0 = 200 - 240 B 1 = 380 B 2 = 400 - 415 B 3 = 440 - 460 B 4 = 480 B 5 = 500 - 525 B 6 = 550 - 575 B 7 = 600 B	Заводские настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Этот параметр настраивает номинальное напряжение питания преобразователя. Дополнительную информацию см. в «Справочнике параметров» или в руководстве пользователя CFW500, которое можно загрузить на сайте **www.weg.net**.

Р0639 - Уровень пониженного напряжения

Регулируемый диапазон:	От 50,0 до 100,0 %	Заводские настройки:	100,0 %
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Эти параметры позволяют регулировать уровень пониженного напряжения преобразователя / F0021 в соответствии со значением по умолчанию, как показано в Таблица 18.3 на странице 18-9.

Р0297 - Частота переключения

Регулируемый	От 2000 до 15000 Гц	Заводские	5000 Гц
диапазон:		настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Используйте этот параметр, чтобы определить частоту переключения БТИЗ преобразователя.

Частоту переключения преобразователя можно настроить в соответствии с потребностями применения. Более высокие частоты переключения уменьшают акустический шум в электродвигателе. Однако выбор частоты переключения приводит к поиску компромисса между акустическим шумом в электродвигателе, потерями БТИЗ преобразователя и максимально допустимыми токами.

Понижение частоты переключения снижает эффекты, связанные с нестабильностью двигателя, которая проявляется в определенных условиях применения. Оно также снижает ток утечки на землю, позволяя избежать неполадок F0074 (замыкание на землю) или F0070 (перегрузка выхода по току или короткое замыкание).

ПРИМЕЧАНИЕ!

Максимальное значение частоты переключения для бессенсорного векторного управления (P0202 = 3) составляет 8 кГц.

Максимальное значение частоты переключения при бессенсорного векторном управлении с датчиком (Р0202 = 4) составляет 10 кГц.

Максимальное значение частоты переключения для управления VVW PM (P0202 = 8) составляет $8 \ \text{к} \Gamma \text{L}$.

Значения Р0297, установленные выше этих максимальных значений, внутренне ограничены микропрограммой преобразователя.

ВНИМАНИЕ!

Когда данные тока на выходе в качестве функции частоты переключения отличаются от стандартных, см. таблицу В.4 в приложении В «Технические характеристики» руководства пользователя CFW500.

Р0298 - Применение

Регулируемый диапазон:	0 = Норм. 1 = Повышенная нагрузка (HD)	Заводские настройки:
Свойства:	cfg	
Группы доступа через ЧМИ:		

Описание:

Установите значение этого параметра в соответствии с применением.

• Нормальный режим работы (НР) определяет максимальный ток для непрерывной работы (I_{ном-ND}) и перегрузку в 110 % в течение 1 минуты. Он предназначен для использования с приводными двигателями, не рассчитанными в данном применении на высокий крутящий момент в отношении к их номинальному крутящему моменту, при постоянной работе во время запуска, ускорения или замедления.

■ Тяжелый режим работы (ТР) определяет максимальный ток для непрерывной работы (I_{ном-нD}) и перегрузку в 150 % в течение 1 минуты. Он предназначен для использования с приводными двигателями, рассчитанными в данном применении на высокий крутящий момент с перегрузкой в отношении к их номинальному крутящему моменту, при работе с постоянной скоростью во время запуска, ускорения или замедления.

Значения $I_{\text{ном-ND}}$ и $I_{\text{ном-HD}}$ представлены в P0295. Обратитесь к CFW500 для получения более подробной информации об этих режимах работы.

ПРИМЕЧАНИЕ!

При изменении параметра Р0298 автоматически изменяется и параметр номинального тока Р0295.

ПРИМЕЧАНИЕ!

Прикладная настройка Р0298 влияет на заводское значение по умолчанию (Р0204) параметров Р0135, Р0156, Р0157, Р0158, Р0213, Р0290 и Р0401.

ПРИМЕЧАНИЕ!

Если модель CFW500 не имеет опции «Нормальный режим (ND)», алгоритм загрузки заводских настроек по умолчанию (P0204) автоматически установит «Повышенная нагрузка (HD)». Чтобы узнать, какие модели имеют такую опцию, обратитесь к руководству пользователя CFW500 или к параметру P0029 в Справочнике параметров, сигналов тревоги, неисправностей и настроек в этом руководстве.

Р0613 - Версия программного обеспечения

Регулируемый диапазон:	От 0 до 65535	Заводские настройки:	
Свойства:	ro		
Группы доступа через ЧМИ:	READ		

Описание:

Этот параметр представляет собой счетчик, указывающий версию программного обеспечения. Он автоматически генерируется машиной, на которой была создана прошивка.

7 ЛОГИЧЕСКАЯ КОМАНДА И УСТАВКА СКОРОСТИ

Привод электрического мотора, подключенного к преобразователю, зависит от логической команды и уставки, определенной одним из нескольких возможных источников, например: клавиши ЧМИ, цифровые входы (Dlx), аналоговые входы (Alx), последовательный интерфейс / USB-интерфейс, интерфейс CANopen, интерфейс DeviceNet, SoftPLC и др.

Команда через ЧМИ ограничивается набором функций, предварительно установленных для клавиш согласно данным Глава 4 ЧМИ И БАЗОВОЕ ПРОГРАММИРОВАНИЕ на странице 4-1, по аналогии с цифровыми входами (Dlx) с функциями, внедренными с помощью параметров Р0263-Р0270.

С другой стороны, команды через цифровые интерфейсы, например сеть передачи данных или SoftPLC, действуют на основании управляющего слова преобразователя с помощью управляющих параметров и системных маркеров SoftPLC соответственно.

Уставка скорости, в свою очередь, обрабатывается на CFW500 в 16-битном формате с сигналом (-32768...+32767) для диапазона от -500,0 до +500,0 Гц. В то же время комплексный фактор, диапазон и разрешение уставки зависит от используемого источника, как описано в Раздел 7.2 УСТАВКА СКОРОСТИ на странице 7-9.

7.1 ВЫБОР ЛОГИЧЕСКОЙ КОМАНДЫ И УСТАВКИ СКОРОСТИ

Команда преобразователя и источник уставки определяются на основании параметров преобразователя для двух различных ситуаций: локального и удаленного управления, переход между которыми может осуществляться динамически во время работы преобразователя. Следовательно для определенного типа параметризации в преобразователе используется два набора команд и уставок в соответствии с блоксхемой на Рисунок 7.1 на странице 7-2

Параметр Р0220 определяет источник команд для ситуаций локального и удаленного управления.

Параметры Р0223, Р0224 и Р0225 определяют команды в ситуации локального управления. Параметры Р0226, Р0227 и Р0228 определяют команды в ситуации удаленного управления, а параметр Р0105 идентифицирует источник выбора между первым и вторым линейным изменением. Эта структура выбора источника команды показана на Рисунок 7.2 на странице 7-3, где параметр Р0312 направляет источник последовательной передачи данных для подключаемых модулей с двумя портами.

Параметры Р0221 и Р0222 определяют уставку скорости в ситуациях локального и удаленного управления.

Эта структура выбора источника уставки показана на Рисунок 7.3 на странице 7-4, где параметр Р0312 направляет источник последовательной передачи данных на подключаемые модули с двумя портами.

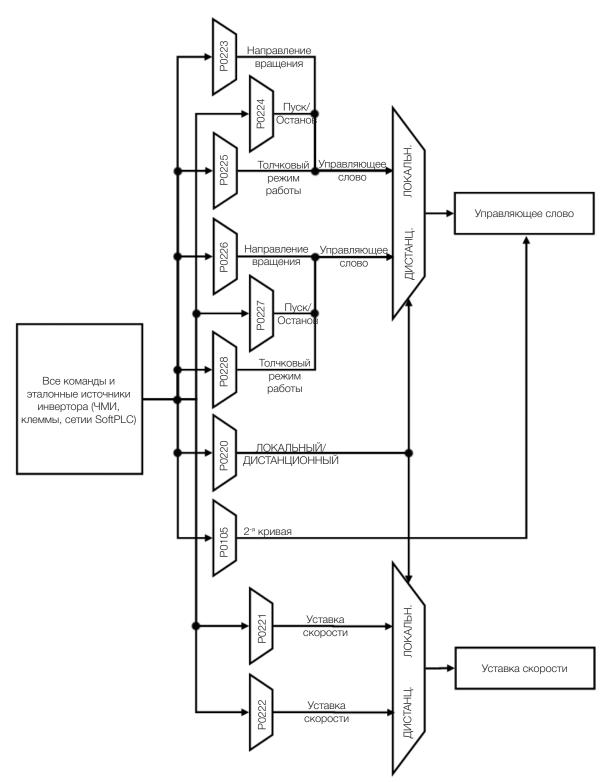


Рисунок 7.1: Общая блок-схема для команд и уставок

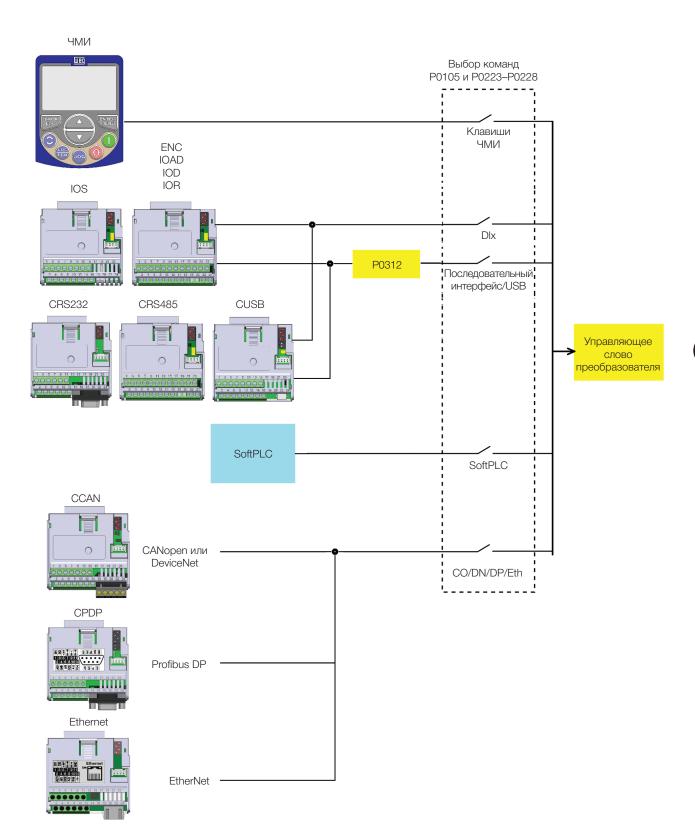
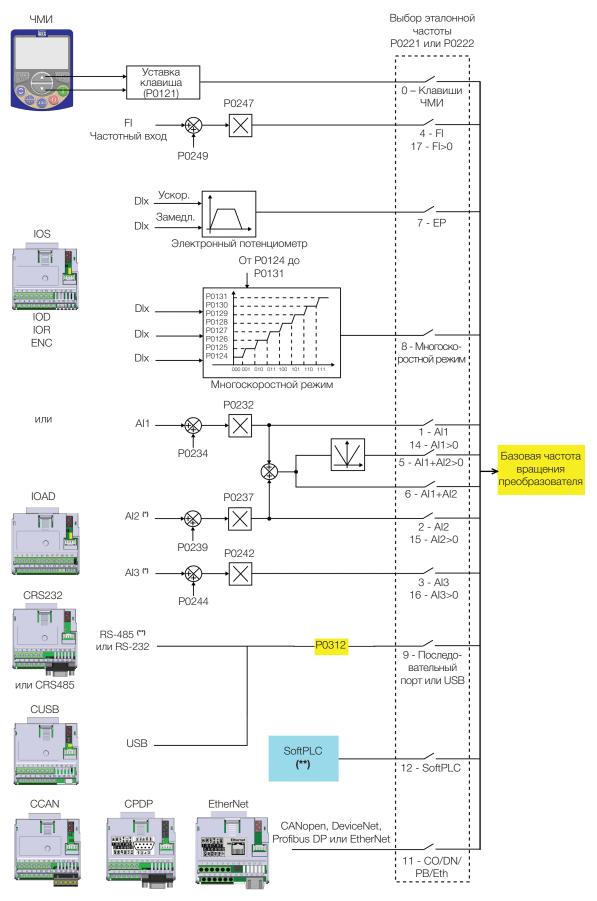



Рисунок 7.2: Структура выбора команд

- (*) Доступно только на подключаемом модуле CFW500-IOAD.
- (**) Доступно на всех подключаемых модулях.

Рисунок 7.3: Структура для выбора уставки скорости

Р0220 - Выбор локального/удаленного режима управления

Регулируемый диапазон:	0 = Всегда локальный 1 = Всегда дистанционный 2 = Клавиша ЧМИ «Локальный/ Дистанционный» (LOC) 3 = Клавиша ЧМИ «Локальный/ Дистанционный» (REM) 4 = Цифровой вход (DIx) 5 = Последовательный интерфейс/USB (LOC) 6 = Последовательный интерфейс/USB (REM) 7 = Не используется 8 = Не используется 9 = CO/DN/PB/Eth (LOC) 10 = CO/DN/PB/Eth (REM) 11 = SoftPLC	Заводские настройки:	2
Свойства:	cfg		
Группы доступа через ЧМИ:	VO		

Описание:

Определяет источник команды, который выбирается между локальным и удаленным управлением,где:

- **LOC:** обозначает ситуацию локального управления по умолчанию.
- **REM:** обозначает ситуацию удаленного управления по умолчанию.
- **Dix:** в соответствии с функцией, запрограммированной для цифрового входа в Р0263–Р0270.
- CO/DN/PB/Eth: интерфейс CANopen, DeviceNet, Profibus DP или EtherNet.

Р0221 - Выбор уставки скорости: ЛОКАЛЬНОЕ управление

Р0222 - Выбор уставки скорости: ДИСТАНЦИОННОЕ управление

Регулируемый 0 = Клавиши ЧМИ **Заводские** P0221 = 0 диапазон: 1 = AI1настройки: Р0222 = 1 2 = AI23 = AI34 = Частотный вход (FI) 5 = AI1 + AI2 > 0 (Cymma Als > 0) 6 = AI1 + AI2 (Cymma Als) 7 = Электронный потенциометр (Е.Р.) 8 = Многоскоростной режим 9 = Последовательный интерфейс/USB 10 = Не используется 11 = CO/DN/PB/Eth 12 = SoftPLC 13 = Не используется 14 = AI1 > 015 = AI2 > 016 = AI3 > 017 = FI > 0Свойства: cfg Группы доступа 1/0 через ЧМИ:

Описание:

Эти параметры определяют источник уставки скорости при локальном и удаленном управлении. Некоторые комментарии по опциям этого параметра:

- Alx: относится к сигналу аналогового входа согласно Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1.
- ЧМИ: значение уставки, установленное для клавиш 🖎 и 🕶 в параметре Р0121.
- E.P.: электронный потенциометр; см. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.
- Многоскоростной режим: см. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.
- Если Р0203 = 1, значение, установленное в Р0221 и Р0222, становится уставкой ПИД и больше не будет уставкой скорости. Уставка ПИД отображается в Р0040 и сохраняется в Р0525, если источником являются клавиши ЧМИ.
- Alx > 0: отрицательные значения уставки Alx обнуляются.
- **CO/DN/PB/Eth:** интерфейс CANopen, DeviceNet, Profibus DP или EtherNet.

Заводские P0223 = 2

настройки: P0226 = 4

Р0223 - Выбор направления вращения - ЛОКАЛЬНОЕ управление

Р0226 – Выбор направления вращения – УДАЛЕННОЕ управление

Регулируемый диапазон:

0 = по часовой стрелке

1 = против часовой стрелки

2 = Клавиша ЧМИ (Н)

3 = Клавиша ЧМИ (АН)

4 = DIx

5 = Последовательный интерфейс/USB (H)

6 = Последовательный интерфейс/USB (AH)

7 = Не используется 8 = Не используется 9 = CO/DN/PB/Eth(H)10 = CO/DN/PB/Eth (AH)11 = Не используется

12 = SoftPLC

cfq

Свойства:

Группы доступа 1/0

через ЧМИ:

Описание:

Эти параметры определяют источник команды «Направление вращения» при локальном и удаленном управлении, где:

- Н: по умолчанию обозначает вращение по часовой стрелке при включении преобразователя.
- АН: по умолчанию обозначает вращение против часовой стрелки при включении преобразователя.
- **Dix:** см. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.
- Опция полярности Al3 (11) определяет направление вращения против часовой стрелки, если соответствующий аналоговый вход, управляемый на основе усиления и смещения, получает отрицательный сигнал, как описано в Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1.
- CO/DN/PB/Eth: интерфейс CANopen, DeviceNet, Profibus DP или EtherNet.

ПРИМЕЧАНИЕ!

Сигнал задания скорости через аналоговые входы, сети связи или SoftPLC также определяет направление вращения, то есть отрицательное задание означает направление вращения, противоположное направлению вращения, определенному исходными командами в Р0223 или Р0226.

Р0224 - Выбор Пуска/Останова - ЛОКАЛЬНОЕ управление

Р0227 - Выбор Пуска/Останова - ДИСТАНЦИОННОЕ управление

Регулируемый диапазон:

0 = Клавиши ЧМИ

1 = DIx

2 = Последовательный интерфейс/USB

3 = Не используется 4 = CO/DN/PB/Eth

5 = SoftPLC

Свойства:

cfg 1/0

Группы доступа через ЧМИ:

Описание:

Эти параметры определяют источник команды «Пуск/Останов» при локальном и удаленном управлении. Эта команда соответствует функциям, внедренным в любом из источников команды, для включения движения двигателя, т. е. «Общее включение», «Включение линейного изменения», «Прямой ход», «Обратный ход», «Включить», «Выключить», «Инкрементное изменение» (JOG) и др.

Р0345 – Приоритетная остановка ЧМИ

Регулируемый диапазон:

0 = Выкл.1 = Вкл.

Заводские 0

настройки:

Заводские P0224 = 0

настройки: Р0227 = 1

Свойства:

Группы доступа 1/0 через ЧМИ:

Описание:

Функция приоритетной остановки ЧМИ состоит из настройки команд преобразователя таким образом, источником команд, запрограммированным в Р0224 и Р0227. Режим остановки определяется в Р0229.

Таким образом, установка Р0345, равного 1, заставит кнопку 9 ЧМИ «Остановить» двигатель независимо от типа источника, активирующего команду «Пуск/Стоп».

Если параметр Р0345 установлен на 1, приоритетная остановка через ЧМИ активна, и как только преобразователь включается и приоритетная остановка выполняется с помощью клавиши 🤨 ЧМИ. преобразователь возвращается в состояние«RUN», если исходный источник команды «Пуск/Останов» срабатывает снова. В этом случае необходимо будет обнаружить новую команду«Пуск/Стоп», чтобы снова включить двигатель.

Значение по умолчанию параметра Р0345 = 0 указывает, что функция приоритетного останова ЧМИ отключена.

Заводские

настройки: P0228 = 2

P0225 = 1

P0225 - Выбор JOG - ЛОКАЛЬНОЕ управление

Р0228 - Выбор JOG - ДИСТАНЦИОННОЕ управление

Регулируемый 0 = Выкл.

диапазон: 1 = Клавиши ЧМИ

2 = DIx

3 = Последовательный интерфейс/USB

4 = He используется 5 = CO/DN/PB/Eth

6 = SoftPLC

Свойства: cfg

Группы доступа //С через ЧМИ:

Описание:

Эти параметры определяют источник функции инкрементного изменения JOG при локальном и удаленном управлении. Функция инкрементного изменения JOG обозначает команду «Пуск/Останов», добавленную в уставку, которая определена в P0122; см. Пункт 7.2.3 Параметры уставки скорости на странице 7-11.

7.2 УСТАВКА СКОРОСТИ

Уставка скорости – это значение, применяемое ко входу модуля линейного ускорения (Р0001) для управления частотой, примененной к выходу преобразователя (Р0002) и, как следствие, к скорости вала двигателя.

В ЦП преобразователь использует подписанные 16-битные переменные для работы с уставками скорости. Кроме того, полная шкала уставки, выходная частота и связанные переменные определены как 500,0 Гц. С другой стороны, в зависимости от источника, эту шкалу можно удобно изменять с использованием интерфейса пользователя для согласования со стандартами или условиями использования.

В целом, цифровые уставки определяются параметрами, а именно: клавиши ЧМИ (Р0121), многоскоростной режим (Р0124–Р0131), электронный потенциометр и инкрементное изменение предусматривают шкалу от 0,0 до 500,0 Гц с шагом 0,1 Гц. С другой стороны, уставка скорости через аналоговый вход использует 16-битную внутреннюю шкалу с максимумом сигнала 500,0 Гц.

Уставку скорости через ЧМИ можно задавать клавишей JOG или электронным потенциометром, клавишами «▲¬» и «▼¬» в параметре P0121.

На цифровых входах (DIx) уставка определяется на основе функции, предварительно установленной для P0263-P0270.

Уставка скорости через аналоговые входы и частотный вход определяется на основе параметров сигнала, усиления и смещения P0230–P0250. Полная шкала уставки всегда определяется по параметру P0134, т. е. максимальное значение в Alx равно уставке скорости, эквивалентной значению параметра P0134.

Цифровые уставки Serial/USB, CANopen, DeviceNet, Profibus DP, Ethernet и SoftPLC работают по стандартной шкале под названием «13-битная скорость», где значение 8192 (2^{13}) равно номинальной скорости двигателя P0403. Доступ к этим уставкам можно получить с помощью параметров P0683, P0685 и системного маркера SoftPLC соответственно.

Тем не менее цифровые уставки имеют разную шкалу и параметры уставок скорости с диапазоном от 0,0 до 500,0 Гц в соответствии с предыдущими описаниями. Значение частоты на входе линейного изменения (Р0001) всегда ограничено параметрами Р0133 и Р0134.

Таблица 7.1: Сводная информация о шкалах и шагах уставок скорости

. , , , , , , , , , , , , , , , , , , ,			
Уставка	Весь диапазон	Разрешение	
Аналоговые входы (Alx)	- Р0134 до Р0134	10 бит или (Р0134 / 1024)	
Сети передачи данных и SoftPLC	От -500,0 Гц до 500,0 Гц	Скорость 13 бит (Р0403 / 8192)	
Параметры ЧМИ	От -500,0 Гц до 500,0 Гц	0,1 Гц	

Шец

7.2.1 Ограничения уставки скорости

Хотя параметры настройки уставки предусматривают множество значений (От 0 до 500,0 Гц), значение, применяемое к линейному изменению, ограничивается параметрами Р0133 и Р0134. Следовательно значения в модуле, которые выходят за пределы этого диапазона, не будут оказывать влияние на уставку.

Р0132 - Максимальный уровень превышения скорости

Регулируемый диапазон:	От 0 до 100 %	Заводские настройки:	10%
Свойства:	cfg		
Группы доступа через ЧМИ:	BASIC		

Описание:

Этот параметр задает максимальную допустимую рабочую скорость двигателя и настраивается как процентная доля от максимального ограничения скорости (Р0134).

Если фактическая скорость превышает значение суммы параметров P0134 + P0132 более чем на 20 мс, CFW500 отключает импульсы широтно-импульсной модуляции (ШИМ) и выводит сообщение об отказе (F0150).

Чтобы отключить эту функцию, необходимо задать значение параметра Р0132 = 100 %.

Р0133 - Минимальная уставка скорости

Регулируемый	От 0,0 до 500,0 Гц	Заводские	3,0 Гц
диапазон:		настройки:	

ПРИМЕЧАНИЕ!

Для управления VVW PM значение P0133 после ориентированного запуска составляет 10 % от скорости синхронного двигателя в Гц.

Р0134 – Максимальная уставка скорости

Регулируемый диапазон:	От 0,0 до 500,0 Гц	Заводские настройки:	66,0 (55,0) Гц
Свойства:			
Группы доступа через ЧМИ:	BASIC		

Описание:

Ограничивает уставку скорости преобразователя. Эти ограничения применяются к любому источнику уставки, даже в случае с 13-битной уставкой скорости.

7.2.2 Резервное копирование уставок скорости

Р0120 – Резервное копирование уставок скорости

 Регулируемый
 0 = Не активно
 Заводские
 1

 диапазон:
 1 = Активно
 настройки:

2 = Резервн. копир. Р0121

Свойства:

Группы доступа через ЧМИ:

Описание:

Этот параметр определяет действие функции резервного копирования уставок скорости между активными опциями (P0120=1), неактивными опциями (P0120=0) и параметром P0121 (P0120=2). Эта функция, в свою очередь, определяет форму резервного копирования цифровых уставок и источники: ЧМИ (P0121), электронный потенциометр (P0121), последовательный порт/USB (P0121), САNореп/DeviceNet/Profibus DP/Ethernet (P0121), SoftPLC (P0121) и уставка ПИД (P0121) согласно Таблица 7.2 на странице 7-11.

Таблица 7.2: Опции параметра P0120

P0120	Исходные значения уставки при активации или включении
0	Значение Р0133
1	Последнее скорректированное значение
2	Значение Р0121

Если значение P0120 = Неактивно, преобразователь не сохраняет значение уставки скорости при выключении. Поэтому при повторном включении преобразователя в качестве уставки скорости принимается минимальное ограничение скорости (P0133).

Если значение Р0120 = Активно, значение, установленное для уставки, сохраняется после выключения преобразователя или отключении его питания.

Если значение P0120 = резервное копирование P0121, исходное значение уставки фиксируется в P0121 при включении преобразователя.

7.2.3 Параметры уставки скорости

Р0121 - Уставка скорости через ЧМИ

 Регулируемый
 От 0,0 до 500,0 Гц
 Заводские
 3,0 Гц

 диапазон:
 настройки:

Свойства:

Группы доступа через ЧМИ:

Описание:

Параметр P0121 сохраняет уставку скорости через ЧМИ (P0221 = 0 или P0222 = 0). Если клавиши « » и « » активны, а ЧМИ работает в режиме мониторинга, значение P0121 увеличивается и отображается на главном экране ЧМИ. Кроме того, P0121 используется как вход для функции резервного копирования уставок.

ПРИМЕЧАНИЕ!

Максимальное значение параметра Р0121 через ЧМИ ограничивается параметром Р0134.

P0122 - Уставка скорости для JOG

Регулируемый От -500,0 до 500,0 Гц **Заводские** 5,0 Гц **настройки:**

Свойства:

Группы доступа через ЧМИ:

Описание:

При выполнении команды JOG двигатель разгоняется до значения, заданного параметром P0122, в соответствии с линейным ускорением, установленным на основе P0105. Эту команду можно активировать с помощью любого источника, как описано в Pаздел 7.1 ВЫБОР ЛОГИЧЕСКОЙ КОМАНДЫ И УСТАВКИ СКОРОСТИ на странице 7-1. Отрицательные значения определяют направление вращения, противоположное определенному с помощью слова команды преобразователя.

Р0124 – Многоскоростная уставка 1

 Регулируемый
 От -500,0 до 500,0 Гц
 Заводские
 3,0 Гц

 диапазон:
 настройки:

Р0125 - Многоскоростная уставка 2

Регулируемый От -500,0 до 500,0 Гц **Заводские** 10,0 (5,0) **диапазон:** Гц

Р0126 – Многоскоростная уставка 3

 Регулируемый
 От -500,0 до 500,0 Гц
 Заводские
 2 0 , 0

 диапазон:
 настройки:
 (10,0) Гц

Р0127 - Многоскоростная уставка 4

 Регулируемый
 От -500,0 до 500,0 Гц
 Заводские
 30,0

 диапазон:
 настройки:
 (20,0) Гц

Р0128 – Многоскоростная уставка 5

Регулируемый От -500,0 до 500,0 Гц **Заводские** 40,0 **диапазон:** 40,0 гц

Р0129 - Многоскоростная уставка 6

 Регулируемый
 От -500,0 до 500,0 Гц
 Заводские
 50,0

 диапазон:
 настройки:
 (40,0) Гц

Р0130 - Многоскоростная уставка 7

 Регулируемый
 От -500,0 до 500,0 Гц
 Заводские
 60,0

 диапазон:
 настройки:
 (50,0) Гц

Р0131 - Многоскоростная уставка 8

 Регулируемый диапазон:
 От -500,0 до 500,0 Гц
 Заводские настройки:
 66,0 настройки:
 (55,0) Гц

 Свойства:

 Группы доступа через ЧМИ:

Описания:

Можно объединить до трех цифровых входов, чтобы выбрать один из восьми уровней, которые формируют уставку многоскоростного режима. Ознакомьтесь с описанием цифрового входав Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14, а также способом выбора уставки в Раздел 7.1 ВЫБОР ЛОГИЧЕСКОЙ КОМАНДЫ И УСТАВКИ СКОРОСТИ на странице 7-1. Отрицательные значения определяют направление вращения, противоположное определенному с помощью слова команды преобразователя (бит 2 параметров Р0682 и Р0684).

Рисунок 7.4 на странице 7-13 и Таблица 7.3 на странице 7-14 показано действие многоскоростного режима с учетом цифровых входов, запрограммированных для NPN в P0271. Хотя наиболее релевантный цифровой вход можно запрограммировать в DI1, DI2, DI5 или DI6, разрешена только одна из этих опций. Иначе активируется состояние конфигурации (CONF), в соответствии с Раздел 5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ на странице 5-12, сигнализирующее о несовместимости параметризации.

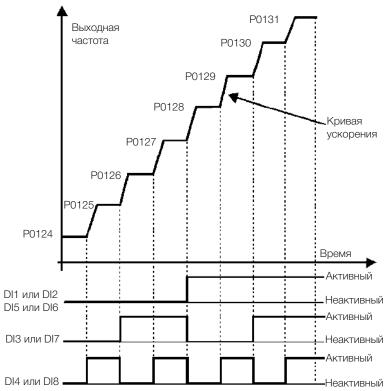


Рисунок 7.4: Рабочая схема функции многоскоростного режима

· · · · · · · · · · · · · · · · · · ·			
8 Скоростей			
		4 Скоростей	
		2 Ско	ростей
DI1 или DI2 или DI5 или DI6	DI3 или DI7	DI4 или DI8	Уставка скорости
Открыто	Открыто	Открыто	P0124
Открыто	Открыто	0 B	P0125
Открыто	0 B	Открыто	P0126
Открыто	0 B	0 B	P0127
0 B	Открыто	Открыто	P0128
0 B	Открыто	0 B	P0129
0 B	0 B	Открыто	P0130
0 B	0 B	0 B	P0131

Таблица 7.3: Многоскоростные скорости

7.2.4 Уставка через электронный потенциометр

Функция электронного потенциометра (Е.Р.) позволяет настроить уставку скорости посредством двух цифровых входов (один – для ее увеличения, а другой – для уменьшения).

Чтобы включить эту функцию, сначала необходимо настроить уставку скорости через электронной потенциометр, задав для P0221 = 7 и/или для P0222 = 7. После активации этой функции просто запрограммируйте два цифровых входа (P0263–P0270) в 11 или 33 (Ускорить Е.Р.) и 12 или 34 (Замедлить Е.Р.).

Рисунок 7.5 на странице 7-14 показана работа функции Е.Р. с DI3 со значением «Ускорить Е.Р.» (Р0265 = 11), DI4 со значением «Замедлить Е.Р.» (Р0266 = 12) и DI1 со значением «Пуск/Останов» (Р0263 = 1). В этом примере выполнен сброс уставки, когда преобразователь выключен и активированы оба входа «Ускорить Е.Р.» и «Замедлить Е.Р.». Кроме того, можно отслеживать работу входов по отдельности, а также работу резервного копирования уставки (Р0120 = 1), если открыть и снова закрыть команду «Пуск/Останов».

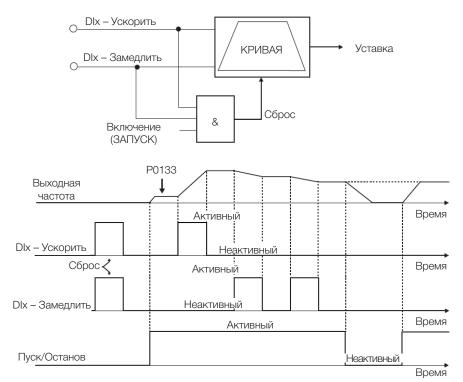


Рисунок 7.5: Рабочая схема функции электронного потенциометра

7.2.5 Аналоговый вход Alx и частотный вход Fl

Работа аналогового и частотного входов детально описана в Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1. Таким образом, после надлежащей обработки сигнала он применяется ко входу линейного изменения в соответствии с выбором уставки, описанным в Раздел 7.1 ВЫБОР ЛОГИЧЕСКОЙ КОМАНДЫ И УСТАВКИ СКОРОСТИ на странице 7-1.

7.2.6 13-битная уставка скорости

13-битная уставка скорости представляет собой шкалу, основанную на синхронной скорости двигателя или номинальной частоте двигателя (Р0403). В CFW500 параметр Р0403 устанавливается в качестве базиса для определения уставки скорости. Таким образом, значение 13-битной скорости имеет диапазон в 16 бит с сигналом, т. е. -32768...32767. Однако номинальная частота в Р0403 эквивалентна значению 8192. Следовательно, максимальное значение в диапазоне 32767 эквивалентно увеличенному в четыре раза значению параметра Р0403.

Уставка 13-битной скорости используется в параметрах Р0681, Р0683, Р0685 и системных маркерах для SoftPLC, которые связаны с интерфейсами на основе сетей передачи данных и функции SoftPLC изделия.

7.3 УПРАВЛЯЮЩЕЕ СЛОВО И СОСТОЯНИЕ ПРЕОБРАЗОВАТЕЛЯ

Управляющее слово преобразователя – сочетание набора битов для определения команд, полученных преобразователем из внешнего источника. С другой стороны, слово состояния – это еще один набор битов, которые определяют состояние преобразователя. Таким образом, управляющее слово и слово состояния устанавливают интерфейс для обмена информацией между преобразователем и внешним модулем, например сетью передачи данных или контроллером.

Р0680 - Состояние логики управления

Регулируемый диапазон:	От 0000h до FFFFh	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, NET	

Описание:

Состояние преобразователя уникально для всех источников, а доступ к нему предоставляется только для считывания. Здесь указывается соответствующее рабочее состояние и режимы преобразователя. Функция каждого бита Р0680 описана в Таблица 7.4 на странице 7-16.

Таблица 7.4: Слово состояния

Бит	Функция	Описание
0	Безопасное отключение крутящего момента (STO)	0: Функция STO неактивна (преобразователь работает) 1: Функция STO активна (преобразователь заблокирован A0160)
1	Команда Пуск	0: Не было команды Пуск 1: Была команда Пуск
2	Режим сжигания	0: Режим сжигания неактивен 1: Режим сжигания активен
3	Резервный	
4	Быстрый останов	0: Быстрый останов неактивен 1: Быстрый останов активен
5	2-я кривая	0: 1 ^{-е} линейное ускорение и замедление по Р0100 и Р0101 1: 2 ^{-е} линейное ускорение и замедление по Р0102 и Р0103
6	Состояние конфиг.	0: преобразователь работает в штатном режиме 1: преобразователь работает в состоянии настройки. Здесь указывается специальное условие, при котором нельзя включить преобразователь, поскольку в нем обнаружена несовместимость параметризации
7	Аварийный сигнал	0: преобразователь не находится в состоянии сигнализации 1: Преобразователь находится в состоянии сигнализации
8	Работает	0: двигатель остановлен 1: преобразователь работает на основе установленных уставок и команд
9	Включено	0: преобразователь полностью отключен 1: преобразователь полностью включен и готов к включению двигателя
10	По часовой стрелке	0: двигатель вращается против часовой стрелки 1: двигатель вращается по часовой стрелке
11	Толчковый режим работы	0: функция инкрементного изменения JOG неактивна 1: функция инкрементного изменения JOG активна
12	Дистанцион.	0: преобразователь работает в режиме локального управления 1: преобразователь работает в режиме удаленного управления
13	Недостаточное напряжение	0: нет недостаточного напряжения 1: с недостаточным напряжением
14	Автоматический	0: в ручном режиме (функция ПИД) 1: в автоматическом режиме (функция ПИД)
15	Неисправность	0: преобразователь не находится в состоянии отказа 1: преобразователь зарегистрировал отказ

Р0690 - Состояние логики управления 2

Регулируемый диапазон:	От 0000h до FFFFh	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, NET	

Описание:

Параметр Р0690 представляет другие сигнальные биты для функций, внедренных исключительно в CFW500. Функция каждого бита Р0690 описана в Таблица 7.5 на странице 7-17.

Таблица 7.5: Слово состояния

Бит	Функция	Описание
0	Блок питания активный высокий	0: IGBT блока питания активен с высоким логическим уровнем 1: IGBT блока питания активен с высоким логическим уровнем
1	Предварительная зарядка в норме	0: Предварительная зарядка конденсаторов звена постоянного тока не завершена 1: Предварительная зарядка конденсаторов звена постоянного тока завершена (ОК)
2	Резервный	
3	Режим I/F (бессенсорный)	0: Режим I/F бессенсорного векторного управления неактивен 1: Режим I/F бессенсорного векторного управления активен
4	Уменьшение Fs	0: уменьшение выходной частоты неактивно 1: уменьшение выходной частоты активно
5	Режим ожидания	0: режим ожидания неактивен 1: режим ожидания активен
6	Кривая замедления	0: без замедления 1: замедление преобразователя
7	Кривая ускорения	0: без ускорения 1: ускорение преобразователя
8	Фикс. линейное изменение	0: линейное изменение работает в штатном режиме 1: путь линейного изменения фиксируется с помощью команды определенного источника или внутренней функции
9	Уставка в норме	0: выходная частота еще не достигла уставки 1: выходная частота достигла уставки
10	Регулировка постоянного тока или ограничение тока	0: регулировка промежуточного звена пост. тока или ограничение тока неактивно 1: Активно регулирование звена постоянного тока или ограничение тока (Р0150)
11	Конфигурация в 50 Гц	0: заводские установки загружены при 60 Гц (Р0204 = 5) 1: заводские установки загружены при 50 Гц (Р0204 = 6)
12	Компенсация провалов напряжения в сети	0: без выполнения компенсации провалов напряжения в сети 1: выполнение компенсации провалов напряжения в сети
13	Пуск с хода	0: без выполнения пуска с хода 1: выполнение пуска с хода
14	Торможение постоянным током	0: торможение постоянным током неактивно 1: торможение постоянным током активно
15	Импульсы ШИМ	0: импульсы напряжения ШИМ на выходе выключены 1: импульсы напряжения ШИМ на выходе включены

Р0682 – Последовательный контроль

Регулируемый диапазон:	От 0000h до FFFFh	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	NET	

Описание:

Управляющее слово преобразователя для определенного источника доступно для чтения и записи, однако доступ только для чтения разрешен для других источников. Для преобразователя пред-усмотрено общее слово для интерфейса, которое определяется функцией его битов отдельно, как указано в Таблица 7.6 на странице 7-18.

Таблица 7.6: Управляющее слово

Бит	Функция	Описание
0	Пуск/Останов	0: останов двигателя при помощи линейного замедления 1: работа двигателя в соответствии с линейным ускорением, пока не будет достигнуто значение уставки скорости
1	Общее включение	0: полное отключение преобразователя, прерыванием подачи питания на двигатель 1: полное включение преобразователя, обеспечивающее работу двигателя
2	Запуск по часовой стрелке	запуск двигателя в обратном направлении относительно сигнала уставки (против часовой стрелки) запуск двигателя в направлении сигнала уставки (по часовой стрелке)
3	Включение инкрементного изменения JOG	0: отключение функции инкрементного изменения JOG 1: включение функции инкрементного изменения JOG
4	Дистанцион.	0: преобразователь переходит в режим локального управления 1: преобразователь переходит в режим удаленного управления
5	2-я кривая	0: линейное ускорение и замедление по Р0100 и Р0101 1: линейное ускорение и замедление по Р0102 и Р0103
6	Быстрый останов	0: отключение быстрого останова 1: включение быстрого останова
7	Сброс отказа	0: Нет функции 1: сброс отказа при переходе в состояние отказа
От 8 до 12	Резервный	
13	Внутренний ПИД	0: Автоматический 1: Ручной
14	Внешний ПИД	0: Автоматический 1: Ручной
15	Резервный	

P0684 – Контроль CANopen/DeviceNet/Profibus DP/Ethernet

Регулируемый диапазон:	От 0000h до FFFFh	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	NET	

Описание:

Управляющее слово преобразователя для определенного источника доступно для чтения и записи, однако доступ только для чтения разрешен для других источников. Для преобразователя пред-усмотрено общее слово для интерфейса, которое определяется функцией его битов отдельно, как указано в Таблица 7.7 на странице 7-19.

Таблица 7.7: Управляющее слово

Бит	Гаотица т.т. эправляющее слове			
БИТ	Функция	Описание		
0	Пуск/Останов	0: останов двигателя при помощи линейного замедления 1: Запускает двигатель в соответствии с рампой ускорения до достижения заданного значения скорости		
1	Общее включение	0: Полностью отключает преобразователь, прерывая питание двигателя 1: Полностью включает преобразователь, обеспечивая работу двигателя		
2	Вращение вперед	0: Вращает двигатель в направлении, противоположном опорному сигналу (назад) 1: Вращает двигатель в направлении опорного сигнала (вперед)		
3	Включить толчковый ход	0: Отключает функцию JOG 1: Включает функцию JOG		
4	Дистанцион.	0: Преобразователь переходит в локальный режим 1: Преобразователь переходит в дистанционный режим		
5	2-я кривая	0: линейное ускорение и замедление по Р0100 и Р0101 1: линейное ускорение и замедление по Р0102 и Р0103		
6	Быстрый останов	0: Отключает Быструю остановку 1: Включает Быструю остановку		
7	Сброс отказа	0: Не используется 1: В случае неисправности сбрасывает неисправность		
От 8 до 15	Резервный			

Р0229 - Выбор режима останова

Регулируемый диапазон:	0 = Плавное снижение до останова 1 = Останов по инерции 2 = Быстрый останов	Заводские 0 настройки:
Свойства:	cfg	
Группы доступа через ЧМИ:	I/O	

Описание:

Этот параметр определяет режим останова двигателя при получении преобразователем команды «Останов». Таблица 7.8 на странице 7-19 описаны опции этого параметра.

Таблица 7.8: Выбор режима останова

P0229	Описание	
0	Преобразователь использует линейный останов, который задан параметрами Р0101 и (или) Р0103	
1	Двигатель свободно вращается до останова	
2	Преобразователь использует линейный останов, который задан параметрами Р0106	

ПРИМЕЧАНИЕ!

Если запрограммирован режим останова по инерции и отключена функция пуска с хода, всего лишь активируйте двигатель, если он остановился.

ПРИМЕЧАНИЕ!

Этот параметр применяется ко всем источникам команд преобразователя, но целью его создания являлось обеспечение того, чтобы команда через ЧМИ могла отключить двигатель по инерции вместо линейного замедления. Таким образом, если P0229 = 1, бит 0 управляющего слова (включение линейного изменения) содержит функцию, которая подобна биту 1 (общее включение). Таким же образом функции цифровых входов, на-пример: Пуск/Останов, Прямой/Обратный ход и команда с тремя проводами, выключают двигатель по инерции в этом состоянии P0229.

7.3.1 Управление через входы ЧМИ

В отличие от сетевых интерфейсов и SoftPLC, команды ЧМИ не обращаются к управляющему слову преобразователя напрямую из-за ограничений функций клавиш и методов работы ЧМИ. Режимы ра-боты ЧМИ описаны в Глава 4 ЧМИ И БАЗОВОЕ ПРОГРАММИРОВАНИЕ на странице 4-1.

7.3.2 Управление через цифровые входы

В отличие от сетевых интерфейсов и SoftPLC, цифровые входы не обращаются к управляющему слову преобразователя напрямую, поскольку предусмотрено несколько функций для Dlx, которые определяются способами использования.

Такие функции цифровых входов детально описаны в Глава 15 ЦИФРОВЫЕ И АНАЛОГОВЫЕ ВХОДЫ И ВЫХОДЫ на странице 15-1.

8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ

Преобразователь подает на двигатель регулируемые напряжение, ток и частоту, благодаря чему выполняется управление скоростью двигателя. Применяемые значения следуют стратегии управления, которая зависит от выбранного типа управления двигателем и настроек параметров преобразователя.

Выбор соответствующего типа управления для определенного способа использования зависит от требований статики и динамики для крутящего момента и скорости для приводной нагрузки. Т. е. тип управления напрямую связан с необходимой производительностью. Кроме того, правильная конфигурация выбранных параметров режима управления - ключевой фактор достижения максимальной производительности.

CFW500 оснащается двумя режимами управления для трехфазного асинхронного двигателя, а именно:

- Скалярное управление V/f: для основных способов применения без управления выходной скоростью.
- Управление VVW: для приложений, которым требуется средняя производительность при контроле выходной скорости без использования датчика скорости.
- Управление VVW РМ: для высокопроизводительных применений при регулировании выходной скорости без датчика скорости.
- Бессенсорное векторное управление: для высокопроизводительных приложений регулирования выходной скорости без датчика скорости.
- Векторное управление с датчиком: для высокопроизводительных применений при регулировании выходной скорости с устойчивостью управления при нулевой скорости с помощью датчика скорости.

В Глава 9 СКАЛЯРНОЕ УПРАВЛЕНИЕ V/f на странице 9-1, Глава 10 УПРАВЛЕНИЕ VVW на странице 10-1, Глава 11 УПРАВЛЕНИЕ VVW РМ на странице 11-1 и Глава 13 ВЕКТОРНОЕ УПРАВЛЕНИЕ на странице 13-1 каждый из этих видов управления, соответствующие параметры и указания по использованию каждого из этих режимов подробно описаны.

Р0202 – Тип управления

Регулируемый 0 = V/f

диапазон: 1 = без функции

2 = без функции

3 = Бессенсорное векторное управление 4 = Векторное управление с помощью датчика

5 = VVW

6 и 7 = Не используется

8 = VVW PM

9 = Зарезервировано 10 = VVW HSRM

Свойства:

Группы доступа STARTUP

через ЧМИ:

Описание:

Этот параметр выбирает тип управления трехфазным асинхронным двигателем или трехфазным двигателем с постоянными магнитами.

ПРИМЕЧАНИЕ!

Элементы управления VVW PM и VVW HSRM не поддерживаются моделями CFW500 IP20 типоразмера А. При установке Р0202 = 8 или 10 в преобразователе ІР20 типоразмера А он переходит в состояние CONFIG.

Заводские 0

настройки:

Р0139 - Фильтр выходного тока

Свойства: V/f, VVW

Группы доступа через ЧМИ:

Описание:

Постоянная времени фильтра для общего и активного выходного тока. Необходимо учесть, что время отклика фильтра в три раза больше постоянной времени, установленной в Р0139 (50 мс).

Р0140 - Фильтр компенсации скольжения

Регулируемый диапазон:	От 0 до 9999 мс	Заводские настройки:	500 мс
Свойства:	VVW		
Группы доступа через ЧМИ:			

Описание:

Постоянная времени фильтра для компенсации скольжения выходной частоты. Необходимо учесть, что время отклика фильтра в три раза больше постоянной времени, установленной в Р0140 (500 мс).

Р0397 - Конфигурация управления

Регулируемый диапазон:	Бит 0 = Реген. Комп. скольжения Бит 1 = Компенсация времени простоя Бит 2 = Стабилизация Iо Бит 3 = Red. Р0297 до A0050 Бит 4 = Зарезервировано Бит 5 = Компенсация Ud для VVW PM Бит 6 = Команда STO/SS1-t Edge Бит 7 = Команда Fault Edge Бит 8 = Пожарный режим DIx Бит 9 = MTPA VVW PM/HSRM Бит 10 = I/f VVW PM/HSRM Бит 11 = F0076 VVW HSRM	Заводские настройки:	0E6F
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Этот параметр конфигурации вводится в шестнадцатеричном виде, а каждому биту присваивается свое значение в соответствии с описанием ниже.

Компенсация скольжения во время регенерации (бит 0)

Регенерация – это рабочий режим преобразователя, который активируется, когда поток мощности поступает из двигателя в преобразователь. Бит 0 параметра Р0397 (значение 0) позволяет отключить компенсацию скольжения в этом случае. Эта опция особенно важна, когда необходима компенсация во время замедления двигателя.

Компенсация времени простоя (бит 1)

Время простоя – это промежуток времени, внедренный в ШИМ, который необходим для коммутации мощного преобразовательного моста. С другой стороны, время простоя создает искажения напряжения, подаваемого на двигатель, что может привести к уменьшению крутящего момента при низких скоростях и колебание тока в двигателях более 5 л. с., работающих без нагрузки. Поэтому компенсация времени простоя измеряет ширину импульса напряжения и компенсирует это искажение, возникающее вследствие времени простоя.

Бит 1 параметра Р0397 (значение 0) позволяет отключить эту компенсацию. Эта функция особенно эффективна, если существует проблема, связанная с внутренней цепью преобразователя для обратной связи импульсов, которая приводит к отказу F0182. Таким образом, компенсацию и отказ можно отключить, если нельзя устранить первопричину проблемы.

■ Стабилизация выходного тока (бит 2)

Высокопроизводительные двигатели мощностью более 5 л. с. работают на грани стабильности и могут становиться нестабильными, если управляются преобразователями частоты и работают без нагрузки. Поэтому в этой ситуации в выходном токе может возникать резонанс, который может достичь уровня сверхтока F0070. Бит 2 параметра P0397 (значение 1) активирует алгоритм регулирования выходного тока в замкнутой цепи, который пытается компенсировать резонирующие колебания тока, таким образом улучшая производительность при низкой нагрузке или без нее. Такая ситуация с нагрузкой возникает только в режимах управления V/f и VVW, где преобразователь является источником напряжения.

Уменьшение Р0297 при сигнале тревоги А0050 (бит 3)

Бит 3 параметра Р0397 контролирует операцию защиты от перегрева, см. Раздел 18.4 ЗАЩИТА ОТ ПЕРЕГРЕВА БТИЗ (F0051 И A0050) на странице 18-7.

ВНИМАНИЕ!

Значение параметра Р0397, заданное по умолчанию, соответствует большинству вариантов применения преобразователя.

Поэтому не рекомендуется изменять его содержание без анализа возможных последствий. Если вы не уверены, обратитесь в службу технической поддержки WEG перед изменением P0397.

■ Нарастающий фронт импульса после команды останова через STO/SS1-t (бит 6)

Бит 6 параметра P0397 управляет функцией, которая определяет, будет ли преобразователь работать после команды останова через STO/SS1-t. Если этот параметр включен, в источнике команд, настроенном для Пуска/Останова – P0224 и P0227, потребуется нарастающий фронт импульса.

По умолчанию эта функция включена.

■ Нарастающий фронт импульса после команды останова через сброса неисправности (бит 7) Бит 7 параметра Р0397 управляет функцией, которая определяет, будет ли преобразователь работать после команды останова через сброса неисправности. Если этот параметр включен, в источнике команд, настроенном для Пуска/Останова – Р0224 и Р0227, потребуется нарастающий фронт импульса.

По умолчанию эта функция отключена.

■ Пожарный режим DIx (Бит 8)

Бит 8 параметра Р0397 управляет функцией, которая инвертирует уровень срабатывания цифрового входа, установленного в Пожарный режим. Другими словами, если он активен на низком уровне, то с помощью этого бита его можно инвертировать в активный высокий уровень.

По умолчанию эта функция отключена.

■ MTPA VVW PM/HSRM (Бит 9)

Бит 9 параметра Р0397 включает MTPA для управления VVW PM/HSRM.

По умолчанию эта функция включена.

I/f VVW PM / HSRM (Бит 10)

Бит 10 параметра P0397 управляет функциональностью тока I/f для элементов управления VVW PM и VVW HSRM (P0202 = 8 и 10). Другими словами, он позволяет использовать все параметры, относящиеся к регулятору I/f — P0449, P0450, P0451, P0453, P0455, P0456 и P0457.

По умолчанию эта функция включена.

■ F0076 VVW HSRM (Бит 11)

Бит 11 параметра Р0397 управляет функцией идентификации замыкания фазы (F0076) для управления VVW HSRM (P0202 = 10). Другими словами, он позволяет осуществлять мониторинг обрыва фазы (F0076) независимо от маски неисправностей P0343 только для управления VVW HSRM.

По умолчанию эта функция включена.

9 СКАЛЯРНОЕ УПРАВЛЕНИЕ V/F

Это классический метод управления для трехфазных асинхронных двигателей, который основывается на кривой, связывающей выходную частоту и напряжение. Преобразователь работает как источник переменной частоты и напряжения, генерируя их сочетание в соответствии с настроенной кривой. Можно настроить эту кривую для стандартных 50 и 60 Гц или специальных двигателей.

Согласно блок-схеме на Рисунок 9.1 на странице 9-2, уставка скорости **f*** ограничивается параметрами Р0133 и Р0134 и применяется ко входу блока «кривая V/f», где обеспечивается получение амплитуды выходного напряжения и частоты, применяемых к двигателю. Дополнительную информацию об уставке скорости см. в Глава 7 ЛОГИЧЕСКАЯ КОМАНДА И УСТАВКА СКОРОСТИ на странице 7-1.

При мониторинге общего и активного выходного тока, а также напряжения вставки постоянного тока, применяются компенсаторы и регуляторы для обеспечения защиты и требуемых характеристик управления V/f. Работа и параметризация таких блоков де-тально о писаны в Раздел 9.3 ОГРАНИЧЕНИЯ НАПРЯЖЕНИЯ ПРОМЕЖУТОЧНОГО ЗВЕНА ПОСТОЯННОГО ТОКА И ВЫХОДНОГО ТОКА на странице 9-9.

Преимущество режима управления V/f – его простота и необходимость в настройке лишь нескольких параметров. Запуск осуществляется быстро и просто, при этом модификации минимальны или вообще не требуются. Кроме того, в случаях, когда условия применения позволяют требуемым образом настроить кривую V/f, обеспечивается экономия электроэнергии.

Скалярное управление или V/f обычно рекомендуется в следующих случаях:

- управление несколькими двигателями посредством одного преобразователя (работа с несколькими двигателями).
- экономия энергии в приводе нагрузок с квадратичным соотношением крутящего момента и скорости.
- номинальный ток двигателя ниже 1/3 номинального тока преобразователя.
- преобразователь в испытательных целях включен без двигателя или с небольшим двигателем без нагрузки.
- в условиях применения, когда нагрузка, связанная с преобразователем, не трехфазный асинхронный двигатель.
- Сохранение энергии.

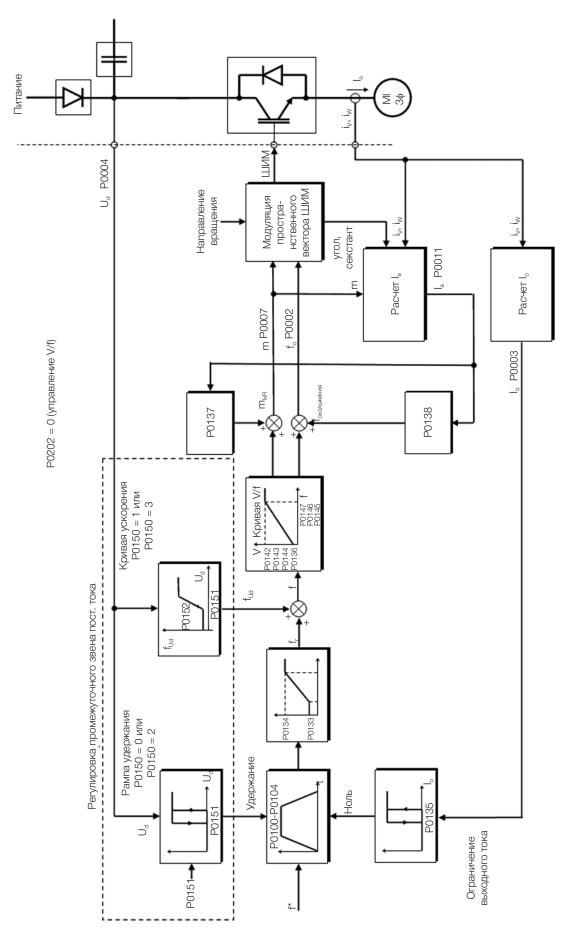


Рисунок 9.1: Блок-схема управления шкалой V/f

9.1 ПАРАМЕТРИЗАЦИЯ СКАЛЯРНОГО УПРАВЛЕНИЯ V/F

Скалярное управление — режим управления преобразователя по умолчанию из-за его популярности и соответствия большинству рыночных целей. Однако параметр Р0202 позволяет выбрать другиеопции режима управления, как описано в Глава 8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ на странице 8-1.

Кривая V/f полностью настраивается по пяти различным точкам, как показано на Рисунок 9.2 на странице 9-3, хотя заводские настройки по умолчанию определяют предустановленную кривую для двигателей50 или 60 Гц, согласно опций Р0204. В этом формате точка P_0 определяет амплитуду, применяемую при 0 Гц, а точка P_3 номинальную амплитуду и частоту, а также начало ослабления поля. Промежуточные точки P_1 и P_2 позволяют настроить кривую для нелинейного соотношения между крутящим моментом и скоростью, например, для вентиляторов, если крутящий момент нагрузки квадратичный относительно скорости. Область ослабления поля определяется между точками P_3 и P_4 , где амплитуда поддерживается на уровне 100 %.

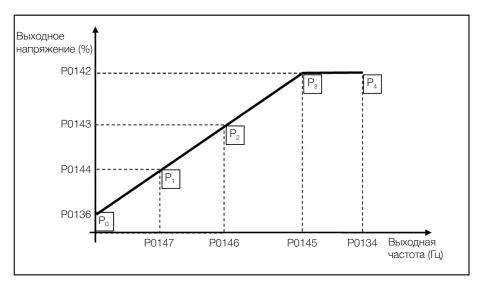


Рисунок 9.2: Кривая V/f

Заводские параметры CFW500 по умолчанию определяют линейное соотношение крутящего момента и скорости, перекрывая точки P1, P2 и P3 при 50 или 60 Гц; см. описание параметра P0204. Таким образом, кривая V/f — прямая линия F, формируемая лишь двумя точками: P0136, которая является константой или напряжением при 0 Гц, и точкой номинальной частоты и напряжения (50 или 60 Гц и 100 % от максимального выходного напряжения).

Точки $\mathbf{P_0}$ [Р0136, 0 Гц], $\mathbf{P_1}$ [Р0144, Р0147], $\mathbf{P_2}$ [Р0143, Р0146], $\mathbf{P_3}$ [Р0142, Р0145] и $\mathbf{P_4}$ [100 %, Р0134] можно настраивать, чтобы соотношение напряжения и частоты на выходе формировало идеальную кривую нагрузки. Следовательно, для нагрузок, при которых характеристики крутящего момента будут квадратичными относительно скорости, например в центробежных насосах и вентиляторах, точки кривой можно корректировать для обеспечения экономии энергии.

ПРИМЕЧАНИЕ!

Квадратичная кривая V/f может аппроксимироваться по точкам с такими значениями: P0136 = 0; P0144 = 11,1 % и P0143 = 44,4 %.

ПРИМЕЧАНИЕ!

Если P0147 \geq P0146, P0146 \geq P0145 или кривая V/f формирует сегмент с наклоном (производной) более 10 % / Гц, активируется состояние КОНФИГУРАЦИИ (CONF).

ПРИМЕЧАНИЕ!

При частотах ниже 0,1 Гц выходные импульсы ШИМ обрезаются, кроме случаев, когда преобразователь работает в режиме торможения постоянным током.

Р0136 - Ручное увеличение крутящего момента

Регулируемый	От 0,0 до 30,0 %	Заводские	В соответствии
диапазон:		настройки:	с моделью преобразователя
Свойства:	V/f, VVW PM, VVW HSRM		
Группы доступа	BASIC, MOTOR		

через ЧМИ:

Описание:

Этот параметр активируется при низких скоростях, т. е. в диапазоне от 0 Гц до Р0147, увеличивая выходное напряжение преобразователя для компенсации падения напряжения в сопротивлении статора двигателя, чтобы сохранить коэффициент крутящего момента.

Оптимальная настройка — наименьшее значение параметра P0136, позволяющее удовлетворительно запустить двигатель. Значение, превышающее необходимое, чрезмерно увеличит ток двигателя на низких скоростях, что может привести к состоянию отказа (F0048, F0051 или F0070) или тревоги (A0046, A0047 или A0050) преобразователя, а также перегреву двигателя. Рисунок 9.3 на странице 9-4 показана область активации увеличения крутящего момента между точками P_0 и P_1 .

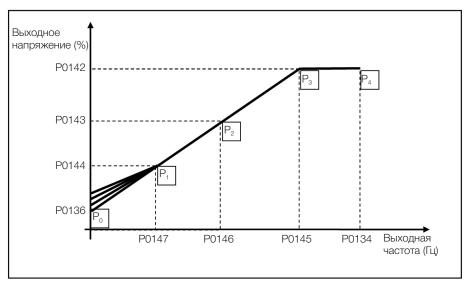


Рисунок 9.3: Область повышения крутящего момента

Р0142 - Максимальное выходное напряжение

Р0143 – Промежуточное выходное напряжение

Р0144 – Максимальное выходное напряжение

Регулируемый От 0,0 до 100,0 % диапазон: Заводские P0142 = 100,0 % настройки: P0143 = 66,7 %

P0144 = 33,3 %

Свойства: cfg, V/f, VVW PM, VVW HSRM

Группы доступа через ЧМИ:

Описание:

Эти параметры позволяют настроить кривую V/f преобразователя вместе с ее упорядоченными парами P0145, P0146 и P0147.

ПРИМЕЧАНИЕ!

В скалярном режиме V/f параметр P0178 позволяет регулировать напряжение инвертора на выходе после определения кривой V/f. Это может быть полезно в условиях применения, где требуется компенсация выходного напряжения или ослабление поля. В режиме управления VVW характеристики параметра P0178 изменяют и определяют только номинальный поток, связанный с интенсивностью потока магнитной индукции, подаваемого на двигатель.

Р0145 – Начальная частота ослабления поля

Р0146 – Промежуточная выходная частота

Р0147 - Низкая выходная частота

Регулируемый От 0,0 до 500,0 Γ ц Заводские Р0145 = 60,0 (50,0) Γ ц диапазон: Р0146 = 40,0 (33,3) Γ ц

Р0147 = 20,0 (16,7) Гц

Свойства: cfg, V/f, VVW PM, VVW HSRM

Группы доступа через ЧМИ:

Описание:

Эти параметры позволяют настроить кривую V/f преобразователя вместе с ее упорядоченными парами P0142, P0143 и P0144.

Кривую V/f можно настраивать в тех случаях, когда номинальное напряжение двигателя меньше, чем напряжение блока питания, например, в блоке питания 440 В с двигателем 380 В.

Корректировка кривой U/f необходима, когда требуется квадратичная аппроксимация для энергосбережения в центробежных насосах и вентиляторах или в особых случаях: когда между преобразователем и двигателем используется трансформатор или преобразователь используется в качестве источника питания.

P0148 - Действие V/f

Регулируемый 0 = Стандартное V/f **Заводские** 0 **диапазон:** 1 = Устройство плавного пуска (напряжение) **настройки:**

Свойства: cfg, V/f

Группы доступа через ЧМИ:

Описание:

Параметр Р0148 определяет выходной сигнал управления U/f. Если установлено значение 1, преобразователь работает как устройство плавного пуска, то есть изменяет только выходное напряжение во время линейного изменения до фиксированной выходной частоты в соответствии с опорным входом (Р0001).

ПРИМЕЧАНИЕ!

Параметр Р0148 позволяет использовать преобразователь в качестве источника синусоидального напряжения постоянной частоты для питания трансформаторов, фильтров и других электрических цепей с заданной фиксированной частотой.

Р0137 – Автоматическое увеличение крутящего момента

 Регулируемый диапазон:
 От 0,0 до 30,0 % настройки:
 Заводские настройки:
 0,0 % настройки:

 Свойства:
 V/f

 Группы доступа через ЧМИ:
 МОТОК
 4

Описание:

Автоматическое увеличение крутящего момента компенсирует спад напряжения на сопротивлении статора под влиянием активного тока. На Рисунок 9.1 на странице 9-2, где переменная $\mathbf{m}_{\mathbf{k}\mathbf{R}}$ соответствует действию по автоматическому увеличению крутящего момента в индексе модуляции, определенном кривой V/f.

Р0137 действует схожим с Р0136 образом, но установленное значение применяется пропорциональным образом к активному выходному току относительно максимального тока (2хР0295).

Критерии настройки Р0137 идентичны критериям для Р0136. То есть, установите максимально допустимое низкое значение для запуска и эксплуатации двигателя на низкой частоте вращения, поскольку более высокие значения увеличивают потери, нагрев и перегрузку двигателя и преобразователя.

Блок-схема на Рисунок 9.4 на странице 9-6 показывает действие автоматической компенсации IxR, отвечающейза приращение напряжения на выходе кривой в соответствии с увеличением активного тока.

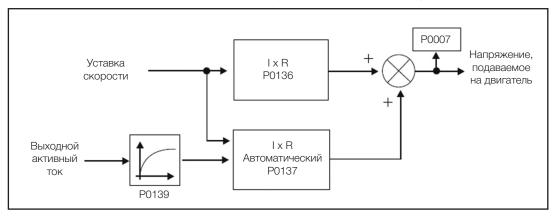


Рисунок 9.4: Блок-схема автоматического увеличения крутящего момента

Р0138 - Компенсация скольжения

Регулируемый диапазон:	от -10,0 до 10,0 %	Заводские настройки:	0,0 %
Свойства:	V/f		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Параметр Р0138 используется для функции компенсации проскальзывания двигателя, если установлен на положительные значения. В данном случае он компенсирует падение скорости вследствие применения нагрузки на вал и, следовательно, проскальзывание. В этом случае он увеличивает выходную частоту (Δf), рассматривая увеличение активного тока двигателя, как показано на Рисунок 9.5 на странице 9-7. На Рисунок 9.1 на странице 9-2 данная компенсация представлена в виде переменной $\mathbf{f}_{\text{проскальзывания}}$.

Параметр в Р0138 позволяет регулировать компенсацию проскальзывания с большой точностью, перемещая рабочую точку на кривой V/f, как показано на Рисунок 9.5 на странице 9-7. После установки Р0138 преобразователь способен поддерживать постоянную скорость даже при изменении нагрузки.

Отрицательные значения используются в особых приложениях, когда необходимо снизить выходную скорость при увеличении тока двигателя.

Например, при распределении нагрузки на двигатели, работающие параллельно.

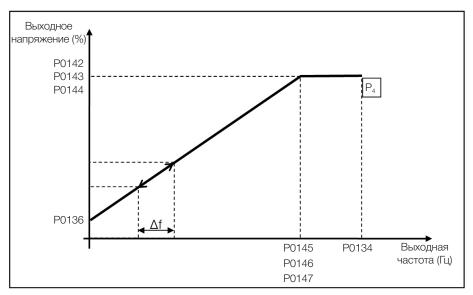


Рисунок 9.5: Компенсация проскальзывания в рабочей точке стандартной кривой V/f

Р0339 - Компенсация выходного напряжения в V/f

 Регулируемый
 0 = Не активно
 Заводские
 О

 диапазон:
 1 = Активно
 настройки:

Свойства: cfg

Группы доступа через ЧМИ:

Описание:

Этот параметр активирует компенсацию выходного напряжения для управления V/f, когда напряжение питания преобразователя превышает номинальное значение. Это гарантирует, что значение напряжения, подаваемого на двигатель, будет номинальным.

Например: P0296 = 380 B, P0400 = 380 B и напряжение питания инвертора при 380 B + 15% = 437 B. В этом случае при активной компенсации (P0339 = 1) и при работе преобразователя с частотой 60Γ ц (синхронная скорость) напряжение, подаваемое на электродвигатель, составляет 380 B. Если компенсация не активна (P0339 = 0), напряжение, подаваемое на электродвигатель, составляет 437 B.

Р0179 - Перемодуляция

Регулируемый От 100,0 до 110 % **Заводские** 100,0 % **диапазон:** настройки:

Описание:

Этот параметр позволяет увеличить выходное напряжение, воздействующее на перемодуляцию.

ВНИМАНИЕ!

Значение параметра Р0179, заданное по умолчанию, соответствует большинству вариантов применения преобразователя. Поэтому не рекомендуется изменять его содержание без анализа возможных последствий. Если вы не уверены, обратитесь в службу технической поддержки перед изменением Р0179.

9.2 ЗАПУСК В РЕЖИМЕ V/F

ПРИМЕЧАНИЕ!

Перед установкой, включением или эксплуатацией инвертора прочтите главу 3 «Установка и подключение» руководства пользователя CFW500.

Последовательность установки, проверки, подключения питания и запуска.

- 1. Установите инвертор: в соответствии с главой 3 «Установка и подключение» руководства пользователя CFW500, выполнив все силовые и управляющие подключения.
- 2. Подготовьте и включите преобразователь согласно разделу 3.2 «Установка электрической части» руководства пользователя CFW500.
- 3. Загрузите заводские настройки по умолчанию Р0204 = 5 (60 Гц) или Р0204 = 6 (50 Гц) согласно номинальной входной частоте (источник питания) используемого преобразователя.
- 4. Используйте «Ориентированный пуск» с P0317 = 1 для настройки основных параметров режима V/f (P0202 = 0). В руководстве пользователя CFW500 показана последовательность экранов «Ориентированного пуска» скалярного управления V/f.

- 5. После «Ориентированного пуска» установите номинальное напряжение сети (Р0296) и номинальные значения коэффициента эксплуатации двигателя (Р0398), напряжения (Р0400), тока (Р0401), частоты (Р0403), скорости (Р0402) и мощности (Р0404). В дополнение к этим параметрам Р0406 определяет тип вентиляции двигателя для автоматической настройки Р0156, Р0157 и Р0158.
- 6. Параметр Р0407 позволяет настроить коэффициент мощности двигателя, используемый в функции энергосбережения; см Раздел 9.4 СОХРАНЕНИЕ ЭНЕРГИИ на странице 9-15.
- 7. Установка параметра P0408 = 1 активирует самонастройку сопротивления статора двигателя в P0409. Правильная настройка P0409 может улучшить тормозной момент постоянного тока; см. Раздел 14.5 ТОРМОЖЕНИЕ ПОСТОЯННЫМ ТОКОМ на странице 14-13.
- 8. Для установки кривой V/f, отличной от кривой по умолчанию, установите кривую V/f, используя параметры P0136 P0147.
- 9. Установка специальных параметров и функций для приложения: программирование цифровых и аналоговых входов и выходов, клавиш ЧМИ и т. д. в соответствии с требованиями приложения.

Более подробную информацию о самонастройке параметра Р0409 см. в Пункт 13.7.5 Самонастройка на странице 13-19 настоящего руководства.

Для приложений:

- Для простых приложений, которые могут использовать программирование по умолчанию аналоговых и цифровых входов и выходов, используйте меню ЧМИ BASIC (Простое).
- Для приложений, требующих лишь аналоговых и цифровых входов и выходов с программированием, отличным от заводского по умолчанию, используйте меню ЧМИ I/O (Вход/выход).
- Для приложений, требующих таких функций, как Пуск с хода, Компенсация провалов напряжения в сети, Торможение постоянным током, Динамическое торможение и т.п. доступ и изменение параметров данных функций осуществляется в меню ЧМИ PARAM (Параметры).

9.3 ОГРАНИЧЕНИЯ НАПРЯЖЕНИЯ ПРОМЕЖУТОЧНОГО ЗВЕНА ПОСТОЯННОГО ТОКА И ВЫХОДНОГО ТОКА

Ограничения напряжения промежуточного звена постоянного тока и выходного тока являются защитными функциями преобразователя, которые воздействуют на управление линейным изменением согласно настройкам P0150 с целью сдерживания роста напряжения промежуточного звена постоянного тока и выходного тока. В данном случае следование опорному значению кривой блокируется и выходная скорость следует 3-й кривой (P0106) для P0133 или P0134.

Если напряжение промежуточного звена постоянного тока слишком велико, преобразователь может заморозить (удержать) кривую замедления или увеличить выходную скорость для поддержания данного напряжения. С другой стороны, если выходной ток слишком высок, преобразователь может замедлить или заморозить (удержать) кривую ускорения для снижения силы этого тока. Данные действия предотвращают возникновение ошибок F0022 и F0070 соответственно.

Оба случая защиты обычно срабатывают в различные моменты работы преобразователя, но в случае одновременного возникновения, по определению, ограничение звена постоянного тока имеет больший приоритет, чем ограничение выходного тока.

Существует два режима ограничения напряжения звена постоянного тока в процессе торможения двигателя: «Удержание кривой» (Р0150 = 0 или 2) и «Ускорение кривой» (Р0150 = 1 или 3). Оба режима задействуют ограничение тормозящего момента и мощности, тем самым предотвращая отключение преобразователя по причине перегрузки по напряжению (F0022). Данная ситуация часто возникает, когда происходит замедление нагрузки с большим моментом инерции, или установлен короткий период замедления.

ПРИМЕЧАНИЕ!

Защитные функции преобразователя используют 3^{-ю} кривую, заданную Р0106, для ускорения и замедления.

9.3.1 Ограничение напряжения промежуточного звена постоянного тока с помощью функции «Удержание кривой» P0150 = 0 или 2

- Функция действует только в процессе замедления.
- Включение: когда напряжение промежуточного звена постоянного тока достигает уровня, указан-ного в Р0151, на блок «кривой» отправляется команда, которая уменьшает изменение скоростидвигателя согласно Рисунок 9.1 на странице 9-2 и Рисунок 10.1 на странице 10-2.
- Используйте рекомендованный привод нагрузки с большим моментом инерции по отношению к валу двигателя или нагрузкам, требующим коротких кривых замедления.

9.3.2 Ограничение напряжения промежуточного звена пост. тока с помощью «Ускорение кривой» P0150 = 1 или 3

- Функция действует при любых условиях работы двигателя, независимо от текущего состояния: ускорение, торможение или постоянная скорость.
- Включение: напряжение промежуточного звена постоянного тока измеряется (Р0004) и сравнивается со значением, установленным в Р0151; разница между данными сигналами (ошибка) умножается на пропорциональное усиление (Р0152); результат затем добавляется к выходу кривой как показано на Рисунок 9.8 на странице 9-12 и Рисунок 9.10 на странице 9-14.
- Используйте рекомендованный привод нагрузки, требующий тормозящего момента в ситуации с постоянной скоростью на выходе преобразователя. Например, привод нагрузок с эксцентрическим валом как в штанговых глубинных насосах; другим применением является управление нагрузкой с балансировкой, как при перемещении на мостовых кранах.

ПРИМЕЧАНИЕ!

При использовании реостатического торможения функция «Удержание кривой» или «Кривая ускорения» отключается путем установки Р0151 на значение, превышающее уровень неисправности F0022 (см. Таблица 18.3 на странице 18-9).

Р0150 - Регулятор вставки V/f постоянного тока

Регулируемый $0 = \text{hold_Ud}$ и decel_LCЗаводские0диапазон: $1 = \text{accel_Ud}$ и decel_LCнастройки:

2 = hold_Ud и hold_LC 3 = accel_Ud и hold_LC

Свойства: cfg, V/f, VVW

Группы доступа

MOTOR

через ЧМИ:

.....

Описание:

Р0150 настраивает поведение кривой для функций ограничения промежуточного звена постоянного тока и силы тока. В данных случаях кривая игнорирует уставку и осуществляет ускорение (accel), замедление (decel) или замораживание (hold) нормального движения кривой. Это происходит по причине ограничения, предварительно установленного в Р0151 и Р0135 для промежуточного звена постоянного тока (Ud) и для ограничения тока (LC) соответственно.

Р0151 - Режим регулировки промежуточного звена постоянного тока

Регулируемый диапазон:От 339 до 1200 ВЗаводские настройки:400 В (Р0296 = 0)воо в (Р0296 = 1)800 В (Р0296 = 2)воо в (Р0296 = 3)800 В (Р0296 = 4)1000 В (Р0296 = 5)1000 В (Р0296 = 6)1000 В (Р0296 = 7)

Свойства: V/f, VVW, VVW PM, VVW HSRM

Группы доступа через ЧМИ:

Описание:

Уровень напряжения для активации регулирования напряжения звена постоянного тока, который должен быть совместим с напряжением питания. Хотя диапазон регулировки Р0151 широк (от 339 до 1200 В), действуют только значения, определенные диапазоном срабатывания в Таблица 9.1 на странице 9-11, то есть значения ниже диапазона срабатывания ограничиваются внутренне при выполнении функции, а значения выше запрещены неисправностью F0022.

ПРИМЕЧАНИЕ!

Уровень регулирования звена постоянного тока для управления VVW PM осуществляется путем удержания кривой при замедлении двигателя.

Таблица 9.1: Диапазон срабатывания регулирования звена постоянного тока

Входное напряжение	Номинальное промежуточное звено постоянного тока	Диапазон срабатывания Р0151	Р0151 по умолчанию заводской
От 200 до 240 В перем. тока	339 В пост. тока	От 340 до 410 В пост. тока	400 В пост. тока
От 380 до 480 В перем. тока	678 В пост. тока	От 680 до 810 В пост. тока	800 В пост. тока
От 500 до 600 В перем. тока	846 В пост. тока	От 850 до 1000 В пост. тока	1000 В пост. тока

Р0152 – пропорциональный коэффициент регулятора напряжения промежуточного звена постоянного тока

 Регулируемый диапазон:
 От 0,00 до 9,99
 Заводские 1,50 настройки:

 Свойства:
 V/f, VVW, VVW PM, VVW HSRM

 Группы доступа через ЧМИ:

Описание:

Пропорциональный коэффициент регулятора напряжения промежуточного звена постоянного тока.

Когда опция Р0150 установлена на 1 или 3, значение Р0152 умножается на «ошибку» напряжения промежуточного звена постоянного тока, т. е. ошибка = текущее напряжение промежуточного звена постоянного тока – Р0151. Результат напрямую прибавляется к выходной частоте преобразователя в Гц. Данный ресурс обычно используется во избежание превышения напряжения при применении с эксцентрическими нагрузками.

Рисунок 9.6 на странице 9-12-Рисунок 9.9 на странице 9-13 показаны блок-схемы и примеры графиков.

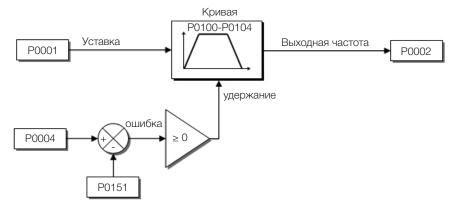
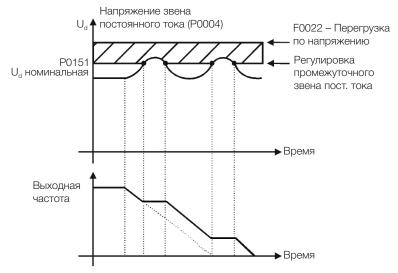



Рисунок 9.6: Блок-схема ограничения напряжения промежуточного звена постоянного тока – удержание кривой

Рисунок 9.7: Пример графика ограничения напряжения промежуточного звена постоянного тока – удержание кривой

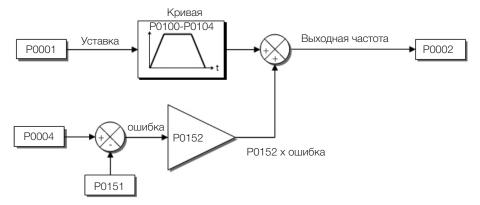


Рисунок 9.8: Блок-схема ограничения напряжения промежуточного звена постоянного тока – ускорение кривой

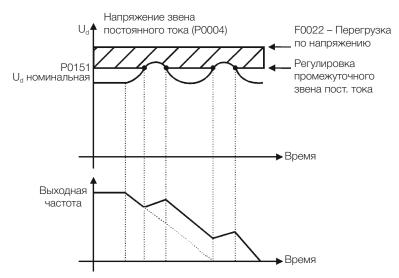


Рисунок 9.9: Пример графика ограничения напряжения промежуточного звена постоянного тока – ускорение кривой

Как и при регулировке напряжения промежуточного звена постоянного тока, регулировка выходного тока также имеет два режима работы: «удержание кривой» (P0150 = 2 или 3) и «замедление кривой» (P0150 = 0 или 1). Оба режима задействуют ограничение тормозящего момента и мощности, тем самым предотвращая отключение преобразователя по причине перегрузки по напряжению (F0070). Данная ситуация часто возникает, когда происходит замедление нагрузки с большим моментом инерции, или установлен короткий период замедления.

9.3.3 Ограничение выходного тока с помощью функции «Удержание кривой» P0150 = 2 или 3

- Это предохраняет двигатель от разрушения вследствие перегрузки крутящего момента при ускорении или замедлении.
- Включение: если ток двигателя превышает значение, указанное в Р0135, во время разгона или замедления, скорость больше не будет повышаться (ускорение) или понижаться (замедление). Когда ток двигателя достигает значения ниже Р0135, двигатель снова начнет ускорение или замедление. См. Рисунок 9.10 на странице 9-14.
- Действует быстрее, чем режим «Замедление кривой».
- Он действует при переходе в двигательный режим и в режиме регенерации.

9.3.4 Ограничение выходного тока с помощью функции «Замедление кривой» P0150 = 0 или 1

- Это предохраняет двигатель от разрушения вследствие перегрузки крутящего момента при ускорении или работе с постоянной скоростью.
- Включение: если ток двигателя превышает значение, установленное в Р0135, для ввода кривой скорости используется нулевое значение, что приводит к замедлению двигателя. Когда ток двигателя достигает значения ниже Р0135, двигатель снова начнет ускорятся. См. Рисунок 9.10 на странице 9-14.

Р0135 - Максимальный выходной ток

Регулируемый От 0,0 до 400,0 А **диапазон:**

Заводские В зависимости от **настройки:** модели и области применения

преобразователь

Свойства: V/f, VVW, VVW PM, VVW HSRM

Группы доступа через ЧМИ:

BASIC, MOTOR

Описание:

Уровень тока для включения ограничения тока для режимов удержания и замедления кривой, как по-казано на Рисунок 9.10 на странице 9-14, соответственно.

ПРИМЕЧАНИЕ!

Для управления VVW PM и VVW HSRM ограничение выходного тока работает в режиме удержания кривой, если двигатель ускоряется. Если двигатель находится в режиме ограничения тока и не ускоряется, скорость двигателя уменьшается в зависимости от размера нагрузки. Для управления VVW PM и VVW HSRM значение ограничения тока двигателя после ориентированного пуска составляет 1,5 x P0401.

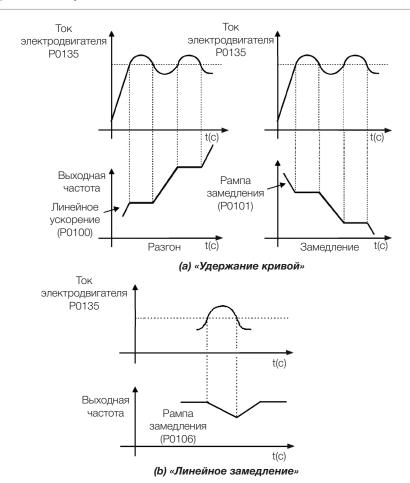


Рисунок 9.10: (a) и (b) Режимы активации ограничения тока через P0135

9.4 СОХРАНЕНИЕ ЭНЕРГИИ

КПД машины определяется как соотношение между выходной механической мощностью и входной электрической мощностью. Помните, что механическая мощность – это произведение крутящего момента на скорость ротора, а входная электрическая мощность - это сумма выходной механической мощности и потерь двигателя.

В случае трехфазного асинхронного двигателя оптимизированный КПД достигается при 34 номинальной нагрузки. В области ниже этой точки функция энергосбережения показывает наилучшие результаты.

Функция энергосбережения воздействует непосредственно на напряжение, подаваемое на выход преобразователя; таким образом, соотношение потоков, подаваемых на двигатель, изменяется так, чтобы уменьшить потери двигателя и повысить эффективность, что, следовательно, снижает потребление и шум.

Функция активна, если нагрузка ниже максимального значения (Р0588), а скорость выше минимального значения (Р0590). Кроме того, чтобы предотвратить остановку двигателя, подаваемое напряжение ограничивается минимально допустимым значением (РО589). Группа параметров, представленная в последовательности, определяет те и другие характеристики, необходимые для функции энергосбережения.

Р0407 – Номинальный коэффициент мощности двигателя

Регулируемый От 0,50 до 0,99 Заводские 0.80 настройки:

диапазон:

Свойства: cfg, V/f, VVW, VVW PM, VVW HSRM

через ЧМИ:

Группы доступа МОТОR, STARTUP

Описание:

Настройка номинального коэффициента мощности двигателя.

Для обеспечения правильной работы функции энергосбережения необходимо правильно установить коэффициент мощности двигателя в соответствии с данными на паспортной табличке двигателя.

Примечание:

При данных паспортной таблички двигателя и в приложениях с постоянным крутящим моментом оптимальная эффективность двигателя обычно достигается при активной функции энергосбережения. В некоторых случаях выходной ток может увеличиваться, и тогда необходимо постепенно уменьшать значение этого параметра до точки, в которой значение тока остается равным или ниже значения тока, полученного при отключенной функции.

Информацию о срабатывании Р0407 в режиме управления VVW см. Раздел 10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW на странице 10-3.

Р0588 – Максимальный уровень крутящего момента

Регулируемый диапазон:	От 0 до 85 %	Заводские настройки:	0 %
Свойства:	V/f		
Группы доступа через ЧМИ:	MOTOR, NET		

Описание:

Этот параметр определяет значение крутящего момента для активации работы функции энергосбережения.

Установка этого параметра на ноль (Р0588 = 0) отключает эту функцию.

Рекомендуется установить этот параметр на 60 %, но его необходимо установить в соответствии с требованиями приложения.

Р0589 – Уровень минимального приложенного напряжения

 Регулируемый диапазон:
 От 8 до 40 % настройки:
 40 % настройки:

 Свойства:
 V/f

 Группы доступа через ЧМИ:
 МОТОЯ, NЕТ

Описание:

Этот параметр определяет минимальное значение напряжения, которое будет приложено к двигателю, когда функция энергосбережения активна. Это минимальное значение относится к напряжению, определяемому кривой V/f для определенной скорости.

Р0590 - Минимальный уровень скорости

Регулируемый диапазон:	От 360 до 18000 об/мин	Заводские настройки:	
Свойства:	V/f		
Группы доступа через ЧМИ:	MOTOR, NET		

Описание:

Этот параметр определяет минимальное значение скорости, при котором функция энергосбережения будет оставаться активной.

Гистерезис минимального уровня скорости составляет 2 Гц или 60 об/мин для 4-полюсных двигателей.

Р0591 – Гистерезис для максимального уровня крутящего момента

	От 0 до 30 %	Заводские	10%
диапазон:		настройки:	
Свойства:	V/f		
Группы доступа	MOTOR, NET		
через ЧМИ:			

Описание:

Гистерезис используется для активации и деактивации функции энергосбережения.

Если функция активна и выходной ток колеблется, необходимо увеличить значение гистерезиса.

ПРИМЕЧАНИЕ!

Невозможно установить эти параметры во время вращения двигателя.

10 УПРАВЛЕНИЕ VVW

Режим управления вектором VVW (Вектор напряжения WEG) использует метод управления с более высокими характеристиками, чем управление V/f из-за оценки крутящего момента нагрузки и управления магнитным потоком в воздушном зазоре согласное схеме на Рисунок 10.1 на странице 10-2. Согласно данной стратегии управления, для повышения качества управления оцениваются потери, эффективность, номинальное проскальзывание и коэффициент мощности двигателя.

Основным преимуществом по сравнению с режимом V/f является лучшая регулировка скорости с более высоким крутящим моментом на низких скоростях (частота ниже 5 Гц), что обеспечивает значительное улучшение производительности преобразователя в долговременных режимах работы. Кроме того, управление VVW настраивается быстро и легко и подходит для большинства применений со средними характеристиками при управлении трехфазным асинхронным двигателем.

Лишь измеряя выходной ток, управление VVW постоянно получает данные о частоте вращения и проскальзывании двигателя. Таким образом, VVW запускает компенсацию выходного напряжения и проскальзывания. Следовательно, действие контроллера VVW заменяет классические функции V/f в P0137 и P0138, но использует более сложную и точную модель расчета, учитывая различные условия нагрузки и рабочие точки применения.

Для обеспечения точной регулировки скорости при долговременной работе с надлежащим использованием управления VVW важны настройки параметров в диапазоне P0399 – P0407 и сопротивление статора P0409. Эти параметры можно прочесть на паспортной табличке двигателя и в программе самонастройки, активируемой с помощью P0408.

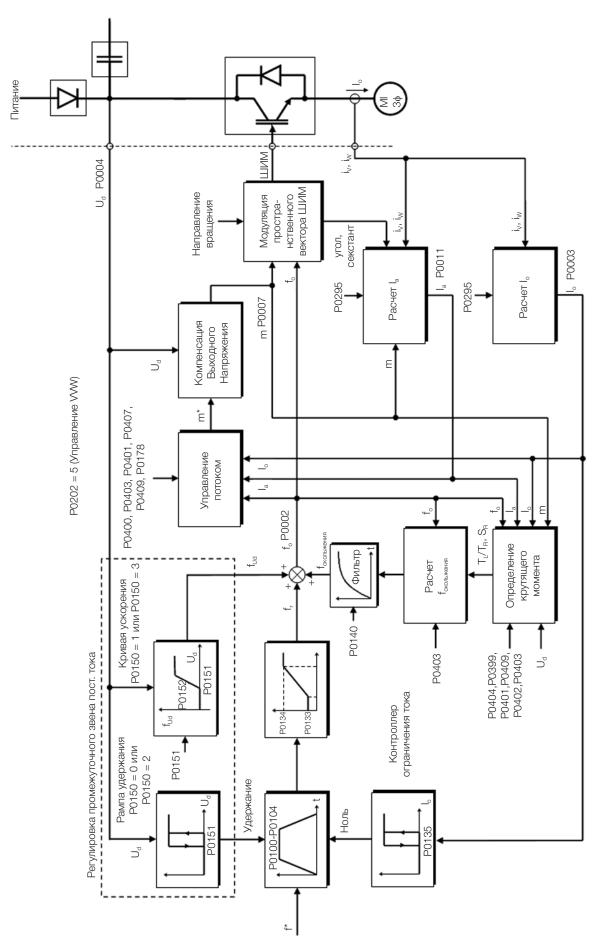


Рисунок 10.1: Диаграмма режима управления VVW

10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW

Режим управления VVW выбирается с помощью параметра P0202, выбора режима управления, согласно Глава 8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ на странице 8-1.

В противоположность скалярному управлению V/f управление VVW требует для правильного функционирования ввода данных с паспортной таблички двигателя и самонастройки. Кроме того, рекомендуется, чтобы приводимый в движение двигатель соответствовал преобразователю, т. е., мощности двигателя и преобразователя были максимально близкими.

Процесс настройки управления VVW упрощается с использованием меню ЧМИ STARTUP (ЗАПУСК), в котором соответствующие параметры для конфигурации VVW выбраны для просмотра ЧМИ.

Ниже описаны параметры для настройки векторного управления VVW. Эти данные можно легко найти на стандартных паспортных табличках двигателя. Однако на старых двигателях или двигателях других производителей данные могут быть доступны не сразу. данных случаях рекомендуется сначала обратиться к производителю двигателя, измерить или вычислить необходимый параметр. В таких случаях желательно сначала обратиться к производителю двигателя, измерить или рассчитать нужный параметр или даже составить список с данными двигателя WEG, эквивалентными тому, который используется в приложении на сайте WEG.

ПРИМЕЧАНИЕ!

Правильная установка параметров напрямую влияет на характеристики управления VVV.

Р0178 – Номинальный поток

 Регулируемый
 От 0,0 до 150,0 %
 Заводские
 100,0 %

 диапазон:
 настройки:

Группы доступа через ЧМИ:

Описание:

Определяет необходимый поток в воздушном зазоре двигателя в процентах (%) от номинального потока. В большинстве случаев нет необходимости изменять значение Р0178, равное 100 %. Однако в некоторых особых ситуациях могут использоваться немного завышенные значения для увеличения крутящего момента или заниженные для сокращения потребления энергии.

ПРИМЕЧАНИЕ!

Только в режиме скалярного управления параметр P0178 позволяет регулировать выходное напряжение после задания кривой V/f. Это может быть полезно для компенсации выходного напряжения или ослабления поля.

настройки:

Р0398 - Коэффициент перегрузки электродвигателя

 Регулируемый диапазон:
 От 1,00 до 1,50
 Заводские настройки:
 1,00

 Свойства:
 cfg

 Группы доступа
 MOTOR, STARTUP

через ЧМИ:

Описание:

Это способность выдерживать длительные перегрузки, т. е., резерв мощности, дающий двигателю возможность работать в неблагоприятных условиях.

Установите в соответствии со значением, указанным на паспортной табличке двигателя.

Влияет на защиту двигателя от перегрузки.

Р0399 – Номинальный КПД двигателя

Регулируемый От 50,0 до 99,9 % **Заводские** 75,0 %

диапазон:

Свойства: cfg,VVW

Группы доступа МОТОR, STARTUP

через ЧМИ:

Описание:

Этот параметр важен для точного управления в режиме управления VVW. Неправильная настройка приведет к неправильному вычислению компенсации проскальзывания, снижая эффективность управления скоростью.

Р0400 – Номинальное напряжение двигателя

Р0401 – Номинальный ток двигателя

Р0402 - Номинальная скорость двигателя

Р0403 - Номинальная частота двигателя

Р0404 – Номинальная мощность двигателя

Р0406 - Вентиляция двигателя

Более подробную информацию см. в Раздел 13.6 ДАННЫЕ ДВИГАТЕЛЯ на странице 13-9.

40

Р0407 - Номинальный коэффициент мощности двигателя

Регулируемый От 0,50 до 0,99 **Заводские** 0,80

диапазон: настройки:

Свойства: cfg, V/f, VVW, VVW PM, VVW HSRM

Группы доступа MOTOR, STARTUP

через ЧМИ:

Описание:

Настройки параметров Р0398, Р0399, Р0400, Р0401, Р0402, Р0403, Р0404 и Р0407 должны соответствовать данным на паспортной табличке используемого двигателя с учетом напряжения на двигателе.

Р0408 – Самонастройка

Р0409 – Сопротивление статора

Параметры функции самонастройки. См. Пункт 13.7.5 Самонастройка на странице 13-19.

10.2 ЗАПУСК В РЕЖИМЕ VVW

ПРИМЕЧАНИЕ!

Перед установкой, включением или эксплуатацией инвертора прочтите главу 3 «Установка и подключение» руководства пользователя CFW500.

Последовательность установки, проверки, подключения питания и запуска.

- 1. Установите инвертор в соответствии с главой 3 «Установка и подключение» руководства пользователя CFW500, выполнив все силовые и управляющие подключения.
- 2. Подготовьте и включите преобразователь согласно разделу 3.2 «Установка электрической части» руководства пользователя CFW500.
- 3. Загрузите заводское значение по умолчанию для Р0204 согласно номинальной частоте двигателя (установите Р0204 = 5 для двигателей с частотой 60 Гц и Р0204 = 6 для двигателей с частотой 50 Гц).
- 4. Запрограммируйте цифровые и аналоговые входы и выходы, клавиши ЧМИ и т. д. в соответствии с требованиями приложения.
- 5. Активация управления VVW: Получите доступ к параметру P0317 и активируйте «Ориентированный пуск», установив его на 1. Доступ к этому параметру проще получить в меню «ЗАПУСК» ЧМИ.
- 6. Настройка параметров управления VVW: перейдите в меню STARTUP (ЗАПУСК), установите параметры P0202 = 5, P0398, P0399, P0400, P0401, P0402, P0403, P0404 и P0407 согласно данным на паспортной табличке двигателя. Если некоторые из данных отсутствуют, вставьте приблизительное вычисленное значение или схожее для стандартного двигателя WEG.
- 7. Самонастройка управления VVW: Самонастройка включается установкой P0408 = 1. В данном процессе преобразователь подает постоянный ток в двигатель для измерения сопротивления статора, в то время как на шкальном индикаторе ЧМИ отображается ход выполнения самонастройки. Процесс самонастройки может быть прерван в любое время нажатием клавиши «О».
- 8. Завершение самонастройки. В конце самонастройки ЧМИ возвращается в просматриваемое меню, в строке снова отображается параметр, установленный для Р0207, и измеренное сопротивление статора, сохраненное в Р0409. В противном случае, при возникновении ошибки в процессе самонастройки, преобразователь отображает ошибку. Наиболее распространенной ошибкой в данном случае является

F0033, которая указывает на наличие ошибки в определенном сопротивлении статора. См. Глава 18 ОТКАЗЫ И АВАРИЙНЫЕ СИГНАЛЫ на странице 18-1.

Для приложений:

- использующих заводское программирование по умолчанию аналоговых и цифровых входов и выходов, используйте меню ЧМИ «BASIC» (ОСНОВНОЕ).
- требующих только аналоговых и цифровых входов и выходов с программированием, отличным от заводского по умолчанию, используйте меню ЧМИ «I/O» (ВВОД/ВЫВОД).
- требующих таких функций, как Пуск с хода, Компенсация провалов напряжения в сети, Торможение постоянным током, Динамическое торможение и т. п., доступ и изменение параметров данных функций осуществляется в меню ЧМИ «РАВАМ» (Параметры). Дополнительную информацию о меню ЧМИ см. в Глава 5 ОСНОВНЫЕ ИНСТРУКЦИИ ПО ПРОГРАММИРОВАНИЮ И НАСТРОЙКАМ на странице 5-1.

Для лучшей визуализации запуска в режиме VVW см. Рисунок 10.2 на странице 10-7 ниже:

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
1	Режим мониторинга Нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ) для входа на 1-й уровень режима программирования	2	РАКАМ LOC CONF Выбрана группа РАКАМ (ПАРАМЕТРЫ); нажимайте клавишу или до выбора группы STARTUP (ЗАПУСК)
3	LOC CONF ¬ STARTUP STARTU	4	выбрав после этого параметр «Р0317 - Ориентированный запуск» нажмите ENTER/MENU (ВВОД/МЕНЮ) чтобы перейти к содержимому параметра
5	LOC CONF РОЗ I 7	6	СОС СОЛЬ О О О О О О О О О О О О О О О О О О
7	СОС СОЛБ РОЗОЗ СО Б В В В В В В В В В В В В В В В В В В	8	LOC CONF PO202 STARTUP. 5 ■ Haxmute Knabully , чтобы запустить VVW
9	Гри необходимости измените значение параметра «Р0296 - Линейное номинальное напряжение». Данное изменение затрагивает параметры Р0151, Р0153, Р0185, Р0321, Р0322, Р0323 и Р0400, или нажмите клавишу Для перехода к следующему параметру	10	РОЗ 98 втактир, м том том том том том том том том том т

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
11	Гри необходимости измените содержание «Р0399 – Номинальный КПД двигателя» или нажмите клавишу Для перехода к следующему параметру	12	При необходимости измените содержание «Р0400 – Номинальное напряжение двигателя» или нажмите клавишу Для перехода к следующему параметру
13	Гри необходимости измените содержание «Р0401 – Номинальный ток двигателя» или нажмите клавишу Для перехода к следующему параметру	14	При необходимости измените содержание «Р0403 - Номинальная частота двигателя» или нажмите клавишу Для перехода к следующему параметру
15	При необходимости измените содержание «Р0402 - Номинальная скорость двигателя» или нажмите клавишу Для перехода к следующему параметру	16	Гос сом 5
17	рочов об сом о	18	рочот овор ов образование содержание содер
19	В данном пункте ЧМИ отображает возможность выполнить Самонастройку. По возможности выполняйте самонастройку. Для активации самонастройки измените значение Р0408 на «1» На клавишной панели одновременно отобразится состояние «CONF (КОНФ)» и «RUN (ЗАПУСК)» во время самонастройки. Состояние «RUN (ЗАПУСК)» автоматически отключается, а для параметра Р0408 автоматически устанавливается нулевое значение Нажмите клавишу Для перехода к следующему параметру		Loc conf STARTUP, STARTUP (Запуск) просто нажмите ВАСК/ESC (Назад/Выход)
21	С помощью клавиш № и Выберите необходимое меню и повторно нажмите клавишу ВАСК/ESC (Назад/Выход) для возврата в меню контроля ЧМИ		

Рисунок 10.2: Запуск режима VVW

11 УПРАВЛЕНИЕ VVW РМ

Режим управления VVW PM (Voltage Vector WEG для постоянных магнитов) использует метод управления, основанный на методе векторного управления с ориентацией по напряжению для двигателей с постоянными магнитами с хорошими характеристиками для систем с медленной динамикой. Такое управление удобно для пользователя и обеспечивает высокую производительность – снижение потерь и экономию энергии – за счет отслеживания максимального момента на ампер и сохраняемости стабильности тока, по схеме Рисунок 11.1 на странице 11-2. Таким образом, эта стратегия устраняет две проблемы, присущие синхронным двигателям с постоянными магнитами:

- Нестабильность с колебательными реакциями электрических переменных или потеря синхронизма после изменений нагрузки и/или задания скорости.
- Чрезмерный ток для приложения нагрузки.

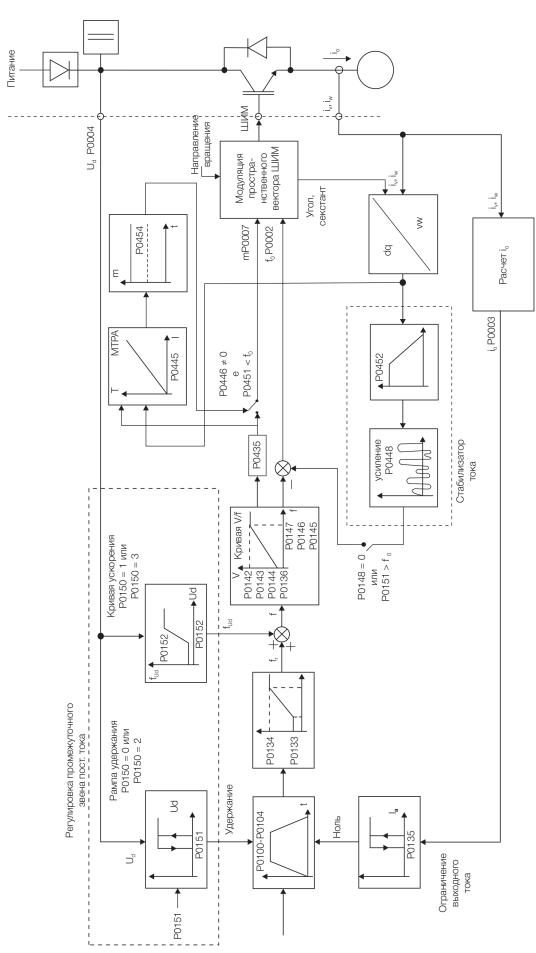
При данной стратегии управления самонастройка не требуется; однако для достижения хорошей настройки необходимо ввести данные с паспортной таблички двигателя в Ориентированный запуск.

Этот тип управления идеально подходит для средне- и высокоскоростных приложений, которые не требуют быстрого динамического реагирования и ориентированы на энергоэффективность, например, при управлении:

- Вентиляторы.
- Насосы.
- Компрессоры.

С другой стороны, VVW РМ не рекомендуется использовать в приложениях, требующих быстрой динамической реакции или точного управления крутящим моментом, ориентированных на динамические характеристики, таких как:

- Динамометры.
- Обработка грузов (например, мостовые краны, подъемники, лифты).
- Приложения, требующие производительности, аналогичной серводвигателям, такие как станки с ЧПУ
 и машинное оборудование (требуются позиционирование и высокая динамика).


ПРИМЕЧАНИЕ!

Номинальный ток двигателя должен быть выше 1/3 номинального тока преобразователя.

ПРИМЕЧАНИЕ!

Управление VVW PM не поддерживается моделями CFW500 IP20 корпуса A. При установке P0202 = 8 в преобразователе IP20 типоразмера A он переходит в состояние CONFIG.

Рисунок 11.1: Блок-схема управления VVW PM

11.1 НАСТРОЙКА ПАРАМЕТРОВ УПРАВЛЕНИЯ VVW РМ

Режим управления VVW РМ выбирается с помощью параметра P0202, выбора режима управления, согласно Глава 8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ на странице 8-1.

Для правильной работы системы управления VVW PM достаточно только данных паспортной таблички двигателя. Кроме того, рекомендуется, чтобы приводной двигатель соответствовал преобразователю, то есть мощность двигателя и преобразователя должна быть максимально близкими.

Настройка управления VVW PM упрощается с помощью меню ЧМИ STARTUP (ЗАПУСК), в котором для навигации по ЧМИ выбираются соответствующие параметры конфигурации VVW PM.

Здесь описаны конфигурация и параметры настройки управления VVW РМ. Эта информация указана на паспортной табличке двигателя WEG.

Р0398 - Коэффициент перегрузки электродвигателя

Р0400 – Номинальное напряжение двигателя

Р0401 – Номинальный ток двигателя

Р0402 - Номинальная скорость двигателя

Р0404 – Номинальная мощность двигателя

Р0406 - Охлаждение двигателя

Более подробную информацию см. в Раздел 13.6 ДАННЫЕ ДВИГАТЕЛЯ на странице 13-9.

Р0407 - Номинальный коэффициент мощности двигателя

Более подробную информацию см. в Раздел 10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW на странице 10-3.

Р0431 - Число полюсов

 Регулируемый
 От 2 до 24
 Заводские

 диапазон:
 настройки:

Свойства: cfg, Vector, VVW, VVW PM, VVW HSRM

Группы доступа STARTUP через ЧМИ:

Описание:

Он устанавливает количество полюсов двигателя.

ПРИМЕЧАНИЕ!

Если для этого параметра установлено значение ноль или нечетное число, привод останется в конфигурации.

Р0435 – Электродвижущая константа Ке

Регулируемый Заводские От 0 до 6000 коб/мин диапазон: настройки: cfg, VVW PM, VVW HSRM Свойства: STARTUP Группы доступа

через ЧМИ:

Описание:

Он устанавливает среднеквадратичное линейное напряжение, индуцированное магнитом, в зависимости от скорости двигателя. Например:

коб/мин . Следовательно, если двигатель вращается со скоростью 1000 об/мин, P0435 = 100напряжение, индуцируемое двигателем, будет 100 В.

 соотношение будет 1000 х РО400. Если Р0435 = 0, рассматриваемое

11.2 ЗАПУСК В РЕЖИМЕ VVW РМ

ПРИМЕЧАНИЕ!

Перед установкой, включением или эксплуатацией инвертора прочтите главу 3 «Установка и подключение» руководства пользователя CFW500.

Последовательность установки, проверки, подключения питания и запуска:

- 1. Установите преобразователь в соответствии с главой 3 «Установка и подключение» руководства пользователя, подключив все силовые и управляющие соединения.
- 2. Подготовьте и включите преобразователь согласно разделу 3.2 «Установка электрической части» руководства пользователя.
- 3. Загрузите заводское значение по умолчанию для Р0204 = 5.
- 4. Установка специальных параметров и функций для приложения: программирование цифровых и аналоговых входов и выходов, клавиш ЧМИ и т. д. в соответствии с требованиями приложения.
- 5. Активация управления VVW PM: Перейдите к параметру P0317 и активируйте «Ориентированный пуск», установив его на 1. Доступ к этому параметру проще получить через меню «ЗАПУСК» ЧМИ.
- 6. Настройка параметров управления VVW: в меню ЗАПУСК установите параметры P0202, P0296, P0398, Р0400, Р0401, Р0431, Р0402, Р0435, Р0404, Р0406 и Р0407 в соответствии с данными паспортной таблички двигателя.

Для приложений:

- требующих только аналоговых и цифровых входов и выходов с программированием, отличным от заводского по умолчанию, используйте меню ЧМИ «I/O» (ВВОД/ВЫВОД).
- требующих настроить такие функции, как стабилизатор тока, настройку МТРА, получить доступ и изменить параметры этих функций через меню ЧМИ ДВИГАТЕЛЬ. Дополнительную информацию о меню ЧМИ см. в Глава 5 ОСНОВНЫЕ ИНСТРУКЦИИ ПО ПРОГРАММИРОВАНИЮ И НАСТРОЙКАМ на странице 5-1.

ПРИМЕЧАНИЕ!

В случае перегрузки преобразователя во время пуска параметр Р0136 - Ручн. Увеличение крутящего момента может быть уменьшено до значений, близких или ниже 1,0 %.

Для лучшего представления запуска в режиме VVW PM см. Рисунок 13.1 на странице 13-2:

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
1	Режим мониторинга Нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ) для входа на 1-й уровень режима программирования	2	Ракам Loc conf Выбрана группа PARAM (ПАРАМЕТРЫ); нажимайте клавишу или до выбора группы STARTUP (ЗАПУСК)
3	LOC CONF STARTUP, STARTUP, STARTUP (ЗАПУСК) нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ)	4	выбрав после этого параметр «Р0317 - Ориентированный запуск» нажмите ENTER/МЕNU (ВВОД/МЕНЮ), чтобы перейти к содержимому параметра
5	СОС СОМБ РОЗ 17 О	6	РОЗОЗ (ВТАКТИР) В 1,000 (ВВОД/МЕНЮ) И С ПОМОЩЬЮ КЛАВИШ № И УСТАНОВИТЕ ЗНАЧЕНИЕ 5, ЧТО АКТИВИРУЕТ РЕЖИМ УПРАВЛЕНИЯ WW
7	В Нажмите ENTER/MENU (ВВОД/МЕНЮ), чтобы сохранить изменение Р0202	8	рого сом в в в в в в в в в в в в в в в в в в в
9	При необходимости измените значение параметра «Р0296 - Линейное номинальное напряжение». Данное изменение затрагивает параметры Р0151, Р0153, Р0185, Р0321, Р0322, Р0323 и Р0400, или нажмите клавишу для перехода к следующему параметру	10	При необходимости измените параметр «Р0398 - Коэффициент перегрузки электродвигателя». Это изменение повлияет на токи время операции защиты двигателя от перегрузки, или нажмите клавиш для перехода к следующему параметру
11	Гри необходимости измените содержание «Р0400 – Номинальное напряжение двигателя» или нажмите клавишу для перехода к следующему параметру	12	При необходимости измените содержание «Р0401 - Номинальный ток двигателя» или нажмите клавишу для перехода к следующему параметру
13	Гри необходимости измените содержание «Р0431 – Число полюсов двигателя» или нажмите клавишу для перехода к следующему параметру	14	При необходимости измените содержание «Р0402 – Номинальная скорость двигателя» или нажмите клавишу для перехода к следующему параметру

Рисунок 11.2: Запуск VVW PM

11.3 ПАРАМЕТРЫ ДЛЯ НАСТРОЙКИ УПРАВЛЕНИЯ VVW РМ

Р0445 - Усиление регулировки МТРА

Регулируемый диапазон:	От 0,00 до 4,00	Заводские настройки:	0,50
Свойства:	VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Этот параметр можно установить, проверив расчетный коэффициент мощности (Р0011) и выходной ток (Р0003) двигателя. В зависимости от применения можно выполнить настройку для снижения реактивной мощности, увеличения коэффициента мощности двигателя и снижения выходного тока.

Р0446 – Пропорциональное усиление регулятора МТРА

Регулируемый диапазон:	От 0,00 до 5,00	Заводские настройки:	0,50
Свойства:	VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

11

Р0447 – Интегральный коэффициент регулятора МТРА

Регулируемый От 0,000 до 0,500 0,012 Заводские настройки:

диапазон: Свойства:

VVW PM, VVW HSRM

Группы доступа | MOTOR через ЧМИ:

Описание:

Эти параметры позволяют динамически регулировать выходное напряжение двигателя при изменении нагрузки. Если Р0446 = 0, управление МТРА будет отключено.

ПРИМЕЧАНИЕ!

В целом эти параметры не требуют корректировки.

Р0448 – Регулировка стабилизатора тока

Регулируемый От 0,00 до 30,00 0,75 Заводские

диапазон: настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа | MOTOR

через ЧМИ:

Описание:

Это усиление устраняет нестабильность, связанную с колебательными реакциями токов и скорости, и/ или потерю синхронизма после изменений нагрузок и/или задания скорости.

Р0451 - Стартовая скорость разгона

Регулируемый От 0,0 до 100,0 % Заводские 8,0 % диапазон: настройки:

VVW PM, VVW HSRM Свойства:

Группы доступа МОТОR

через ЧМИ:

Описание:

Определяет процент скорости, при котором происходит стартовый разгон. Если Р0451 = 0,0 %, пусковой режим отключен.

Р0452 - Фильтр тока DQ

Регулируемый От 1 до 10000,0 мс Заводские 1 MC настройки: диапазон:

VVW PM, VVW HSRM Свойства:

Группы доступа МОТОR

через ЧМИ:

Р0453 - Стартовое время разгона

 Регулируемый диапазон:
 От 0 до 999,0 с настройки:
 3,0 с настройки:

 Свойства:
 VVW PM, VVW HSRM

 Группы доступа через ЧМИ:
 МОТОК

Описание:

Если Р0453 отличается от 0,0 с, пусковая рампа будет активирована и будет сохраняться до тех пор, пока ее скорость будет ниже процентной доли скорости срабатывания рампы, установленной в Р0451. Эта функция полезна в условиях, когда время пуска на низкой скорости должно быть быстрее или медленнее по отношению к времени линейного ускорения, установленному в Р0100, для поддержки условий нагрузки, возникающих при пуске двигателя.

Р0454 – Процент минимального напряжения МТРА

Регулируемый	От 0,0 до 100,0 %	Заводские	70,0 %
диапазон:		настройки:	
Свойства:	VVW PM, VVW HSRM		
Группы доступа	MOTOR		
через ЧМИ:			

Описание:

Этот параметр устанавливает минимальное значение напряжения, которое будет приложено к двигателю при включении функции МТРА. Это минимальное значение представляет собой процент отношения $\frac{\text{Р0435 X кол-во об/мин}}{1000}.$

Например:

P0435 = 120 B/коб/мин.

Число оборотов в минуту = 900 об/мин.

P0454 = 50.0 %.

Минимальное напряжение (B) = $(P0454/100)^*$ (P0435*Nrpm)/1000 = 54 B.

Где Nrpm - скорость двигателя в об/мин.

Р0458 - Скорость срабатывания режима I/f

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	30,0 %
Свойства:	VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Он определяет процент скорости, при котором происходит переход из режима I/f в режим управления MTPA или наоборот. Если P0458 = 0.0 %, преобразователь всегда будет работать в режиме MTPA, то есть функция I/f будет отключена.

12 УПРАВЛЕНИЕ VVW HSRM

Режим управления VVW HSRM (Voltage Vector WEG для гибридного синхронного реактивного двигателя) использует метод управления, основанный на технике векторного управления напряжением для реактивных двигателей с магнитным усилением, с хорошей производительностью для систем с медленной динамикой. Такое управление удобно для пользователя и обеспечивает высокую производительность, снижая потери и экономя энергию, за счет отслеживания максимального крутящего момента на ампер и стабильности тока двигателя.

В этой стратегии управления не требуется самонастройка; однако для достижения хорошей регулировки данные паспортной таблички двигателя должны быть введены в Ориентированный Запуск.

Этот тип управления идеально подходит для средне- и высокоскоростных приложений, которые не требуют быстрого динамического реагирования и ориентированы на энергоэффективность, например, при управлении:

- Вентиляторы.
- Насосы.
- Компрессоры и аналогичные нагрузки.

С другой стороны, VVW HSRM не рекомендуется использовать в приложениях, где требуется быстрый динамический отклик или управление крутящим моментом, а целью являются динамические характеристики, например:

- Динамометры.
- Обработка грузов (например, мостовые краны, подъемники, лифты).
- Приложения, требующие производительности, аналогичной серводвигателям, такие как станки с ЧПУ
 и машинное оборудование (требуются позиционирование и высокая динамика).

ПРИМЕЧАНИЕ!

Соотношение между номинальным током преобразователя (I_{nom-HD}) и током двигателя (P0401) должно соответствовать следующему условию:

$$1,1 < \frac{I_{\text{HOM-HD}}}{P0401} < 1,5$$

Соотношение между током преобразователя ($I_{\text{ном-HD}}$) и максимально допустимым током двигателя HSRM ($I_{\text{махнsrм}}$) должно соответствовать следующему условию:

$$\frac{2 \times I_{\text{HOM-HD}}}{I_{\text{MAXHSRM}}} < 1.0$$

Чтобы получить информацию I_{махняям} Чтобы получить информацию WEG.

ПРИМЕЧАНИЕ!

Управление VVW HSRM не поддерживается моделями CFW500 IP20 типоразмера А. При установке P0202 = 10 в преобразователе IP20 типоразмера А он переходит в состояние CONFIG.

12.1 НАСТРОЙКА ПАРАМЕТРОВ УПРАВЛЕНИЯ VVW HSRM

Режим управления VVW HSRM выбирается с помощью параметра P0202, выбора режима управления, согласно Глава 8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ на странице 8-1.

Для правильной работы системы управления VVW HSRM достаточно только данных паспортной таблички двигателя. Кроме того, рекомендуется, чтобы приводимый в движение двигатель соответствовал преобразователю, т. е., мощности двигателя и преобразователя были максимально близкими. Настройка управления VVW HSRM упрощается с помощью меню ЧМИ STARTUP (ЗАПУСК), в котором для навигации по ЧМИ выбираются соответствующие параметры конфигурации VVW HSRM. Здесь описаны конфигурация и параметры настройки управления VVW HSRM. Эта информация указана на паспортной табличке двигателя WEG.

Р0398 - Коэффициент перегрузки электродвигателя

Р0400 – Номинальное напряжение двигателя

Р0401 – Номинальный ток двигателя

Р0402 - Номинальная скорость двигателя

Р0404 – Номинальная мощность двигателя

Р0406 - Охлаждение двигателя

Более подробную информацию см. в Раздел 13.6 ДАННЫЕ ДВИГАТЕЛЯ на странице 13-9.

Р0407 – Номинальный коэффициент мощности двигателя

Более подробную информацию см. в Раздел 10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW на странице 10-3.

Р0431 - Число полюсов

Регулируемый От 2 до 48 **Заводские** 6 **настройки:**

Свойства: cfg, Vector, VVW, VVW PM, VVW HSRM

Группы доступа STARTUP

через ЧМИ:

Описание:

Он устанавливает количество полюсов двигателя.

ПРИМЕЧАНИЕ!

Если для этого параметра установлено значение ноль или нечетное число, привод останется в конфигурации «CONFIG».

12

Р0435 - Электродвижущая константа Ке

Регулируемый диапазон:	От 0 до 6000 V коб/мин	Заводские настройки:	0
Свойства:	cfg, VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	STARTUP		

Описание:

Он устанавливает среднеквадратичное линейное напряжение, индуцированное магнитом, в зависимости от скорости двигателя. Например:

 $P0435 = 100 \ \frac{V}{\text{коб/мин}}$. Таким образом, если двигатель вращается со скоростью 1000 об/мин, то индуцированное двигателем напряжение составит 100 В.

Если P0435 = 0, то рассматриваемое отношение $\frac{V}{\text{коб/мин}}$ будет 1000 х $\frac{\text{P0400}}{\text{P0402}}$

Р0470 - Текущий уровень F0073

Регулируемый диапазон:	От 100,0 до 250,0 %	Заводские настройки:	200,0 %
Свойства:	cfg, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Этот параметр определяет уровень срабатывания F0073 по отношению к пиковому номинальному току двигателя (√2 x P0401).

Р0471 - Постоянная времени F0073

Регулируемый диапазон:	От 0 до 1000 мс	Заводские настройки:	0 мс
Свойства:	cfg, VVW HSRM		
Группы доступа	MOTOR		
через ЧМИ:			

Описание:

Этот параметр определяет постоянную времени срабатывания F0073.

12.2 ЗАПУСК В РЕЖИМЕ PM VVW HSRM

Последовательность установки, проверки, подключения питания и запуска:

- 1. Установите преобразователь в соответствии с главой 3 «Установка и подключение» руководства пользователя, подключив все силовые и управляющие соединения.
- 2. Подготовьте привод и включите преобразователь в соответствии с разделом 3.2 «Электрическая установка» руководства пользователя.
- 3. Загрузите заводское значение по умолчанию для Р0204 = 5.

- 4. Установите конкретные параметры и функции для приложения, запрограммируйте цифровые и аналоговые входы и выходы, клавиши ЧМИ и т. д. в соответствии с требованиями приложения.
- 5. Активация управления VVW HSRM: Перейдите к параметру P0317 и активируйте «Ориентированный пуск», установив его на 1. Доступ к этому параметру проще получить через меню «ЗАПУСК» ЧМИ.
- 6. Настройка параметров управления VVW HSRM: в меню ЗАПУСК установите параметры P0202 = 10, P0296, P0398, P0400, P0401, P0431, P0402, P0435, P0404, P0406 и P0407 в соответствии с данными на заводской табличке двигателя.

Для приложений:

- требующих только аналоговых и цифровых входов и выходов с программированием, отличным от заводского по умолчанию, используйте меню ЧМИ «I/O» (ВВОД/ВЫВОД).
- Для настройки таких функций, как стабилизатор тока, регулировка МТРА, доступ и изменение параметров этих функций осуществляется через меню ДВИГАТЕЛЬ на ЧМИ. Дополнительную информацию о меню ЧМИ см. в Глава 5 ОСНОВНЫЕ ИНСТРУКЦИИ ПО ПРОГРАММИРОВАНИЮ И НАСТРОЙКАМ на странице 5-1.

Для лучшего представления запуска в режиме PM HSRM см. Рисунок 12.1 на странице 12-5.

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
1	Режим мониторинга Нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ) для входа на 1-й уровень режима программирования	2	Ракам Loc conf Выбрана группа РАКАМ ; нажимайте клавиши или нажимайте клавиши ЗАПУСК
3	LOC CONF STARTUP STARTUP STARTUP STARTUP (ЗАПУСК) нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ)	4	выбран параметр «Р0317 - Ориентированный запуск»; нажмите ВВОД/МЕНЮ, чтобы получить доступ к содержимому параметра
5	LOC CONF PO3 17	6	LOC CONF О О О ВТАКТИР, 00 100 100 Нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ) и с помощью клавиш
7	LOC CONF PO202 10 STARTUP,	8	LOC CONF POZOZ STARTUP, SO 100 HAЖМИТЕ КЛАВИШУ , ЧТОБЫ ПРОДОЛЖИТЬ ЗАПУСК VVV

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
9	При необходимости измените значение параметра «Р0296 - Линейное номинальное напряжение». Данное изменение затрагивает параметры Р0151, Р0153, Р0185, Р0321, Р0322, Р0323 и Р0400, или нажмите клавишу для перехода к следующему параметру	10	роз 98 При необходимости измените содержимое «Роз 98 - Фактор обслуживания двигателя» Это изменение повлияет на текущее значение и время срабатывания функции перегрузки двигателя или нажмите клавишу для следующего параметра
11	рочоо втактир, в том	12	Гри необходимости измените содержание «Р0401 – Номинальный ток двигателя» или нажмите клавишу Для перехода к следующему параметру
13	При необходимости измените содержимое «Р0431 - Количество полюсов двигателя» или нажмите клавишу Для перехода к следующему параметру	14	При необходимости измените содержимое параметра «Р0402 – Номинальная скорость двигателя» или нажмите клавишу для перехода к следующему параметру
15	При необходимости измените содержимое «Р0435 - Электродвижущая константа» или нажмите клавишу Для перехода к следующему параметру	16	Гри необходимости измените содержимое параметра «Р0404 - Номинальная мощность двигателя» или нажмите клавишу Для перехода к следующему параметру
17	рочов об втактир, в тактир, в такт	18	рочот при необходимости измените содержание «Р0407 – Номинальный коэффициент мощности двигателя» или нажмите м клавишу для перехода к следующему параметру
19	LOC CONF 2 STARTUP, № 100 Для выхода из меню STARTUP (Запуск) просто нажмите ВАСК/ESC (Назад/Выход)	20	LOC CONF → RUN → AJM BЫБОРА НУЖНОГО МЕНЮ ИЛИ НАЖМИТЕ КЛАВИШУ BACK/ESC, ЧТОБЫ ВЕРНУТЬСЯ НЕПОСРЕДСТВЕННО В РЕЖИМ МОНИТОРИНГА ЧМИ

Рисунок 12.1: Запуск режима VVW HSRM

настройки:

12.3 ПАРАМЕТРЫ ДЛЯ НАСТРОЙКИ УПРАВЛЕНИЯ VVW HSRM

Р0177 – Настройка насыщения стабилизатора тока

Регулируемый От 0,0 до 10,0 % **Заводские** 5,0 %

диапазон:

Свойства: cfg, VVW PM, VVW HSRM

Группы доступа BASIC

через ЧМИ:

Описание:

Устанавливает уровень насыщения выходного сигнала стабилизатора тока для управления. Этот уровень представляет собой процент от выходного сигнала линейного изменения опорной скорости двигателя.

Р0445 – Усиление регулировки МТРА

Регулируемый От 0,00 до 4,00 **Заводские** 0,50

диапазон: настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа MOTOR

через ЧМИ:

Описание:

Этот параметр можно установить, проверив рассчитанный коэффициент мощности (Р0011) и выходной ток двигателя (Р0003). В зависимости от области применения можно получить настройку реактивного снижения, увеличивающую коэффициент мощности двигателя и уменьшающую выходной ток.

Р0446 – Пропорциональное усиление регулятора МТРА

Регулируемый От 0,00 до 5,00 **Заводские** 0,50

диапазон: настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа МОТОR

через ЧМИ:

Р0447 – Интегральный коэффициент регулятора МТРА

Регулируемый От 0,000 до 0,500 **Заводские** 0,012 **диапазон:** настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа МОТОR

через ЧМИ:

Описание:

Эти параметры получены для динамического регулирования выходного напряжения двигателя, подстройки под изменения нагрузки.

Если Р0446 = 0, управление МТРА будет отключено.

ПРИМЕЧАНИЕ!

В целом эти параметры не требуют корректировки. Бит 9 = 1 управляющего слова РОЗ97 включает функцию МТРА.

Р0448 - Текущая настройка стабилизатора

Регулируемый диапазон:	От 0,00 до 30,00	Заводские настройки:	0,75
Свойства:	VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Это усиление устраняет нестабильность, связанную с колебательными реакциями токов и скорости, и/ или потерю синхронизма после изменений нагрузок и/или задания скорости.

12.3.1 Режим I/F

Работа в диапазоне низких скоростей может быть нестабильной. В этом диапазоне выходное напряжение двигателя также очень низкое, что затрудняет синхронизацию при запуске двигателя из-за колебаний нагрузки и выравнивания начального положения двигателя HSRM.

Для поддержания стабильной работы преобразователя в этом диапазоне режим управления МТРА автоматически меняется на режим управления I/F, представляющий собой скалярное управление с наложенным током. Таким образом, управление осуществляется с использованием заданного пользователем опорного значения тока.

Параметр Р0451 определяет процент от номинальной скорости, при котором происходит переход в режим I/F. Параметр Р0453 определяет время срабатывания режима I/f, а параметр Р0449 определяет значение тока, которое должно быть применено к двигателю.

Бит 8 = 1 контрольного слова Р0397 включает функцию I/f. Условия выполнения режима I/f:

- Если РО451 = 0 %, преобразователь всегда активирует управление МТРА, то есть функция I/f отключена.
- Если Р0453 = 0,0 с, время выполнения I/f будет соответствовать времени линейного ускорения (Р0100).

P0449 - Tok I/f

Регулируемый диапазон:	От 0,0 до 200,0 %	Заводские настройки:	100,0 %
Свойства:	cfg, VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Он определяет ток, подаваемый на двигатель, когда преобразователь находится в режиме I/f. Значение тока задается в процентах от номинального тока двигателя (P0401).

Р0450 - Время предварительного запуска

Регулируемый От 0,0 до 15,0 с **Заводские** 2,0 с **диапазон: настройки:**

Свойства: cfg, VVW PM, VVW HSRM

Группы доступа МОТОЯ

через ЧМИ:

Описание:

Время предварительного запуска двигателя улучшает пусковые характеристики двигателя, особенно когда двигатель подвергается высокому уровню нагрузки. Перед тем, как двигатель начнет разгоняться, на катушки статора подается постоянный ток. Текущий уровень задается в Р0449.

ПРИМЕЧАНИЕ!

При активации торможения постоянным током время перед пуском отключается (Р0450).

ПРИМЕЧАНИЕ!

Время перед пуском (Р0450) необходимо учитывать в общем времени, необходимом для достижения заданной скорости.

Р0451 – Стартовая скорость разгона

Регулируемый От 0,0 до 100,0 % **Заводские** 8,0 %

диапазон: настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа МОТОЯ

через ЧМИ:

Описание:

Он определяет процент скорости, при котором активируется вспомогательная рампа. Если Р0451 = 0,0 %, вспомогательный пусковой режим не будет реализован.

ПРИМЕЧАНИЕ!

При включении I/f параметр P0451 определяет процент скорости перехода из режима I/f в режим MTPA. Если P0451 = 0,0 %, режим I/f отключен.

Р0452 - Фильтр тока DQ

Регулируемый От 1 до 10000 мс **Заводские** 1 мс **диапазон**: настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа MOTOR

через ЧМИ:

Описание:

Этот параметр определяет постоянную времени фильтра тока DQ.

12`

Р0453 - Стартовое время разгона

 Регулируемый диапазон:
 От 0 до 999,0 с настройки:
 3,0 с настройки:

 Свойства:
 VVW PM, VVW HSRM

 Группы доступа через ЧМИ:
 МОТОК

Описание:

Если Р0453 отличается от 0,0 с, вспомогательная рампа будет включена и останется до тех пор, пока ее скорость будет ниже процента скорости срабатывания рампы, установленного в Р0451.

Эта функция полезна в условиях, когда время пуска на низкой скорости должно быть быстрее или медленнее по отношению к времени линейного ускорения, установленному в Р0100, для поддержки условий нагрузки, возникающих при пуске двигателя.

ПРИМЕЧАНИЕ!

Когда функция I/f включена и частота вращения двигателя ниже скорости, установленной в P0451, будет включен режим I/f.

Р0454 – Процент минимального напряжения МТРА

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	70,0 %
Свойства:	VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Этот параметр устанавливает минимальное значение выходного напряжения двигателя, пропорциональное кривой V/f.

Р0455 - Постоянный ток торможения

Регулируемый диапазон:	От 0,0 до 200,0 %	Заводские настройки:	20,0 %
Свойства:	cfg, VVW PM, VVW HSRM		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Этот параметр задает постоянный ток, подаваемый на двигатель во время торможения.

Его необходимо устанавливать постепенно, увеличивая значение Р0455, которое варьируется от 0 до 200 % номинального тока двигателя (Р0401), пока не будет достигнут желаемый момент торможения.

Р0456 - Пропорциональное усиление I/f

Регулируемый От 0,00 до 1,99 **Заводские** 0,50 **диапазон:** настройки:

Свойства: VVW PM, VVW HSRM

Группы доступа МОТОR

через ЧМИ:

Р0457 - Интегральное усиление I/f

 Регулируемый диапазон:
 От 0,000 до 1,999
 Заводские настройки:
 0,010

 Свойства:
 VVW PM, VVW HSRM

 Группы доступа
 МОТОR

Описание:

через ЧМИ:

Эти параметры используются для регулирования тока I/f.

12.3.2 Руководство по устранению неполадок

Таблица 12.1: Руководство по устранению неполадок

Проблема	Описание	Руководство по устранению неполадок		
Запуск двигателя с включенным ограничением тока	 Выходной ток двигателя приблизительно равен максимальному выходному току двигателя (Р0135) Скорость двигателя (Р0002) не достигает заданной скорости (Р0001) 	 Если I/f отключен, постепенно уменьшайте ручное увеличение крутящего момента (Р0136) Увеличьте стартовое вспомогательное время разгона Р0453 		
Запуск двигателя с вибрацией (потеря синхронности)	 ■ Двигатель не синхронизируется, что приводит к вибрации системы, подсоединенной к двигателю ■ Может возникнуть ошибка F0073 (VVW HSRM) или F0070 (другие типы управления) 	■ Если I/f отключен, постепенно увеличивайте крутящий момент вручную (Р0136)		

13 ВЕКТОРНОЕ УПРАВЛЕНИЕ

Этот тип управления основан на разделении тока двигателя на два компонента:

- ток, создающий поток І_д (ориентированный потоком электромагнитной энергии двигателя).
- ток, создающий крутящий момент І_п (перпендикулярный вектору потока двигателя).

Ток I_d связан с потоком электромагнитной энергии двигателя, а ток I_d напрямую связан с производимым крутящим моментом на валу двигателя. Благодаря этой стратегии можно получить так называемое расцепление, т. е. возможность контролировать поток и крутящий момент двигателя независимо, контролируя токи I_d и I_d соответственно.

Ввиду того, что эти токи представлены векторами, которые вращаются с синхронной частотой при наблюдении из стационарной точки, выполняется вспомогательная трансформация, превращающая их в синхронную референтную точку. В синхронной референтной точке эти значения становятся значениями пост. тока, пропорциональными соответствующим амплитудам векторов. Это значительно упрощает контур управления.

Когда вектор I_d выровнен с потоком двигателя, можно сказать, что векторное управление ориентировано. Поэтому необходимо, чтобы параметры двигателя были правильно отрегулированы. Некоторые из этих параметров необходимо запрограммировать с помощью данных с паспортной таблички двигателя, другие устанавливаются автоматически в ходе процедуры самонастройки или вручную с использованием значений, указанных в спецификации двигателя, поставляемой производителем.

На Рисунок 13.3 на странице 13-4 представлена диаграмма векторного управления с датчиком положения, на Рисунок 13.1 на странице 13-2 бессенсорного векторного управления. Информация о скорости, как и о токах, измеренных преобразователем, используется для получения верной ориентации вектора. Для векторного управления с датчиком положения скорость определяется напрямую из сигнала датчика, для бессенсорного типа управления существует алгоритм определения скорости, основанный на значениях выходного тока и напряжения.

Векторное управление измеряет ток, разделяет поток и крутящий момент и преобразовывает эти переменные в синхронную точку. Управление двигателем осуществляется путем установки желаемого значения тока и сравнения его с фактическим значением.

13.1 БЕССЕНСОРНОЕ УПРАВЛЕНИЕ И УПРАВЛЕНИЕ С ДАТЧИКОМ ПОЛОЖЕНИЯ

Бессенсорное векторное управление рекомендуется в большинстве применений, т. к. обеспечивает работу в диапазоне изменения скорости 1:100, точность управления скоростью вплоть до 0,5 % от номинальной скорости, высокий пусковой крутящий момент и быстрый динамический отклик.

Другим преимуществом этого типа управления является большая устойчивость к внезапным изменениям напряжения линии и нагрузки, что помогает избежать отключения при токе перегрузки.

Настройки, необходимые для работы бессенсорного векторного управления, выполняются автоматически. Поэтому используемый двигатель необходимо соединить с преобразователем CFW500.

Векторное управление с датчиком на двигателе имеет те же преимущества, что и ранее упомянутое бессенсорное управление, но со следующими дополнительными преимуществами:

- Регулирование скорости и крутящего момента до 0 (нуля) об/мин.
- Точность регулирования скорости 0,01 % (если используются цифровые задания, например, через HMI, Profibus DP, DeviceNet и т. д.).

Более подробную информацию об установке и подключении инкрементального датчика см. в руководстве пользователя CFW500.

ПРИМЕЧАНИЕ!

Номинальный ток двигателя должен быть выше 1/3 номинального тока преобразователя.

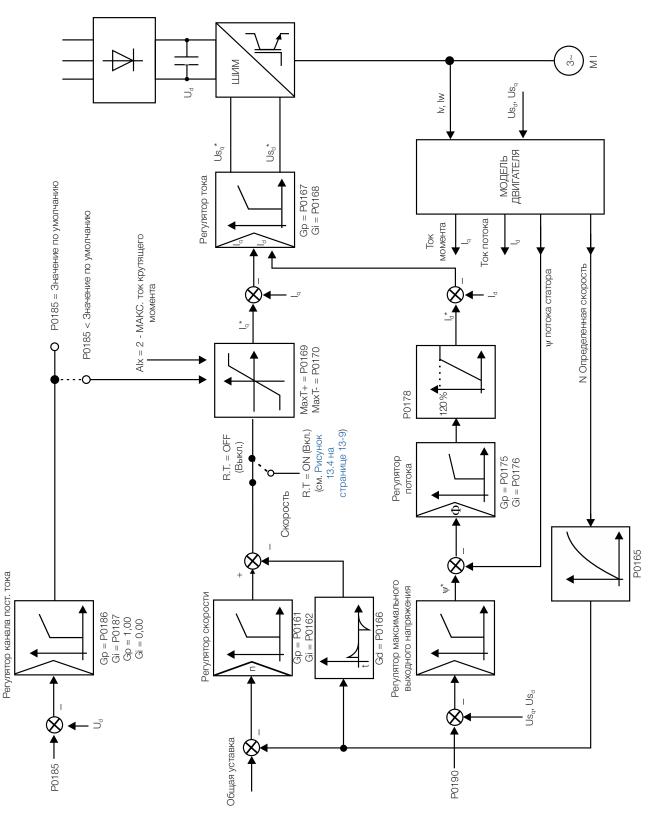
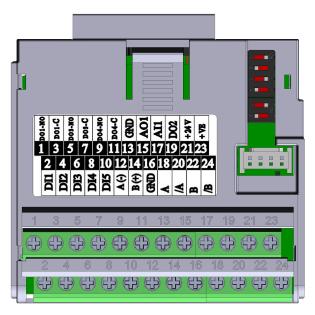
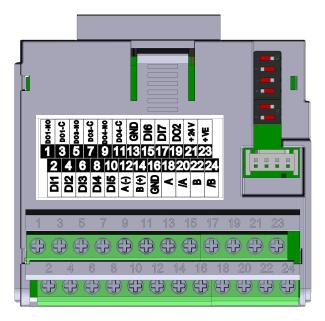




Рисунок 13.1: Диаграмма бессенсорного векторного управления

(a) CFW500-ENC

(b) CFW500-ENC2

Рисунок 13.2: (a) и (b) Подключаемый модуль для чтения датчика

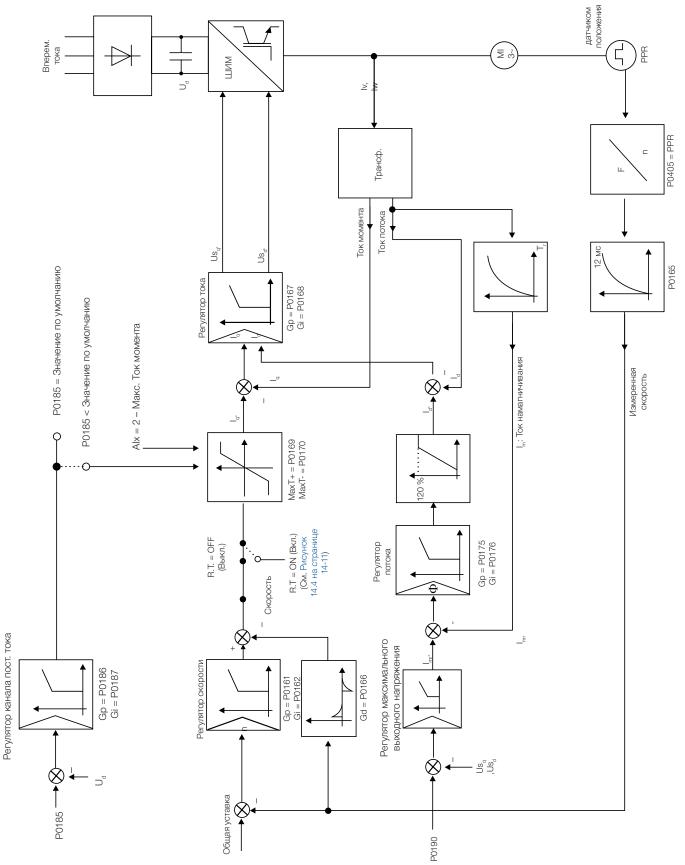


Рисунок 13.3: Диаграмма векторного управления с датчиком

13

13.2 РЕЖИМ І/Г (БЕССЕНСОРНЫЙ)

ПРИМЕЧАНИЕ!

Активируется автоматически на низких скоростях, если P0182 > 3 и если включен режим бессенсорного векторного управления (P0202 = 3).

Работа в диапазоне низких скоростей может привести к нестабильности. В этом диапазоне рабочее напряжение двигателя также очень низкое, поэтому его сложно измерить точно.

Для поддержки стабильной работы преобразователя в этом диапазоне происходит автоматическое переключение из бессенсорного режима в так называемый режим I/f, который представляет собой режим скалярного управления с установленным током. Режим скалярного управления с установленным током означает, что для тока задано постоянное значение, регулируемое параметром, и производится только управление частотой в открытом контуре.

Параметр P0182 определяет скорость, ниже которой происходит переход в режим I/f, а параметр P0183 – значение тока, прилагаемого к двигателю.

Минимальная рекомендованная скорость для режима векторного бессенсорного управления составляет 18 об/мин для 60 Гц IV-полюсных двигателей и 15 об/мин для 50 Гц IV-полюсных двигателей. Если Р0182 ≤ 3 об/мин, преобразователь всегда будет работать в векторном бессенсорном режиме, т.е. функция I/f будет отключена.

13.3 САМОНАСТРОЙКА

Некоторые параметры двигателя, которые отсутствуют на заводской табличке двигателя, необходимые для работы в векторном режиме без датчиков или в векторном режиме с датчиком положения, оцениваются:

- Сопротивление статора.
- Индуктивность рассеяния потока двигателя.
- Постоянная времени ротора Т_г.
- Номинальный ток намагничивания двигателя.
- Механическая постоянная времени двигателя и нагрузки привода.

Эти параметры оцениваются во время приложения различных значений напряжения и тока к двигателю.

Параметры, относящиеся к регуляторам, которые используются векторным управлением, а также другие параметры управления регулируются автоматически в зависимости от параметров двигателя, определенных в ходе программы самонастройки. Лучшие результаты самонастройки получаются на предварительно разогретом двигателе.

Параметр Р0408 управляет программой самонастройки. В зависимости от выбранных опций значения некоторых параметров можно получить из таблицы, действительных для двигателей WEG.

При установке значения P0408 = 1 (без вращения) двигатель остается остановленным во время самонастройки. Значение тока намагничивания (P0410) получается из таблицы, действительно для двигателей WEG, имеющих до 12 полюсов.

При установке значения P0408 = 2 (запуск для I_m) значение P0410 определяется при вращении в условиях отключенной от вала двигателя нагрузки.

При установке значения P0408 = 3 (запуск для T_m) значение P0413 (механическая постоянная времени $-T_m$) определяется при вращении двигателя. Рекомендуется выполнять это с нагрузкой, соединенной с двигателем.

ПРИМЕЧАНИЕ!

Для каждого случая, когда P0408 = 1 или 2, параметр P0413 (механическая постоянная времени $-T_m$) будет регулироваться до значения, близкого к механической постоянной времени ротора двигателя. Поэтому принимаются во внимание инерция ротора двигателя (данные таблицы действительны для двигателей WEG), номинальные ток и напряжение преобразователя. P0408 = 2 (запуск для I_m) в режиме векторного управления с датчиком (P0202 = 4): после завершения программы самонастройки соедините двигатель с нагрузкой и установите P0408 = 4 (определить T_m). В этом случае P0413 будет оцениваться с учетом приводимой нагрузки. Если опция P0408 = 2 (запуск для I_m) выполняется с соединенной с двигателем нагрузкой, значение P0410 (I_m) может быть определено неверно. Это приведет к ошибке определения для P0412 (постоянная времени P0413 (механическая постоянная времени P0413). Также во время работы преобразователя может происходить перегрузка по току (P0070).

Примечание: Термин «нагрузка» включает все, что может быть соединено с валом двигателя, например, редуктор, инерционный диск и т. д.

Если опция P0408 = 4 (определить T_m) программа самонастройки определяет только значение P0413 (механическая постоянная времени $-T_m$) с вращающимся двигателем. Рекомендуется выполнять это с нагрузкой, соединенной с двигателем.

Во время этой операции программу самонастройки можно отменить, нажав клавишу о при условии, что значения всех параметров от Р0409 до Р0413 не равны нулю.

Более подробную информацию по параметрам самонастройки смотрите в Пункт 13.7.5 Самонастройка на странице 13-19, данного руководства.

Альтернативы для получения параметров двигателя:

Вместо запуска самонастройки значения параметров от Р0409 до Р0412 можно получить следующим образом:

- Из протокола испытаний двигателя, который поставляется производителем. См. Пункт 13.6.1 Установка параметров от Р0409 до Р0412 на основании технической спецификации двигателя на странице 13-12, данного руководства.
- Вручную, посредством копирования содержимого параметров с другого преобразователя CFW500, работающего с идентичным двигателем.

13.4 РЕГУЛИРОВАНИЕ КРУТЯЩЕГО МОМЕНТА

В режимах векторного управления (бессенсорного или с датчиком) можно использовать преобразователь в режиме управления крутящим моментом вместо режима управления скоростью. В таком случае необходимо удерживать регулятор скорости в насыщенном состоянии, а заданное значение крутящего момента определяется пределами крутящего момента в параметрах P0169/P0170.

Действие управления крутящим моментом:

Векторное управление с датчиком:

Диапазон управления крутящим моментом: от 10 до 180 %.

Точность: ±5 % от номинального крутящего момента.

Бессенсорное векторное управление:

Диапазон управления крутящим моментом: от 20 до 180 %.

Точность: ±10 % от номинального крутящего момента.

Минимальная рабочая частота: 3 Гц.

Когда регулятор скорости насыщен положительно, т.е., в параметрах P0223/P0226 указано движение вперед, значение ограничения тока крутящего момента регулируется в P0169. Когда регулятор скорости насыщен отрицательно, т. е., указано движение назад, значение ограничения тока крутящего момента регулируется в P0170.

13

Согласно уравнениям, объясненным в разделе Р0009 – Крутящий момент двигателя на странице 19-4, расчет крутящего момента на валу двигателя может быть представлен уравнением ниже как функция P0169/P0170.

Крутящий момент на валу двигателя (Т_{пвиг}) в % определяется по формуле:

(*) Приведенное ниже уравнение необходимо использовать для крутящего момента «+». Для отрицательного крутящего момента замените Р0169 на Р0170.

$$T_{\text{двиг}}(\%) = P0169 \times k$$

Где коэффициент к определяется:

■ Областью постоянного потока (постоянный момент и ниже или равный синхронной скорости):

k = 1

■ Областью ослабления поля (область постоянной мощности, выше синхронной скорости): $k = \frac{N_{\text{синх}}}{P0002} x \, \frac{P0190}{P0400}$

$$k = \frac{N_{\text{CUHX}}}{P0002} \times \frac{P0190}{P0400}$$

Где N_{sync} – синхронная скорость двигателя, выраженная в об/мин.

ПРИМЕЧАНИЕ!

Для регулирования крутящего момента в бессенсорном векторном режиме (Р0202 = 3) соблюдайте следующие условия:

- Пределы крутящего момента (Р0169/Р0170) должны быть выше 30 %, чтобы обеспечить запуск двигателя. После запуска двигателя, вращающегося с частотой выше 3 Гц, при необходимости пределы можно уменьшить до значений ниже 30 %.
- Для применения регулировки крутящего момента с частотой до 0 Гц используйте режим векторного управления с датчиком (Р0202 = 4).

ПРИМЕЧАНИЕ!

Для получения максимальной точности управления крутящим моментом необходимо, чтобы номинальный ток двигателя был равен номинальному току CFW500.

Настройки для управления крутящим моментом:

Ограничение крутящего момента:

- 1. Через параметры Р0169, Р0170 (с помощью панели (ЧМИ), последовательного порта или Fieldbus). См. Пункт 13.7.6 Ограничение тока крутящего момента на странице 13-24.
- 2. Через аналоговые входы АІ1 или АІ2. См. Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1, опция 2 (максимальный ток крутящего момента).

Уставка скорости:

3. Задайте уставку скорости на 10 % (или больше) выше, чем рабочая скорость. Это позволяет оставить выход регулятора скорости насыщенным до максимального значения, указанного в ограничении крутящего момента.

ПРИМЕЧАНИЕ!

Ограничение крутящего момента при насыщенном регуляторе скорости также выполняет функцию защиты (ограничения). Напр.: для намотчика, когда происходит разрыв наматываемого материала, регулятор остается в насыщенном состоянии и начинает управлять скоростью двигателя, которая удерживается на значении уставки скорости.

13.5 ОПТИМАЛЬНОЕ ТОРМОЖЕНИЕ

ПРИМЕЧАНИЕ!

Активируется только в режиме векторного управления с датчиком (P0202 = 3 или 4), когда P0184 = 0, P0185 меньше стандартного значения, а P0404 < 23 (P0404 < 23).

ПРИМЕЧАНИЕ!

Выполнение оптимального торможения может привести к следующим последствиям для двигателя:

- повышение уровня вибрации.
- повышение уровня шума.
- повышение температуры.

Оцените возможное влияние на двигатель в данном применении до использования оптимального торможения.

Эта функция помогает контролировать торможение двигателя, исключая во многих случаях необходимость использования дополнительного тормозящего БТИЗ и тормозного резистора.

Оптимальное торможение позволяет затормозить двигатель с большим крутящим моментом, чем получаемый традиционными методами, как, например, торможение постоянным током. В случае с торможением постоянным током для рассеивания энергии, сохраненной как момент инерции механической нагрузки, используются только потери на роторе двигателя без учета общих потерь на трение. При оптимальном торможении, с другой стороны, используются общие потери на двигателе, а также общие потери преобразователя. Теоретически можно получить тормозящий момент до 5 раз больший, чем при торможении постоянным током.

На Рисунок 13.4 на странице 13-9 представлена кривая зависимости крутящего момента от скорости для типичного 10 л. с./7,5 кВт IV-полюсного двигателя. Тормозящий момент, получаемый при номинальной скорости, для преобразователя с ограничением крутящего момента (Р0169 и Р0170), равным номинальному крутящему моменту двигателя, обозначен точкой ТВ1 на Рисунок 13.4 на странице 13-9. Значение ТВ1 зависит от КПД двигателя и определяется следующим выражением, без учета потерь при эксплуатации:

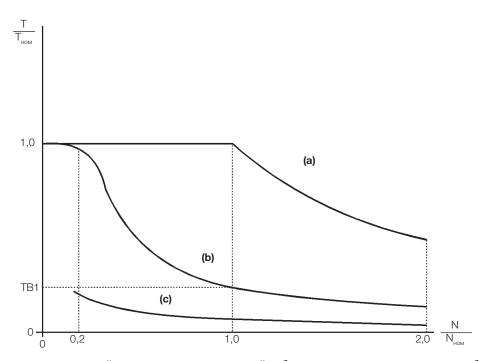
$$TB1 = \frac{1-\eta}{\eta}$$

Где:

 $\eta = K\Pi Д$ двигателя.

На Рисунок 13.4 на странице 13-9, КПД двигателя для номинальной нагрузки составляет $\eta = 0.84$ (или 84 %), что дает ТВ1 = 0.19 или 19 % от номинального крутящего момента двигателя.

Тормозящий момент, начинающийся с точки ТВ1, обратно пропорционален скорости (1/N). При низкой скорости тормозящий момент достигает предела крутящего момента преобразователя. На Рисунок 13.4 на странице 13-9 крутящий момент достигает ограничения крутящего момента (100 %), когда скорость ниже примерно 20 % от номинальной скорости.


Возможно увеличить тормозящий момент, увеличив ограничение тока преобразователя при оптимальном торможении (Р0169 – крутящий момент в прямом направлении скорости или Р0170 – в обратном).

Обычно у меньших двигателей более низкий КПД, т. к. в них потери больше. Поэтому при сравнении с большими двигателями получается больший тормозящий момент.

Примеры.1 hp/0.75 kW, IV-полюса: $\eta=0.76$ дает TB1 = 0.32. 20 hp/15.0 kW, IV-полюса: $\eta=0.86$ дает TB1 = 0.16.

13

- (a) Крутящий момент, генерируемый двигателем при нормальной работе, приводимым в движение преобразователем в «режиме двигателя» (момент сопротивления нагрузки)
- (b) Тормозящий момент, генерируемый с использованием оптимального торможения
- (с) Тормозящий момент, генерируемый с использованием торможения постоянным током

Рисунок 13.4: Кривая Т х N для оптимального торможения с типичным двигателем 10 л. с. / 7,5 кВт, который управляется преобразователем с крутящим моментом, настроенным при значении, равном номинальному крутящему моменту двигателя

Для использования оптимального торможения:

- **1.** Активируйте оптимальное торможение, задав P0184 = 0 (режим регулировки промежуточного звена пост. тока = без потерь), и установите уровень регулировки промежуточного звена пост. тока в P0185,как указано в Пункт 13.7.8 Регулятор канала пост. тока на странице 13-25, на P0202 = 3 или 4.
- **2.** Для включения и выключения оптимального торможения через цифровой вход, установите для одного из входов (Dlx) «Регулировку промежуточного звена пост. (P0263...P0270 = 25 и P0184 = 2). Результаты:

Dlx = Активн.: оптимальное торможение активно, эквивалентно P0184 = 0.

Dlx = Неактивн.: оптимальное торможение неактивно.

13.6 ДАННЫЕ ДВИГАТЕЛЯ

Здесь сгруппированы параметры для настройки данных используемого двигателя. Настройте их в соответствии с данными паспортной таблички двигателя (от Р0398 до Р0407, кроме Р0405) с помощью автонастройки или на основании спецификации двигателя (другие параметры). В векторном режиме управления параметры Р0399 и Р0407 не используются.

Р0399 – Номинальный КПД двигателя

Более подробную информацию см. в Раздел 10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW на странице 10-3.

Р0400 – Номинальное напряжение двигателя

Регулируемый диапазон:	От 200 до 600 В	Заводские настройки:	220 - 240 B (P0296 = 0) 380 B (P0296 = 1) 400 - 415 B (P0296 = 2) 440 - 460 B (P0296 = 3) 480 B (P0296 = 4) 500 - 525 B (P0296 = 5) 550 - 575 B (P0296 = 6) 600 B (P0296 = 7)
Свойства:	cfg		
Группы доступа через ЧМИ:	MOTOR, STARTUP		

Описание:

Настройте в соответствии с данными на паспортной табличке двигателя и со схемой подключения двигателя в распределительной коробке.

Это значение не может быть выше, чем номинальное напряжение, указанное в Р0296 (номинальное напряжение линии).

ПРИМЕЧАНИЕ!

Для проверки нового значения Р0400 из программы ориентированного запуска необходимо зациклить мощность на преобразователе.

Таблица 13.1: Настройка по умолчанию Р0400 в соответствии с идентифицированной моделью преобразователя

P0296	Р0145 (Гц)	P0400 (B)
0	50,0	230
0	60,0	220
1, 2, 3	50,0	400
или 4	60,0	380
5, 6 или	50,0	525
7	60,0	575

Для получения дополнительной информации об идентификации модели см. СПРАВОЧНИК ПАРАМЕТРОВ, АВАРИЙНЫХ СИГНАЛОВ, ОТКАЗОВ И КОНФИГУРАЦИЙ на странице 0-1 или руководство пользователя CFW500, которое можно загрузить на веб-сайте: www.weg.net.

Р0401 - Номинальный ток двигателя

Регулируемый диапазон:	От 0,0 до 400,0 А	Заводские настройки:	1,0 x I _{HOM-ND}
Свойства:	cfg		
Группы доступа через ЧМИ:	MOTOR, STARTUP		

Описание:

Установите с учетом данных с паспортной таблички используемого двигателя и напряжения двигателя.

В программе направленного пуска значение, регулируемое в РО401, автоматически изменяет параметры, связанные с защитой двигателя от перегрузки, в соответствии с Таблица 13.2 на странице 13-12.

Р0402 – Номинальная скорость двигателя

 Регулируемый диапазон:
 От 0 до 30000 об/мин настройки:
 1750 об/мин (1425 об/мин)

 Свойства:
 cfg

 Группы доступа
 MOTOR, STARTUP

через ЧМИ:

Описание:

Настройте в соответствии с паспортными данными используемого двигателя.

Для режимов управления V/f и VVW значение будет от 0 до 30000 об/мин.

Для режима векторного управления значение будет от 0 до 7200 об/мин.

Р0403 - Номинальная частота двигателя

 Регулируемый диапазон:
 От 0 до 500 Гц
 Заводские настройки:
 60 Гц

 Свойства:
 cfg

 Группы доступа
 MOTOR, STARTUP

через ЧМИ:

Описание:

Настройте в соответствии с паспортными данными используемого двигателя.

Для режимов управления V/f и VVW диапазон значений будет до 500 Гц.

Для режима векторного управления диапазон значений будет от 30 до 120 Гц.

Р0404 – Номинальная мощность двигателя

 Регулируемый диапазон:
 От 0 до 27 (см. СПРАВОЧНИК ПАРАМЕТРОВ, АВАРИЙНЫХ СИГНАЛОВ, ОТКАЗОВ И КОНФИГУРАЦИЙ на странице 0-1)
 Заводские настройки:
 В соответствии с моделью преобразователя

 Свойства:
 cfg

 Группы доступа через ЧМИ:
 МОТОR, STARTUР

Описание:

Настройте в соответствии с паспортными данными используемого двигателя.

Р0405 – Число импульсов датчика

 Регулируемый диапазон:
 От 100 до 9999 импульсов на оборот диапазон:
 Заводские настройки:
 1024 импульса на оборот

 Свойства:
 cfg

 Группы доступа через ЧМИ:
 МОТОR, STARTUP

Описание:

Устанавливает количество импульсов на оборот (имп/об) используемого шагового датчика.

Р0406 - Вентиляция двигателя

 Регулируемый
 0 = Естественная вентиляция
 Заводские
 0

 диапазон:
 1 = Отдельная вентиляция
 настройки:

Свойства: cfg

Группы доступа через ЧМИ:

MOTOR, STARTUP

Описание:

В программе ориентированного пуска значение, регулируемое в Р0406, автоматически изменяет параметры, связанные с перегрузкой двигателя, следующим образом:

Таблица 13.2: Изменения защиты двигателя от перегрузки в зависимости от Р0406

P0406	Р0156 (Ток перегрузки 100 %)	Р0157 (Ток перегрузки 50 %)	Р0158 (Ток перегрузки 20 %)
0	1,1 x P0401	1,0 x P0401	0,8 x P0401
1	1,1 x P0401	1,1 x P0401	1,1 x P0401

Р0407 - Номинальный коэффициент мощности двигателя

Более подробную информацию см. в Раздел 10.1 РЕГУЛИРОВКА ПАРАМЕТРОВ ВЕКТОРНОГО УПРАВЛЕНИЯ VVW на странице 10-3.

Р0408 - Запуск самонастройки

Р0409 - Сопротивление статора двигателя (Rs)

Р0410 – Ток намагничивания двигателя (І,,)

Р0411 - Индуктивность рассеяния потока двигателя (ols)

Р0412 - Постоянная Lr/Rr (Постоянная времени ротора - T,)

Р0413 – Постоянная Тт (Механическая постоянная времени)

Параметры функции самонастройки. См. Пункт 13.7.5 Самонастройка на странице 13-19.

13.6.1 Установка параметров от Р0409 до Р0412 на основании технической спецификации двигателя

Располагая данными эквивалентной схемы двигателя, можно рассчитать значения для программирования в параметрах от Р0409 до Р0412 вместо использования самонастройки для их получения.

Входные данные:

Техническая спецификация двигателя:

 V_n = испытательное напряжение для получения параметров двигателя в вольтах.

 $f_n =$ испытательная частота для получения параметров двигателя в герцах.

 R_1 = сопротивление статора двигателя на фазу, в омах.

 R_2 = сопротивление ротора двигателя на фазу, в омах.

 X_1 = индуктивное реактивное сопротивление статора, в омах.

 X_2 = индуктивное реактивное сопротивление ротора, в омах.

 X_{m} = намагничивающее индуктивное сопротивление, в омах.

 $I_0 =$ ток двигателя без нагрузки.

 ω = угловая скорость.

$$\omega = 2 \times \omega \times f_n$$

$$R_s = R_1$$

$$I_{m} = I_{0} \times 0.95$$

$$\sigma |s = \frac{\left[X_{1} + \left(X_{2} \times X_{m}\right) / \left(X_{2} + X_{m}\right)\right]}{\omega}$$

$$T_r = -\frac{(X_2 + X_m)}{\omega \times R_2}$$

- 1. Для электродвигателей, допускающих два типа подключения (Y / Δ или YY / $\Delta\Delta$):
- Когда электродвигатель подключен к Y или YY:

$$P0409 = R_{a}$$

$$P0411 = \sigma ls$$

■ Когда электродвигатель подключен к ∆ или ∆∆:

$$P0409 = \frac{R_s}{3}$$

$$P0411 = \frac{\sigma ls}{3}$$

- 2. Для электродвигателей, допускающих три вида подключения (YY / $\Delta\Delta$ / Δ):
- Если в листе установочных данных это считается подключением к YY или ΔΔ, а электродвигатель подключен к YY:

$$P0409 = R_{s}$$

$$P0411 = \sigma ls$$

• Если в листе установочных данных это считается подключением к YY или $\Delta\Delta$, а электродвигатель подключен к $\Delta\Delta$:

$$P0409 = \frac{R_s}{3}$$

$$P0411 = \frac{\sigma ls}{3}$$

• Если в листе установочных данных это считается подключением к YY или $\Delta\Delta$, а электродвигатель подключен к Δ :

P0409 =
$$\frac{4 \times R_s}{4 \times \sigma ls}$$

P0411 = $\frac{3 \sigma ls}{3}$

■ Если в листе установочных данных это считается подключением к ∆, а электродвигатель подключен к ҮҮ:

$$P0409 = \frac{R_s}{4}$$

$$P0411 = \frac{\sigma ls}{4}$$

■ Если в листе установочных данных это считается подключением к Δ , а электродвигатель подключен к $\Delta\Delta$:

$$P0409 = \frac{R_s}{12}$$

$$P0411 = \frac{\sigma ls}{12}$$

■ Если в листе установочных данных это считается подключением к △, а электродвигатель подключен к △:

$$P0409 = \frac{R_s}{3}$$

$$P0411 = \frac{\sigma ls}{3}$$

Независимо от типа соединения, используемого на электродвигателе, и типа соединения, указанного в листе установочных данных, параметры Р0410 и Р0412 определяются так:

$$P0410 = I_{m}$$

P0412= T

Для получения информации о не указанных выше условиях обращайтесь в компанию WEG.

13.7 ВЕКТОРНОЕ УПРАВЛЕНИЕ

13.7.1 Регулятор скорости

В этой группе представлены параметры, связанные с регулятором скорости CFW500.

Р0161 – Пропорциональный коэффициент усиления регулятора скорости

 Регулируемый
 От 0,0 до 63,9
 Заводские
 7,0

 диапазон:
 настройки:

Р0162 - Интегральный коэффициент усиления регулятора скорости

Регулируемый	От 0,000 до 9,999	Заводские	0,005
диапазон:		настройки:	
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Коэффициенты регулятора скорости рассчитываются автоматически в зависимости от параметра P0413 (T_m Постоянная).

Однако эти коэффициенты можно отрегулировать вручную для оптимизации динамического отклика скорости, которая становится быстрее с их увеличением. Кроме того, если скорость начинает осциллировать, их можно уменьшить.

В целом можно сказать, что пропорциональное усиление (Р0161) стабилизирует резкие изменения скорости или задания, тогда как интегральное усиление (Р0162) корректирует ошибку между заданием и скоростью, а также улучшает реакцию крутящего момента на низких скоростях.

Процедура ручной оптимизации регулятора скорости:

- 1. Выберите время разгона (Р0100) и/или замедления (Р0101) в соответствии с приложением.
- 2. Установите уставку скорости на 75 % от максимального значения.
- 3. Сконфигурируйте аналоговый выход (АОх) для действительного значения скорости, установив Р0251 или Р0254 в значение 2.
- 4. Отключите кривую скорости (Пуск/Останов = Останов) и дождитесь остановки двигателя.
- 5. Включите кривую скорости (Пуск/Останов = Пуск). С помощью осциллографа проверьте сигнал скорости двигателя на выбранном аналоговом выходе.
- 6. На Рисунок 13.5 на странице 13-15выберите, какой из графиков лучше всего подходит к полученному сигналу.

Рисунок 13.5: (а)–(в) Типы отклика регуляторов скорости

- 7. Отрегулируйте Р0161 и Р0162 в соответствии с типом отклика, представленным на Рисунок 13.5 на странице 13-15.
- (a) Уменьшите пропорциональный коэффициент (P0161) и/или увеличьте интегральный коэффициент (P0162).
- (b) Регулятор скорости оптимизирован.
- **(c)** Увеличьте пропорциональный коэффициент (P0161) и/или уменьшите интегральный коэффициент (P0162).

Р0165 – Фильтр скорости

Регулируемый диапазон:	От 0,012 до 1,000 с	Заводские настройки:	0,012 c
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Настраивает константу времени фильтра скорости. См. Рисунок 13.1 на странице 13-2 или Рисунок 13.3 на странице 13-4.

ПРИМЕЧАНИЕ!

Обычно этот параметр не следует изменять. Увеличение этого значения делает отклик системы более медленным.

Р0166 – Дифференциальный коэффициент усиления регулятора скорости

Регулируемый диапазон:	От 0,00 до 7,99	Заводские настройки:	0,00
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Дифференциальное действие может минимизировать последствия применения или устранения нагрузки в разрезе скорости двигателя. См. Рисунок 13.1 на странице 13-2 или Рисунок 13.3 на странице 13-4.

Таблица 13.3: Влияние значения дифференциального коэффициента усиления на регулятор скорости

	<u> </u>
P0166	Активация дифференциального коэффициента усиления
0,00	Неактивный
От 0,01 до 7,99	Активный

13.7.2 Регулятор тока

В этой группе представлены параметры, связанные с регулятором тока CFW500.

Р0167 – Пропорциональный коэффициент регулятора тока

Регулируемый От 0,00 до 1,99 **Заводские** 0,50 **диапазон: настройки:**

Р0168 – Интегральный коэффициент регулятора тока

Регулируемый От 0,000 до 1,999 **Заводские** 0,010

диапазон: настройки:

Свойства: Vector

Группы доступа через ЧМИ:

Описание:

Параметры Р0167 и Р0168 регулируются автоматически в зависимости от параметров Р0411 и Р0409.

ПРИМЕЧАНИЕ!

Не меняйте значения этих параметров.

13.7.3 Регулятор потока

Далее представлены параметры, связанные с регулятором потока CFW500.

Р0175 – Пропорциональный коэффициент регулятора потока

Регулируемый От 0,0 до 31,9 **Заводские** 2,0 **диапазон:** настройки:

Р0176 – Интегральный коэффициент регулятора потока

Регулируемый От 0,000 до 9,999 **Заводские** 0,020 **диапазон:** настройки:

Свойства: Vector Группы доступа

Описание:

через ЧМИ:

Эти параметры регулируются автоматически в зависимости от параметра Р0412. Обычно автоматической настройки достаточно, и дополнительная регулировка не требуется.

Ручная регулировка значений этих коэффициентов нужна только в том случае, когда сигнал тока потока (Id*) нестабилен (колеблется) и вызывает нарушения работы системы.

ПРИМЕЧАНИЕ!

При значении коэффициента в P0175 > 12,0 ток потока (Id*) может стать нестабильным.

13)

Р0178 – Номинальный поток

 Регулируемый диапазон:
 От 0,0 до 150,0 % настройки:
 100,0 % настройки:

 Свойства:
 Группы доступа через ЧМИ:

Описание:

Параметр Р0178 представляет собой уставку потока, а максимальное значение для тока потока (тока намагничивания) составляет 150 %.

ПРИМЕЧАНИЕ!

Не изменяйте этот параметр.

Р0181 - Режим намагничивания

 Регулируемый диапазон:
 0 = Общее включение диапазон:
 Заводские о настройки:
 0

 Свойства:
 cfg, Vector

Группы доступа через ЧМИ:

Описание:

Таблица 13.4: Режим намагничивания

P0181	Действие
0 = Общее включение	Подает ток намагничивания после общего включения = ВКЛ
1 = Пуск/Останов	Подает ток намагничивания после Пуска/Останова = Пуск

В режимах бессенсорного векторного управления и управления с датчиком ток намагничивания активен постоянно. Для отключения при остановке двигателя можно использовать цифровой вход, запрограммированный на общее включение. Также имеется возможность программирования режима «ожидания». См. Раздел 14.2 РЕЖИМ ОЖИДАНИЯ на странице 14-5. Кроме того, можно задать задержку для отключения тока намагничивания, установив для Р0218 значение выше нуля.

P0188 – Пропорциональный коэффициент регулятора максимального выходного напряжения

Р0189 – Интегральный коэффициент регулятора максимального выходного напряжения

Регулируемый диапазон:От 0,000 до 7,999Заводские настройки:Р0188 = 0,200Свойства:VectorГруппы доступа через ЧМИ:

Описание:

Эти параметры регулируют коэффициенты усиления регулятора максимального выходного напряжения. В общем случае заводские настройки подходят для большинства применений. См. Рисунок 13.1 на странице 13-2 или Рисунок 13.3 на странице 13-4.

Р0190 - Максимальное выходное напряжение

Регулируемый диапазон:	От 0 до 600 В	Заводские настройки:	220 B (P0296 = 0) 380 B (P0296 = 1) 380 B (P0296 = 2) 380 B (P0296 = 3) 380 B (P0296 = 4) 575 B (P0296 = 5) 575 B (P0296 = 6) 575 B (P0296 = 7)
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Этот параметр определяет значение максимального выходного напряжения. Его стандартное значение определяется в зависимости от номинального напряжения питания.

Уставка напряжения, используемая для «Максимального выходного напряжения» регулятора (см. Рисунок 13.1 на странице 13-2 или Рисунок 13.3 на странице 13-4) прямо пропорциональна напряжению питания.

Если это напряжение увеличивается, то выходное напряжение также может увеличиться до значения, указанного в параметре P0400 — «Номинальное напряжение двигателя».

Если напряжение питания понижается, максимальное выходное напряжение понижается в той же пропорции.

13.7.4 Управление I/f

P0182 - Скорость для активации управления I/f

Регулируемый диапазон:	От 0 до 180 об/мин	Заводские настройки:	30 об/мин
Свойства:	Sless		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Определяет скорость, ниже которой происходит переход от бессенсорного управления к управлению І/f.

Минимальная рекомендуемая скорость для работы векторного управления составляет без датчиков 18 об/мин для двигателей с номинальной частотой 60 Гц и 4 полюсами и 15 об/мин для двигателей с 4 полюсами и номинальной частотой 50 Гц.

ПРИМЕЧАНИЕ!

Если значение параметра $P0182 \le 3$ об/мин, функция I/f будет отключена, а преобразователь будет постоянно работать в режиме бессенсорного векторного управления.

13

Р0183 - Ток в режиме I/f

Регулируемый диапазон:	От 15,0 до 300,0 %	Заводские настройки:	120,0 %
Свойства:	Sless		
Группы доступа через ЧМИ:	MOTOR		

Описание:

Он определяет ток, подаваемый на двигатель, когда преобразователь работает в режиме I/f, то есть со скоростью двигателя ниже значения, определенного параметром P0182. Значение тока намагничивания задается в процентах от номинального тока двигателя в P0410.

13.7.5 Самонастройка

В этой группе собраны параметры, которые относятся к двигателю и значения которых могут быть определены преобразователем в ходе программы самонастройки.

Р0408 – Запуск самонастройки

Регулируемый диапазон:	0 = Heт 1 = Без вращения 2 = Запуск для I _m 3 = Запуск для T _m 4 = Оценка T _m	Заводски настройк	
Свойства:	cfg, VVW, Vector		
Группы доступа через ЧМИ:	STARTUP		

Описание:

Изменяя заводские настройки на одну из 4 доступных опций, можно оценить значение параметров относительно используемого двигателя. Более подробное описание каждой опции смотрите дальше.

Таблица 13.5: Опции самонастройки

P0408	Самонастройка	Тип управления	Оценка параметров	
0	Нет	_	_	
1	Без вращения	Векторное бессенсорное, с датчиком или VVW	D0400 D0410 D0411 D0410	
2 Запуск для I _m		Бессенсорное векторное управление или управление с датчиком положения	Р0409, Р0410, Р0411, Р0412 и Р0413	
3	Запуск для Т"	Векторное управление с датчиком		
4	Расчетная Т,	Векторное управление с датчиком	P0413	

P0408 = 1 – Без вращения: во время самонастройки двигатель остается неподвижным. Значение P0410 получается из таблицы, действительно для двигателей WEG, имеющих до 12 полюсов.

ПРИМЕЧАНИЕ!

Поэтому значение Р0410 должно быть равным нулю перед началом самонастройки. Если Р0410 ≠ 0, программа самонастройки оставит текущее значение.

Примечание: При использовании другой марки двигателя параметр Р0410 необходимо отрегулировать до подходящего значения (ток двигателя без нагрузки), прежде чем инициировать самонастройку.

P0408 = 2 - Запуск для Im: Значение P0410 оценивается при вращении двигателя. Процедура должна выполняться без нагрузки на двигатель. P0409, P0411-P0413 оцениваются на двигателе в состоянии покоя.

ВНИМАНИЕ!

Если опция P0408 = 2 (запуск для I_m) выполняется с соединенной с двигателем нагрузкой, значение P0410 (Im) может быть определено неверно. Это приведет к ошибке определения для P0412 (постоянная времени ротора - T_p) и P0413 (механическая постоянная времени – T_m). Также во время работы преобразователя может происходить перегрузка по току (F0070).

Примечание: Термин «нагрузка» включает все, что может быть соединено с валом двигателя, например, редуктор, инерционный диск и т. д.

P0408 = 3 – запуск для T_m: значение P0413 (механическая постоянная времени – T_m) определяется при вращении двигателя. Рекомендуется выполнять это с нагрузкой, соединенной с двигателем. Параметры от P0409 до P0412 определяются на двигателе в состоянии покоя, а P0410 – так же, как и P0408 = 1.

Р0408 = 4 - Определить Т_m: определяет только значение Р0413 (Механическая постоянная времени - T_m) на вращающемся двигателе. Рекомендуется выполнять это с нагрузкой, соединенной с двигателем.

ПРИМЕЧАНИЯ!

- Для всех случаев, когда Р0408 = 1 или 2:
 - Параметр P0413 (механическая постоянная времени T_m) будет регулироваться до значения, близкого к механической постоянной времени двигателя. Поэтому принимаются во внимание инерция ротора двигателя (данные таблицы действительны для двигателей WEG), номинальные ток и напряжение преобразователя.
- Векторный режим с датчиком (Р0202 = 4):
 При использовании Р0408 = 2 (Запуск для I_m), необходимо после завершения программы самонастройки соединить нагрузку с двигателем и задать Р0408 = 4 (Определить T_m) чтобы определить значение Р0413. В таком случае Р0413 также будет учитывать подключенную нагрузку.
- Режим VVW Вектор напряжения WEG (P0202 = 5): в режиме управления VVW при выполнении программы самонастройки определяется только значение сопротивления статора (P0409). Поэтому программа самонастройки всегда выполняется без вращения двигателя.
- Выполнение программы самонастройки на разогретом двигателе дает лучшие результаты.

P0409 - Сопротивление статора двигателя (Rs)

 Регулируемый диапазон:
 От 0,01 до 99,99 Ом
 Заводские настройки: с моделью преобразователя

 Свойства:
 cfg, V/f, VVW, Vector

 Группы доступа через ЧМИ:
 МОТОR, STARTUP

Описание:

Это значение, рассчитываемое с помощью самонастройки.

ПРИМЕЧАНИЕ!

Настройка Р0409 определяет значение интегрального коэффициента усиления регулятора тока Р0168. Параметр Р0168 перерассчитывается при каждом изменении Р0409 с клавишной панели (ЧМИ).

Если расчетное значение сопротивления статора двигателя слишком велико для используемого преобразователя (например, двигатель не подключен или двигатель слишком мал для преобразователя), преобразователь выдает ошибку F0033.

Значение параметра Р0409 влияет на напряжение торможения постоянным током в Р0302, то есть определяет значение напряжения, подаваемого преобразователем во время торможения постоянным током, чтобы достичь желаемого тока на выходе.

13

Р0410 - Ток намагничивания двигателя (І")

Регулируемый	От 0,0 до 400,0 А	Заводские	0,0 A
диапазон:		настройки:	
Свойства:	Vector		
Группы доступа	MOTOR, STARTUP		
через ЧМИ:			

Описание:

Это значение тока намагничивания двигателя.

Его можно определить с помощью программы самонастройки, когда P0408 = 2 (Запуск для I_m) или получить из внутренней таблицы, действующей для стандартных двигателей WEG, когда P0408 = 1 (Без вращения).

Если используется не стандартный двигатель WEG и нет возможности запустить программу самонастройки при помощи P0408 = 2 (Запуск для I_m), установите значение P0410, равное значению тока двигателя без нагрузки, прежде чем запускать самонастройку.

Для P0202 = 5 (Векторный режим с датчиком) значение P0410 определяет поток двигателя, поэтому его необходимо верно настроить. Если оно низкое, двигатель будет работать с пониженным потоком по сравнению с номинальными условиями, соответственно с пониженным крутящим моментом.

Р0411 – Индуктивность рассеяния потока двигателя (ols)

Регулируемый диапазон:	От 0,00 до 99,99 мГн	Заводские настройки:	0,00 мГн
Свойства:	cfg, Vector		
Группы доступа через ЧМИ:	MOTOR, STARTUP		

Описание:

Это значение, рассчитываемое с помощью самонастройки.

Настройка Р0411 определяет пропорциональный коэффициент регулятора тока.

ПРИМЕЧАНИЕ!

При регулировке с клавишной панели (ЧМИ) этот параметр может изменить параметр Р0167 автоматически.

Р0412 - Постоянная Lr/Rr (Постоянная времени ротора - T,)

 Регулируемый диапазон:
 От 0,000 до 9,999 с настройки:
 Заводские настройки:
 0,000 с настройки:

 Свойства:
 Vector

 Группы доступа через ЧМИ:
 МОТОR, STARTUP

Описание:

Параметр Р0412 определяет коэффициенты усиления регулятора потока (Р0175 и Р0176).

Значение этого параметра влияет на точность скорости в режиме векторного бессенсорного управления.

Обычно самонастройка проводится на холодном двигателе. В зависимости от двигателя значение параметра Р0412 может меняться с изменением температуры двигателя. Поэтому для режима векторного бессенсорного управления и нормальной работы теплого двигателя Р0412 необходимо отрегулировать, пока скорость двигателя с нагрузкой (измеренная тахометром на валу двигателя) не станет равной скорости, указанной на панели (ЧМИ) (Р0001).

Эта регулировка должна проводиться при половине от номинальной скорости.

При P0202 = 5 (векторное управление с датчиком), если значение P0412 установлено некорректно, двигатель будет терять крутящий момент. Поэтому значение P0412 необходимо отрегулировать таким образом, чтобы на половине от номинальной скорости и при стабильной нагрузке ток двигателя (P0003) оставался минимально возможным.

В режиме векторного бессенсорного управления коэффициент P0175, установленный после проведения самонастройки, будет ограничен следующим диапазоном: $3.0 \le P0175 \le 8.0$.

Таблица 13.6: Типичные значения постоянной ротора (Tr) для двигателей WEG

Ma	T, (c)				
Мощность двигателя	Число полюсов				
(л. с.) / (кВт)	2 (50 Гц / 60 Гц)	4 (50 Гц / 60 Гц)	6 (50 Гц / 60 Гц)	8 (50 Гц / 60 Гц)	
2 / 1,5	0,19 / 0,14	0,13 / 0,14	0,1 / 0,1	0,07 / 0,07	
5 / 3,7	0,29 / 0,29	0,18 / 0,12	0,14 / 0,14	0,14 / 0,11	
10 / 7,5	0,36 / 0,38	0,32 / 0,25	0,21 / 0,15	0,13 / 0,14	
15 / 11	0,52 / 0,36	0,30 / 0,25	0,20 / 0,22	0,28 / 0,22	
20 / 15	0,49 / 0,51	0,27 / 0,29	0,38 / 0,2	0,21 / 0,24	
30 / 22	0,70 / 0,55	0,37 / 0,34	0,35 / 0,37	0,37 / 0,38	
50 / 37	0,9 / 0,84	0,55 / 0,54	0,62 / 0,57	0,31 / 0,32	
100 / 75	1,64 / 1,08	1,32 / 0,69	0,84 / 0,64	0,70 / 0,56	
150 / 110	1,33 / 1,74	1,05 / 1,01	0,71 / 0,67	0,72 / 0,67	
200 / 150	1,5 / 1,92	1,0 / 0,95	1,3 / 0,65	0,8 / 1,03	

ПРИМЕЧАНИЕ!

При регулировке с клавишной панели (HMI) этот параметр может автоматически изменить следующие параметры: P0175, P0176, P0327 и P0328.

Р0413 - Постоянная Тт (Механическая постоянная времени)

Регулируемый	От 0,00 до 99,99 с	Заводские	0,00 c
диапазон:		настройки:	
Свойства:	Vector		
Группы доступа	MOTOR, STARTUP		
через ЧМИ:			

Описание:

Параметр Р0413 определяет коэффициенты усиления регулятора скорости (Р0161 и Р0162).

Если Р0408 = 1 или 2, необходимо соблюдать следующие условия:

- Если Р0413 = 0, полученная постоянная времени T_m будет зависеть от инерции запрограммированного двигателя (значение см. в таблице).
- Если Р0413 > 0, значение Р0413 не будет изменено в результате самонастройки.

Векторное бессенсорное управление (Р0202 = 3):

- Если значение Р0413, полученное в результате самонастройки, дает неподходящие значения коэффициентов регулятора скорости (Р0161 и Р0162), можно изменить его, запрограммировав Р0413 с клавишной панели (ЧМИ).
- Коэффициент Р0161, полученный в результате самонастройки или после изменения Р0413, будет ограничен диапазоном: 6,0 ≤ Р0161 ≤ 9,0.
- Значение Р0162 зависит от значения Р0161.
- Если необходимо увеличить эти коэффициенты еще больше, изменяйте непосредственно значения Р0161 и Р0162.

Примечание: Значения P0161 > 12,0 могут привести к нестабильности (колебаниям) тока крутящего момента (Iq) и скорости двигателя.

Векторное управление с датчиком (Р0202 = 4):

- Значение Р0413 определяется программой самонастройки, если Р0408 = 3 или 4.
- Процедура измерения заключается в разгоне двигателя до 50 % от номинальной скорости и приложении скачка тока, равного номинальному току двигателя.
- Если нельзя подать нагрузку для этого типа запроса, настройте Р0413 через клавишную панель (HMI), см. Пункт 13.7.1 Регулятор скорости на странице 13-14.

13.7.6 Ограничение тока крутящего момента

Параметры, размещенные в этой группе, определяют ограничения значений крутящего момента.

Р0169 - Максимальный положительный ток крутящего момента

Р0170 - Максимальный отрицательный ток крутящего момента

Регулируемый	От 0,0 до 350,0 %	Заводские	125,0 %
диапазон:		настройки:	
Свойства:	Vector		
Группы доступа	BASIC		
через ЧМИ:			

Описание:

Эти параметры ограничивают значение компонента тока двигателя, который производит положительный крутящий момент (Р0169) и отрицательный крутящий момент (Р0170). Регулировка выражается в процентах от «Номинального тока крутящего момента» согласно приведенному ниже расчету.

Если любой из аналоговых входов (Alx) программируется на опцию 2 (Максимальный ток крутящего момента), Р0169 и Р0170 становятся неактивными и ограничение тока определяется Alx. В таком случае значение ограничения можно отслеживать с помощью параметра, соответствующего запрограммированному Alx (Р0018 или Р0019).

Если P0169 или P0170 установлены на слишком низкое значение, двигателю может не хватить крутящего момента для управления нагрузкой. Если указано слишком высокое значение параметра, может возникнуть перегрузка или перегрузка по току.

В условиях ограничения крутящего момента ток двигателя можно рассчитать следующим образом:

$$I_{\text{ном_крутящего момента}} = \sqrt{P0401^2 - \left(P0410 \times \frac{P0178}{100}\right)^2}$$
 (Номинальный ток крутящего момента)

I_{двиг} =
$$\sqrt{\frac{P0169^* \times I_{\text{ном_крутящего момента}}}{100}^2 + \left(P0410 \times \frac{P0178}{100}\right)^2}$$

Максимальный крутящий момент, вырабатываемый двигателем, определяется следующим образом:

$$T_{\text{_{JBMF}}}$$
 (%) = P0169 x k

Где коэффициент к определяется:

■ Областью постоянного потока (постоянный момент и ниже или равный синхронной скорости):

k = 1

■ Областью ослабления поля (область постоянной мощности, выше синхронной скорости):

$$= \frac{N_{\text{CMHX}}}{P0002} \times \frac{P0190}{P0400}$$

Где N_{виро} – синхронная скорость двигателя, выраженная в об/мин.

ПРИМЕЧАНИЕ!

Максимальное значение настройки этих параметров внутренне ограничено значением 1,8 х P0295 (HD).

(*) Если ограничение тока крутящего момента обеспечивается аналоговым входом, замените Р0169 или Р0170 на Р0018 или Р0019 в соответствии с запрограммированным Alx. Более подробную информацию см. в Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1.

13.7.7 Контроль фактической скорости двигателя

В некоторых сферах применения преобразователь частоты не сможет работать в режиме ограничения крутящего момента, т. е. фактическая скорость двигателя не будет значительно отличаться от уставки скорости. При работе в таких условиях частотный преобразователь будет выявлять его и генерировать аварийный сигнал (А0168) или сбой (F0169).

Для такого типа применения определяется максимально допустимое значение гистерезиса скорости для стандартного рабочего условия (Р0360). Если разница между фактической скоростью и уставкой скоростью больше этого гистерезиса, будет выявлено условие аварийного сигнала «Фактическая скорость двигателя отличается от уставки скорости (А0168)». Если этот аварийный сигнал оставляется для определенного периода (Р0361), будет создано условие отказа «Фактическая скорость двигателя отличается от уставки скорости (А0169)».

Р0360 - Гистерезис скорости

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	10,0 %
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Этот параметр определяет процентное отношение синхронной скорости двигателя, которая будет гистерезисом скорости для определения того, что фактическая скорость двигателя отличается от уставки скорости и генерирует аварийный сигнал A0168. Значение 0,0 % инициирует аварийный сигнал A0168 и отказ F0169.

Р0361 – Время на основе скорости, которая отличается от уставки

Регулируемый диапазон:	От 0,0 до 999,0 с	Заводские настройки:	0,0 c
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Этот параметр определяет время, для которого условие «Фактическая скорость двигателя отличается от уставки скорости (A0168)» должно оставаться активным для создания отказа «Фактическая скорость двигателя отличается от уставки скорости (F0169)». Значение 0,0 с отключает отказ F0169.

13.7.8 Регулятор канала пост. тока

Для замедления высокоинерционных нагрузок или при коротком времени замедления в CFW500 предусмотрена функция регулирования звена постоянного тока, которая позволяет избежать отключения преобразователя из-за перенапряжения в звене постоянного тока (F0022).

Заволские 400 B (P0296 – 0)

Р0184 - Режим регулировки промежуточного звена пост. тока

Описание:

Включает или выключает функцию оптимального торможения (Раздел 13.5 ОПТИМАЛЬНОЕ ТОРМОЖЕНИЕ на странице 13-8) при регулировке напряжения пост. тока в соответствии со следующей таблицей.

Таблица 13.7: Режимы регуляции промежуточного звена пост. тока

P0184	Действие
0 = С потерями (оптимальное торможение)	Оптимальное торможение активируется, как описано в Р0185. Это обеспечивает минимальное возможное время торможения без использования динамического или рекуперативного торможения
1 = Без потерь	Автоматическое управление кривой замедления. Оптимальное торможение неактивно. Темп замедления автоматически регулируется, чтобы поддерживать уровень звена постоянного тока ниже уровня, установленного в Р0185. Эта процедура позволяет избежать неисправности перенапряжения в звене постоянного тока (F0022). Также может использоваться с эксцентрическими нагрузками
2 = Включить/Выключить через DIx	 ■ Dlx = 24 B: Торможение срабатывает, как описано для P0184 = 1 ■ Dlx = 0 B: Торможение без потерь остается неактивным. Напряжение промежуточного звена пост. тока контролируется параметром P0153 (Динамическое торможение)

Р0185 – Уровень регулировки напряжения промежуточного звена пост. тока

диапазон:	ОТ 339 до 1000 В	••	800 B (P0296 = 1) 800 B (P0296 = 2) 800 B (P0296 = 3)
			800 B (P0296 = 4) 1000 B (P0296 = 5) 1000 B (P0296 = 6) 1000 B (P0296 = 7)
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Регупируемый От 339 по 1000 R

Этот параметр определяет уровень регулировки напряжения промежуточного звена пост. тока во время торможения. В ходе торможения время кривой замедления автоматически увеличивается, таким образом помогая избежать отказа из-за перегрузки по напряжению (F0022). Значение регулировки промежуточного звена пост. тока можно задать двумя способами:

- 1. С потерями (оптимальное торможение) установите P0184 = 0. P0404 < 20 (60 л. с.): в этом случае поток тока изменяется таким образом, что увеличиваются потери двигателя, увеличивая предельный крутящий момент. Двигатели с меньшим КПД (меньшего размера) показывают лучшую работу.
- 2. Без потерь задайте Р0184 = 1. Активирует только регулировку напряжения промежуточного звена пост. тока.

ПРИМЕЧАНИЕ!

Заводские настройки Р0185 установлены на максимум, что отключает регулировку напряжения промежуточного звена пост. тока. Для активации установите значение Р0185 в соответствии с Таблица 13.8 на странице 13-27.

Таблица 13.8: Рекомендованные уровни регулировки напряжения промежуточного звена пост. тока

Преобразователь V _{ном}	200 240 B	380 B	400 / 415 B	440 / 460 B	480 B	500 / 525 B	550 / 575 B	600 B
P0296	0	1	2	3	4	5	6	7
P0185	375 B	618 B	675 B	748 B	780 B	893 B	972 B	972 B

P0186 – Пропорциональный коэффициент усиления регулировки напряжения промежуточного звена пост. тока

Регулируемый От 0,0 до 63,9 **Заводские** 18,0 **настройки:**

Р0187 – Интегральный коэффициент регулировки напряжения промежуточного звена пост. тока

Регулируемый диапазон:		Ваводские настройки:	0,002
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

Эти параметры регулируют коэффициенты регулятора напряжения промежуточного звена пост. тока.

Обычно заводские настройки подходят для большинства случаев и не требуют дополнительной регулировки.

13.8 ПУСК В БЕССЕНСОРНОМ ВЕКТОРНОМ РЕЖИМЕ И В ВЕКТОРНОМ РЕЖИМЕ С ДАТЧИКОМ ПОЛОЖЕНИЯ

ПРИМЕЧАНИЕ!

Перед установкой, подключением питания и работой с преобразователем прочтите все руководство пользователя для CFW500.

Последовательность установки, проверки, подключения питания и запуска:

- **1. Установите преобразователь:** в соответствии с главой 3 «Установка и подключение» руководства пользователя CFW500, подключив все силовые и управляющие соединения.
- **2.** Подготовьте преобразователь и подайте питание: в соответствии с разделом 5.1 «Подготовка к запуску» руководства пользователя CFW500.

3. Настройте преобразователь таким образом, чтобы он работал с линией применения и двигателем: в меню «ЗАПУСК» зайдите в параметр **P0317** и измените его значение на 1, это инициирует процесс ориентированного запуска.

Программа ориентированного запуска представит на клавишной панели (ЧМИ) основные параметры в логической последовательности. Установка этих параметров готовит преобразователь к работе с линией и двигателем. Шаг за шагом выполните последовательность, указанную на Рисунок 13.6 на странице 13-30.

Настройка параметров, представленных в этом режиме работы, приводит к автоматическому изменению содержания других параметров преобразователя и/или внутренних переменных, как показано наРисунок 13.6 на странице 13-30. Таким образом обеспечивается стабильная работа контура управления с параметрами, оптимально подобранными для наилучшей производительности двигателя.

При выполнении программы ориентированного запуска на клавишной панели (ЧМИ) отображается статус «Config» (Конфигурация).

Параметры, относящиеся к двигателю:

- Запрограммируйте параметры Р0398 и от Р0400 до Р0406 данными с паспортной таблички двигателя.
- Опции для значений параметров от Р0409 до Р0412:
 - Автоматически, с выполнением самонастройки преобразователя в соответствии с выбранной опцией P0408.
 - Из технической спецификации двигателя, поставляемой производителем. См. Пункт 13.6.1 Установка параметров от P0409 до P0412 на основании технической спецификации двигателя на странице 13-12, данного руководства.
 - Вручную, посредством копирования содержимого параметров с другого преобразователя CFW500, работающего с идентичным двигателем.
- **4. Установка специальных параметров и функций для приложения:** программирование цифровых и аналоговых входов и выходов, клавиш ЧМИ и т. д. в соответствии с требованиями приложения.

Для приложений:

- Простых, там где требуется программирование заводских настроек для цифровых и аналоговых входов и выходов, используйте меню «ГЛАВНОЕ». См. пункт 5.2.2 «Основное меню приложений» руководства пользователя CFW500.
- Если необходимо запрограммировать цифровые и аналоговые входы и выходы на значения, отличные от заводских, используйте меню «I/O».
- При необходимости использования функций пуска с хода, компенсации провалов напряжения в сети, торможения пост. тока, динамического торможения и т.д. доступ и изменение их параметров осуществляется через меню «РАРАМ» (ПАРАМЕТРЫ).

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
3	LOC CONF STARTUP STARTUP STARTUP STARTUP (ЗАПУСК) нажмите клавишу ENTER/MENU (ВВОД/МЕНЮ)	4	выбрав после этого параметр «Р0317 - Ориентированный запуск» нажмите ENTER/MENU (ВВОД/МЕНЮ) чтобы перейти к содержимому параметра
5	С СООМБ РОЗ 17 С СООМБ РОЗ 17 С СООМБ РОЗ 17 На «1 - Да», С ПОМОЩЬЮ КЛАВИШИ	6	РОЗООВ ТАКТИР. № 100 О ПОМОЩЬЮ КЛАВИШ Нажмите ENTER/MENU (ВВОД/МЕНЮ) и с помощью клавиш и установите значение 3 для бессенсорного векторного управления или 4 для векторного управления с датчиком
7	LOC CONF PO202 3 STARTUP, MARKMUTE ENTER/MENU (ВВОД/МЕНЮ), ЧТОБЫ СОХРАНИТЬ ИЗМЕНЕНИЕ РО202	8	РОЗООЗ 100 СОМБ 100
9	роз 9 9. При необходимости измените содержание «Роз 9 - Номинальный КПД двигателя» или нажмите клавишу для перехода к следующему параметру	10	рочоо ч до втактир, в тактир, в та
11	При необходимости измените содержание «Р0401 - Номинальный ток двигателя» или нажмите клавишу Для перехода к следующему параметру	12	рочо 3 тактир. № 100 гом 100
13	рочог 1710 рочог 171	14	Гри необходимости измените содержание «Р0404 – Номинальная мощность двигателя» или нажмите клавишу Для перехода к следующему параметру

1	3

Этап	Действие/индикация на дисплее	Этап	Действие/индикация на дисплее
15	рочоб втактир, в соответствии с моделью датчика или нажмите клавишу а для перехода к следующему параметру	16	рочо о образование при необходимости измените содержание «Р0407 – Номинальный коэффициент мощности двигателя» или нажмите клавишу
17	РОЧОВ Тактир,	18	во время самонастройки ЧМИ одновременно отображает статусы « RUN » (ПУСК) и « CONF » (КОНФ). А полоска указывает на ход операции
19	ГОО ОКОНЧАНИИ САМОНАСТРОЙКИ ЗНАЧЕНИЕ РО408 автоматически возвращается к «О», а состояния «RUN» (ПУСК) и «CONF» (КОНФ) стираются Нажмите клавишу Для перехода к следующему параметру Результатом самонастройки являются значения параметров Р0409, Р0410, Р0411, Р0412 и Р0413	20	LOC CONF STARTUP STARTUP Для выхода из меню STARTUP (Запуск) просто нажмите BACK/ESC (Назад/Выход)
21	С помощью клавиш № и Выберите необходимое меню и повторно нажмите клавишу ВАСК/ESC (Назад/Выход) для возврата в меню контроля ЧМИ		

Рисунок 13.6: Ориентированный запуск в режиме векторного управления

14 ОБЩИЕ ФУНКЦИИ ДЛЯ ВСЕХ РЕЖИМОВ УПРАВЛЕНИЯ

В этой главе описаны функции, которые влияют на производительность драйвера для всех режимов управления преобразователем.

14.1 КРИВЫЕ

Функции линейных изменений преобразователя позволяют двигателю быстрее или медленнее осуществлять разгон и замедление. Они регулируются параметрами, определяющими время линейного ускорения от нуля до максимальной скорости (Р0134) и время линейного замедления с максимальной скорости до нуля.

В CFW500 реализованы три кривые с различными функциями:

- 1-я кривая стандартная для большинства функций.
- 2^{-я} кривая может быть активирована пользователем в соответствии с требованиями привода подачей буквенной или цифровой команды преобразователю.
- 3^{-я} кривая используется для защитных функций преобразователя, таких как: Ограничение тока, управление звеном постоянного тока, быстрый останов и функциональная безопасность. 3^{-я} кривая имеет приоритет над другими кривыми.

ПРИМЕЧАНИЕ!

Параметр со слишком малым временем изменения может вызвать перегрузку по току на выходе (F0070), понижение (F0021) или превышение (F0022) напряжения звена постоянного тока.

Р0100 - Время разгона

Регулируемый диапазон:	От 0,1 до 999,0 с	Заводские настройки:	10,0 c
Свойства:			
Группы доступа через ЧМИ:	BASIC		

Описание:

Время ускорения от нуля до максимальной скорости (Р0134).

ПРИМЕЧАНИЕ!

Заводское значение по умолчанию изменено на 20,0 с для типоразмеров F и G.

Р0101 - Время замедления

Регулируемый От 0,1 до 999,0 с **Заводские** 10,0 с **диапазон:** настройки:

Свойства:

Группы доступа BASIC через ЧМИ:

Описание:

Время замедления с максимальной скорости (Р0134) до нуля.

ПРИМЕЧАНИЕ!

Заводское значение по умолчанию изменено на 20,0 с для типоразмеров F и G.

Р0102 – Время ускорения 2-я кривой

Регулируемый От 0,1 до 999,0 с **Заводские** 10,0 с **диапазон:** настройки:

Свойства:

Группы доступа через ЧМИ:

Описание:

Время ускорения от нуля до максимальной скорости (Р0134) при активной 2-я кривой.

ПРИМЕЧАНИЕ!

Заводское значение по умолчанию изменено на 20,0 с для типоразмеров F и G.

Р0103 – Время замедления 2-я кривой

Регулируемый От 0,1 до 999,0 с **Заводские** 10,0 с **диапазон:** настройки:

Свойства:

Группы доступа через ЧМИ:

Описание:

Время замедления с максимальной скорости (Р0134) до нуля при активной 2-я кривой.

ПРИМЕЧАНИЕ!

Заводское значение по умолчанию изменено на 20,0 с для типоразмеров F и G.

Р0104 - S-образная кривая

 Регулируемый
 0 = Не активно
 Заводские
 0

 диапазон:
 1 = Активно
 настройки:

Свойства: cfg

Группы доступа через ЧМИ:

Описание:

Данный параметр позволяет кривыму скорения и замедления преобразователя иметь нелиней ный профиль, схожий с S-образным, сокращая появление механических толчков при нагрузке, как по-казано на Рисунок 14.1 на странице 14-3.

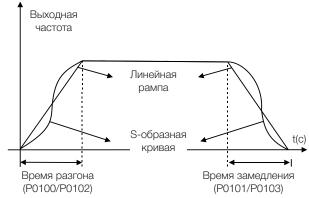


Рисунок 14.1: S-образная или линейная кривая

ПРИМЕЧАНИЕ!

Состояние НАСТРОЙКИ (CONF) активируется, когда Р0104 запрограммирован для S-кривой, а задание (P0221 или P0222) запрограммировано для аналогового или частотного входа.

P0105 - Выбор 1^{-й} / 2^{-й} кривой

Регулируемый диапазон:

0 = 1-я кривая

1 = 2-я кривая

2 = DIx

3 = Последовательный интерфейс/USB

4 = Зарезервировано 5 = CO/DN/PB/Eth6 = SoftPLC

Свойства:

Группы доступа 1/0 через ЧМИ:

Описание:

Определяет источник происхождения команды для активации 2-й кривой.

Примечание: Параметр Р0680 (логическое состояние) указывает на включение или выключение 2-й кривой. Для получения дополнительной информации по данному параметру см. Раздел 7.3 УПРАВЛЯЮЩЕЕ СЛОВО И СОСТОЯНИЕ ПРЕОБРАЗОВАТЕЛЯ на странице 7-15.

ПРИМЕЧАНИЕ!

Выключенное состояние любого источника приводит к активации 1-й кривой. То же самое происходит в опции 2 (DIx), при этом отсутствует цифровой вход для 2^{-i} кривой.

Р0106 – Время 3-й кривой

Регулируемый

От 0,1 до 999,0 с

Заводские 5,0 с настройки:

Заводские 2

настройки:

диапазон:

Свойства:

Группы доступа через ЧМИ:

Описание:

Время ускорения с нуля до максимальной скорости (Р0134) или замедления с максимальной скорости (Р0134) до нуля при активной 3-й кривой.

ПРИМЕЧАНИЕ!

Преобразователь частоты использует З⁺й темп для замедления двигателя, когда запрашивается функция безопасности SS1-t. Поэтому при использовании SS1-t изменяйте этот параметр только во время настройки CFW500-SFY2.

ПРИМЕЧАНИЕ!

Заводское значение по умолчанию изменено на 20,0 с для типоразмеров F и G.

14.2 РЕЖИМ ОЖИДАНИЯ

Режим ожидания позволяет преобразователю выключать двигатель, когда уставка скорости находит-ся ниже запрограммированного в Р0217 значения на период, определяемый Р0218. В данном случае уставка скорости может самостоятельно выключить двигатель, сократив потребление энергии. Кроме того, нет необходимости подавать цифровую команду для включения двигателя, т. е. уставка также действует как логическая команда.

Когда ПИД-контроллер активен, условие спящего режима увеличивается на Р0535, помимо параметров Р0217 и Р0218. Это условие добавляет минимальный критерий отклонения переменной процесса по отношению к уставке (ошибке), обеспечивая удержание переменной процесса в течение режима ожидания. Более подробную информацию см. в Раздел 16.3 РЕЖИМ ОЖИДАНИЯ С ПИД на странице 16-8.

Режим ожидания обозначается в параметре Р0006 с помощью значения 10.

ОПАСНОСТЬ!

При нахождении в режиме ожидания двигатель может вращаться в любое время с учетом условий процесса. Если требуется выполнять какие-либо операции с двигателем или провести техническое обслуживание, отключите питание преобразователя.

Р0217 – Частота режима ожидания

Регулируемый диапазон:	От 0,0 до 500,0 Гц	Заводские настройки:	0,0 Гц
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Параметр Р0217 определяет значение уставки частоты, при этом ниже данного значения преобразователь может перейти в режим ожидания в зависимости от параметров Р0218 и Р0535.

Режим ожидания отключает преобразователь, когда значение уставки частоты ниже значения параметра P0217. Это произойдет после промежутка времени, установленного в P0218.

Если уставка частоты снова превысит значение параметра P0217, преобразователь автоматически выйдет из режима ожидания. Однако, если преобразователь находится в автоматическом режиме ПИД, помимо предыдущего условия, если ошибка в ПИД превышает запрограммированное в P0535 значение, преобразователь также выйдет из режима ожидания.

Р0218 - режим ожидания

Регулируемый диапазон:	От 0 до 999 с	Заводские настройки:	0 c
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Параметр P0218 устанавливает промежуток времени, в котором условия режима ожидания согласно параметрам P0217 и P0535 должны оставаться стабильными. Это предотвращает активацию режима ожидания единичными отклонениями и нарушениями.

14.3 ПУСК С ХОДА / УСТОЙЧИВОСТЬ ПО НАПРЯЖЕНИЮ V/F ИЛИ VVW

Функция пуска с хода позволяет выполнить пуск свободно вращающегося двигателя, начиная его разгон с существующей скорости. Функция компенсации провалов напряжения в сети позволяет восстанавливать преобразователь при отсутствии блокировки при понижении напряжения и мгновенном падении напряжения питания.

Обе функции запускаются в особом случае, при котором двигатель вращается в одном направлении со скоростью близкой к уставке и, следовательно, незамедлительно применяя к выходу уставку скорости и увеличивая выходное напряжение кривой, проскальзывание и пусковой крутящий момент снижаются.

Р0320 - Пуск с ходу (FS) / Устойчивость по напряжению (RT)

 Регулируемый
 0 = He активно Заводские
 О настройки:

 1 = Пуск с хода (FS) настройки:

2 = Пуск с хода / Компенсация провалов напряжения в сети 3 = Компенсация провалов напряжения в сети (RT)

Свойства: cfg

Группы доступа через ЧМИ:

Описание:

При помощи параметра Р0320 выбирается использование функций пуск с хода и компенсация провалов напряжения в сети. Более подробная информация содержится в следующих разделах.

Р0331 - Скачок напряжения для FS и RT

Регулируемый От 0,2 до 60,0 с **Заводские** 2,0 с

диапазон: настройки:

Свойства: V/f, VVW

Группы доступа через ЧМИ:

Описание:

Данный параметр определяет период повышения выходного напряжения в процессе выполнения функций пуска с хода и компенсации провалов напряжения в сети.

14.3.1 Функция пуска с хода

Для активации данной функции установите значение параметра P0320 на 1 или 2. Таким образом, преобразователь установит фиксированную частоту при запуске, определенную уставкой скорости, и применит кривую напряжения, заданную в параметре P0331. В таком случае пусковой ток уменьшается. С другой стороны, если двигатель находится в состоянии простоя, уставка скорости и реальная скорость двигателя значительно различаются, или направление вращения изменяется. Результат в подобных случаях может быть хуже, чем при обыкновенном запуске без использования функции пуска с хода.

Функция пуска с хода применяется на нагрузках с высокой инерцией или системах, требующих запуска при работающем двигателе. Кроме того, функция может быть отключена динамически цифровым вводом P0263-P0270, запрограммированным на «24 = отключить пуск с хода». В данном случае пользователь может активировать функцию подходящим способом в зависимости от применения.

14.3.2 Функция компенсации провалов напряжения в сети

Функция компенсации провалов напряжения в сети в режиме V/f отключает выходные импульсы (БТИЗ) преобразователя, как только напряжение на входе падает ниже значения уровня пониженного напряжения. Отказ из-за пониженного напряжения (F0021) не возникает, и напряжение промежуточного звена постоянного тока постепенно снижается до момента восстановления напряжения в сети. В случае если напряжение питания восстанавливается слишком долго (более 2 секунд), преобразователь может отобразить ошибку F0021 (падение напряжения промежуточного звена постоянного тока). Если напряжение линии восстанавливается до сообщения об ошибке, преобразователь снова включает импульсы, незамедлительно налагая уставку скорости (как для функции пуска с хода) и используя кривую напряжения со временем, определяемым значением параметра P0331. См. Рисунок 14.2 на странице 14-7.

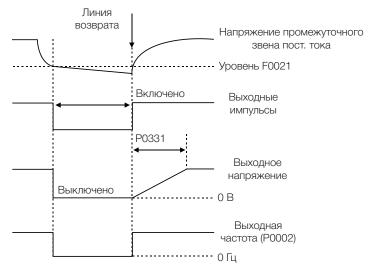


Рисунок 14.2: Активирование функции компенсации провалов напряжения в сети

Функция компенсации провалов напряжения в сети позволяет восстанавливать преобразователь без блокировки при понижении напряжения (F0021) в случае кратковременного снижения напряжения питания. Промежуток времени, допустимый при возникновении ошибки, в большинстве случаев составляет не более двух секунд.

14.4 ПУСК С ХОДА / КОМПЕНСАЦИЯ ПРОВАЛОВ НАПРЯЖЕНИЯ К ВЕКТОРНОМУ УПРАВЛЕНИЮ

14.4.1 Пуск с хода в векторном режиме

14.4.1.1 P0202 = 3

Поведение функции Запуск с хода (FS) в режиме без датчиков при ускорении и повторном ускорении можно понять из Рисунок 14.3 на странице 14-10.

На рисунке Рисунок 14.3 на странице 14-10 показана уставка скорости при активировании функции пуска с хода, если вал двигателя уже запущен в нужном направлении или вал остановлен при оптимизированном значении P0329.

Анализ работы:

- 1. Применяется частота, равная значению параметра P0134, с практически номинальным током двигателя (управление I/f).
- 2. Частота снижается до нуля при помощи кривой, которая задана параметрами: Р0329 х Р0412.
- 3. Если скорость не обнаруживается при выполнении сканирования частоты, запускается новое сканирование в обратном направлении скорости, при котором частота изменяется от -P0134 до нуля. После выполнения второго сканирования пуск с хода завершается и режим управления переключается на векторный бессенсорный.

На Рисунок 14.3 на странице 14-10 показана уставка скорости, когда функция FS запускается с валом электродвигателя, уже вращающимся в необходимом направлении, или с остановленным валом и уже оптимизированным параметром Р0329.

Анализ работы:

- 1. Применяется частота, равная значению параметра Р0134, с практически номинальным током двигателя.
- 2. Частота снижается с использованием кривой, заданной параметрами: Р0329 х Р0412, до достижения скорости двигателя.
- 3. В этот момент режим управления изменяется на векторный бессенсорный.

ПРИМЕЧАНИЕ!

Чтобы скорость двигателя обнаруживалась при первом сканировании, необходимо выполнять настройку параметра Р0329 следующим образом:

- 1. Увеличить Р0329 с использованием шагов 1.0.
- 2. Включить преобразователь и пронаблюдать за движением вала двигателя в процессе пуска с хода.
- 3. Если вал вращается в обоих направлениях, необходимо остановить двигатель и повторить шаги 1 и 2.

ПРИМЕЧАНИЕ!

Используемые параметры – от Р0327 до Р0329, а неиспользуемые – Р0182, Р0331 и Р0332.

ПРИМЕЧАНИЕ!

Если активирована команда общего включения, намагничивание двигателя не происходит.

ПРИМЕЧАНИЕ!

Для лучшей работы функции рекомендуется активировать торможение без потерь, настроив параметр P0185 согласно Таблица 13.8 на странице 13-27.

Р0327 - Кривая изменения тока I/f при FS

Регулируемый

От 0,000 до 1,000 с

Заводские 0,070 с

настройки:

диапазон: Свойства:

Sless

Группы доступа

Описание:

через ЧМИ:

Определяет время, которое необходимо для линейного изменения тока I/f от 0 до уровня, используемого при качании частоты. Это определяется: P0327 = P0412/8.

Р0328 - Фильтр для пуска с хода

Регулируемый От 0,000 до 1,000 с **Заводские** 0,085 с

диапазон: настройки:

Свойства: Sless

Группы доступа через ЧМИ:

Описание:

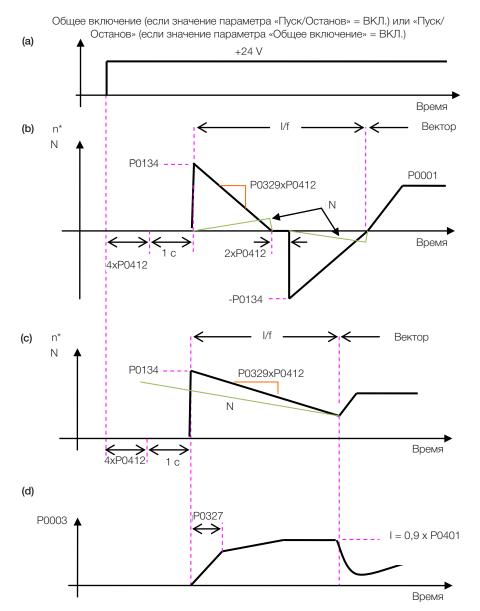
Устанавливает время пребывания в состоянии, которое указывает, что найдена скорость двигателя. Определяется параметрами: P0328 = (P0412/8 + 0,015 c).

Р0329 - Кривая изменения частоты I/f при качании частоты

Регулируемый От 2,0 до 50,0 **Заводские** 6,0

диапазон: настройки:

Свойства: Sless


Группы доступа через ЧМИ:

Описание:

Определяет скорость изменения частоты, которая используется при определении скорости двигателя.

Скорость изменения частоты определяется следующим образом: (Р0329 х Р0412).

Рисунок 14.3: (a) – (d) Влияние параметров Р0327 и Р0329 в процессе пуска с хода (Р0202 = 4)

При необходимости незамедлительного прекращения использования пуска с хода существует возможность запрограммировать цифровые входы P0263 – P0270, присвоив им значение 24 (Отключение пуска с хода). См. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.

14.4.1.2 P0202 = 4

В течение интервала времени, за который выполняется намагничивание двигателя, происходит определение скорости двигателя. После завершения намагничивания работа двигателя начнется с пуска с этой скорости и будет изменяться, пока не достигнет скорости, указанной значением параметра P0001.

Параметры Р0327-Р0329, Р0331 и Р0332 не используются.

14.4.2 Компенсация провалов напряжения в сети в векторном режиме

В отличие от режимов V/f и VVW, в векторном режиме функция компенсации провалов напряжения в сети пытается регулировать напряжение в промежуточном звене постоянного тока во время отказа линии. Источником энергии, которая необходима для работы агрегата, служит кинетическая энергия двигателя (инерция) при его замедлении. При восстановлении линии происходит повторный разгон двигателя до скорости, которая определена уставкой.

После отказа линии (t0) напряжение звена постоянного тока (Ud) начинает уменьшаться со скоростью, зависящей от состояния нагрузки двигателя, и может достичь уровня пониженного напряжения (t2), если функция устойчивости по напряжению не работает. При номинальной нагрузке время, которое необходимо для достижения этого значения, составляет, как правило, от 5 до 15 мс.

Если функция устойчивости по напряжению активна, потеря в линии определяется тогда, когда напряжение Ud достигает значения ниже значения «DC Link Power Loss» (Потеря мощности в канале постоянного тока) (t1), определенного в параметре P0321. Преобразователь немедленно инициирует контролируемое замедление двигателя, регенерируя энергию в звене постоянного тока, чтобы поддерживать работу двигателя с напряжением Ud, регулируемым на значении «DC Link Ride-Through» (устойчивость по напряжению звена постоянного тока) (P0322).

В случае, если линия не восстанавливается, агрегат остается в этом состоянии максимально возможное время (зависит от энергетического баланса) до наступления пониженного напряжения (F0021 в t5). Если линия восстанавливается до возникновения пониженного напряжения (t3), преобразователь обнаружит его восстановление, когда напряжение Ud достигнет уровня «Возврат мощности звена постоянного тока» (t4), определенного в параметре P0323. Затем двигатель снова разгоняется, следуя настроенному графику, от фактического значения скорости до значения, определяемого опорной скоростью (P0001) (см. Рисунок 14.4 на странице 14-11).

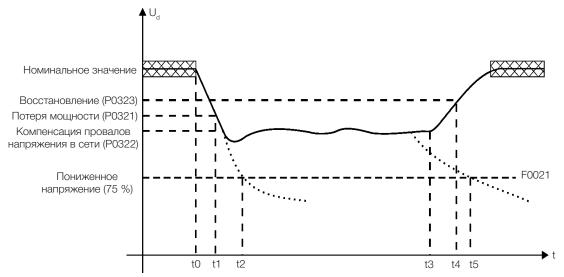


Рисунок 14.4: Запуск функции компенсации провалов напряжения в сети в векторном режиме

- t0 потеря мощности в линии.
- t1 обнаружение потери мощности в линии.
- t2 запуск понижения напряжения (F0021 без компенсации провалов напряжения в сети).
- t3 восстановление линии.
- t4 обнаружение восстановления линии.
- t5 запуск понижения напряжения (F0021 при компенсации провалов напряжения в сети).

Если напряжение сети создает напряжение Ud между значениями, установленными в Р0322 и Р0323, может возникнуть ошибка F0150, значения Р0321, Р0322 и Р0323 необходимо отрегулировать заново.

ПРИМЕЧАНИЕ!

Все компоненты приводной системы должны быть рассчитаны на применение промежуточных условий применения.

ПРИМЕЧАНИЕ!

Функция компенсации провалов напряжения в сети активируется, если напряжение питания ниже значения (P0321/1.35). Ud = В перем. тока х 1,35

Р0321 – Потеря мощности промежуточного звена постоянного тока

Регулируемый	От 178 до 770 В	Заводские	252 B (P0296 = 0)
диапазон:		настройки:	436 B (P0296 = 1)
			436 B (P0296 = 2)
			436 B (P0296 = 3)
			436 B (P0296 = 4)
			659 B (P0296 = 5)
			659 B (P0296 = 6)
			659 B (P0296 = 7)

Р0322 – Компенсация провалов напряжения промежуточного звена постоянного тока

Регулируемый диапазон:	От 178 до 770 В		243 B (P0296 = 0) 420 B (P0296 = 1) 420 B (P0296 = 2) 420 B (P0296 = 3) 420 B (P0296 = 4) 636 B (P0296 = 5)
			636 B (P0296 = 6) 636 B (P0296 = 7)

Р0323 – Возврат мощности промежуточного звена постоянного тока

Регулируемый диапазон:	От 178 до 770 В		267 B (P0296 = 0) 461 B (P0296 = 1) 461 B (P0296 = 2) 461 B (P0296 = 3) 461 B (P0296 = 4) 698 B (P0296 = 5) 698 B (P0296 = 6) 698 B (P0296 = 7)
Свойства:	Vector		
Группы доступа через ЧМИ:			

Описание:

P0321 - определяет уровень напряжения $U_{\scriptscriptstyle d}$ при котором фиксируется потеря мощности в канале.

P0322 - определяет уровень напряжения U_d при котором преобразователь пытается осуществлять регулирование и поддерживать работу двигателя.

P0323 - определяет уровень напряжения U_d при котором преобразователь определяет восстановление линии, и начинается повторный разгон двигателя.

ПРИМЕЧАНИЕ!

Для функции компенсации провалов напряжения в сети в векторном режиме управления эти параметры работают вместе с параметрами P0325 и P0326.

настройки:

P0325 - Пропорциональный коэффициент для функции компенсации провалов напряжения

Регулируемый От 0,0 до 63,9 **Заводские** 22,8 **диапазон: настройки:**

Р0326 – Интегральный коэффициент для функции компенсации провалов напряжения в сети

Регулируемый От 0,000 до 9,999 **Заводские** 0,128

диапазон:

Свойства: Vector

Группы доступа через ЧМИ:

Описание:

Эти параметры настраивают пропорционально-интегральный регулятор (ПИ-регулятор) для компенсации провалов напряжения в сети в векторном режиме. Этот ПИ-регулятор отвечает за поддержание напряжения промежуточного звена постоянного тока на уровне, заданном параметром Р0322.

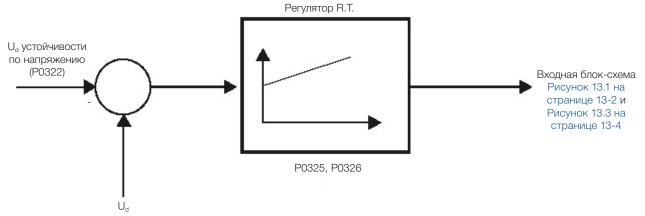


Рисунок 14.5: ПИ-регулятор для компенсации провалов напряжения в сети

Как правило, для большинства применений подходят заводские настройки параметров P0325 и P0326. Не изменяйте эти параметры.

14.5 ТОРМОЖЕНИЕ ПОСТОЯННЫМ ТОКОМ

Торможение постоянным током позволяет остановить двигатель, подав на него постоянный ток. Ток, применяемый при торможении постоянным током, пропорционален тормозящему моменту и может быть задан в параметре P0302. Значение задается в процентах (%) от номинального тока преобразователя при условии, что мощность двигателя совместима с мощностью преобразователя.

Р0299 - Время торможения постоянным током при пуске

Регулируемый диапазон:	От 0,0 до 15,0 с	Заводские настройки:	0,0 c
Свойства:	V/f, VVW, VVW PM, VVW HSRM, Sless		
Группы доступа через ЧМИ:			

Описание:

Длительность торможения постоянным током при запуске.

Рисунок 14.6: Активация торможения постоянным током при запуске

Р0300 – время торможения постоянным током при остановке

Регулируемый диапазон:	От 0,0 до 15,0 с Заводские 0,0 с настройки:
Свойства:	V/f, VVW, VVW PM, VVW HSRM, Sless
Группы доступа через ЧМИ:	

Описание:

Длительность торможения постоянным током при остановке. Рисунок 14.7 на странице 14-14 показано поведениеторможения при остановке.

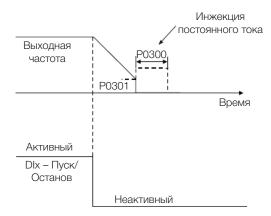


Рисунок 14.7: активация торможения постоянным током

При включении преобразователя процесс торможения прерывается и преобразователь возвращается к стандартной работе.

ВНИМАНИЕ!

Функция торможения постоянным током может быть активна и после остановки двигателя. Следует соблюдать осторожность при определении температурных параметров для кратковременного циклического торможения.

Р0301 – Частота запуска торможения постоянным током при остановке

 Регулируемый диапазон:
 От 0,0 до 500,0 Гц настройки:
 3,0 Гц настройки:

 Свойства:
 V/f, VVW, VVW PM, VVW HSRM, Sless

 Группы доступа через ЧМИ:
 4

Описание:

Данный параметр устанавливает исходную точку применения торможения постоянным токомпри остановке, когда преобразователь отключен с помощью кривой, как показано на Рисунок 14.7 на странице 14-14.

Р0302 - Напряжение, применяемое при торможении постоянным током

 Регулируемый диапазон:
 От 0,0 до 100,0 % до 100,0 % настройки:
 Заводские настройки:
 20,0 % настройки:

 Свойства:
 V/f, VVW, VVW PM, VVW HSRM

 Группы доступа через ЧМИ:
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4

Описание:

Этот параметр регулирует напряжение постоянного тока (момент торможения постоянным током), подаваемое на двигатель при торможении.

Настройку необходимо выполнять путем постепенного увеличения значения РОЗО2, которое варьируется от 0,0 до 100,0 % номинального тормозного напряжения, до достижения желаемого тормозного момента.

Параметр Р0409 напрямую влияет на тормозной момент, поскольку значение 100 % в Р0302 указывает на источник напряжения на двигателе, который приводит к номинальному току преобразователя, заданному Р0295.

ПРИМЕЧАНИЕ!

Слишком высокое значение Р0302 может вызвать перегрузку по току преобразователя и даже повреждение подключенного двигателя из-за перегрузки по току в обмотках.

Р0372 - Сила тока при торможении постоянным током в бессенсорном режиме

 Регулируемый диапазон:
 От 0,0 до 90,0 % настройки:
 40,0 % настройки:

 Свойства:
 Sless

 Группы доступа через ЧМИ:
 40,0 % настройки:

Описание:

Этот параметр регулирует ток (тормозящий момент постоянного тока), который применяется по отношению к двигателю при торможении.

Запрограммированный текущий уровень представляет собой процентную долю от номинального тока преобразователя.

Данный параметр работает только в бессенсорном векторном режиме управления.

14.6 АЛЬТЕРНАТИВНАЯ ЧАСТОТА

Данная функция преобразователя предотвращает постоянную работу двигателя на частотах, при которых, например, механическая система входит в резонанс (приводит к созданию чрезмерной вибрации или шума).

Р0303 - Нежелательная частота 1

 Регулируемый
 От 0,0 до 500,0 Гц
 Заводские
 20,0 Гц

 диапазон:
 настройки:

Р0304 – Нежелательная частота 2

 Регулируемый
 От 0,0 до 500,0 Гц
 Заводские
 30,0 Гц

 диапазон:
 настройки:

Р0306 - Диапазон пропуска

 Регулируемый диапазон:
 От 0,0 до 25,0 Гц диапазон:
 Заводские настройки:
 0,0 Гц настройки:

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Активация данных параметров осуществляется согласно Рисунок 14.8 на странице 14-17 ниже.

Проход через диапазон альтернативной частоты (2 х Р0306) осуществляется с помощью кривой ускорения/замедления.

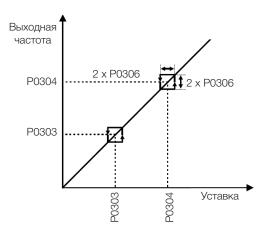


Рисунок 14.8: Активация альтернативной частоты

14.7 РЕЖИМ СЖИГАНИЯ

Функция «Пожарный режим» позволяет преобразователю продолжать приводить в действие двигатель даже в неблагоприятных условиях, блокируя все неисправности, за исключением F0070, F0074 и F0022. Функция «Пожарный режим» выбирается путем включения цифрового входа (Dlx), предварительно настроенного на «Пожарный режим», с активным логическим уровнем, NPN или PNP, в соответствии с конфигурацией P0271. Если необходимо инвертировать логику привода Dlx, можно использовать бит 8 настроек управления P0397. Когда CFW500 обнаруживает вход в «Пожарном режиме», срабатывает сигнализация «A0211», которая имеет приоритет на главном дисплее ЧМИ. Состояние Пожарного режима работы также будет обновлено в параметре P0006.

ОПАСНОСТЬ!

- Обратите внимание, что преобразователь является лишь одним из компонентов системы ОВКВ, и его можно настроить для выполнения различных функций, включая функцию «Режим сжигания».
- Таким образом, полноценная работа функции «Режим сжигания» зависит от точности проекта и совместной работы компонентов системы.
- Системы вентиляции, предназначенные для обеспечения безопасности жизнедеятельности, должны быть одобрены пожарной службой и/или другим компетентным государственным органом.
- Непрерывность работы преобразователей при настройке на работу в функции «Режим сжигания» имеет решающее значение и должна учитываться при составлении планов обеспечения безопасности в средах, в которых они установлены, поскольку это может привести к повреждению самого преобразователя и других компонентов системы ОВКВ, окружающей среды, в которой он установлен, и риску смерти людей.
- Работа в функции «Режим сжигания» при определенных обстоятельствах может привести к возгоранию, поскольку устройства защиты будут отключены.
- Конфигурацию оборудования для функции «Режим сжигания» должен учитывать только персонал инженерно-технического отдела и службы безопасности.
- WEG настоятельно рекомендует соблюдать описанные выше меры предосторожности и процедуры перед использованием преобразователя в функции «Режим сжигания», и он не несет ответственности перед конечным пользователем или третьими лицами за любые убытки или ущерб, прямые или косвенные, возникшие в результате программирования и эксплуатации преобразователя в режиме «Режим сжигания», учитывая критическое и специальное использование этой функции.

ПРИМЕЧАНИЕ!

Когда пользователь активирует функцию «Режим сжигания», он/она признает, что функции защиты преобразователя отключены, что может привести к повреждению самого преобразователя, подключенных к нему компонентов, окружающей среды, в которой он установлен, и людям, присутствующим в такой сред. Поэтому пользователь несет полную ответственность за риски, возникающие в таких условиях эксплуатации. Эксплуатация с запрограммированной функцией «Режим сжигания» приводит к аннулированию гарантии на изделие. Работа в этом состоянии регистрируется внутри преобразователя и должна быть подтверждена квалифицированным специалистом в области техники и безопасности труда.

Если пользователь нажмет клавишу ESC, это сообщение переместится с главного дисплея на дополнительный дисплей, а режим работы, указанный в параметре Р0006, останется без изменений. Это состояние также можно контролировать с помощью цифрового выхода, установленного на «Режим сжигания». При работе в «Режиме сжигания» все команды СТОП игнорируются (даже «Общее включение»). Несколько неисправностей (считающихся критическими), которые могут повредить привод, не будут отключены, но могут бесконечно автоматически сбрасываться (установите это условие в параметре Р0582): Перенапряжение в звене постоянного тока (F0022), перегрузка по току/короткое замыкание (F0070) и замыкание на землю (F0074).

P0580 - Конфигурация «Режим сжигания»

Регулируемый

0 = Выключен («Режим сжигания» неактивен)

Заводские 0 настройки:

диапазон:

1 = Включен (сохраняет уставку скорости/уставку ПИД)

2 = Включен (установите максимальную уставку скорости [Р0134])

3 = Включен (установите уставку ПИД на значение,

запрограммированное в Р0581)

4 = Включено (общее отключение, двигатель остановится по

инерции)

Свойства:

cfg Группы доступа

через ЧМИ:

Описание:

Этот параметр определяет, как функция режима сжигания будет работать в преобразователе частотыі.

Таблица 14.1: Опции для параметра Р0580

P0580	Описание
0	Функция режима сжигания неактивна
1	Функция режима сжигания активна. Если Dlx установлен в Пожарный режим, на дисплее ЧМИ отобразится «A0211», но опорная скорость или заданное значение ПИД не изменятся. Двигатель будет вращаться в соответствии с уставкой скорости или заданием, определенным ПИД
2	Функция режима сжигания активна. Если Dlx установлен в Пожарный режим, на дисплее ЧМИ отобразится «A0211», а опорное значение скорости будет автоматически установлено на максимальное значение (P0134). Двигатель разгонится до этой новой уставки
3	Функция режима сжигания активна. Если Dlx установлен в Пожарный режим, на дисплее ЧМИ отобразится «A0211», а уставка ПИД будет автоматически установлена на значение P0581. Двигатель будет вращаться в соответствии с заданием, определенным ПИД для этой новой уставки
4	Функция режима сжигания активна. Если Dlx установлен в Пожарный режим, на дисплее ЧМИ отобразится «A0211», но выходные импульсы будут отключены. Двигатель остановится по инерции

Р0581 - Уставка ПИД режима сжигания

Регулируемый диапазон:	от -100,0 % до 100,0 % Заводские настройки :	
Свойства:		
Группы доступа через ЧМИ:		

Описание:

Он определяет уставку, которая будет использоваться ПИД, когда «Режим сжигания» включен и Р0580 = 3. Это процентное значение принудительно вводится на вход уставки ПИД-контроллера. Таким образом, как «ПИД встроенного ПО преобразователя», так и «Резидентное приложение – РезПрилож внутреннего ПИД» предустановлены в Режиме сжигания.

Р0582 - Автоматический сброс режима сжигания

Регулируемый диапазон:	0 = Ограничено 1 = Без ограничений	Заводские 0 настройки:
Свойства:	cfg	
Группы доступа через ЧМИ:		

Описание:

Этот параметр определяет, как будет работать «автоматический сброс» критических неисправностей, когда преобразователь находится в «Пожарном режиме». Критически важными неисправностями считаются: Перенапряжение в звене постоянного тока (F0022), перегрузка по току/короткое замыкание (F0070) и замыкание на землю (F0074).

Таблица 14.2: Опции для параметра P0582

P0582	Описание
0	Предел. Автоматический сброс работает, как определено в параметре Р0340
1	Без ограничений. Автоматический сброс происходит через 1 с после обнаружения критического отказа независимо от значения, установленного в Р0340

15 ЦИФРОВЫЕ И АНАЛОГОВЫЕ ВХОДЫ И ВЫХОДЫ

В данном разделе представлены параметры конфигурации входов и выходов CFW500. Данная конфигурация зависит от подключаемого модуля согласно Таблица 15.1 на странице 15-1.

Таблица 15.1: Конфигурации ввод/вывода CFW500

Функции														
DI	AI	ENC	AO	DOR	DOT	USB	CAN	RS-232	RS-485	Profibus	EtherNet	Sup 10 B	Sup 24 B	Подключаемый модуль
4	1	-	1	1	1	-	-	-	1	-	-	1	1	CFW500-IOS
8	1	-	1	1	4	-	-	-	1	-	-	1	1	CFW500-IOD
6	3	-	2	1	3	-	-	-	1	-	-	1	1	CFW500-IOAD
5	1	-	1	4	1	-	-	-	1	-	-	1	1	CFW500-IOR
4	1	-	1	1	1	-	-	-	1	-	-	1	1	CFW500-IOSP
4	2	-	1	2	1	-	-	-	2	-	-	1	1	CFW500-CRS485P
4	1	-	1	1	1	1	-	-	1	-	-	1	1	CFW500-CUSB
2	1	-	1	1	1	-	1	-	1	-	-	1	1	CFW500-CCAN
2	1	-	1	1	1	-	-	1	1	-	-	-	1	CFW500-CRS232
4	2	-	1	2	1	-	-	-	2	-	-	1	1	CFW500-CRS485
2	1	-	1	1	1	-	-	-	1	1	-	-	1	CFW500-CPDP
2	1	-	1	1	1	-	-	-	1	-	1	-	1	CFW500-CETH-IP CFW500-CEMB-TCP CFW500-CEPN-IO
5	1	1	1	3	1	-	-	-	1	-	-	-	1	CFW500 - ENC
7	-	1	-	3	1	-	-	-	1	-	-	-	1	CFW500 - ENC2
5	1	-	1	4	1	-	-	-	1	-	-	1	1	CFW500-IOR-B-PNP
2	1	-	-	-	1	-	-	-	1	-	2	-	-	CFW500-CETH2

DI – цифровой вход DOR – цифровой выход реле AI – аналоговый вход AO – аналоговый выход DOT – цифровой выход транзистора

ПРИМЕЧАНИЕ!

ЧМИ CFW500 отображает только параметры, относящиеся к доступным в подсоединенном подключаемом модуле ресурсам.

ПРИМЕЧАНИЕ!

Входы функциональной безопасности модуля функций безопасности CFW500-SFY2 описаны в руководстве по безопасности.

15.1 АНАЛОГОВЫЕ ВХОДЫ

С помощью аналоговых входов возможно, например, использовать внешнюю уставку скорости или подключить датчик для измерения температуры (РТС). Подробная информация об этих конфигурациях содержится в описаниях следующих параметров.

Р0018 – Значение аналогового входа Al1

Р0019 - Значение аналогового входа Al2

Р0020 - Значение аналогового входа Al3

Регулируемый от -100,0 до 100,0 % Заводские диапазон: настройки:

Свойства:

Группы доступа | READ, I/O

через ЧМИ:

Описание:

Эти параметры только для чтения отображают значение для аналоговых входов Al1, Al2 и Al3 в виде процентной доли от полного диапазона. Отображаемые значения получаются в результате действия смещения и умножения на коэффициент. См. описание параметров P0230 – P0245.

Р0230 – зона нечувствительности аналоговых входов

Регулируемый диапазон:	0 = He активно 1 = Активно	Заводские 0 настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:	I/O		

Описание:

Этот параметр работает только для аналоговых входов (Alx), запрограммированных в качестве уставок частоты, и определяет включение (1) или выключение (0) зоны нечувствительности на этих входах.

Если параметр настроен как выключенный (P0230 = 0), сигнал на аналоговом входе будет работать с уставкой частоты, начиная с минимального значения (0 В / 0 мА / 4 мА или 10 В / 20 мА), и будет напрямую связан с минимальной скоростью, запрограммированной параметром P0133. См. Рисунок 15.1 на странице 15-2.

Если параметр настроен как включенный (P0230 = 1), для сигнала на аналоговых входах будет существовать зона нечувствительности, в которой уставка скорости остается на минимальном значении (P0133), даже при изменении входного сигнала. См. Рисунок 15.1 на странице 15-2.

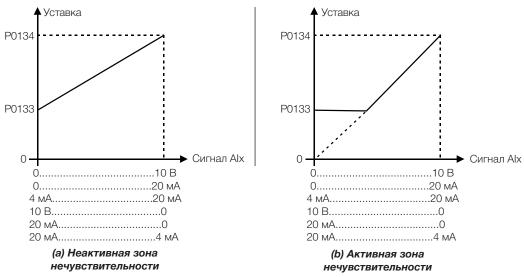


Рисунок 15.1: (а) и (б) Активация аналоговых входов с неактивной и активной зоной нечувствительности

В случае если аналоговые входы Al3 установлены на -10 В -+10 В (P0243 = 4), получим кривые, сходные с показанными на Рисунок 15.1 на странице 15-2; кроме случаев, когда Al3 является отрицательным, направление вращения будет противоположным.

Р0231 – Функция сигнала AI1

Р0236 - Функция сигнала Al2

Р0241 - Функция сигнала AI3

Регулируемый 0 = Уставка скорости **Заводские** 0 диапазон: 1 = Не используется настройки: 2 = Максимальный ток крутящего момента 3 = Номинальный поток V/f 4 = PTC5 и 6 = Не используется 7 = Использование SoftPLC 8 = Функция 1 применения 9 = Функция 2 применения 10 = Функция 3 применения 11 = Функция 4 применения 12 = Функция 5 применения 13 = Функция 6 применения 14 = Функция 7 применения 15 = Функция 8 применения 16 = Обратная связь внутреннего ПИД 1 17 = Обратная связь внутреннего ПИД 2 18 = Обратная связь внешнего ПИД Свойства: cfg Группы доступа 1/0 через ЧМИ:

Описание:

Данные параметры определяют функции аналогового входа.

Если выбрана опция 0 (уставка скорости), аналоговые входы могут подавать на двигатель уставку, которая ограничивается указанными предельными значениями (Р0133 и Р0134) и действием кривых (Р0100 – Р0103). Однако, чтобы сделать это также необходимо настроить параметры Р0221 и/или Р0222, выбрав использование желаемого аналогового входа. Дополнительную информацию см. в описанииданных параметров в Глава 7 ЛОГИЧЕСКАЯ КОМАНДА И УСТАВКА СКОРОСТИ на странице 7-1.

Вариант 3 (Номинальный поток V/f) настраивает вход для использования в качестве настройки номинального потока для управления V/f (P0202 = 0) аналогично P0178; однако от 0,0 до 100,0 % (P0018, P0019 или P0020), а не от 0,0 до 150,0 % (P0178). Более подробную информацию см. в описании параметра в Глава 10 УПРАВЛЕНИЕ VVW на странице 10-1.

Опция 4 (РТС) настраивает вход для контроля температуры двигателя с помощью показаний датчика типа РТС, если он установлен на двигателе. Дополнительную информацию по данной функциисм. в Раздел 18.3 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРЕВА (F0078) на странице 18-6.

ПРИМЕЧАНИЕ!

Al3 не может быть настроен с помощью функции РТС, поскольку это биполярный аналоговый вход. Таким образом, если вход Al3 установлен на РТС (P0241 = 4), преобразователь переходит в состояние конфигурации (CONF).

Опция 7 (SoftPLC) настраивает вход, используемый при программировании, осуществляемом в области памяти, зарезервированной для функции SoftPLC. Дополнительную информацию см. в руководстве пользователя SoftPLC.

Опции 16 и 17 (Резидентное приложение) настраивают вход, который будет использоваться резидентным приложением РезПрилож (Р1003 =1), см. Пункт 21.1.4 Внутренний ПИД-контроллер – ПИДВнутр на странице 21-8.

Опции 18 (Резидентное приложение) настраивают вход, который будет использоваться резидентным приложением РезПрилож (Р1003 = 1), см. Пункт 21.1.5 Режим ожидания ПИД на странице 21-16.

P0232 - усиление входного сигнала Al1

Р0237 - усиление входного сигнала Al2

P0242 – усиление входного сигнала Al3

Регулируемый От 0,000 до 9,999 **Заводские** 1,000 диапазон: настройки:

Р0234 - Смещение входного сигнала Al1

Р0239 - Смещение входного сигнала Al2

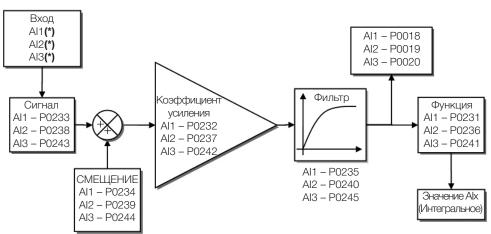
Р0244 - Смещение входного сигнала Al3

 Регулируемый
 от -100,0 до 100,0 %

 диапазон:
 Заводские
 0,0 %

 настройки:
 настройки:

Р0235 - Фильтр входного сигнала Al1


Р0240 – Фильтр входного сигнала Al2

Р0245 - Фильтр входного сигнала Al3

Регулируемый	От 0,00 до 16,00 с	Заводские	0,00 c
диапазон:		настройки:	
Свойства:			
Группы доступа	I/O		
через ЧМИ:		,	

Описание:

Каждый аналоговый вход преобразователя определяется этапами вычисления сигнала, СМЕЩЕНИЕМ, коэффициентом усиления, фильтром, функцией и значением Alx, как показано на Рисунок 15.2 на странице 15-4:

(*) Контакты управления, доступные в подключаемом модуле.

Рисунок 15.2: Блок-схема аналоговых входов – Alx

Заводские 0

настройки:

Заводские 0

настройки:

Р0233 - Входной сигнал Al1

Р0238 – Входной сигнал Al2

Регулируемый 0 =от 0 до 10 B/20 мAдиапазон: 1 = от 4 до 20 мА

2 =от 10 B/20 мA до <math>0

3 = от 20 до 4 мА

Р0243 – Входной сигнал Al3

Регулируемый 0 =от 0 до 10В/20мА диапазон: 1 = от 4 до 20 мА

2 =от 10 B/20 мA до <math>03 = от 20 до 4 мА 4 =от -10 до +10 В

Свойства:

Группы доступа 1/0

через ЧМИ:

Описание:

Эти параметры определяют настройку типа сигнала (ток или напряжение), который считывается с каждого аналогового входа, а также его диапазона. Обратите внимание, что только Al3 имеетопцию 4 (-10 B - +10 B). В опциях 2 и 3 параметров уставка инвертирована, т. е. получается максимальная скорость с минимальным сигналом в Alx.

В подключаемом модуле CFW500 двухрядный переключатель S1:1 в положении ВКЛ настраивает вход АІ1 для сигнала тока. В прочих случаях см. руководство по установке, настройке и эксплуатации используемого подключаемого модуля. Таблица 15.2 на странице 15-5 ниже приведены конфигурация и уравнение аналоговых входов.

Таблица 15.2: Конфигурация и уравнение Alx

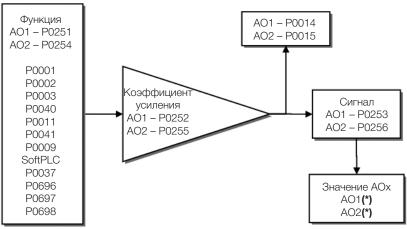
Гаолица 15.2: Конфигурация и уравнение Aix					
Сигнал	P0233, P0238	P0243	Двухрядный переключатель	Уравнение Alx (%)	
От 0 до 10 В	0	0	OFF	$AIx = \left(\frac{AIx (B)}{10 B} \times (100 \%) + CMEЩЕНИЕ\right) \times УСИЛЕНИЕ$	
От 0 до 20 мА	0	0	ON	$AIx = \left(\frac{AIx (MA)}{20 MA} \times (100 \%) + CMEЩЕНИЕ\right) x УСИЛЕНИЕ$	
От 4 до 20 мА	1	1	ON	$AIX = \left(\left(\frac{(AIX (MA) - 4 MA)}{16 MA}\right)_0^1 \times (100 \%) + CMELLIEHUE\right) \times УСИЛЕНИЕ$	
От 10 до 0 В	2	2	OFF	$AIx = 100 \% - \left(\frac{AIx (B)}{10 B} \times (100 \%) + CMEЩЕНИЕ\right) \times УСИЛЕНИЕ$	
От 20 до 0 мА	2	2	ON	$AIx = 100 \% - \left(\frac{AIx (MA)}{20 MA} \times (100 \%) + CMEЩЕНИЕ\right) \times УСИЛЕНИЕ$	
От 20 до 4 мА	3	3	ON	$AIx = 100 \% - \left(\left(\frac{(AIx (MA) - 4 MA)}{16 MA} \right)_{0}^{1} x (100 \%) + CMELLIEHUE \right) x УСИЛЕНИЕ$	
От -10 до +10 В	-	4	OFF	$AIx = \left(\frac{AIx (B)}{10 B} \times (100 \%) + CMELЦЕНИЕ\right) \times УСИЛЕНИЕ$	

Например: AIx = 5 B, CMELЦЕНИЕ = -70.0 %, коэффициент усиления = 1,000 с сигналом от 0 до 10 B, т. e. $AIx_{ini} = 0$ и $AIx_{FE} = 10$.

Alx (%) =
$$\left(\frac{5}{10}$$
 x (100 %) + (70 %) $\right)$ x 1 = -20,0 %

Другой пример: Alx = 12 мA, СМЕЩЕНИЕ = -80,0 %, коэффициент усиления = 1,000 с сигналом от 4 до 20 мA, т. е. Al x_{ini} = 4 и Al x_{ini} = 16.

Alx (%) =
$$\left(\frac{12-4}{16} \times (100 \%) + (-80 \%)\right) \times 1 = -30.0 \%$$


Alx' = -30,0 % обозначает, что вал двигателя будет вращаться против часовой стрелки с уставкой в модуле, равной 30,0 % от P0134, если функция сигнала Alx является «Уставкой скорости».

В случае параметров фильтра (Р0235, Р0240 и Р0245) установленное значение соответствует постоянной времени, используемой для фильтрования показаний входного сигнала. Следовательно, время отклика фильтра, приблизительно, в три раза больше значения постоянной времени.

15.2 АНАЛОГОВЫЕ ВЫХОДЫ

Аналоговые выходы (АОх) настраиваются с помощью трех типов параметров: функция, коэффициент усиления и сигнал, согласно блок-схеме на Рисунок 15.3 на странице 15-6.

Стандартный подключаемый модуль CFW500-IOS имеет только аналоговый выход AO1, но CFW500-IOAD имеет дополнительный аналоговый выход AO2.

(*) Контакты управления, доступные в подключаемом модуле.

Рисунок 15.3: Блок-схема аналоговых выходов – АОх

Р0014 – Значение аналогового выхода АО1

Р0015 – Значение аналогового выхода АО2

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, I/O	

Описание:

Эти параметры предназначены только для чтения и отображают значение для аналоговых выходов AO1 и AO2 в виде процентной доли от полного диапазона. Отображаемые значения получаются в результате умножения на коэффициент усиления. См. описание параметров PO251 – PO256.

15`

Р0251 - Функция выхода АО1

Р0254 – Функция выхода АО2

Регулируемый

0 = Уставка скорости

P0251 = 2Заводские **настройки:** P0254 = 5

диапазон:

1 = Не используется

2 = Действительная скорость

3 = Уставка тока крутящего момента

4 = Ток крутящего момента

5 = Выходной ток

6 = Переменная процесса

7 = Активный ток

8 = Выходная мощность

9 = Уставка ПИД

10 = Сила тока крутящего момента > 0

11 = Крутящий момент двигателя

12 = SoftPLC

От 13 до 15 = Не используется

16 = Двигатель lxt

17 = Не используется 18 = Значение Р0696

19 = Значение Р0697

20 = Значение Р0698

21 = Функция 1 применения

22 = Функция 2 применения

23 = Функция 3 применения

24 = Функция 4 применения

25 = Функция 5 применения

26 = Функция 6 применения

27 = Функция 7 применения

28 = Функция 8 применения 29 = Выход внешнего ПИД

Свойства:

Группы доступа 1/0 через ЧМИ:

Описание:

Данные параметры устанавливают функции аналогового выхода согласно функции И диапазону, представленному в Таблица 15.3 на странице 15-7.

Таблица 15.3: Полный диапазон аналоговых выходов

Функция	Описание	Весь диапазон
0	Уставка скорости на входе линейного изменения (Р0001)	P0134
2	Эффективная скорость на выходе преобразователя (Р0005)	P0134
3	Уставка тока крутящего момента	Р0169(+) или Р0170(-)
4	Ток момента	Р0169(+) или Р0170(-)
5	Среднеквадратичное значение полного выходного тока	2xP0295
6	Переменная процесса ПИД	P0528
7	Активный ток	2xP0295
8	Выходная мощность	1,5 x √3 x P0295 x P0296
9	Уставка ПИД	P0528
10	Ток крутящего момента > 0	Р0169(+) или Р0170(-)
11	Крутящий момент двигателя по отношению к номинальному крутящему моменту	200 %
12	Диапазон SoftPLC для аналогового выхода	32767
16	Ixt перегрузка двигателя (Р0037)	100%

18	Значение Р0696 для аналогового выхода АОх 32767				
19	Значение Р0697 для аналогового выхода АОх 32767				
20	Значение Р0698 для аналогового выхода АОх 32767				
От 21 до 28	Значение, определенное приложением SoftPLC на WPS/WLP 32767				
29	Значение, определенное Пункт 21.1.6 Внешний ПИД-контроллер на странице 21-19	32767			

Р0252 - Усиление на выходе АО1

Р0255 – Усиление на выходе АО2

 Регулируемый
 От 0,000 до 9,999
 Заводские 1,000 настройки:

 Свойства:
 1/0

Группы доступа I/O через ЧМИ:

Описание:

Определяет усиление на аналоговом выходе согласно уравнению в Таблица 15.3 на странице 15-7.

Р0253 - Выходной сигнал АО1

Р0256 – Выходной сигнал АО2

 Регулируемый
 0 = от 0 до 10 B Заводские 0

 диапазон:
 1 = от 0 до 20 мA настройки:

 2 = от 4 до 20 мA

3 = от 10 до 0 В 4 = от 20 до 0 мА 5 = от 20 до 4 мА

Свойства:

Группы доступа I/O через ЧМИ:

Описание:

Эти параметры настраивают тип аналогового выходного сигнала (ток или напряжение) при прямой или обратной уставке. Помимо установки данных параметров необходимо также установить двухпозиционные переключатели. В стандартном подключаемом модуле CSP500 двухрядный переключатель S1:2 в положении ВКЛ настраивает напряжение аналогового выхода. В прочих случаях см. руководство по установке, настройке и эксплуатации используемого подключаемого модуля.

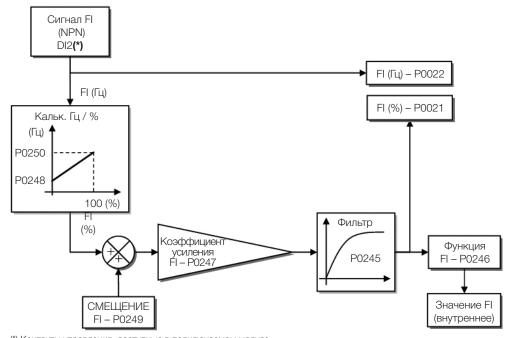
Таблица 15.4 на странице 15-8 ниже приведены конфигурация и уравнение аналоговых входов, где отношение между функцией аналогового выхода и полный диапазон определяется параметром P0251 согласно Таблица 15.3 на странице 15-7.

Таблица 15.4: Конфигурация характеристик и уравнения АОх

Сигнал	P0253	P0256	Двухрядный переключатель	Уравнение	
От 0 до 10 В	0	0	ON	$AOx = \left(\frac{\Phi Y H K U H S}{U K A J A} \times Y C U J E H U E\right)_0^1 \times 10 B$	
От 0 до 20 мА	1	1	OFF	$AOx = \left(\frac{\Phi Y H K U H S}{U K A J A} \times Y C U J E H J \right)_{0}^{1} \times 20 \text{ MA}$	

От 4 до 20 мА	2	2	OFF	$AOx = \left(\frac{\Phi Y H K U M H}{U K A J A} \times Y C M J E H M E\right)_0^1 \times 16 M A + 4 M A$
От 10 до 0 В	3	3	ON	$AOx = 10 B - \left(\frac{\Phi YHKLINS}{LIKAJA} \times YCNJEHNE \right)_{0}^{1} \times 10 B$
От 20 до 0 мА	4	4	OFF	$AOx = 20 \text{ мA} - \left(\frac{\Phi \text{УНКЦИЯ}}{\text{Шкала}} \times \text{УСИЛЕНИЕ}\right)_0^1 \times 20 \text{ мA}$
От 20 до 4 мА	5	5	OFF	$AOx = 20 \text{ мA} - \left(\frac{\Phi \text{УНКЦИЯ}}{\text{Шкала}} \times \text{УСИЛЕНИЕ}\right)_0^1 \times 16 \text{ мA}$

15.3 ЧАСТОТНЫЙ ВХОД


Частотный ввод состоит из быстрого цифрового входа, способного преобразовывать частоту импульсов на входе в пропорциональный сигнал с 10-битным разрешением. После преобразования данный сигнал используется в качестве аналогового сигнала для уставки скорости, переменной процесса, использования SoftPLC и т.д.

Согласно структурной схеме Рисунок 15.4 на странице 15-9 сигнал по частоте преобразуется в цифровую величину разрядностью 10 бит с помощью блока «Расч. Гц/%», где параметры Р0248 и Р0250 определяют полосу частот входного сигнала, а параметр Р0022 показывает частоту импульсов в Гц. Начиная с данного шага преобразования, сигнал частоты обрабатывается схожим с нормальным аналоговым входом образом; сравните с Рисунок 15.2 на странице 15-4.

ПРИМЕЧАНИЕ!

Сигнал частотного ввода на DI2 должен быть NPN независимо от настроек P0271 и не должен превышать ограничение в 20 к Γ ц.

(*) Контакты управления, доступные в подключаемом модуле. **Рисунок 15.4:** Блок-схема частотного входа – FI (DI2)

Цифровой вход DI2 предварительно задается для частотного входа с возможностью работы в широком диапазоне от 10 до 20.000 Гц.

Фильтр частотного входа тот же, что используется для входа Al3, т. е., параметр P0245.

Р0021 – Значение частотного входа FI в %

от -100,0 до 100,0 % Регулируемый Заводские диапазон: настройки: Свойства: ro READ, I/O Группы доступа через ЧМИ:

Описание:

Данный параметр только для чтения указывает значение частотного входа в процентах от полного диапазона.

Отображаемые значения получаются в результате действия смещения и умножения на коэффициент. См. описание параметров Р0247 - Р0250.

Р0022 – Значение частотного входа FI в Гц

От 0 до 20000 Гц Регулируемый Заводские диапазон: настройки: Свойства: ro READ, I/O Группы доступа через ЧМИ:

Описание:

Значение частотного входа FI в герцах.

ПРИМЕЧАНИЕ!

Работа параметров Р0021 и Р0022, а также частотного входа, зависит от активации Р0246.

Р0246 - частотный вход FI

Регулируемый 0 = Не активно Заводские 0 диапазон: 1 = Активнонастройки: 2 = Подсчет импульсов DI2 Свойства:

Группы доступа 1/0 через ЧМИ:

Описание:

При значении «1» данный параметр активирует частотный вход, делая функцию цифрового входа DI2 в параметре P0264 игнорируемой, а также значение бита «1» параметра P0012 сохраняется на «0». С другой стороны, при значении «О» частотный вход остается неактивным, сохраняя значения параметров Р0021 и Р0022 на «0».

Если установлено значение «2», импульсы счета с цифрового входа 2 доступны в маркере для внутреннего использования Softplc, а параметры P0021 и P0022 сохраняются на нуле. Максимальная частота, разрешенная в этом варианте, составляет 250 Гц.

Р0247 - усиление входного сигнала на частоте FI

Регулируемый От 0,000 до 9,999 **Заводские** 1,000 диапазон:

Р0248 - минимальный частотный вход FI

 Регулируемый
 От 10 до 20000 Гц
 Заводские
 10 Гц

 диапазон:
 настройки:

P0249 - Смещение входного сигнала в частоте FI

Регулируемый от -100,0 до 100,0 % диапазон: Заводские 0,0 % настройки:

Р0250 – Максимальный частотный вход FI

 Регулируемый диапазон:
 От 10 до 20000 Гц диапазон:
 Заводские настройки:
 10000 Гц настройки:

 Свойства:

 Группы доступа через ЧМИ:
 I/O

Описание:

Данные параметры определяют поведение частотного входа согласно следующему уравнению:

$$FI = \left(\left(\frac{FI (\Gamma L) - P0248}{P0250 - P0248} \right)^{1} \times (100 \%) + P0249 \right) \times P0247$$

Параметры P0248 и P0250 определяют рабочий диапазон частотного входа (FI), в то время как параметры P0249 и P0247 определяют смещение и коэффициент усиления соответственно. Например, FI = $5000 \, \text{Гц}$, P0248 = $10 \, \text{Гц}$, P0250 = $10000 \, \text{Гц}$, P0249 = $-70.0 \, \%$ и P0247 = 1.000, следовательно:

$$FI = \left(\left(\frac{5000 - 10}{10000 - 10} \right)_0^1 \times (100 \%) - 70 \% \right) \times 1,000 = 20,05 \%$$

Значение FI = -20,05 % обозначает, что вал двигателя будет вращаться в противоположном направлении с уставкой в модуле равной 20,0 % параметра P0134.

Когда P0246 = 1, цифровой вход DI2 предварительно задан для частотного входа вне зависимости от значения P0264 с возможностью работы в диапазоне 10 – 20.000 Гц при размахе напряжения 10 В.

Постоянная времени цифрового фильтра частотного входа разделяется с аналоговым входом Al3 с помощью параметра P0245.

15.4 ЧАСТОТНЫЙ ВЫХОД

Подобно тому, как частотный вход подается на цифровой вход DI2, частотный выход закреплен за цифровым выходом транзистора DO2.

Конфигурация и ресурсы, доступные в частотном выходе, в основном являются теми же, что и для аналоговых выходов, как показано на Рисунок 15.5 на странице 15-12.

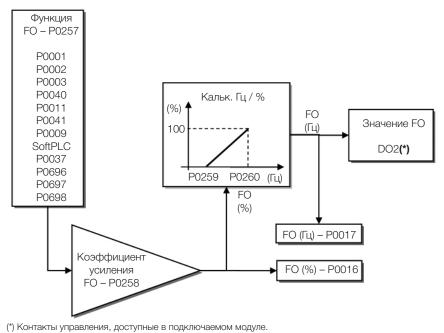


Рисунок 15.5: Блок-схема частотного выхода FO (DO2)

Р0016 – Значение частотного выхода FO в %

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, I/O	

Описание:

Процентное значение частоты выхода FO. Данное значение дано в отношении диапазона, заданного параметрами P0259 и P0260.

Р0017 - Значение частотного выхода FO в Гц

Регулируемый диапазон:	От 0 до 20000 Гц	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, I/O	

Описание:

Значение в герцах частоты выхода FO.

Заводские 15

настройки:

Р0257 – функция частотного выхода FO

Регулируемый диапазон:

0 = Уставка скорости 1 = Не используется

2 = Действительная скорость

3 и 4 = Не используется

5 = Выходной ток

6 = Переменная процесса

7 = Активный ток 8 = Не используется 9 = Уставка ПИД 10 = Не используется

11 = Крутящий момент двигателя

12 = SoftPLC

15 = Выкл. FO

13 и 14 = Не используется

16 = Двигатель lxt 17 = Не используется 18 = Значение Р0696 19 = Значение Р0697

20 = Значение Р0698

21 = Функция 1 применения 22 = Функция 2 применения 23 = Функция 3 применения 24 = Функция 4 применения 25 = Функция 5 применения 26 = Функция 6 применения 27 = Функция 7 применения

28 = Функция 8 применения

Свойства:

Группы доступа 1/0 через ЧМИ:

Описание:

Данный параметр настраивает функцию частотного выхода схожим с настройками аналоговых вы-ходов образом, таких как функция и диапазон, указанным в Таблица 15.5 на странице 15-13.

Функция цифрового выхода транзистора DO2 определяется параметром P0276, когда функция частотного выхода неактивна, т. е. Р0257 = 15. Однако любая другая опция параметра Р0257 и цифровой выход DO2 становятся частотным выходом, игнорирующим функцию цифрового выхода, установленную в параметре Р0276.

Таблица 15.5: Полный диапазон частотного выхода

Функция	Описание	Весь диапазон
0	Уставка скорости на входе линейного изменения (Р0001)	P0134
2	Действительная скорость на выходе преобразователя (Р0002)	P0134
5	Среднеквадратичное значение полного выходного тока	2xP0295
6	Переменная процесса ПИД	P0528
7	Активный ток	2xP0295
9	Уставка ПИД	P0528
11	Крутящий момент двигателя по отношению к номинальному крутящему моменту	200,0 %
12	Диапазон SoftPLC для частотного выхода	32767
15	Неактивный частотный выход – DO2 является цифровым выходом	-
16	Перегрузка двигателя lxt (Р0037)	100%
18	Значение Р0696 для аналогового выхода АОх	32767
19	Значение Р0697 для аналогового выхода АОх	32767
20	Значение Р0698 для аналогового выхода АОх	32767
От 21 до 28	Определенное значение приложения SoftPLC на WPS/WLP	32767

Р0258 – Усиление сигнала частотного выхода FO

Регулируемый От 0,000 до 9,999 **Заводские** 1,000 **диапазон:** настройки:

Р0259 - Минимальный частотный выход FO

 Регулируемый
 От 10 до 20000 Гц
 Заводские
 10 Гц

 диапазон:
 настройки:

Р0260 - Максимальный частотный выход FO

Регулируемый диапазон:	От 10 до 20000 Гц	Заводские настройки:	10000 Гц
Свойства:			
Группы доступа	I/O		
через ЧМИ:			

Описание:

Коэффициент усиления, минимальное и максимальное значения частотного выхода FO.

15.5 ЦИФРОВЫЕ ВХОДЫ

Для использования цифровых входов CFW500 оборудуется портами в количестве до восьми штук, в зависимости от подключенного к прибору модуля. Проверьте Таблица 15.1 на странице 15-1.

Ниже описаны параметры для цифровых входов.

Р0271 - Сигнал цифрового входа

Регулируемый	0 = (DI1DI8) NPN	Заводские	0
диапазон:	1 = (DI1) - PNP 2 = (DI1DI2) - PNP 3 = (DI1DI3) - PNP	настройки:	
	4 = (DI1DI4) - PNP 5 = (DI1DI5) - PNP 6 = (DI1DI6) - PNP 7 = (DI1DI7) - PNP 8 = (DI1DI8) - PNP		
Свойства:	cfg		
Группы доступа через ЧМИ:	I/O		

Описание:

Устанавливает значение по умолчанию для цифрового входа, т. е. NPN, а цифровой вход активируется с 0 B, PNP и цифровой вход активируются с +24 B.

P0012 - Состояние цифровых входов DI8 - DI1

Регулируемый диапазон:	Бит 0 = DI1 Бит 1 = DI2 Бит 2 = DI3 Бит 3 = DI4 Бит 4 = DI5 Бит 5 = DI6 Бит 6 = DI7 Бит 7 = DI8	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, I/O	

Описание:

При использовании данного параметра возможно просмотреть состояние цифровых входов прибора в зависимости от подключенного модуля. См. параметр Р0027 в Раздел 6.1 ДАННЫЕ ПРЕОБРАЗОВАТЕЛЯ на странице 6-1.

Значение P0012 указывается в шестнадцатеричном формате, где каждый бит числа указывает на состояние цифрового входа, то есть, если Бит_0 имеет значение «0», DI1 неактивен; если Бит_0 имеет значение «1», DI1 активен и т. д. до DI8. Кроме того, при определении активности или неактивности DIх принимается во внимание тип сигнала в DIх, определяемый параметром P0271.

Активация DIx зависит от сигнала на цифровом входе и P0271 согласно Таблица 15.6 на странице 15-15, в которой приведены параметры P0271, пороговое напряжение для активации « V_{TH} », пороговое напряжение для деактивации « V_{TL} » и указание состояния DIx в параметре P0012.

Таблица 15.6: Значения Р0012 для х от 1 до 8

, , , , , , , , , , , , , , , , , , , ,			
Настройка в Р0271 Пороговое напряжение в DIx		P0012	
DI NIDNI	V _{TL} > 9 B	Бит _{х-1} = 0	
DIx = NPN	V _{TH} < 5 B	Бит _{х-1} = 1	
DI DND	V _{TL} < 17 B	Бит _{х-1} = 0	
Dlx = PNP	V _{TH} > 20 B	Бит _{х-1} = 1	

ПРИМЕЧАНИЕ!

Параметр Р0012 требует от пользователя знания правил перевода из двоичной системы в шестнадцатеричную.

Р0263 - Функция цифрового входа DI1

Р0264 - Функция цифрового входа DI2

Р0265 - Функция цифрового входа DI3

Р0266 - Функция цифрового входа DI4

Р0267 - Функция цифрового входа DI5

Р0268 - Функция цифрового входа DI6

Р0269 – Функция цифрового входа DI7

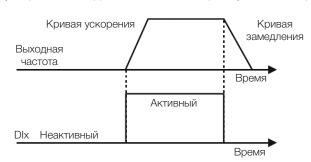
Р0270 - Функция цифрового входа DI8

Регулируемый диапазон:	От 0 до 53	Заводские настройки:	P0263 = 1 P0264 = 8 P0265 = 20 P0266 = 10 P0267 = 0 P0268 = 0 P0269 = 0 P0270 = 0
Свойства:	cfg		
Группы доступа через ЧМИ:	I/O		

Описание:

Данные параметры позволяют настраивать функцию цифрового входа согласно регулируемомудиапазону, приведенному в Таблица 15.7 на странице 15-16.

Таблица 15.7: Функции цифровых входов


Значение	Описание	Отношение
0	Не используется	-
1	Команда «Пуск/Останов»	Р0224 = 1 или Р0227 = 1
2	Команда «Общее включение»	Р0224 = 1 или Р0227 = 1
3	Команда «Быстрый останов»	Р0224 = 1 или Р0227 = 1
4	Команда «Прямой ход»	(Р0224 = 1 и Р0223 = 4) или (Р0227 = 1 и Р0226 = 4)
5	Команда «Обратный ход»	Р0224 = 1 или Р0227 = 1
6	Команда «Пуск (три провода)»	Р0224 = 1 или Р0227 = 1
7	Команда «Останов (три провода)»	Р0224 = 1 или Р0227 = 1
8	Направление вращения по часовой стрелке	Р0223 = 4 или Р0226 = 4
9	Выбор локального/дистанционного режима	P0220 = 4
10	Команда инкрементного изменения JOG	Р0225 = 2 или Р0228 = 2
11	Электронный потенциометр: Ускорить Е.Р.	Р0221 = 7 или Р0222 = 7
12	Электронный потенциометр: Замедлить Е.Р.	Р0221 = 7 или Р0222 = 7
13	Многоскоростная уставка	Р0221 = 8 или Р0222 = 8
14	Выбор 2-й кривой	P0105 = 2
От 15 до 17	Не используется	-
18	Внешнее аварийное состояние отсутствует	-
19	Без внешнего отказа	-
20	Сброс отказа	Активная неисправность
21	Использование SoftPLC	Программирование SoftPLC пользователем
22	Ручной/автоматический ПИД	Р0203 = 1 или 2
23	Не используется	-
24	Отключить пуск с хода	Р0320 = 1 или 3
25	Регулировка промежуточного звена пост. тока	-

Значение	Описание	Отношение
26	Заблокировать программирование	-
27	Загрузка параметров пользователя 1	Преобразователь выключен
28	Загрузка параметров пользователя 2	Преобразователь выключен
29	РТС – датчик температуры двигателя	-
30 и 31	Не используется	-
32	Многоскоростная уставка со 2 ^{-й} кривой	Р0221 = 8 или Р0222 = 8 и Р0105 = 2
33	Электронный потенциометр: Ускорить Е.Р. со 2-й кривой	Р0221 = 7 или Р0222 = 7 и Р0105 = 2
34	Электронный потенциометр: Замедлить Е.Р. со 2 ^{-й} кривой	Р0221 = 7 или Р0222 = 7 и Р0105 = 2
35	Команда «Прямой ход» со 2 ^{-й} кривой	Р0224 = 1 или Р0227 = 1 и Р0105 = 2
36	Команда «Обратный ход» со 2-й кривой	Р0224 = 1 или Р0227 = 1 и Р0105 = 2
37	Ускорить Е.Р./ВКЛ.	P0224 = 1 или P0227 = 1 P0221 = 7 или P0222 = 7
38	Замедлить Е.Р./ВЫКЛ.	P0224 = 1 или P0227 = 1 P0221 = 7 или P0222 = 7
39	Применение функции 1	-
40	Применение функции 2	-
41	Применение функции 3	-
42	Применение функции 4	-
43	Применение функции 5	-
44	Применение функции 6	-
45	Применение функции 7	-
46	Применение функции 8	-
47	Автоматический/Ручной режим внутреннего ПИД	Р1003 и см. Раздел 21.1 РЕЗИДЕНТНОЕ ПРИЛОЖЕНИЕ - РезПрилож на странице 21-3
48	Автоматический/Ручной режим внешнего ПИД	Р1003 и см. Раздел 21.1 РЕЗИДЕНТНОЕ ПРИЛОЖЕНИЕ - РезПрилож на странице 21-3
49	Не используется	-
50	Включить режим сжигания	См. Раздел 14.7 РЕЖИМ СЖИГАНИЯ на странице 14-17
51	Пуск/Стоп с блокировкой при включении	-
52	Движение вперед с блокировкой при включении	-
53	Движение назад с блокировкой при включении	-

А. ПУСК/ОСТАНОВ

Включает или выключает вращение вала двигателя с помощью кривой замедления или ускорения.

Рисунок 15.6: Пример функции «Пуск/Останов»

Б. ОБЩЕЕ ВКЛЮЧЕНИЕ

Включает двигатель с помощью кривой ускорения и отключает, мгновенно прекращая подачу импульсов; двигатель останавливается под действием инерции.

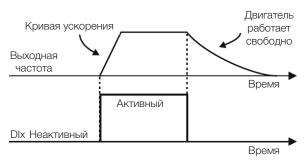


Рисунок 15.7: Пример функции «Общее включение»

В. БЫСТРЫЙ ОСТАНОВ

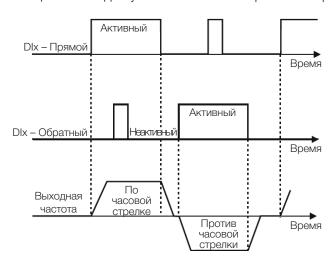

Если функция неактивна, она отключает преобразователь с помощью 3-й кривой по параметру Р0106.

Рисунок 15.8: Пример функции быстрого останова

Г. ЗАПУСК ВПЕРЕД / ЗАПУСК НАЗАД

Эта команда является комбинацией команд «Пуск/Останов» и «Направление вращения».

Рисунок 15.9: Пример функции «Прямой ход / Обратный ход»

Д. ПУСК / ОСТАНОВ ТРЕХПРОВОДНОЙ ЛИНИИ

Данная функция делает попытку воспроизвести активацию трехпороводного прямого запуска с удержанием контакта, где импульс в «DIx-Пуск» позволяет двигателю работать в то время, пока «DIx-Останов» активен.

15)

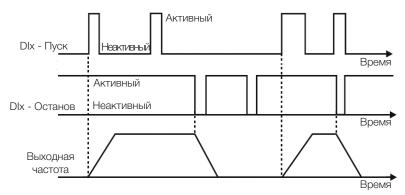


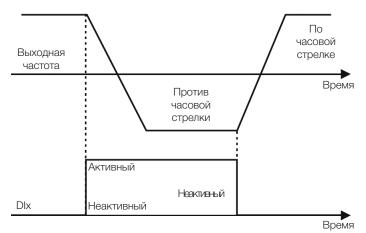
Рисунок 15.10: Пример функции «Пуск/Останов» трехпроводной линии

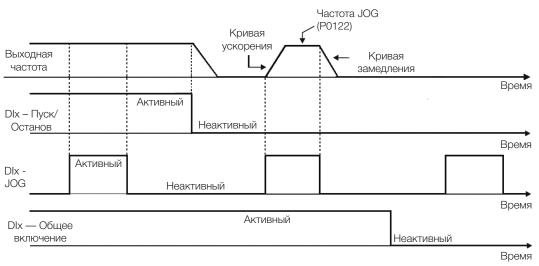
ПРИМЕЧАНИЕ!

Все цифровые входы, установленные для функций «Общее включение», «Быстрый останов», «Прямой ход / Обратный ход» и **«Пуск/Останов»** должны находиться в состоянии «Активно», чтобы преобразователь имел возможность запустить двигатель.

Е. НАПРАВЛЕНИЕ ВРАЩЕНИЯ

Если DIх неактивен, вращение осуществляется по часовой стрелке, в противном случае вращение осуществляется против часовой стрелки.




Рисунок 15.11: Пример функции направления вращения

Ж. ЛОКАЛЬНОЕ / ДИСТАНЦИОННОЕ

Если DIх неактивен, выбирается локальное управление; в противном случае выбирается дистанционное управление.

3. Инкрементное изменение (JOG)

Команда JOG – это сочетание команды «Пуск/Останов» с уставкой скорости через параметр P0122.

Рисунок 15.12: Пример функции JOG

И. ЭЛЕКТРОННЫЙ ПОТЕНЦИОМЕТР (Е.Р.)

Функция электронного потенциометра позволяет устанавливать скорость с помощью цифровых входов, запрограммированных для функций «Ускорить Е.Р.» и «Замедлить Е.Р.» Основной принцип функции схож с принципом управления громкостью и интенсивностью в электронных приборах.

Работа функции электронного потенциометра также зависит от поведения параметра Р0120, т. е., если Р0120 = 0, исходное значение уставки электронного потенциометра составит Р0133. Если Р0120 = 1, исходное значение станет последним значением уставки перед отключением преобразователя, если Р0120 = 2, исходное значение станет значением уставки с помощью клавиш Р0121.

Кроме того, уставка электронного потенциометра может быть сброшена активацией обоих входов «Ускорить электронный потенциометр» и «Замедлить электронный потенциометр» при выключенном преобразователе.

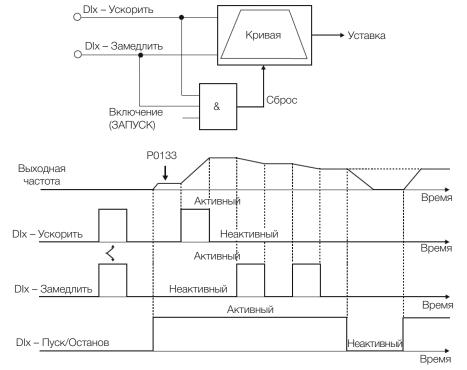


Рисунок 15.13: Пример функции электронного потенциометра

К. МНОГОСКОРОСТНОЙ

Многоскоростная уставка, как описано в Пункт 7.2.3 Параметры уставки скорости на странице 7-11, позволяет выбрать один из восьми уровней уставки, заданных в параметрах P0124 – P0131 с помощью комбинации цифровых входов в количестве до трех штук. Дополнительную информацию см. в Глава 7 ЛОГИЧЕСКАЯ КОМАНДА И УСТАВКА СКОРОСТИ на странице 7-1.

Л. 2-Я КРИВАЯ

Если DIх неактивен, преобразователь использует кривую по умолчанию по параметрам Р0100 и Р0101. В противном случае преобразователь будет использовать 2-ю кривую по параметрам Р0102 и Р0103.

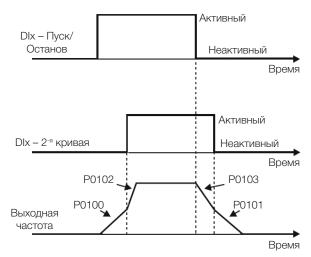


Рисунок 15.14: Пример 2-й функции кривой

М. БЕЗ ВНЕШНЕГО АВАРИЙНОГО СИГНАЛА

Если DIх неактивен, преобразователь активирует внешний аварийный сигнал A0090.

Н. БЕЗ ВНЕШНЕГО ОТКАЗА

Если Dlx неактивен, преобразователь активирует внешний аварийный отказ F0091. В данном случае импульсы ШИМ отключаются незамедлительно.

О. СБРОС ОТКАЗА

Если преобразователь находится в состоянии отказа, а условие возникновения отказа более не активно, состояние отказа будет сброшено при переходе DIx, запрограммированного для данной функции.

П. ИСПОЛЬЗОВАНИЕ SoftPLC

Только состояние цифрового входа DIx в P0012 используется для функций SoftPLC.

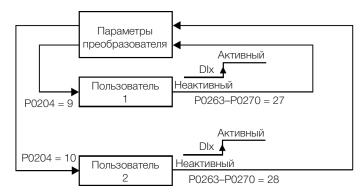
Р. РУЧНОЕ/АВТОМАТИЧЕСКОЕ ПИД

Позволяет выбрать уставку скорости преобразователя при активной функции ПИД (P0203 = 1, 2 или 3) между уставкой, заданной P0221/P0222 (ручной режим – Dlx неактивен), и уставкой, заданной выходом контроллера ПИД (автоматический режим – Dlx активен). Дополнительную информацию см. в Глава 16 ПИД-КОНТРОЛЛЕР на странице 16-12.

С. ОТКЛЮЧЕНИЕ ПУСКА С ХОДА

Позволяет DIx, в активном состоянии, отключать действие функции «Пуск с хода», предварительно включенной в параметре P0320 = 1 или 2. Когда DIx неактивен, функция «Пуск с хода» возвращается к нормальной работе. См. Раздел 14.3 ПУСК С ХОДА / УСТОЙЧИВОСТЬ ПО НАПРЯЖЕНИЮ V/F или VVW на странице 14-6.

Т. ЗАБЛОКИРОВАТЬ ПРОГР.


Когда вход DIх активен, параметры не могут быть изменены, какими бы ни были установленные в Р0000 и Р0200 значения. Когда вход DIх неактивен, изменение параметров будет зависеть от значений, установленных в Р0000 и Р0200.

У. ЗАГРУЗКА ПОЛЬЗОВАТЕЛЯ

Эта функция позволяет осуществлять выбор слота памяти пользователя 1, как при P0204 = 7. Отличие состоит в том, что слот памяти пользователя загружается в результате перехода Dlx, запрограммированного для данной функции.

Ф. ЗАГРУЗКА ПОЛЬЗОВАТЕЛЯ

Эта функция позволяет осуществлять выбор слота памяти пользователя 2, как при P0204 = 8. Отличие состоит в том, что слот памяти пользователя загружается в результате перехода Dlx, запрограммированного для данной функции.

Рисунок 15.15: Блок-схема функций пользователя 1 и пользователя 2

X. PTC

Цифровые входы DIx могут считывать сопротивление тройного термистора согласно значениям сопротивления, определенным в стандартах DIN 44081 и 44082, а также в IEC 34-11-2. Для этого просто подключите тройной термистор между входом DIx и GND (0 B), помимо программирования соответствующего DIx для PTC (29).

Термистор РТС может быть использован в любом DIx, кроме DI2, который имеет отличный входной ток частотного входа. Следовательно, если вход DI2 запрограммирован для РТС (P0264 = 29), преобразователь переходит в состояние конфигурации (CONF).

ПРИМЕЧАНИЕ!

Вход РТС через цифровой вход DIх не определяет короткие замыкания в термисторе, но данный ресурс доступен через аналоговый вход. См. Раздел 18.3 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРЕВА (F0078) на странице 18-6.

Ц. МНОГОСКОРОСТНОЙ РЕЖИМ, ЭЛЕКТРОННЫЙ ПОТЕНЦИОМЕТР, ПРЯМОЙ ХОД/ОБРАТНЫЙ ХОД СО 2^{-10} КРИВОЙ

Включает в себя многоскоростной режим, электронный потенциометр и прямой ход / обратный ход с основными функциями 2^{-й} кривой в одном цифровом входе DIх.

Ч. УСКОРИТЬ ЭЛЕКТРОННЫЙ ПОТЕНЦИОМЕТР – ВКЛЮЧИТЬ / ЗАМЕДЛИТЬ ЭЛЕКТРОННЫЙ ПОТЕНЦИОМЕТР – ВЫКЛЮЧИТЬ

Состоит из функции электронного потенциометра с возможностью включения преобразователя с помощью импульса при запуске и выключения с помощью импульса, когда выходная скорость минимальная (Р0133).

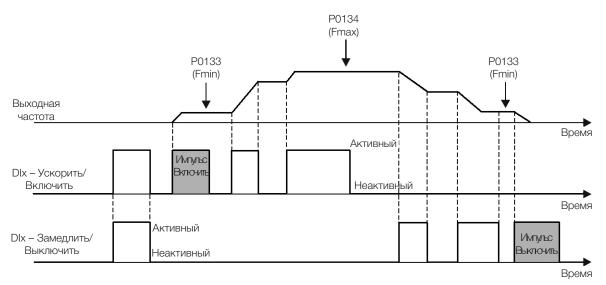


Рисунок 15.16: Пример «Ускорить Включить / Замедлить Выключить»

Ш. ПУСК/СТОП, ВПЕРЕД И НАЗАД С БЛОКИРОВКОЙ ПРИ ВКЛЮЧЕНИИ

Они имеют те же характеристики, что и функции, описанные в Пунктах А. ПУСК/ОСТАНОВ на странице 15-17 и Г. ЗАПУСК ВПЕРЕД / ЗАПУСК НАЗАД на странице 15-18. Блокировка при включении питания относится к состоянию DI во время включения привода. Если преобразователь включен при уже включенных цифровых входах, эти команды не будут иметь никакого эффекта. Для разблокировки необходимо отключить DIх и снова включить его активным по нарастающему фронту. Это блокировка активной команды во время включения питания.

15.6 ЦИФРОВЫЕ ВЫХОДЫ

CFW500 может управлять цифровыми выходами в количестве до пяти штук согласно выбранномуподключаемому модулю интерфейса; см. Таблица 15.1 на странице 15-1.

Цифровой выход DO1 всегда является релейным, в то время как DO2 всегда является транзисторным. Другие выходы могут быть либо релейными, либо транзисторными, в зависимости от подключаемого модуля. С другой стороны, как описано ниже, для конфигурации параметра цифрового выхода в данном аспекте нет различий. Кроме того, транзисторные цифровые выходы всегда являются NPN, т. е. с открытым коллектором (электродом втекающего тока).

Р0013 - состояние цифрового выхода DO5 - DO1

Регулируемый диапазон:	Бит 0 = DO1 Бит 1 = DO2 Бит 2 = DO3 Бит 3 = DO4 Бит 4 = DO5	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ, I/O	

Описание:

С помощью данного параметра возможно просмотреть состояние цифрового выхода CFW500.

Значение Р0013 указано в шестнадцатеричном формате, где каждый бит числа указывает состояние цифрового входа, т. е. если бит $_0$ имеет значение «0», DO1 неактивен; если бит $_0$ имеет значение «1», DO1 активен и т. д. до DO5. Следовательно, активный DOx (1) означает замыкание транзистора или реле, неактивный (0) означает размыкание транзистора или реле.

Описание

ПРИМЕЧАНИЕ!

Параметр Р0013 требует от пользователя знания правил перевода из двоичной системы в шестнадцатеричную.

Р0275 - Функция выхода DO1

Р0276 - Функция выхода DO2

Р0277 - Функция выхода DO3

Р0278 - Функция выхода DO4

Р0279 – Функция выхода DO5

Значение

Регулируемый диапазон:	От 0 до 52	Заводские настройки:	
Свойства:			
Группы доступа через ЧМИ:	I/O		

Описание:

Данные параметры определяют функцию цифрового выхода DOX согласно Таблица 15.8 на странице 15-24.

Таблица 15.8: Функции цифровых выходов

Значение	Функция	Описание
0	Не используется	Цифровой выход неактивен
1	F* > Fx	Активен, когда уставка скорости F* (Р0001) больше, чем Fx (Р0288)
2	F > Fx	Активен, когда выходная частота F (Р0002) больше, чем Fx (Р0288)
3	F < Fx	Активен, когда выходная частота F (Р0002) меньше, чем Fx (Р0288)
4	F = F*	Активен, если выходная частота F (Р0002) равна уставке F* (Р0001) (конец кривой)
5	Не используется	Цифровой выход неактивен
6	ls > lx	Активен, если выходной ток Is (Р0003) > Ix (Р0290)
7	ls < lx	Активен, если выходной ток Is (Р0003) < Ix (Р0290)
8	Крутящий момент > Тх	Активен, если крутящий момент двигателя Т (Р0009) > Тх (Р0293)
9	Крутящий момент < Тх	Активен, если крутящий момент двигателя Т (Р0009) < Тх (Р0293)
10	Дистанцион.	Активен, если управление находится в дистанционном режиме (REM)
11	Пуск	Активен, если двигатель имеет рабочее (активные выходные импульсы ШИМ) состояние ЗАПУСК
12	Готов к работе	Активен, если преобразователь готов к включению
13	Отказ отсутствует	Активен, если преобразователь не имеет отказов
14	Отсутствует F0070	Активен, если преобразователь не имеет отказа перегрузки по току (F0070)
15	Не используется	Цифровой выход неактивен

Значение	Функция	Описание
		Активен, если преобразователь не имеет
16	Без F0021/22	отказов по превышению или понижению
		напряжения (F0022 или F0021)
17	Не используется	Цифровой выход неактивен
18	Отсутствует F0072	Активен, если преобразователь не имеет
10	OTOSTOTOS TO TOUT Z	отказа по перегрузке двигателя (F0072)
19	4–20 мА ОК	Активен, если Alx установлено на от 4 до 20 мА (Р0233 и/или Р0238 и/или Р0243 равен 1 или 3) и Alx < 2 мА
20	Значение Р0695	Состояние битов от 0 до 4 параметра Р0695 активирует цифровые выходы DO1–DO5 соответственно
21	По часовой стрелке	Активен, если вал преобразователя вращается по часовой стрелке
22	Прок. V. > VPx	Активен, если переменная процесса (P0040) > VPx (P0533)
23	Прок. V. < VPx	Активен, если переменная процесса (P0040) < VPx (P0533)
24	Компенсация провалов напряжения в сети	Активен, если преобразователь выполняет функцию компенсации провалов напряжения в сети
25	Предварительная зарядка в норме	Активен, если реле предварительной зарядки конденсаторов промежуточного звена постоянного тока уже активировано
26	С отказом	Активен, если преобразователь имеет отказ
27	Не используется	Цифровой выход неактивен
28	SoftPLC	Активирует выход DOx согласно области памяти SoftPLC. См. руководство пользователя SoftPLC
От 29 до 34	Не используется	Цифровой выход неактивен
35	Сигнал тревоги отсутствует	Активен, если преобразователь не имеет отказов
36	Без отказа и аварийного сигнала	Активен, если преобразователь не имеет отказа и аварийного сигнала
37	Применение функции 1	
38	Применение функции 2	
39	Применение функции 3	
40	Применение функции 4	
41	Применение функции 5	
42	Применение функции 6	
43	Применение функции 7	
44	Применение функции 8	
45	Безмасляный насос F/A	Активна, если сработала функция «Неисправность/Сигнал тревоги» в Пункт 21.1.1 Безмасляный насос на странице 21-4
46	Обрыв ремня F/A	Активен, если неисправность/сигнал тревоги включены функцией Пункт 21.1.2 Оборванный ремень на странице 21-5
47	Ручн. фильтр F/A	Активна, если сработала функция «Неисправность/Сигнал тревоги» в Пункт 21.1.3 Сигнализация о необходимости технического обслуживания фильтра на странице 21-7
48	Режим ожидания МР	Активен, когда функция Пункт 21.1.5 Режим ожидания ПИД на странице 21-16 переводит привод в режим ожидания
49 и 50	Резервный	
51	Режим сжигания	Активен, когда включена функция Режима сжигания Раздел 14.7 РЕЖИМ СЖИГАНИЯ на странице 14-17
52	Против часовой стрелки	Активен, если направление вращения преобразователя – против часовой стрелки.

Р0287 - Гистерезис Fx

Регулируемый диапазон:

От 0,0 до 10,0 Гц

Заводские настройки:

0,5 Гц

Р0288 – Скорость Fx

 Регулируемый диапазон:
 От 0,0 до 500,0 Гц настройки:
 Заводские 3,0 Гц настройки:

 Свойства:
 Группы доступа через ЧМИ:
 I/O

Описание:

Данные параметры устанавливают гистерезис и уровень срабатывания по сигналу выходной частоты Fx и по ходу кривой F^* цифровых выходов реле. В данном случае уровнями коммутации реле являются «P0288 + P0287» и «P0288 - P0287».

P0290 – Ток Ix

 Регулируемый диапазон:
 От 0,0 до 200,0 А до 200,0 А до 200,0 А до 200,0 А диапазон:
 Заводские настройки:
 1,0хІ_{ном} настройки:

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Уровень тока для активации выхода реле в функциях ls > lx (6) и ls < lx (7). Активация происходит по гистерезису с верхним уровнем в P0290 и нижним: P0290 – 0,05 x P0295, т. е. эквивалентное значение – амперы для 5 % P0295 ниже P0290.

Р0293 - Крутящий момент Тх

Описание:

Уровень крутящего момента в процентах для активации выхода реле в функциях «Крутящий момент» > Тх (8) и «Крутящий момент» < Тх (9). Активация происходит по гистерезису с верхним уровнем в Р0293 и нижним: Р0293 - 5 %. Данные проценты относятся к номинальному крутящему моменту двигателя, соответствующему мощности преобразователя.

16 ПИД-КОНТРОЛЛЕР

16.1 ОПИСАНИЯ И ОПРЕДЕЛЕНИЯ

Преобразователь CFW500 снабжен специальной функцией ПИД-Регулятора, которую можно использовать для управления процессом с обратной связью. Данная функция играет роль пропорционального, интегрального и дифференциального контроллера, который замещает обычное управление скоростью преобразователя. Рисунок 16.1 на странице 16-3 представлена схема контроллера ПИД.

Контроль процесса осуществляется изменением скорости вращения двигателя за счет поддержания переменной процесса (которым вы хотите управлять) на желаемом значении, которое установлено эталонным входным сигналом (уставкой).

Примеры применения:

- Управление расходом или давлением в трубопроводе.
- Температура в печи или камере.
- Дозировка химикатов в резервуарах.

В примере ниже определены значения, используемые контроллером ПИД:

В системе перекачки воды, где необходимо контролировать давление в трубе на выходе насоса, используется электрический насос. В трубе установлен датчик давления, который отправляет аналоговый сигнал обратной связи на CFW500, пропорциональный давлению воды. Данный сигнал называется переменной процесса и его можно наблюдать в параметре P0040. Уставка задается в CFW500 через ЧМИ (P0525) или настраивается с по-мощью уставок скорости согласно Раздел 7.2 УСТАВКА СКОРОСТИ на странице 7-9. Уставка – это требуемое значение давления воды, независимо от изменений в потребностях на выходе системы.

ПРИМЕЧАНИЕ!

Когда уставка определяется уставкой скорости, единица входных данных в Гц преобразуется в эквивалентное процентное значение Р0134.

CFW500 сравнивает уставку (SP) с переменной процесса (VP) и управляет частотой вращения двигателя, предпринимая попытки устранить любые ошибки и поддерживать значение переменной процесса равным уставке. Заданные значения коэффициентов усиления P, I и D определяют поведение преобразователя по устранению данной ошибки.

Рабочий диапазон переменной ввода контроллера ПИД: переменная процесса (Р0040) и уставка (Р0041) определяются параметрами Р0528 и Р0529. С другой стороны, ПИД работает внутри с процентным диапазоном0, от 0,0 до 100,0 % согласно Р0525 и Р0533. См. Рисунок 16.1 на странице 16-3.

Уставка (Р0041) и переменная процесса (Р0040) могут быть указаны через аналоговый выход АО1 или АО2, а также необходимо задать значения 9 или 6 для параметров Р0251 или Р0254 соответственно. Полный диапазон, заданный параметром Р0528, соответствует 10 В или 20 мА в соответствующем выходе АОх.

Обратная связь ПИД или VP может иметь в качестве источника аналоговые входы (P0203 = 1 для Al1 или P0203 = 2 для Al3) либо частотный вход FI (P0203 = 3). В случае если выбранное эталонное значение для уставки является тем же входным значением, что было использовано в качестве обратной связи ПИД, преобразователь активирует состояние конфигурации. Дополнительную информацию см. Раздел 5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ на странице 5-12.

Как только ПИД-контроллер активируется (P0203) и переключается в автоматический режим (DIх и бит 14 параметра P0680), ЧМИ CFW500 в режиме мониторинга увеличит значение P0525 на основном экране с помощью клавиш ▲ и ▼. Индикация P0525 будет зависеть от диапазона и формы согласно параметрам P0528 и P0529. С другой стороны, при нахождении в ручном режиме ЧМИ увеличит значение P0121 в Гц.

Ручное / автоматическое управление осуществляется с помощью цифровых входов DI1–DI8. Значение 22 = Ручное / автоматическое ПИД должно быть установлено в одном из соответствующих параметров (Р0263 до Р0270). Если на эту функцию запрограммировано более одного цифрового входа, преобразователь активирует состояние конфигурации (Раздел 5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ на странице 5-12). Если не запрограммировано ни одного цифрового входа, ПИД-контроллер будет работать только в автоматическом режиме.

Если вход, запрограммированный с функцией «Ручной/Автоматический», активен, ПИД будет работать в автоматическом режиме, но если он неактивен, ПИД будет работать в ручном режиме. В последнем случае ПИД-контроллер отсоединяется и вход кривой становится уставкой напрямую (режим обхода).

Цифровые выходы DO1-DO5 могут быть установлены для активации логики сравнения с переменной процесса (VP), а значение 22 (=VP>VPx) или 23 (=VP<VPx) должно быть запрограммировано в одном из соответствующих параметров (P0275 – P0279).

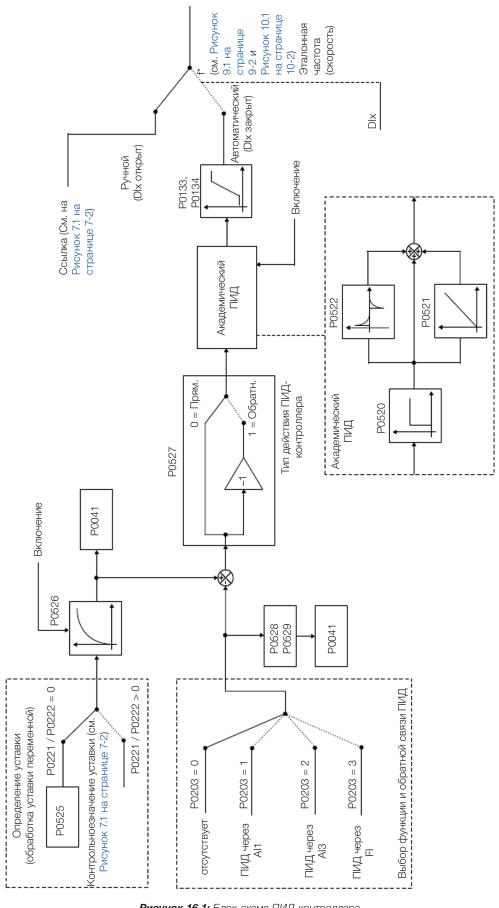


Рисунок 16.1: Блок-схема ПИД-контроллера

16.2 ЗАПУСК

Перед подробным описанием относящихся к данной функции параметров ниже представлены указания по вводу в эксплуатацию ПИД-контроллер.

ПРИМЕЧАНИЕ!

Чтобы обеспечить правильную работу функции ПИД, в обязательном порядке следует проверить, гарантируют ли настройки преобразователя вращение двигателя с необходимой частотой. Для этого проверьте следующие настройки:

- Увеличение крутящего момента (Р0136 и Р0137) и компенсацию скольжения (Р0138) в режиме управления V/f (Р0202 = 0).
- Если самонастройка была задействована в режиме управления VVW (Р0202 = 5).
- Кривые ускорения и замедления (Р0100–Р0103) и ограничение тока (Р0135).
- Обычно скалярное управление задается в заводских настройках по умолчанию (Р0204 = 5 или 6) и с Р0100 = Р0101 = 1,0 с отвечает требованиям большинства приложений, относящихся к контроллеру ПИД.

Настройка ПИД-контроллера

1. Включить ПИД:

Для работы приложения ПИД-контроллера необходимо настроить параметр Р0203 ≠ 0.

2. Определить обратную связь ПИД:

Обратная связь ПИД (измерение переменной процесса) осуществляется через аналоговый вход Al1 (P0203 = 1), Al2 (P0203 = 2) или частотный вход FI (P0203 = 3).

3. Определить параметры для чтения экрана контроля ЧМИ:

Режим мониторинга ЧМИ CFW500 может быть настроен для отображения переменных управления ПИД-контроллера в числовой форме. В примере ниже показаны обратная связь ПИД или переменная процесса, уставка ПИД и частота вращения двигателя.

Пример:

- а. Параметр основного экрана для отображения переменной процесса:
 - Запрограммируйте Р0205 на значение 40, соответствующее параметру Р0040 (переменная процесса ПИД).
 - Запрограммируйте Р0209 на значение 10 (%).
 - Запрограммируйте Р0210 на значение 1 (wxy.z) форма индикации переменных ПИД.
- б. Параметр дополнительного экрана для отображения уставки ПИД:
 - Запрограммируйте P0206 на значение 41, соответствующее параметру P0041 (переменная уставки ПИД).
- в. Параметр строки для отображения частоты вращения двигателя:
 - Установите параметр Р0207 на значение 2, соответствующее параметру Р0002 преобразователя CFW500.
 - Запрограммируйте Р0213 согласно Р0134 (если Р0134 = 66,0 Гц, следовательно Р0210 = 660).

4. Установить эталон (уставку):

Уставка определяется схожим с уставкой скорости образом согласно Раздел 7.2 УСТАВКА СКОРОСТИ на странице 7-9, но вместо применения значения напрямую ко вводу кривой, оно применяется ко вводу ПИД согласно Рисунок 16.1 на странице 16-3.

Внутренний рабочий диапазон ПИД определяется в процентах от 0,0 до 100,0 %, так же как и уставка ПИД с помощью ключей в параметре Р0525 и через аналоговый вход. Прочие источники, уставки которых находятся в другом диапазоне, такие как уставки скорости многоскоростного режима и 13-битная уставка, преобразуются в данный масштаб перед обработкой ПИД. То же происходит с параметрами Р0040 и Р0041, диапазон которых определяется параметрами Р0528 и Р0529.

5. Определить цифровой вход для ручного / автоматического управления:

Для включения ручного / автоматического управления в ПИД-контроллере необходимо задать цифровой вход, через который будет осуществляться управление. Для этого установите один из параметров P0263–P0270 на 22.

Рекомендация: запрограммируйте параметр P0265 на 22 для цифрового входа DI3, чтобы осуществить ручное / автоматическое управление.

6. Определить тип действия ПИД-контроллера:

Управляющее воздействие должно быть прямым (P0527 = 0), если для увеличения частоты вращения необходимо увеличить переменную процесса. В противном случае следует выбирать обратное воздействие (P0527 = 1).

Примеры:

- а. Прямое: Насос, приводимый преобразователем, наполняет резервуар, а ПИД-контроллер контролирует уровень. Для увеличения уровня (переменная процесса) необходимо, чтобы расход увеличивался, что достигается увеличением частоты вращения двигателя.
- б. Обратный: Вентилятор, приводимый в движение преобразователем, обеспечивает охлаждение башенного холодильника, а ПИД-контроллер контролирует температуру. Для увеличения температуры (переменная процесса) нужно ограничить вентиляцию, что обеспечивается за счет снижения частоты вращения двигателя.

7. Отрегулировать диапазон обратной связи ПИД:

Датчик, использующийся для сигнала обратной связи переменной процесса, должен иметь полную шкалу как минимум в 1,1 раза больше самого большого из подлежащих управлению значений.

Пример. Если необходимо контролировать давление в 20 бар, нужно выбрать датчик с полной шкалой минимум 22 бар $(1,1 \times 20)$.

После определения датчика должен быть выбран тип сигнала, необходимый к считыванию на входе (сила тока или напряжение), а датчик отрегулирован в соответствии с выбором.

В данном разделе предположим, что сигнал датчика изменяется от 4 до 20 мА (настройте параметр P0233 = 1, датчик S1.1 = ВКЛ).

Чтобы изменяемые значения имели физическое воздействие, диапазон, задаваемый параметрами Р0528 и Р0529, должен быть установлен на максимальное значение датчика в том же диапазоне и единицах измерения. Например, для датчика давления от 0 до 4 бар параметры Р0528 и Р0529 могут задавать диапазон, например, в 4,00 (400 и 2 соответственно) или 4,000 (4000 и 3 соответственно).

Следовательно, индикации уставки (P0041) и VP (P0040) будут соответствовать применению. Кроме того, коэффициент усиления обратной связи и смещение также влияют на диапазон входных переменных ПИД при изменении значения по умолчанию и должны быть учтены, но рекомендуется использовать значения по умолчанию (коэффициент усиления единица и нулевое смещение).

Хотя параметры Р0528 и Р0529 определяют диапазон для индикации переменных ПИД-контроллера, вычисления основаны на диапазоне Р0525 (от 0,0 до 100,0 %). Следовательно, пороговые параметры сравнения выхода реле VPx (Р0533) и диапазона перезапуска (Р0535) представлены в процентных значениях от полного диапазона датчика, т. е. 50,0 % эквивалентны 2,00 бар давления на выходе.

8. Ограничения скорости:

Установите Р0133 и Р0134 в пределах рабочего диапазона, необходимого для изменения выхода ПИД от 0 до 100,0 %. Как и в аналоговых входах, выходной сигнал ПИД может быть отрегулирован до данных пределов без зоны нечувствительности с помощью параметра Р0230. См. Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1.

Ввод в эксплуатацию

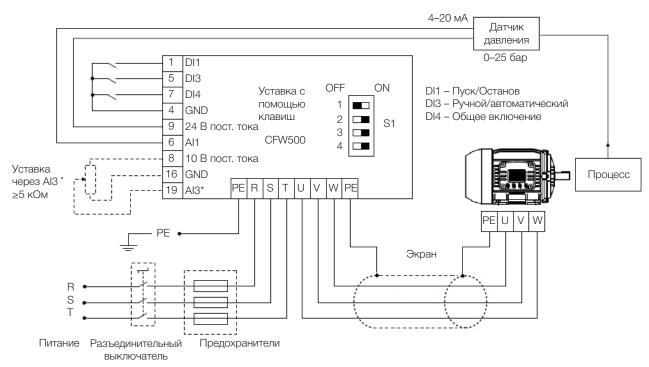
Режим мониторинга ЧМИ упрощает эксплуатацию ПИД, когда уставка ПИД определена с помощью ключей в параметре Р0525, поскольку, как это происходит с Р0121, Р0525 увеличивается в то время, как Р0041 отображается на основном экране при нажатии клавиш ▲ и ▼. В данном случае в режиме мониторинга возможно увеличить как Р0121 при ПИД в ручном режиме, так и Р0525 при ПИД в автоматическом режиме.

1. Работа в ручном режиме (ручной / автоматический DIx неактивен):

При неактивном DIx (ручной режим) проверьте показатель переменной процесса на клавишной панели (ЧМИ) (Р0040), основанный на внешнем измерении значения сигнала обратной связи (датчик) на AI1. Затем, при ЧМИ в режиме мониторинга, изменяйте контрольное значение скорости в ключах • и • (Р0121) до тех пор, пока не получите нужное значение переменной процесса. И только затем переходите к автоматическому режиму.

ПРИМЕЧАНИЕ!

Если уставка задается в параметре P0525, преобразователь автоматически настроит параметр P0525 на текущее значение параметра P0040 при изменении ручного режима на автоматический (поскольку P0536 = 1). В этом случае переключение из ручного в автоматический режим осуществляется плавно (отсутствуют резкие изменения скорости).


2. Работа в ручном режиме (ручной/автоматический DIx активен):

При активном DIx (автоматический режим) осуществите динамическую настройку ПИД-контроллера, т. е. пропорционального (Р0520), интегрального (Р0521) и дифференциального (Р0522) коэффициентов усиления, проверив, что регулировка осуществлена правильно, а отклик удовлетворительный. Для этого просто сравните уставку и переменную процесса и убедитесь, близки ли данные значения. Также проверьте динамический отклик двигателя на изменения переменной процесса.

Следует отметить, что настройка коэффициента увеличения ПИД представляет собой операцию, во время которой возможны ошибки при попытке определить нужное время отклика. Если система реагирует быстро, а изменяющиеся значения близки к значению уставки, пропорциональный коэффициент усиления слишком большой. Если система реагирует медленно, а значение уставки достигается через некоторое время, пропорциональный коэффициент усиления слишком маленький и его необходимо увеличить. А если переменная процесса не достигает нужного значения (уставки), следует настроить интегральный коэффициент усиления.

В качестве подведения итогов данного раздела ниже приведена схема соединений для использования ПИД-контроллера, а также данные настройки параметров, используемых в данном примере.

 $^{^{\}star}$ Уставка через Al3 доступна только в подключаемом модуле IOS

Рисунок 16.2: Пример использования ПИД-контроллера CFW500

Таблица 16.1: Настройка параметров для представленного примера

Параметр	Описание
P0203 = 1	Включает ПИД-контроллер через вход Al1 (обратная связь)
P0205 = 40	Выбор параметра основного экрана (переменная процесса)
P0206 = 41	Выбор параметров дополнительного экрана (уставка ПИД)
P0207 = 2	Выбор параметра шкального индикатора (частота вращения двигателя)
P0208 = 660	Коэффициент базовой шкалы
P0209 = 0	Техническая единица уставки: нет
P0213 = 660	Полный масштаб шкального индикатора
P0210 = 1	Форма индикации уставки: wxy.z
P0220 = 1	Выбор источника МЕСТНЫЙ/ДИСТАНЦИОННЫЙ: работа в дистанционном режиме
P0222 = 0	Выбор уставки дистанционного режима: ЧМИ
P0226 = 0	Выбор дистанционного направления вращения: по часовой стрелке
P0228 = 0	Выбор дистанционного источника инкрементного изменения JOG: неактивный
P0232 = 1,000	Усиление входного сигнала Al1
P0233 = 1	Входной сигнал Al1: от 4 до 20 мA
P0234 = 0,00 %	Смещение входного сигнала Al1
P0235 = 0,15 c	Фильтр входного сигнала Al1
P0230 = 1	Зона нечувствительности (активна)
P0536 = 1	Автоматическая настройка Р0525: активна
P0227 = 1	Дистанционный выбор Пуск/Останов (Dlx)
P0263 = 1	Функция входа DI1: Пуск/Останов
P0265 = 22	Функция входа DI3: Ручной/автоматический ПИД
P0266 = 2	Функция входа DI4: Общее включение
P0527 = 0	Тип действия ПИД-контроллера: прямой
P0528 = 250	Шкала индикации ПИД VP
P0529 = 1	Форма индикации ПИД VP
P0525 = 20,0	Уставка ПИД

P0536 = 1	Автоматическая настройка Р0525: активна
P0520 = 1,000	Пропорциональное усиление ПИД
P0521 = 0,430	Интегральное усиление ПИД
P0522 = 0,000	Дифференциальное усиление ПИД

16.3 РЕЖИМ ОЖИДАНИЯ С ПИД

Режим ожидания является полезной функцией для сохранения энергии при использовании ПИД-контроллера. В большинстве применений с ПИД-контроллером энергия растрачивается при вращении вала двигателя на минимальной скорости, когда, например, давление или уровень в резервуаре продолжают расти.

Для включения режима ожидания просто установите частоту включения режима ожидания в параметре P0217 следующим образом: P0133<P0217≤P0134. Кроме того, параметр P0218 устанавливает промежуток времени, в котором условия режима ожидания согласно параметрам P0217 и P0535 должны оставаться стабильными. См. подробное описание P0535 ниже.

ОПАСНОСТЬ!

При нахождении в режиме ожидания двигатель может вращаться в любое время с учетом условий процесса. Если требуется выполнять какие-либо операции с двигателем или провести техническое обслуживание, отключите питание преобразователя.

Дополнительную информацию по настройке режима ожидания см. в Раздел 14.2 РЕЖИМ ОЖИДАНИЯ на странице 14-5.

16.4 ЭКРАН РЕЖИМА МОНИТОРИНГА

При использовании ПИД-контроллера можно настроить экран режима мониторинга так, чтобы на нем отображались основные переменные в цифровом виде с соответствующими техническими единицами измерения или без них.

Один пример ЧМИ с данной конфигурацией представлен на Рисунок 16.3 на странице 16-8, где показаны: переменная процесса, уставка без технических единиц измерения (с эталоном 25,0 бар) и частота вращения двигателя на шкальном индикаторе контроля переменной согласно параметризации, показанной в Таблица 16.1 на странице 16-7. Дополнительную информацию см. в Раздел 5.3 ЧМИ на странице 5-2.

На экране, показанном на Рисунок 16.3 на странице 16-8, на дополнительном дисплее отображается заданное значение 20,0 бар, переменная процесса также равна 20,0 бар на основном дисплее и скорость вывода равна 80 % на полосе.

Рисунок 16.3: Пример ЧМИ в режиме мониторинга для использования ПИД-контроллера

16.5 ПАРАМЕТР ПИД

Ниже приведено подробное описание параметров, относящихся к ПИД-контроллеру.

Р0040 - Переменная процесса ПИД

Регулируемый диапазон:	От 0,0 до 3000,0	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Параметр только для чтения, представленный в формате (wxy.z), определен параметром Р0529 и без технических единиц измерения, значение переменной процесса или обратная связь ПИД-контроллера согласно диапазону, определенному в параметре Р0528.

Р0041 – Значение уставки ПИД

Регулируемый диапазон:	От 0,0 до 3000,0	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Параметр только для чтения, представленный в формате (wxy.z), определен параметром Р0529 и без технических единиц измерения, значение уставки (эталона) ПИД-контроллера согласно диапазону, определенному в параметре Р0528.

Р0203 – Выбор специальной функции

Регулируемый диапазон:	0 = Heт 1 = ПИД через Al1 2 = ПИД через Al3 3 = ПИД через Fl	Заводские 0 настройки:
Свойства:	cfg	
Группы доступа через ЧМИ:		

Описание:

Активирует ПИД-контроллер специальной функции при установке параметра $P0203 \neq 0$. Кроме того, при включении ПИД можно выбрать входной сигнал обратной связи (измерение переменной процесса) контроллера. Обратная связь ПИД-регулятора может осуществляться через аналоговый вход (P0203 = 1 для P0203 = 2 для P0203 = 3).

Р0520 - Пропорциональное увеличение ПИД

Р0521 – Интегральное увеличение ПИД

Р0522 - Дифференциальное увеличение ПИД

 Регулируемый
 От 0,000 до 9,999
 Заводские
 Р0520 = 1,000

 диапазон:
 настройки:
 Р0521 = 0,430

P0522 = 0,000

Свойства:

Группы доступа через ЧМИ:

Описание:

Данные параметры определяют пропорциональное, интегральное и дифференциальное усиления функции ПИД-контроллера и должны быть установлены согласно управляемому приложению.

Примеры исходных настроек для некоторых приложений показаны в Таблица 16.2 на странице 16-10.

Таблица 16.2: Рекомендации по настройкам усиления ПИД-контроллера

	Усиление			
Амплитуда	Пропорциональное Р0520	Интегральное Р0521	Дифференциальное Р0522	
Давление в пневматической системе	1,000	0,430	0,000	
Расход в пневматической системе	1,000	0,370	0,000	
Давление в гидравлической системе	1,000	0,430	0,000	
Расход в гидравлической системе	1,000	0,370	0,000	
Температура	2,000	0,040	0,000	
Уровень	1,000	Прочитайте следующее примечание	0,000	

ПРИМЕЧАНИЕ!

В случае контроля уровня настройка интегрального усиления будет зависеть от времени, необходимого для того, чтобы уровень в резервуаре изменился с минимально приемлемого до требуемого при следующих условиях:

- Для прямого действия время должно измеряться с максимальным расходом на входе и минимальным расходом на выходе.
- Для обратного действия время должно измеряться с минимальным расходом на входе и максимальным расходом на выходе.

Формула вычисления исходного значения Р0521, учитывая время отклика системы, приведена ниже:

P0521 = 0.5 / t,

Где: t = время (в секундах).

Р0525 - Значение уставки ПИД по ЧМИ

 Регулируемый диапазон:
 От 0,0 до 100,0 % до 100,0 % настройки:
 Заводские настройки:
 0,0 % настройки:

 Свойства:
 Группы доступа через ЧМИ:
 Настройки:
 Настройки:

Описание:

Данный параметр позволяет задать уставку ПИД-контроллера с помощью клавишной панели ЧМИ, при условии, что P0221 = 0 или P0222 = 0 и при работе в автоматическом режиме. Значение 100,0 % эквивалентно полному диапазону индикации в параметрах P0040 и P0041, заданному параметром P0528.

В случае работы в ручном режиме уставка через ЧМИ устанавливается в параметре Р0121.

Значение Р0525 сохраняется в последнем установленном значении (резерв) даже при отключении или потере питания преобразователя при Р0536 = 1 (активный).

Р0526 – фильтр уставки ПИД

Регулируемый диапазон:	От 0 до 9999 мс	Заводские настройки:	50 мс
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Данный параметр задает постоянную времени фильтра уставки ПИД-контроллера. Предполагается не допускать резких изменений значения уставки ПИД.

Р0527 - Тип действия ПИД

Регулируемый диапазон:	0 = Прям. 1 = Обратн.	Заводские настройки:	0
Свойства:			
Группы доступа через ЧМИ:			

Описание:

В качестве типа действия ПИД необходимо выбрать «Прямой» если требуется, чтобы частота вращения двигателя увеличивалась и одновременно увеличивалось значение переменной процесса. В противном случае следует выбирать «Обратный».

Таблица 16.3: Выбор действия ПИД

Частота вращения двигателя (Р0002)	Переменная процесса (Р0040)	P0527
Увеличивается	Увеличивается	0 (прямой)
	Уменьшает	1 (обратный)

Данные характеристики варьируются согласно типу процесса, но жесткая обратная связь используется наиболее часто.

При процессах контроля температуры или уровня настройка типа действия зависит от конфигурации. Например: при контроле уровня, если преобразователь воздействует на двигатель, с помощью которого извлекается жидкость из резервуара, действие будет обратным, так как при увеличении уровня преобразователь должен увеличить частоту вращения двигателя, чтобы уменьшить уровень. В случае если преобразователь воздействует на двигатель, с помощью которого жидкость нагнетается в резервуар, действие будет прямым.

Р0528 - Множитель шкалы переменной процесса

Регулируемый диапазон:	От 10 до 30000	Заводские настройки:	1000
Свойства:			
Группы доступа через ЧМИ:	HMI		

Описание:

Определяет как обратная связь ПИД или переменная процесса будут представлены в Р0040, а также уставку ПИД в Р0041. Следовательно, обратная связь ПИД или полный диапазон переменной процесса, соответствующий 100,0 % в Р0525, в аналоговом входе (Al1 или Al3) или в частотном входе (Fl), используемом в качестве обратной связи ПИД-контроллера, указывается в Р0040 и Р0041 в диапазоне, заданном Р0528 и Р0529.

Пример. Датчик давления работает при от 4 до 20 мА для диапазона от 0 до 25 бар; настройка параметра Р0528 при 250 и Р0529 при 1.

Р0529 - Форма индикации переменной процесса

Регулируемый диапазон:	0 = wxyz 1 = wxy.z 2 = wx.yz 3 = w.xyz	Заводские настройки	
Свойства:			
Группы доступа через ЧМИ:	НМІ		

Описание:

Данный параметр позволяет настраивать форму индикации переменной процесса ПИД (P0040) и уставки ПИД (P0041).

Р0533 – Значение переменной процесса Х

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	90,0 %
Свойства:			
Группы доступа	I/O		
через ЧМИ:			

Описание:

Данные параметры используется в функциях цифрового выхода (см. Раздел 15.6 ЦИФРОВЫЕ ВЫХОДЫ на странице 15-23) для сигнализации / подачи аварийного сигнала. Для этого необходимозапрограммировать функцию цифрового выхода (Р0275...Р0279) на 22 = переменная процесса > VPx или на 23 = переменная процесса < VPx.

16)

Р0535 - Диапазон перезапуска

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	0,0 %
Свойства:			
Группы доступа через ЧМИ:	I/O		

Описание:

Это ошибка переменной процесса по отношению к уставке ПИД при входе и выходе из режима ожидания. Значение Р0535 выражается в % от полного диапазона (Р0528), как диапазон Р0525, т. е.:

Ошибка =
$$\frac{P0041 - P0040}{P0528} \cdot 100 \%$$

Параметр Р0535 обеспечивает, что помимо определенных параметрами Р0217 и Р0218 условий ошибка контроллера ПИД находится в допустимых пределах относительно уставки, чтобы допустить переход преобразователя в режим ожидания (отключение двигателя) как показано на Рисунок 16.4 на странице 16-13.

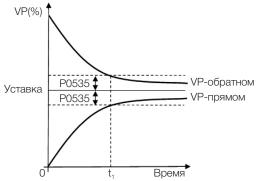


Рисунок 16.4: Нормальный диапазон уставки определяется Р0535

Согласно Рисунок 16.4 на странице 16-13, условие, устанавливаемое Р0535, зависит от типа действия $\Pi U \Pi$: прямого или обратного. Следовательно, при прямом $\Pi U \Pi$ (P0527 = 0), ошибка должна быть меньше, чем P0535 для перехода преобразователя в режим ожидания (уставка в норме). С другой стороны, при обратном $\Pi U \Pi$ (P0527 = 1), ошибка должна быть больше, чем – P0535 для перехода преобразователя в режим ожидания.

Параметр Р0535 действует вместе с параметрами Р0217 и Р0218. Согласно Рисунок 16.4 на странице 16-13, начиная с « t_1 » режим ожидания может включиться при соблюдении прочих условий. Дополнительную информацию режима ожидания см. в Раздел 14.2 РЕЖИМ ОЖИДАНИЯ на странице 14-5.

Р0536 – Автоматическая настройка Р0525

Регулируемый диапазон:	0 = He активно 1 = Активно	Заводские 0 настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

При настройке уставки ПИД-контроллера через клавишную панель (ЧМИ) (P0221/P0222 = 0) и P0536 = 1 (Вкл.) за счет перехода с ручного в автоматический режим значение переменной процесса (P0040) преобразуется в % от P0528 и загружается в P0525. Тем самым предотвращаются колебания ПИД при смене с ручного режима на автоматический.

Таблица 16.4: Конфигурация Р0536

P0536	Функция
0	Неактивная (не производит копирование значения Р0040 в Р0525)
1	Активная (производит копирование значения Р0040 в Р0525)

16.6 АКАДЕМИЧЕСКИЙ ПИД

Встроенный в CFW500 ПИД-контроллер является контроллером академического типа. Далее представлены уравнения, которые характеризуют академический ПИД, являющийся основанием алгоритма данной функции.

Функция преобразования в частотном диапазоне академического ПИД-контроллера:

$$y(s) = Kp \times e(s) \times [1 + 1 + sTd] sTi$$

При замене интегрирующей функции на сумму и производного на возрастающий результат деления, получаем приближенное выражение дискретного (рекурсивного) уравнения преобразования, показанное ниже:

$$y(k) = y(k-1) + Kp[(1 + Ki.Ta + Kd/Ta).e(k) - (Kd/Ta).e(k-1)]$$

Где:

у(к): текущий выход ПИД, может изменяться от 0,0 до 100,0 %.

у(k-1): предыдущий выход ПИД.

Кр (пропорциональное увеличение): Кр = Р0520.

Кі (интегральное увеличение): Кі = P0521 x 100 = [1/Ті x 100].

Kd (дифференциальное увеличение): $Kd = P0522 \times 100 = [Td \times 100]$.

Та = 0,05 с (период дискретизации ПИД-контроллера).

e(k): действующая ошибка [SP*(k) – X(k)].

e(k-1): предыдущая погрешность $[SP^*(k-1) - X(k-1)]$.

SP*: уставка (эталон), изменяется в пределах от 0,0 до 100,0 %.

Х: переменная процесса (или обратная связь), считанная через один из аналоговых входов согласно настройкам параметра Р0203 и изменяющаяся в пределах от 0,0 до 100,0 %.

17 РЕОСТАТНОЕ ТОРМОЖЕНИЕ

Тормозящий крутящий момент, который может быть получен за счет использования преобразователей частоты без резисторов динамического торможения, находится в диапазоне от 10 до 35 % номинального крутящего момента двигателя.

Для получения более высокого тормозящего крутящего момента используются резисторы реостатного торможения. В этом случае восстановленная энергия сбрасывается на резистор, который установлен снаружи преобразователя.

Этот тип торможения применяется при необходимости обеспечения короткого времени замедления, а также при высоких инерционных нагрузках.

Функция реостатного торможения может использоваться только при условии, что резистор торможения подключен к преобразователю и соответствующие параметры надлежащим образом установлены.

Р0153 – Уровень реостатного торможения

Регулируемый диапазон:	От 339 до 1200 В	Заводские настройки:	375 B (P0296 = 0) 750 B (P0296 = 1) 750 B (P0296 = 2) 750 B (P0296 = 3) 750 B (P0296 = 4) 750 B (P0296 = 5) 950 B (P0296 = 6) 950 B (P0296 = 7)
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Параметр Р0153 определяет уровень напряжения для включения тормозящего БТИЗ, который должен быть совместим с напряжением питания.

Если параметр Р0153 отрегулирован на уровне, который очень близок к уровню срабатывания предупреждения о перегрузке по напряжению (F0022), существует возможность возникновения отказа еще до рассеяния резистором торможения энергии, восстановленной двигателем. С другой стороны, если уровень значительно ниже перегрузки по напряжению, функция ограничивает срабатывание при, максимум, 15 % от уровня перегрузки по напряжению.

Следовательно, обеспечиваются условия, когда резистор торможения не активируется в номинальном рабочем диапазоне промежуточного звена постоянного тока; см. Таблица 17.1 на странице 17-1. Следовательно, хотя Р0153 имеет широкий диапазон настроек (от 339 до 1200 В), действуют только значения, определенные диапазоном срабатывания в Таблица 17.1 на странице 17-1 т. е. значения ниже диапазона срабатывания внутренне ограничены при выполнении функции, а значения выше диапазона естественным образом отключают функцию.

Таблица 17.1: Кривая запуска реостатного торможения

	Taomique IIII Roman danyera poderamere replinoriemon				
н	Входное апряжение	Номинальное промежуточное звено постоянного тока	Р0153 диапазон срабатывания	Р0153 по умолчанию заводской	
	200 до 240 В перем. тока	339 В пост. тока	От 349 до 410 В пост. тока	375 В пост. тока	
	380 до 480 В перем. тока	678 В пост. тока	От 688 до 810 В пост. тока	750 В пост. тока	
	500 до 600 В	846 В пост. тока	От 850 до 1000 B	950 В пост. тока	

Рисунок 17.1 на странице 17-2 показан пример типичного срабатывания реостатического торможения, где можно наблюдать гипотетические формы волн напряжения на тормозном резисторе и напряжения в звене постоянного тока. Следовательно, когда тормозящий БТИЗ соединяет звено с внешним резистором, напряжение промежуточного звена постоянного тока падает ниже установленного в параметре P0153 значения, сохраняя уровень ниже отказа F0022.

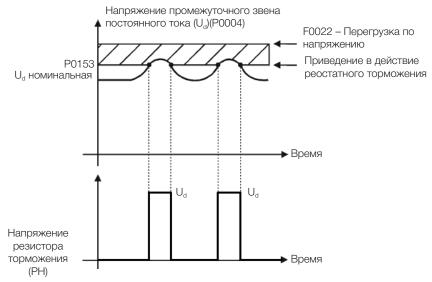


Рисунок 17.1: Кривая запуска реостатного торможения

Этапы включения реостатного торможения:

- При выключенном инверторе подключите тормозной резистор (см. руководство пользователя CFW500, пункт 3.2 Электрический монтаж).
- Параметр Р0151 установить на максимальное значение: 410 В (Р0296 = 0), 810 В (Р0296 = 1, 2 ,3 или 4) или 1200 В (Р0296 = 4, 5, или 7) в соответствии с ситуацией для предотвращения срабатывания регулировки промежуточного звена постоянного тока перед реостатным торможением.

ОПАСНОСТЬ!

Перед выполнением электрических соединений убедитесь, что инвертор ВЫКЛЮЧЕН и отсоединен, и внимательно прочтите инструкции по установке в руководстве пользователя CFW500.

18 ОТКАЗЫ И АВАРИЙНЫЕ СИГНАЛЫ

Задача схемы обнаружения неисправности в преобразователе состоит в индикации отказов и аварийных сигналов.

В случае отказа произойдет блокировка БТИЗ и остановка двигателя по инерции.

Сигнализация работает для предупреждения пользователя о критических условиях эксплуатации и возможном возникновении неисправности, если ситуация не будет исправлена.

Дополнительную информацию о неисправностях и сигналах тревоги см. в главе 6 «Устранение неисправностей и техническое обслуживание» руководства пользователя CFW500 и в Глава СПРАВОЧНИК ПАРАМЕТРОВ, АВАРИЙНЫХ СИГНАЛОВ, ОТКАЗОВ И КОНФИГУРАЦИЙ на странице 0-1 настоящего руководства.

18.1 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРУЗОК (F0072 И A0046)

Защита двигателя от перегрузок основана на использовании кривых, моделирующих процессы нагрева и охлаждения двигателя в случае перегрузки. Коды отказов и сигналов тревоги для защиты двигателя от перегрузок – F0072 и A0046, соответственно.

Перегрузка двигателя задается в зависимости от опорного значения In x SF (номинальный ток двигателя, умноженный на коэффициент перегрузки), которое является максимальным значением, при котором защита не должна срабатывать, так как двигатель может работать в течение длительного времени при данном значении без серьезных повреждений.

Однако, чтобы обеспечить правильную работу данной защиты, нужно оценить температуру обмотки (которая зависит от времени нагревания и охлаждения двигателя).

Контроль температуры обмотки определяется функцией lxt, которая интегрирует значение выходного тока из уровня, предварительного определенного параметрами P0156, P0157 и P0158. Когда накопленное значение достигает предела, отображается отказ и/или аварийный сигнал.

Для обеспечения повышенной защиты в случае перезапуска данная функция сохраняет значение, интегрированное функцией lxt в энергонезависимую память преобразователя. Следовательно, после включения функция будет использовать значение lxt, сохраненное в памяти, для выполнения нового вычисления перегрузки.

Р0156 – Ток перегрузки при номинальной частоте вращения

Р0157 – Ток перегрузки при 50 % от номинальной частоты вращения

Р0158 - Ток перегрузки при 20 % от номинальной частоты вращения

Регулируемый	От 0,0 до 400,0 А		$P0156 = 1,1 \times I_{HOM}$
диапазон:		настройки:	$P0157 = 1.0 \times I_{HOM}$
			$P0158 = 0.8 \times I_{HOM}$
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Данные параметры определяют ток перегрузки двигателя (lxt – F0072). Ток перегрузки двигателя (P0156, P0157 и P0158) – значение, при котором преобразователь начнет воспринимать функционирование двигателя как работу с перегрузкой.

Для двигателей с самовентиляцией перегрузка зависит от частоты вращения, применяемой для двигателя. Следовательно, для скоростей ниже 20 % от номинальной частоты вращения ток перегрузки составляет P0158, в то время как для скоростей от 20 % до 50 % ток перегрузки составляет P0157, и выше 50 % – P0156.

Чем больше разница между током двигателя и током перегрузки (Р0156, Р0157 или Р0158), тем быстрее осуществляется срабатывание отказа F0072.

Рекомендуется, чтобы параметр Р0156 (ток перегрузки двигателя при номинальной частоте вращения) был установлен на значение на 10 % выше номинального тока используемого двигателя (Р0401).

Для отключения функции перегрузки двигателя просто установите параметры Р0156 – Р0158 на значения, равные удвоенному номинальному току преобразователя Р0295, или большие.

Рисунок 18.1 на странице 18-3 показано время срабатывания перегрузки с учетом нормализованного выходного тока по отношению к току перегрузки (Р0156, Р0157 или Р0158), т. е. для постоянного выходного тока с перегрузкой 150 % отказ F0072 происходит через 60 секунд. С другой стороны, для значений выходного тока ниже Р0156, Р0157 или Р0158, согласно выходной частоте, отказ F0072 не происходит. В то время как для значений Р0156, Р0157 или Р0158 выше 150 % время срабатывания отказа составляет менее 60 с.

Р0349 - Уровень аварийной сигнализации Ixt

Регулируемый диапазон:	От 70 до 100 %	Заводские настройки:	85 %
Свойства:	cfg		
Группы доступа через ЧМИ:			

Описание:

Данный параметр определяет уровень срабатывания аварийной сигнализации защиты двигателя от перегрузки (A0046, если P0037 > P0349). Данный параметр выражается в процентах от предельного значения интегратора перегрузки, когда возникает отказ F0072. Следовательно, при установке P0349 на 100 % аварийный сигнал перегрузки не срабатывает.

ПРИМЕЧАНИЕ!

Этот параметр также устанавливает уровень срабатывания аварийного сигнала защиты от перегрузки IGBT (A0047), который сработает, когда уровень перегрузки IGBT превысит значение, установленное в P0349.

Р0037 - Перегрузка двигателя Ixt

Регулируемый диапазон:	От 0 до 100 %	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Данный параметр указывает текущий процент перегрузки двигателя или уровень интегратора перегрузки. Когда данный параметр достигает значения Р0349, преобразователь отображает аварийный сигнал перегрузки двигателя (A0046). Когда значение данного параметра достигает 100 %, срабатывает отказ «Перегрузка двигателя» (F0072).

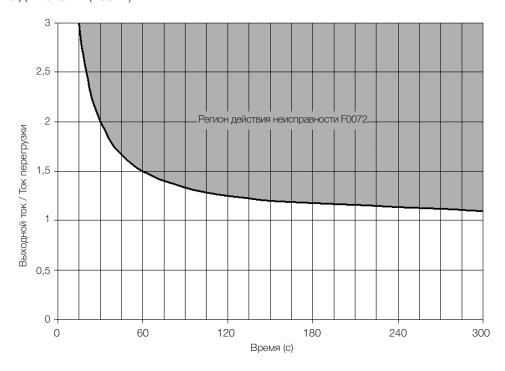


Рисунок 18.1: Активация перегрузки двигателя

Заводские 4

настройки:

Р0352 – Конфигурация вентилятора радиатора

Регулируемый 0 = Всегда ВЫКЛ диапазон:

1 = Всегда ВКЛ

2 = Контроль 60 °C (140 °F) 3 = Контроль 70 °С (158 °F) 4 = Контроль 60 °С (140 °F) ПУСК 5 = Контроль 70 °С (158 °F) ПУСК

6 = Контроль ПУСК+60 с

Свойства: cfq

Группы доступа через ЧМИ:

Описание:

Задает поведение вентилятора радиатора блока питания. Опция «Контроль 60 °С (140 °F)» указывает, что вентилятор включится, когда температура блока питания (Р0030) достигнет 60 °C (140 °F), и выключится, как только температура упадет на 10 °C (50 °F) ниже этого значения. Опция «Контроль 60 °C (140 °F) ПУСК» будет работать таким же образом, но вентилятор включится только в том случае, если преобразователь находится в состоянии ПУСКА. Наконец, если выбрана опция «Контроль ПУСК+60 с» вентилятор включается вместе с состоянием «ПУСК» независимо от температуры силового модуля, и выключается через шестьдесят секунд после выключения состояния ПУСК.

ПРИМЕЧАНИЕ!

Этот параметр следует изменять только под руководством квалифицированных специалистов WEG, поскольку это может привести к перегреву и серьезному повреждению преобразователя.

Р0357 – Время потери фазы источника питания

Регулируемый От 0 до 60 с Заводские

диапазон: настройки: соответствии с номинальной

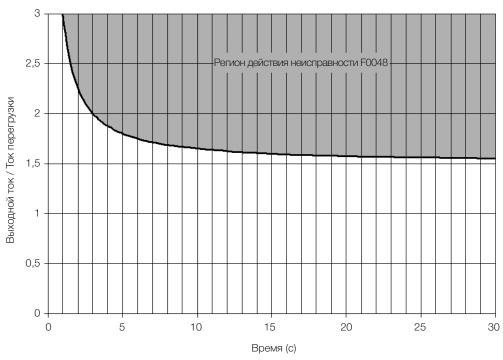
Описание:

Устанавливает время для индикации потери фазы источника питания (F006). Если Р0357 = 0, функция отключена.

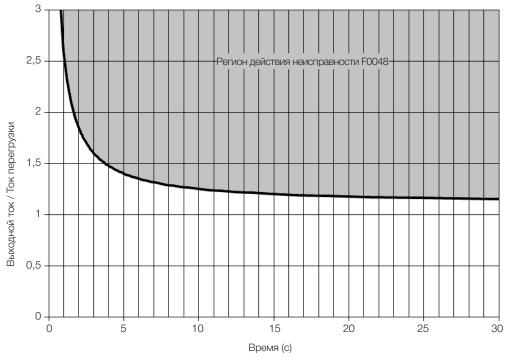
ПРИМЕЧАНИЕ!

Заводская настройка этого параметра для типоразмеров А и В равна 0. Если преобразователь имеет однофазное питание, необходимо установить Р0357 = 0, чтобы отключить ошибку F0006.

18.2 ЗАЩИТА ОТ ПЕРЕГРУЗОК БТИЗ (F0048 И А0047)


Защита от перегрузок БТИЗ CFW500 использует тот же принцип защиты двигателя. Однако конструкция была изменена таким образом, что неисправность F0048 возникает через три секунды при 200% перегрузке для тяжелого режима (HD) (Р0298 = 1) по отношению к номинальному току преобразователя (Р0295), как показано на Рисунок 18.2 на странице 18-5. С другой стороны, перегрузка БТИЗ (F0048) не срабатывает для уровней ниже 150 % от номинального тока преобразователя (Р0295).

В нормальном режиме (ND) ошибка F0048 возникает примерно через 4 секунды при перегрузке 150 %, как показано на Рисунок 18.3 на странице 18-5. Аналогично, неисправность не возникнет при значениях тока ниже 110 % номинальной нагрузки преобразователя.


Перед срабатыванием отказа F0048 преобразователь может отобразить аварийный сигнал A0047, когда уровень перегрузки БТИЗ превышает запрограммированное в РОЗ49 значение.

Защита от перегрузки БТИЗ может быть отключена с помощью параметра РОЗ43.

Рисунок 18.2: Срабатывание перегрузки IGBT (Повышенная нагрузка - HD)

Рисунок 18.3: Срабатывание перегрузки IGBT (Нормальный режим - HD)

Р0343 - Маска отказов и сигналов тревоги

Регулируемый Бит 0 = F0074 **Заводские** 008Fh **диапазон:** Бит 1 = F0048 **настройки:**

Бит 2 = F0078

Бит 3 = F0079 Бит 4 = F0076 Бит 5 = F0179

Бит 6 = Зарезервировано Бит 7 = F0700/A0700

Биты с 8 по 15 = Зарезервированные

Свойства: cfg

Группы доступа через ЧМИ:

Описание:

Параметр Р0343 позволяет отключать некоторые специфичные для преобразователя аварийные сигналы и отказы. С помощью битовой маски формируется двоичное число, где «Бит» равный «О» отключает соответствующий отказ или аварийный сигнал. Обратите внимание, что числовое представление Р0343 шестнадцатеричное.

ВНИМАНИЕ!

Отключение систем защиты от замыкания на землю или перегрузки может привести к повреждению преобразователя. Выполняйте это только согласно технических указаний WEG.

18.3 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРЕВА (F0078)

Функция защищает двигатель от перегрева посредством индикации отказа F0078.

Двигателю необходим датчик температуры типа тройной РТС. Показания датчика могут быть получены двумя способами: через аналоговый или цифровой вход.

Для считывания РТС через аналоговый вход необходимо настроить его для токового входа и выбрать опцию «4 = РТС» в Р0231 или Р0236. Подключите РТС между источником +10 В постоянного тока и аналоговым входом, а также максимально соответствующую конфигурацию двухрядного переключателя Alx в «мА».

На аналоговом входе считывается значение сопротивления РТС и сравнивается с предельными значениями отказа. При превышении указанных значений отображается отказ F0078, как показанов Таблица 18.1 на странице 18-6.

ВНИМАНИЕ!

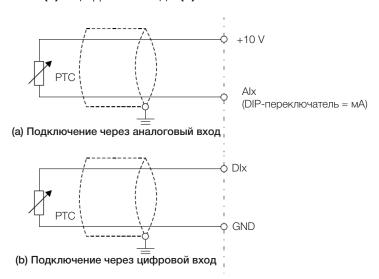
РТС должен иметь усиленную электрическую изоляцию до 1000 В.

Таблица 18.1: Уровень срабатывания отказа F0078 PTC через аналоговый вход

Сопротивление РТС	Alx	Перегрев
R _{РТС} < 50 Ом	$V_{IN} > 9.1 \text{ V}$	F0078
50 Ом < R _{PTC} < 3,9 кОм	$9.1 \text{ V} > \text{V}_{IN} > 1.3 \text{ V}$	Нормативное значение
R _{PTC} > 3,9 кОм	$V_{IN} < 1.3 V$	F0078

ПРИМЕЧАНИЕ!

Для надлежащей работы данной функции важно удерживать усиление и смещение аналоговых входов на стандартных значениях.


Для РТС через цифровой вход необходимо установить опцию 29 (РТС) при программировании DIх в параметрах P0263 и P0270 и подключить РТС к соответствующему цифровому входу и заземлению. Уровни сопротивления тройного РТС совпадают с уровнями аналогового входа в Таблица 18.1 на странице 18-6, но короткое замыкание РТС ($R_{\rm PTC}$ < 50 Ом) не может быть обнаружено и, следовательно, рассматривается как нормальная эксплуатация. Только в случае $R_{\rm PTC}$ > 3,9 кОм активируется отказ F0078.

\bigcirc

ПРИМЕЧАНИЕ!

DI2 – это единственный вход, который нельзя использовать в качестве входа РТС, поскольку его входная цепь предназначена для частотного входа (FI).

Рисунок 18.4 на странице 18-7 показано подключение РТС к контактам преобразователя для обеих ситуаций: черезан алоговый **(а)** и цифровой входы **(b)**.

Рисунок 18.4: Подключение РТС (a) и (b) к CFW500

18.4 ЗАЩИТА ОТ ПЕРЕГРЕВА БТИЗ (F0051 И A0050)

Температура силового модуля контролируется и отображается в параметре Р0030 в градусах Цельсия. Это значение постоянно сравнивается со значением срабатывания сигнализации о неисправности и перегреве силового модуля F0051 и A0050 в соответствии с Таблица 18.2 на странице 18-7. Уровень срабатывания сигнализации A0050 зафиксирован на 5 °C ниже уровня неисправности F0051.

Таблица 18.2: Уровни срабатывания перегрева силового модуля F0051

Уровень F0051	Модель Р0029
90 °C	1
90 °C	2
90 °C	3
105 °C	4
123 °C	5
108 °C	6
108 °C	7
108 °C	8
108 °C	9
120 °C	10
105 °C	11
115 °C	12
115 °C	13
108 °C	14
108 °C	15
105 °C	16

110 °C	17
120 °C	18
110 °C	19
110 °C	20
110 °C	21
110 °C	22
110 °C	23
110 °C	24
110 °C	25
110 °C	26
110 °C	27
110 °C	28
110 °C	29
110 °C	30
110 °C	33
110 °C	34
105 °C	35
105 °C	36
100 °C	49
100 °C	50
100 °C	51
110 °C	52
110 °C	53
110 °C	54
100 °C	55
100 °C	56
100 °C	57
110 °C	58
110 °C	59
110 °C	60

Помимо срабатывания сигнала тревоги A0050, защита от перегрева автоматически снижает частоту переключения (P0297) до 2000 Гц, когда температура (P0030) достигает 80 % от уровня F0051, а выходной ток (P0003) превышает номинальный ток (P0295). Данная характеристика защиты от перегрева может быть выключена в управляющем параметре конфигурации P0397.

ВНИМАНИЕ!

Недопустимое изменение параметра Р0397 может привести к повреждению преобразователя. Выполняйте это только согласно технических указаний WEG.

18.5 ЗАЩИТА ОТ ПЕРЕГРУЗКИ ПО ТОКУ (F0070 И F0074)

Системы защиты от замыкания на землю и от перегрузки по току на выходе срабатывают очень быстро с помощью аппаратного обеспечения для мгновенного отключения выходных импульсов ШИМ при высоком выходном токе.

Отказ F0070 соответствует перегрузке по току между выходными фазами, в то время как отказ F0074 указывает перегрузку по току от фазы до защитного заземления (PE).

Уровень тока в защите зависит от используемого модуля питания, чтобы сделать защиту эффективной. Данное значение остается выше (с определенным запасом) номинального рабочего тока преобразователя (P0295).

18.6 КОНТРОЛЬ НАПРЯЖЕНИЯ ПРОМЕЖУТОЧНОГО ЗВЕНА (F0021 И F0022)

Напряжение промежуточного звена постоянного тока постоянно сравнивается с максимальным и минимальным значениями согласно источнику питания преобразователя, как показано в Таблица 18.3 на странице 18-9.

Таблица 18.3: Уровни активации контроля напряжения промежуточного звена постоянного тока

Питание	Уровень F0021	Уровень F0022
От 200 до 240 В перем. тока	200 В пост. тока	410 В пост. тока
От 380 до 480 В перем. тока	360 В пост. тока	810 В пост. тока
От 500 до 600 В перем. тока	500 В пост. тока	1000 В пост. тока

18.7 СБОЙ СВЯЗИ ПОДКЛЮЧАЕМОГО МОДУЛЯ (F0031)

Это происходит, когда преобразователь обнаруживает подключение модуля, но не может соединиться с ним.

18.8 СБОЙ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ В Р ЕЖИМЕ УПРАВЛЕНИЯVVW (F0033)

В конце процесса самонастройки режима VVW (Р0408 = 1), если предполагаемое сопротивление статора двигателя (Р0409) слишком велико для используемого преобразователя, преобразователь отобразит отказ F0033. Кроме того, изменение параметра Р0409 вручную может также вызвать отказ F0033.

18.9 СИГНАЛ ТРЕВОГИ. СБОЙ СВЯЗИ С УДАЛЕННЫМ ЧМИ (А0700)

После подключения удаленного ЧМИ к контактам CFW500 с параметром P0312, настроенным на удаленный интерфейс ЧМИ, активируется контроль связи с ЧМИ, так что аварийный сигнал A0700 активируется при каждом разрыве связи.

18.10 ОТКАЗ. ОШИБКА СВЯЗИ С УДАЛЕННЫМ ЧМИ (F0700)

Условие для отказа F0700 то же, что и для сигнала A0700, но необходимо, чтобы ЧМИ был источником для некоторых команд или уставки (опция «Клавиши ЧМИ») в параметрах P0220–P0228.

18.11 ОШИБКА ИДЕНТИФИКАЦИИ ОБОРУДОВАНИЯ ПИТАНИЯ (F0084)

Перед загрузкой заводских значений по умолчанию (P0204 = 5 или 6) преобразователь определяет силовое оборудование для получения информации о напряжении модуля питания, силе тока и условиях запуска, а также проверяет основные цепи управления преобразователя.

Отказ F0084 указывает на неисправность в процессе определения оборудования: несуществующая модель преобразователя, обрыв соединительного кабеля или повреждение внутренней цепи.

ПРИМЕЧАНИЕ!

При возникновении отказа обратитесь в компанию WEG.

18.12 СБОЙ В ЦП (F0080)

Выполнение микропрограммы преобразователя контролируется на нескольких уровнях внутренней структуры микропрограммы. При обнаружении внутренней ошибки при выполнении преобразователь отобразит отказ F0080.

ПРИМЕЧАНИЕ!

При возникновении отказа обратитесь в компанию WEG.

18.13 НЕСОВМЕСТИМАЯ ВЕРСИЯ ОСНОВНОГО ПО (F0151)

При включенном преобразователе версия главного программного обеспечения, хранящаяся в энергонезависимой памяти (EEPROM), сравнивается с версией, хранящейся во FLASH-памяти дополнительного микропроцессорного управляющего устройства (подключаемый модуль). Данное сравнение осуществляется для проверки целостности и совместимости хранящихся данных. Хранение данных необходимо для обеспечения возможности копирования конфигурации параметров (стандартная пользовательская) между преобразователями с помощью CFW500-MMF и при выключенном преобразователе. Если версии несовместимы, происходит отказ F0151.

Дополнительную информацию по возможным причинам возникновения отказа F0151 см. в руководстве по дополнительным устройствам CFW500-MMF.

18.14 ВНУТРЕННЯЯ ЗАЩИТА ОТ ПЕРЕГРЕВА (А0152 И F0153)

Внутренняя температура контролируется и указывается в параметре Р0034 в градусах Цельсия. Это значение постоянно сравнивается со значением неисправности перегрева и срабатывания сигнализации внутренней температуры А0152 и F0153. Уровень срабатывания для сигнала тревоги А0152 составляет 80 °C, а уровень срабатывания для неисправности F0153 составляет 85 °C.

18.15 ОШИБКА СКОРОСТИ ВЕНТИЛЯТОРА (F0179)

Эта неисправность возникает, когда скорость внутреннего вентилятора в моделях IP66 падает ниже 2/3 от номинальной скорости. Пользователь должен проверить, правильно ли подключен вентилятор и не загрязнен ли он. При возникновении отказа обратитесь в компанию WEG.

18.16 ОТКАЗ В ОБРАТНОЙ СВЯЗИ ИМПУЛЬСОВ (F0182)

Если в параметре Р0397 включена компенсация времени простоя (см. Глава 8 ДОСТУПНЫЕ ТИПЫ БЛОКОВ УПРАВЛЕНИЯ ДВИГАТЕЛЕМ на странице 8-1) а в цепи обратной связи импульсов присутствуют неполадки, отображается отказ F0182.

ПРИМЕЧАНИЕ!

При возникновении отказа обратитесь в компанию WEG.

18.17 ЖУРНАЛ ОТКАЗОВ

Преобразователь имеет возможность хранения данных о трех последних отказах, таких как номер отказа, ток (P0003), напряжение промежуточного звена постоянного тока (P0004), выходная частота (P0005), температура модуля питания (P0030) и состояние логики управления (P0680).

Р0048 - Текущий сигнал тревоги

Р0049 - Текущий отказ

 Регулируемый
 От 0 до 999
 Заводские настройки:

 Свойства:
 ro

 Группы доступа через ЧМИ:
 READ

Описание:

Указывает номер сигнала тревоги (Р0048) или отказа (Р0049), которые могут быть в преобразователе.

Р0050 - Последний отказ

Р0060 - Второй отказ

Р0070 - Третий отказ

 Регулируемый диапазон:
 От 0 до 999
 Заводские настройки:

 Свойства:
 го

 Группы доступа
 READ

труппы досту через ЧМИ:

Описание:

Указывают номер случившегося отказа.

Р0051 – Последний отказ выходного тока

Р0061 - Второй отказ выходного тока

Р0071 - Третий отказ выходного тока

Регулируемый диапазон:	От 0,0 до 400,0 А	Заводские настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Указывают выходной ток в момент случившегося отказа.

Р0052 – Последний отказ в промежуточном звене постоянного тока

Р0062 – Второй отказ в промежуточном звене постоянного тока

18

Р0072 – Третий отказ в промежуточном звене постоянного тока

Регулируемый диапазон:	От 0 до 2000 В	Заводские настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Указывают напряжение промежуточного звена постоянного тока в момент случившегося отказа.

Р0053 - Выходная частота при последнем отказе

Р0063 - Выходная частота при втором отказе

Р0073 - Выходная частота при третьем отказе

Регулируемый диапазон:	От 0,0 до 500,0 Гц	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывают выходную частоту на момент случившегося отказа.

Р0054 - Температура при последнем отказе БТИЗ

Р0064 – Температура при втором отказе БТИЗ

Р0074 – Температура при третьем отказе БТИЗ

Регулируемый диапазон:	От -20 до 150 °C	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Данные параметры указывают температуру БТИЗ на момент случившегося отказа.

Р0055 - Логический статус при последнем отказе

Р0065 – Логический статус при втором отказе

Р0075 - Логический статус при третьем отказе

Регулируемый диапазон:	От 0000h до FFFFh	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Записывает логический статус преобразователя Р0680 на момент случившегося отказа. См. Раздел 7.3 УПРАВЛЯЮЩЕЕ СЛОВО И СОСТОЯНИЕ ПРЕОБРАЗОВАТЕЛЯ на странице 7-15.

18.18 АВТОМАТИЧЕСКИЙ СБРОС ОТКАЗОВ

Данная функция позволяет преобразователю выполнять автоматический сброс отказов с помощью параметра Р0340.

ПРИМЕЧАНИЕ!

Автоматический сбор блокируется, если тот же отказ происходит три раза подряд в течение 30 секунд после сброса.

Р0080 - Последняя неисправность в «Режиме сжигания»

Р0081 - Вторая неисправность в «Режиме сжигания»

Р0082 – Третья неисправность в «Режиме сжигания»

Регулируемый диапазон:	От 0 до 9999	Заводские настройки:	0
Свойства:	ro		
Группы доступа через ЧМИ:	READ		

Описание:

Эти параметры указывают на три последние неисправности, произошедшие в преобразователе, пока был активен «Режим сжигания».

Р0083 – Ток F0070

P0084 – 2^{-й} Ток F0070

P0085 – 3^{-й} Ток F0070

Р0086 – Ток F0073

Р0087 – 2^{-й} Ток F0073

P0088 – 3^{-й} Ток F0073

Регулируемый диапазон:	От 0,0 до 6553,5 А	Заводские настройки:
Свойства:	ro, VVW HSRM	
Группы доступа	READ	
через ЧМИ:		

Описание:

Параметры для внутреннего использования. При необходимости обратитесь в компанию WEG.

Р0340 – Время автоматического сброса

Регулируемый	От 0 до 255 с	Заводские	0 c
диапазон:		настройки:	
Свойства:			
Группы доступа через ЧМИ:			

Описание:

Определяет интервал после неисправности, через который активируется автоматический сброс преобразователя. Если значение P0340 равно нулю, функция автоматического сброса неисправности отключена.

ПРИМЕЧАНИЕ!

Функция автоматического сброса будет заблокирована, если один и тот же номер неисправности повторяется три раза подряд с интервалом в 30 секунд.

18

19 ПАРАМЕТРЫ СЧИТЫВАНИЯ

Чтобы упростить наглядное представление основных переменных показаний преобразователя, можно обеспечить прямой доступ к READ – меню «Параметры только для чтения» ЧМИ CFW500.

Необходимо отметить, что все параметры этой группы могут только отображаться на дисплее (ЧМИ) и не могут быть изменены пользователем.

Р0001 - Уставка частоты вращения

Регулируемый диапазон:	От 0 до 65535	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	
через чил.		

Описание:

Данный параметр представляет собой, независимо от источника происхождения, значение уставки скорости в единицах измерения и диапазоне, определенных для уставки параметрами P0208, P0209 и P0213. Полный диапазон и единица измерения уставки по умолчанию составляют 66,0 Гц для P0204 = 5 и 55,0 Гц для P0204 = 6.

Р0002 – Выходная скорость (двигатель)

Регулируемый диапазон:	От 0 до 65535	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Параметр P0002 указывает скорость, установленную на выходе преобразователя в том же диапазоне, заданном для P0001. В данном параметре не отображаются компенсации, сделанные для вы-ходной частоты. Для считывания компенсированного выхода используйте P0005.

Р0003 – Ток двигателя

Регулируемый диапазон:	От 0,0 до 400,0 А	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Показывает выходной ток преобразователя в амперах (среднеквадратичное значение).

P0004 - Напряжение промежуточного звена пост. тока (Ud)

Регулируемый	От 0 до 2000 В	Заводские
диапазон:		настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	
lopoo iiiiiiii		

Описание:

Показывает напряжение на звене постоянного тока в вольтах (В).

Р0005 - Выходная частота (двигатель)

Регулируемый диапазон:	От 0,0 до 500,0 Гц	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Действительная частота, мгновенно применяемая к двигателю, в герцах (Гц).

Р0006 - Состояние преобразователя

Регулируемый диапазон:	Согласно Таблица 19.1 на странице 19-3	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Показывает одно из восьми возможных состояний преобразователя. В Таблица 19.1 на странице 19-3, представлено описание каждого состояния, а также индикация на ЧМИ.

19

Таблица 19.1: Состояние преобразователя – P0006

P0006	Состояние	чми	Описание
0	Готов к работе	O.00 100	Преобразователь готов к включению
1	Пуск	100 3.0 Hz 3.0 Hz	Преобразователь включен
2	Недостаточное напряжение	SUB 3.0 Hz	Напряжение в преобразователе слишком низкое для работы (пониженное напряжение), и команда включения не принимается
3	Неисправность	F002 I	Указывает на то, что преобразователь находится в состоянии отказа
4	Самонастройка	LOC CONF PO408 RUN PO408 STARTUP 50 100	Преобразователь выполняет процедуру самонастройки
5	Конфигурация	100 CONF 100 Hz	Указывает, что программирование параметров преобразователя несовместимо. См. Раздел 5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ на странице 5-12
6	Торможение постоянным током	COC 3.0 Hz	Показывает, что преобразователь использует торможение постоянным током для остановки двигателя
7	STO	RUN 160	Указывает пользователю, что модуль функций безопасности активировал безопасное состояние преобразователя (A0160)
8	Режим сжигания	RUN 3.0 RUN 3.0	Преобразователь находится в режиме сжигания (A0211)
9	Резервный		
10	Режим ожидания	COC - RUN 3.0 Hz	Указывает на то, что преобразователь находится в режиме ожидания согласно Р0217, Р0218 и Р0535

Р0007 - Выходное напряжение

Регулируемый	От 0 до 2000 В	Заводские
диапазон:		настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Указывает напряжение линии на выходе преобразователя в вольтах (В).

Р0009 - Крутящий момент двигателя

Регулируемый диапазон:	От -1000,0 до 1000,0 %	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывает крутящий момент, создаваемый двигателем, по отношению к номинальному крутящему моменту.

Для векторного управления (Р0202 = 3 или Р0202 = 4) приблизительный расчет крутящего момента можно получить по формуле:

Крутящий момент электродвигателя (Р0009) в процентах в рабочем состоянии в постоянном режиме определяется по формуле:

$$I_{\text{крутящего момента}} = \sqrt{P0003^2 - \left(P0410 \times \frac{P0178}{100}\right)^2}$$
 (ток крутящего момента в рабочем состоянии)
 $I_{\text{ном_крутящего момента}} = \sqrt{P0401^2 - \left(P0410 \times \frac{P0178}{100}\right)^2}$ (номинальный ток крутящего момента)
 $P0009 = T_{\text{двигателя}}(\%) = 100 \times \frac{I_{\text{крутящего момента}}}{I_{\text{ном_крутящего момента}}} \times k$

Где коэффициент к определяется:

■ Областью постоянного потока (постоянный момент и ниже или равный синхронной скорости):

k = 1

• Областью ослабления поля (область постоянной мощности, выше синхронной скорости):

$$k = \frac{N_{\text{CMHX}}}{P0002} \times \frac{P0190}{P0400}$$

где $N_{\mbox{\tiny sync}}$ – синхронная скорость двигателя, выраженная в об/мин.

Р0010 - Выходная мощность

	От 0,0 до 6553,5 кВт	Заводские
диапазон:		настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Обозначает электрическую мощность на выходе преобразователя. Эта мощность определяется по следующей формуле:

 $P0010 = 1,732 \times P0003 \times P0007 \times P0011.$

Где: 1,732 = $\sqrt{3}$.

Р0003 измеренное значение выходного тока.

Р0007 контрольное значение выходного напряжения (или подсчитанное).

Р0011 значение косинуса [(угол вектора контрольного выходного напряжения) – (угол вектора измеренного выходного тока)].

Р0011 - Коэффициент мощности

Регулируемый диапазон:	От -1,00 до 1,00	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывает коэффициент мощности, т. е. соотношение между реальной мощностью и общей мощностью, поглощаемой двигателем.

Р0012 - Состояние цифрового входа

См. Раздел 15.5 ЦИФРОВЫЕ ВХОДЫ на странице 15-14.

Р0013 - Состояние цифрового выхода

См. Раздел 15.6 ЦИФРОВЫЕ ВЫХОДЫ на странице 15-23.

Р0014 – Значения аналогового выхода АО1

Р0015 – Значения аналогового выхода АО2

См. Раздел 15.2 АНАЛОГОВЫЕ ВЫХОДЫ на странице 15-6.

Р0016 – Значение частотного выхода FO в %

Р0017 – Значение частотного выхода FO в Гц

См. Раздел 15.4 ЧАСТОТНЫЙ ВЫХОД на странице 15-11.

19

Р0018 - Значение аналогового входа Al1

Р0019 – Значение аналогового входа Al2

Р0020 – Значение аналогового входа Al3

См. Раздел 15.1 АНАЛОГОВЫЕ ВХОДЫ на странице 15-1.

Р0021 – Значение частотного входа FI в %

Р0022 - Значение частотного входа FI в Гц

См. Раздел 15.3 ЧАСТОТНЫЙ ВХОД на странице 15-9.

Р0023 – Версия основного программного обеспечения

Р0024 - Версия вторичного программного обеспечения

Р0027 - Настройка подключаемого модуля

Р0029 - Конфигурация силового оборудования

См. Раздел 6.1 ДАННЫЕ ПРЕОБРАЗОВАТЕЛЯ на странице 6-1.

Р0030 – Температура силового модуля

Регулируемый диапазон:	От -20 до 150 °C	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Температура в градусах Цельсия внутри силового модуля с помощью внутреннего NTC.

Р0034 – Внутренняя температура.

Регулируемый диапазон:	От -20 до 150 °C	Заводские настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Этот параметр показывает внутреннюю температуру в градусах Цельсия.

Полезно следить за температурой основных компонентов во избежание перегрева.

19

Р0036 - Внутр. Скорость вентилятора

Регулируемый диапазон:	От 0 до 15000 об/мин	Заводские настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Этот параметр позволяет контролировать скорость вращения внутреннего вентилятора в моделях IP66.

Р0037 - Перегрузка двигателя Ixt

См. Раздел 18.1 ЗАЩИТА ДВИГАТЕЛЯ ОТ ПЕРЕГРУЗОК (F0072 И A0046) на странице 18-1.

Р0038 - Скорость датчика положения

Регулируемый диапазон:	От 0 до 65535 об/мин	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывает фактическую скорость датчика положения, оборотов в минуту (об/мин) с применением фильтра в 0,5 секунд.

Р0039 - Число импульсов датчика положения

Регулируемый диапазон:	От 0 до 40000	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Данный параметр показывает число импульсов датчика положения. Данное число можно увеличивать с 0 до 40000 (оборот за час) или снижать с 40000 до 0 (вращение против часовой стрелки).

Р0040 - Переменная процесса ПИД

Р0041 - Значение уставки ПИД

См. Раздел 16.5 ПАРАМЕТР ПИД на странице 16-8.

Р0042 - Время включения

Регулируемый	От 0 до 65535 ч	Заводские
диапазон:		настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывает общее количество часов, в течение которых на преобразователь подается энергия.

Данное значение остается неизменным, когда энергия больше не подается на преобразователь.

Р0043 - Время включения

Регулируемый диапазон:	От 0,0 до 6553,5 ч	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Указывает общее количество часов, в течение которых преобразователь остается включенным.

Максимальное значение параметра составляет 6553,5 часов, затем происходит сброс на ноль.

При настройке Р0204 = 3 значение параметра Р0043 сбрасывается на ноль.

Данное значение остается неизменным, когда энергия больше не подается на преобразователь.

Р0044 - Энергия на выходе, кВтч

Регулируемый диапазон:	От 0 до 65535 кВт/ч	Заводские настройки:
Свойства:	ro	
Группы доступа	READ	
через ЧМИ:		

Описание:

Указывает энергию, потребляемую двигателем.

Максимальное значение параметра составляет 65535 кВт/ч, затем происходит сброс на ноль.

При настройке Р0204 = 4 значение параметра Р0044 сбрасывается на ноль.

Данное значение остается неизменным, когда энергия больше не подается на преобразователь.

ПРИМЕЧАНИЕ!

Значение, указанное в данном параметре, рассчитывается опосредованно и не может использоваться для измерения потребления энергии.

19

Р0047 - Состояние КОНФИГУРАЦИИ

Регулируемый диапазон:	От 0 до 999	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Данный параметр отображает исходную ситуацию режима КОНФИГУРАЦИИ. См. Раздел 5.7 СИТУАЦИИ ДЛЯ СОСТОЯНИЯ НАСТРОЙКИ на странице 5-12.

Параметры считывания в диапазоне Р0048–Р0075 подробно описаны в Раздел 18.17 ЖУРНАЛ ОТКАЗОВ на странице 18-10.

Параметры считывания Р0295 и Р0296 подробно описаны в Раздел 6.1 ДАННЫЕ ПРЕОБРАЗОВАТЕЛЯ на странице 6-1.

Параметры считывания Р0680 и Р0690 подробно описаны в Раздел 7.3 УПРАВЛЯЮЩЕЕ СЛОВО И СОСТОЯНИЕ ПРЕОБРАЗОВАТЕЛЯ на странице 7-15.

20 СВЯЗЬ

Для обмена информацией через сеть обмена данными CFW500 имеет несколько стандартизированных протоколов обмена данными, таких как Modbus, BACnet, CANopen и DeviceNet.

Дополнительную информацию по настройке преобразователя для работы с данными протоколами см. в руководстве по обмену данными в необходимой сети для CFW500. Ниже представлены параметры, связанные с сетями передачи данных.

20.1 ПОСЛЕДОВАТЕЛЬНЫЙ USB, ИНТЕРФЕЙС RS-232 И RS-485

В зависимости от установленного подключаемого модуля CFW500 может иметь до двух одновременно работающих последовательных интерфейсов. Несмотря на это, только один из них может быть источником для команд или уставок. Второй интерфейс обязательно неактивен или дистанционно управляется ЧМИ согласно настройкам параметра P0312.

Один из этих интерфейсов, определяемый как «Последовательный (1)», является стандартным интерфейсом CFW500 и представлен в большинстве подключаемых модулей через контакты стандартного порта RS-485. С другой стороны, интерфейс «Последовательный (2)» присутствует только в подключаемых модулях CFW500-CUSB, CFW500-CRS232 и CFW500-CRS485, как показано на рисунках ниже:

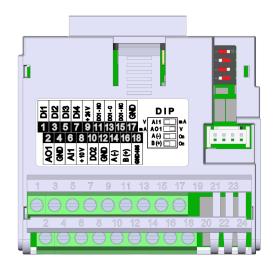


Рисунок 20.1: Подключаемый модуль CFW500-IOS

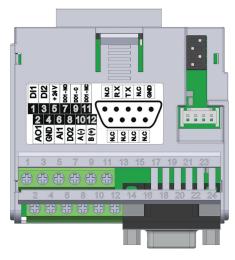
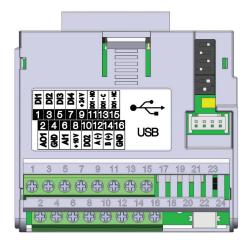
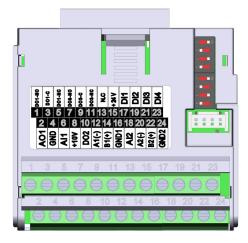




Рисунок 20.2: Подключаемый модуль CFW500-CRS232

Рисунок 20.3: Подключаемый модуль CFW500-CUSB

Рисунок 20.4: Подключаемый модуль CFW500-CRS485

ПРИМЕЧАНИЕ!

Подключаемый модуль CFW500-IOS имеет только интерфейс «Последовательный (1)», подключенный к порту RS-485 через контакты 14 (A-) и 16 (B+), см. Рисунок 20.1 на странице 20-1. См. также: GND485 на клемме 18 изолирован от GND на клеммах 17 и 4.

ПРИМЕЧАНИЕ!

Подключаемый модуль CFW500-CRS232 имеет интерфейс «Последовательный (1)», подключенный к порту RS-485 через контакты 10 (A-) и 12(B+), а также «Последовательный (2)», подключенный к порту RS-232 через стандартный разъем DB9, см. Рисунок 20.2 на странице 20-1.

ПРИМЕЧАНИЕ!

Подключаемый модуль CFW500-CUSB имеет интерфейс «Последовательный (1)», подключенный к порту RS-485 через контакты 12 (A-) и 14 (B+), а также «Последовательный (2)», подключенный к порту USB через стандартный разъем mini USB (мини B), см. Рисунок 20.3 на странице 20-1.

ПРИМЕЧАНИЕ!

Подключаемый модуль CFW500-CRS485 имеет интерфейс «Последовательный (1)», подключенный к порту RS-485 через контакты 12(A-) и 14 (B+), а также «Последовательный (2)», подключенный к другому порту RS-485 через контакты 20 (A2+) и 22 (B2+), см Рисунок 20.4 на странице 20-1. См. также: GND1 на клемме 16 и GND2 на клемме 24 изолированы друг от друга и от GND на клемме 4.

Параметры Р0308-Р0316 с Р0682 и Р0683 характеризуют последовательный интерфейс, активный для команд и/или уставки.

Р0308 – Адрес последовательного порта

 Регулируемый
 От 1 до 247
 Заводские 1 настройки:

Р0310 – Скорость передачи данных в бодах по последовательному интерфейсу

Регулируемый 0 = 9600 бит/c Заводские 1 диапазон: 1 = 19200 бит/c настройки: 2 = 38400 бит/c

Р0311 – Конфигурация байта по последовательному интерфейсу

 Регулируемый
 0 = 8 бит, нет, 1
 Заводские
 1

 диапазон:
 1 = 8 бит, чет., 1
 настройки:

2 = 8 бит, нечет., 1 3 = 8 бит, нет, 2 4 = 8 бит, чет.,2 5 = 8 бит, нечет., 2

Свойства:

20

Группы доступа NET через ЧМИ:

Описание:

Подробное описание см. в руководстве пользователя Modbus RTU, которое можно загрузить на вебсайте: **www.weg.net**.

Заводские

настройки:

Заводские

настройки:

Р0312 – Протокол последовательного интерфейса (1)(2)

Регулируемый диапазон:

0 = 4MM(1)1 = SymbiNet (1)

2 = Modbus RTU (1) 3 = BACnet(1)

4 = Зарезервировано 5 = Master RTU (1)

6 = YM M (1) + Modbus RTU (2)

7 = Modbus RTU (2)8 = 4MM (1) + BACnet (2)

9 = BACnet(2)

От 10 до 11 = Зарезервированные

12 = HMI (1) / RTU Master (2)

13 = RTU Master (2)

14 = ЧМИ (1) / SymbiNet (2)

15 = SymbiNet (2)

Свойства:

cfg **NET**

Группы доступа через ЧМИ:

Описание:

Р0312 определяет тип протокола для последовательных интерфейсов (1) и (2) частотного преобразователя. См. также Глава 20 СВЯЗЬ на странице 20-1. В зависимости от установленного подключаемого модуля, CFW500 может иметь до двух последовательных интерфейсов, но только один из них может быть доступен для команд или уставок. Второй интерфейс остается неактивным или в качестве интерфейса для CFW500-HMIR, в котором протокол предварительно определен без параметризации и предназначен для внутреннего использования только дистанционным ЧМИ преобразователя.

Р0313 – Действие при ошибке связи

Регулируемый диапазон:

0 = Выкл.

1 = Остановка рампой

2 = Общее отключение 3 = Переход в режим локального управления (LOC)

4 = Включить сохранение LOC 5 = Причина неисправности

Свойства:

Группы доступа NET

через ЧМИ:

Описание:

Позволяет выбрать, какое действие должно выполнить оборудование в случае, если оно управляется по сети и обнаружена ошибка связи.

Действия, описанные в этом параметре, выполняются путем автоматической записи соответствующих битов в параметр управления сетевым интерфейсом, соответствующий обнаруженной неисправности. Поэтому для того, чтобы команды вступили в силу, оборудование должно быть настроено на управление через используемый сетевой интерфейс (за исключением опции «Вызвать неисправность», которая блокирует оборудование, даже если оно не управляется через сеть). Эта настройка выполняется с помощью параметров Р0220-Р0228.

Таблица 20.1: Опции параметра Р0313

Показатель	Описание
0 = Выкл.	Действие не выполняется; оборудование остается в текущем состоянии
1 = Остановка рампой	Выполняется команда торможения до остановки, и двигатель останавливается в соответствии с заданным темпом замедления
2 = Выключ. Общая информация	Оборудование полностью отключено, а двигатель останавливается по инерции
3 = Переход в режим локального управления (LOC)	На оборудование выдается команда о переходе в режим локального управления
4 = Включить сохранение LOC	Оборудование переключается в локальный режим, но команды включения и опорная скорость, полученные по сети, сохраняются в локальном режиме, пока оборудование настроено на использование в локальном режиме команд через ЧМИ или 3-проводной пуск/останов, а также опорной скорости через ЧМИ или электронный потенциометр
5 = Причина неисправности	Вместо сигнала тревоги ошибка связи приводит к неисправности оборудования, и необходимо сбросить неисправности оборудования, чтобы вернуться к нормальной работе

Р0314 - Самоконтроль последовательного интерфейса

Р0316 – Состояние последовательного интерфейса

P0682 - Управляющее слово для последовательного интерфейса / USB

P0683 – Контрольное значение скорости для последовательного интерфейса / USB

Описание:

Эти параметры используются для настройки и работы последовательных интерфейсов RS-232 и RS-485. Подробное описание см. в руководстве пользователя Modbus RTU, которое можно загрузить на веб-сайте: **www.weg.net**.

20.2 BLUETOOTH

Параметры настройки работы и интерфейса Bluetooth приведены ниже. Для правильной настройки этого интерфейса необходимо установить параметры P0308=1, P0310=1, P0311=1 и P0312=2.

ПРИМЕЧАНИЕ!

Интерфейс Bluetooth можно использовать только с подключаемым последовательным интерфейсом 1. При подключенном модуле невозможно использовать подключаемый последовательный интерфейс 1 с другими протоколами связи, а удаленный HMI также нельзя использовать вместе с интерфейсом Bluetooth.

P0990 – Локальное имя Bluetooth

Регулируемый	От 0 до 999	Заводские	Серийный номер
диапазон:		настройки:	преобразователя
Свойства:			
Группы доступа	NET		
через ЧМИ:			

Описание:

Этот параметр назначает понятное имя устройству Bluetooth в сети. Имя представляет собой комбинацию названия продукта и четырех цифр Р0990, например: «CFW500_0001». Значением по умолчанию этого параметра являются последние четыре цифры серийного номера преобразователя.

P0991 - PIN проверки четности Bluetoot

Регулируемый диапазон:	От 0 до 999	Заводские настройки:	1234
Свойства:			
Группы доступа через ЧМИ:	NET		

Описание:

Этот параметр определяет PIN четности Bluetooth. Этот PIN ограничен четырьмя цифрами, доступными на дисплее преобразователя. Пользователю рекомендуется изменить этот PIN.

ПРИМЕЧАНИЕ!

При вводе ПИН в приложении перед значением параметра необходимо добавить значения «00», например: 001234.

20.3 ИНТЕРФЕЙС CAN – CANOPEN / DEVICENET

P0684 – Управляющее слово для интерфейса CANopen/DeviceNet

P0685 – Уставка скорости для интерфейса CANopen/DeviceNet

Р0700 - Протокол CAN

P0701 – Адрес CAN

Р0702 - Скорость передачи данных в бодах по CAN

Р0703 – Сброс выкл. шины

Р0705 - Состояние контроллера CAN

Р0706 - Счетчик полученных телеграмм CAN

Р0707 - Счетчик переданных телеграмм CAN

Р0708 – Счетчик ошибок выключения шины

Р0709 - Счетчик потерянных сообщений CAN

P0710 - Варианты входов/выходов DeviceNet

P0712 – Считывание DeviceNet #4

P0713 - Считывание DeviceNet #5

Р0714 - Считывание DeviceNet #6

P0715 - Считывание DeviceNet #3

P0716 - Считывание DeviceNet #4

P0717 – Считывание DeviceNet #5

Р0718 - Считывание DeviceNet #6

P0719 - Состояние сети DeviceNet

P0720 – Основное состояние DeviceNet

Р0721 - Состояние обмена данными CANopen

Р0722 - Состояние узла сети СА Nopen

Описание:

Параметры используются для настройки и работы интерфейса CAN. Подробное описание см. в руководстве по связи CANopen или в руководстве пользователя по связи DeviceNet, которое можно загрузить на веб-сайте: **www.weg.net**.

20.4 ИНТЕРФЕЙС PROFIBUS DP

P0740 – Связь Profibus Состояние

P0741 - Профиль данных Profibus

P0742 – Считывание Profibus #3

P0743 - Считывание Profibus #4

P0744 - Считывание Profibus #5

P0745 – Считывание Profibus #6

P0746 – Считывание Profibus #7

P0747 - Считывание Profibus #8

P0750 - Запись Profibus #3

P0751 – Запись Profibus #4

P0752 – Запись Profibus #5

P0753 - Запись Profibus #6

P0754 – Запись Profibus #7

P0755 – Запись Profibus #8

P0918 - Aдрес Profibus

P0922 - Телегр. Profibus Выб.

Р0963 - Скорость передачи данных в бодах по Profibus

Р0967 - Управляющее слово 1

Р0968 – Слово состояния 1

Описание:

Параметры используются для настройки и работы интерфейса Profibus DP. Подробное описание см. в руководстве пользователя по связи Profibus, которое можно загрузить на веб-сайте: **www.weg.net**.

20.5 СВЯЗЬ ВАСИЕТ

Р0760 – Экземпляр оборудования BACNET – верхняя часть

Р0761 - Экземпляр оборудования ВАСNET - нижняя часть

Р0762 - Максимальный мастер-номер

Р0763 - Максимальный номер кадра MS/TP

Р0764 – Передача І-АМ

Р0765 – Количество полученных токенов

Параметры для конфигурации и работы связи BACnet. Подробное описание см. в руководстве пользователя BACnet, которое можно загрузить на веб-сайте: **www.weg.net**.

20.6 КОММУНИКАЦИЯ СИМБИНЕТ

Р0766 – Количество регистров для отправки

Р0767 – Статус групп

Р0768 - Группа1: Адрес источника

Р0769 – Группа1: Регистр источника

Р0770 – Группа1: Регистр назначения

Р0771 – Группа1: Группа

Р0772 - Группа2: Адрес источника

Р0773 – Группа2: Регистр источника

Р0774 – Группа2: Регистр назначения

Р0775 – Группа2: Группа

Р0776 – Группа3: Адрес источника

Р0777 - Группа3: Регистр источника

Р0778 - Группа3: Регистр назначения

Р0779 – Группа3: Группа

Р0780 - Группа4: Адрес источника

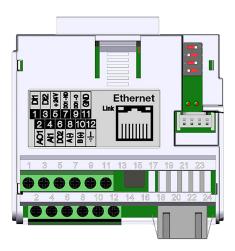
Р0781 – Группа4: Регистр источника

Р0782 - Группа4: Регистр назначения

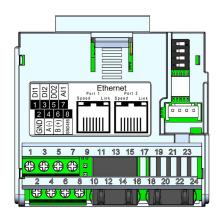
Р0783 – Группа4: Группа

Р0796 - Верхний разрешенный адрес

Р0797 - Количество полученных токенов


Р0798 - Следующий обнаруженный адрес

Эти параметры предназначены для настройки и работы связи SymbiNet и используются исключительно для приложения WEG Pump Genius. Подробное описание см. в «Руководстве по применению Pump Genius», которое можно загрузить на веб-сайте: **www.weg.net**.


20.7 ИНТЕРФЕЙС ETHERNET

В зависимости от установленного подключаемого модуля CFW500 имеет до двух одновременных интерфейсов Ethernet. Для однопортовых аксессуаров поддерживаются следующие протоколы: Modbus TCP (CFW500-CEMB-TCP), EtherNet/IP (CFW500-CETH-IP) или PROFINET IO (CFW500-CEPN-IO), как показано на Рисунок 20.5 на странице 20-9. Для 2-портового вспомогательного устройства (CFW500-CETH2) поддерживаются следующие протоколы: Modbus TCP и/или EtherNet/IP, как показано на Рисунок 20.6 на странице 20-9. Что касается поддерживаемых топологий, то в однопортовых вспомогательных устройствах это звезда и в двухпортовых вспомогательных устройствах — звезда, шлейфовое соединение или кольцо.

Рисунок 20.5: Подключаемый модуль CFW500-CEMB-TCP / CFW500-CETH-IP / CFW500-CEPN-IO

Рисунок 20.6: Подключаемый модуль CFW500-CETH2

ПРИМЕЧАНИЕ!

Вспомогательное устройство CFW500-CETH2 совместимо только с версиями CFW500, начиная с 3.9X.

ПРИМЕЧАНИЕ!

Опция DCP (P0810 = 2) не используется во вспомогательном устройстве CFW500-CETH2.

Следующие параметры поддерживаются только для однопортового Ethernet вспомогательного устройства.

P0800 - Eth: Идентификация модуля

P0801 - Eth: Состояние связи

P0803 - Eth: Скорость передачи данных

Р0805 - Eth: Профиль данных

P0849 - Eth: Обновить настройки

Описание:

Подробное описание см. в руководстве пользователя Ethernet CFW500 (10003256298), которое можно загрузить на сайте: **www.weg.net.**

Следующие параметры поддерживаются как для однопортовых, так и для двухпортовых Ethernet вспомогательных устройств.

P0806 – Eth: Истечение времени ожидания соединения по Modbus TCP

Р0810 - Eth: Конфиг IP-адреса

P0811 – Eth: IP-адрес 1

P0812 – Eth: IP-адрес 2

P0813 - Eth: IP-адрес 3

P0814 - Eth: IP-адрес 4

P0815 - Eth: Подсеть CIDR

P0816 - Eth: Шлюз 1

P0817 - Eth: Шлюз 2

P0818 - Eth: Шлюз 3

P0819 – Eth: Шлюз 4

P0820 - Eth: Слово считывания #3

P0821 - Eth: Слово считывания #4

P0822 - Eth: Слово считывания #5

P0823 - Eth: Слово считывания #6

P0824 – Eth: Слово считывания #7

P0825 - Eth: Слово считывания #8

P0826 - Eth: Слово считывания #9

P0827 – Eth: Слово считывания #10

P0828 - Eth: Слово считывания #11

P0829 - Eth: Слово считывания #12

P0830 - Eth: Слово считывания #13

P0831 – Eth: Слово считывания #14

P0835 - Eth: Слово записи #3

P0836 - Eth: Слово записи #4

P0837 – Eth: Слово записи #5

P0838 - Eth: Слово записи #6

P0839 – Eth: Слово записи #7

P0840 – Eth: Слово записи #8

P0841 – Eth: Слово записи #9

P0842 – Eth: Слово записи #10

P0843 – Eth: Слово записи #11

P0844 – Eth: Слово записи #12

P0845 – Eth: Слово записи #13

P0846 - Eth: Слово записи #14

Описание:

Подробное описание см. в руководстве пользователя Ethernet CFW500 (10003256298) или Ethernet CFW500/MW500 G2 (10011171848), которое можно загрузить на сайте: **www.weg.net**.

Следующие параметры поддерживаются только для 2-портового Ethernet вспомогательного устройства.

P0856 - Eth: Ток IP Конечный 1

P0857 – Eth: Ток IP Конечный 2

P0858 - Eth: Ток IP Конечный 3

P0859 – Eth: Ток IP Конечный 4

Р0860 - МВТСР: Состояние связи

Р0863 - МВТСР: Активные соединения

P0865 – MBTCP: TCP-порт

Р0869 - EIP: Состояние ведущего устройства

Р0870 - EIP: Состояние связи

Р0871 - EIP: Профиль данных

Р0886 - EIP: Топология DLR

P0887 - EIP: Состояние DLR

Р0889 - EIP: Состояние интерфейса

Р0890 - EIP: Управление интерфейсом

Описание:

Подробное описание см. в руководстве пользователя CFW500/MW500 G2 Ethernet (10011171848), которое можно загрузить на сайте: **www.weg.net**.

20.8 КОМАНДЫ И СОСТОЯНИЕ ОБМЕНА ДАННЫМИ

Р0721 - Состояние обмена данными СА Nopen

Р0722 - Состояние узла сети CANopen

Р0681 – Скорость при 13 битах

Р0695 – Значение **D**Ox

Р0696 - Значение АОх 1

Р0697 - Значение АОх 2

Р0698 - Значение АОх 3

Описание:

Данные параметры используются для контроля и управления преобразователем CFW500 с помощью интерфейсов связи. Подробное описание см. в руководстве по связи (Пользователя) в соответствии с используемым интерфейсом, которое можно загрузить на веб-сайте: **www.weg.net**.

Заводские 0

настройки:

Заводские

настройки:

0

21 SOFTPLC

Функция SoftPLC позволяет преобразователю использовать ПЛК (программируемый логический контроллер). Более подробная информация о программировании данных функций в CFW500 содержится в руководстве SoftPLC для CFW500. Ниже описаны параметры, относящиеся к SoftPLC.

ПРИМЕЧАНИЕ!

Начиная с версии V3.50, SoftPLC хранится во внутренней памяти преобразователя, поэтому подключаемый модуль можно менять, сохраняя прикладную программу в преобразователе.

P1000 - Состояние SoftPLC

Регулируемый диапазон:

 $0 = \text{Heт} \, \text{прилож}.$

1 = Установка прилож.

2 = Несовместим. Прилож.3 = Прилож. Остановлено

4 = Прилож. Работает

Свойства:

ro

Группы доступа через ЧМИ:

SPLC

Описание:

Позволяет пользователю просмотреть состояние SoftPLC. Если приложения не установлены, параметры P1001–P1059 не будут отображены в ЧМИ.

Если этот параметр представляет опцию 2 = Несовместим. Прилож., это означает, что программа пользователя, загруженная в SoftPLC, несовместима с версией прошивки CFW500.

В данном случае необходимо, чтобы пользователь перекомпилировал проект в WPS/WLP с учетом новой версии CFW500 и произвел повторную загрузку. Если это невозможно, загрузка приложения может быть осуществлена с помощью WPS/WLP при условии, что пароль приложения известен или отсутствует.

Р1001 - Команда для SoftPLC

Регулируемый диапазон:

0 = Остановка программы

1 = Запуск программы

2 = Остановка программы 3 = Остановка программы

4 = Остановка программы

5 = Удаление программы

Свойства:

cfg

Группы доступа через ЧМИ:

SPLC

Описание:

Данный параметр позволяет останавливать, запускать или удалять установленное приложение, но для этого двигатель должен быть выключен.

ПРИМЕЧАНИЕ!

Если приложение будет удалено (Р1001 = 5) при использовании бессенсорного режима или векторного режима с датчиком, привод выполнит принудительный перезапуск.

ПРИМЕЧАНИЕ!

Если приложение удалено (Р1001 = 5), оно также будет немедленно удалено из вспомогательного устройства. Поэтому восстановить его через опцию Р0318 = 1 невозможно.

Р1002 - Время цикла сканирования

Регулируемый	От 0 до 65535 мс	Заводские
диапазон:		настройки:
Свойства:	ro	
1.2	SPLC	
через ЧМИ:		

Описание:

Данный параметр устанавливает время сканирования приложения. Чем больше приложение, тем больше время сканирования.

Р1004 - Действие для приложения SoftPLC не запускается

Регулируемый диапазон:	0 = Не активно 1 = Генерировать сигнал трево 2 = Генерировать ошибку	рги	Заводские настройки:	0
Свойства:				
Группы доступа через ЧМИ:	SPLC			

Описание:

Этот параметр определяет, какое действие будет выполнено изделием, если выявлено нерабочее состояние SoftPLC, и может формировать аварийный сигнал A0708 (1), отказ F0709 (2) или ни одно из предыдущих действий и остается при этом неактивным (0).

Р1008 - Ошибка задержки

Регулируемый диапазон:	От -9999 до 9999	Заводские настройки:
Свойства:	ro, Enc	
Группы доступа через ЧМИ:	SPLC	

Описание:

Этот параметр определяет разницу в импульсах датчика между референтным положением и эффективным положением.

Р1009 - Усиление позиции

Регулируемый диапазон:	От 0 до 9999	Заводские настройки:	10,0
Свойства:	Enc		
Группы доступа через ЧМИ:	SPLC		

Описание:

Коэффициент усиления регулятора положения функции SoftPLC преобразователя частоты CFW500.

ПРИМЕЧАНИЕ!

Он срабатывает только тогда, когда активен блок «Стоп» функции SoftPLC преобразователя частоты CFW500.

Р1010-Р1059 - Параметры SoftPLC

	От -32768 до 32767	Заводские	0
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Параметры, использование которых определяется функцией SoftPLC.

ПРИМЕЧАНИЕ!

Параметры Р1010-Р1019 могут быть просмотрены в режиме мониторинга (см. Раздел 5.5 НАСТРОЙКА ИНДИКАЦИИ ДИСПЛЕЯ В РЕЖИМЕ МОНИТОРИНГА на странице 5-11).

ПРИМЕЧАНИЕ!

Дополнительную информацию по использованию функции SoftPLC см. в руководстве по CFW500 SoftPLC.

21.1 РЕЗИДЕНТНОЕ ПРИЛОЖЕНИЕ - РЕЗПРИЛОЖ

Резидентное приложение (РезПрилож) – это новая функция CFW500, начиная с версии V3.50. Это прикладная программа для SoftPLC, она находится в ПЗУ основной прошивки. Таким образом, пользователь может загрузить и выполнить его вместо приложения пользовательской программы.

Параметр P1003 включает РезПрилож, когда он установлен, резидентное приложение загружается из внутреннего ПЗУ в исполняемую память SoftPLC. Все параметры управления SoftPLC будут работать так же, как пользовательская прикладная программа SoftPLC.

Р1003 - Аппликативный выбор SoftPLC

Регулируемый диапазон:	0 = Пользователь 1 = РезПрилож	Заводские настройки:	0
Свойства:	cfg		
Группы доступа через ЧМИ:	SPLC		

Описание:

Это позволяет пользователю выбрать резидентное приложение РезПрилож преобразователя.

Таблица 21.1: Описание опций параметра Р1003

P1003	Описание
0	Определяет, что приложение, которое должно выполняться на SoftPLC, загружено пользователем с помощью инструмента программирования «WPS/WLP» или модуля флэш-памяти «CFW500-MMF»
1	Определяет, что приложением, которое будет выполняться на SoftPLC, является РезПрилож

Р1010 - Версия РезПрилож

Регулируемый диапазон:	От 0,00 до 9,99	Заводские настройки:	
Свойства:	HMI ro		
Группы доступа через ЧМИ:	SPLC		

Описание:

Он указывает версию резидентного приложения (РезПрилож) в преобразователе.

Встроенное РезПрилож CFW500 имеет следующие функции:

- Безмасляный насос.
- Оборванный ремень.
- Сигнал тревоги обслуживания фильтра.
- Внутренний ПИД-контроллер.
- Режим ожидания внутреннего ПИД.
- Внешний ПИД-контроллер.

21.1.1 Безмасляный насос

Эта группа параметров позволяет пользователю настроить обнаружение работы безмасляного насоса.

Обнаружение безмасляного насоса предназначено для того, чтобы насос, приводимый в действие преобразователем частоты, не работал в вакууме, т. е. без перекачивания жидкости. Это осуществляется путем определения рабочей скорости в сочетании с крутящим моментом двигателя.

Р1033 - Конфигурация обнаружения безмасляного насоса

Регулируемый диапазон:	0 = Выкл. 1 = Включить сигнал тревоги 2 = Включить отказ	Заводские настройки:	
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет, как функция обнаружения безмасляного насоса будет действовать в преобразователе частоты.

Таблица 21.2: Описание конфигурации обнаружения безмасляного насоса

radina z nizi dimaanina kanqiin yaaqiin danapyikanini dadaa ili kadada		
P1033	Описание	
0	Определяет, что не будет выполняться обнаружение безмасляного насоса	
1	Определяет, что обнаружение безмасляного насоса будет включено, и будет генерироваться только аварийное сообщение «А0766: Обнаружен безмасляный насос», т. е. преобразователь частоты продолжит управлять двигателем	
2	Определяет, что обнаружение безмасляного насоса будет включено, и генерирует аварийное сообщение «А0766: Обнаружен безмасляный насос» при торможении двигателя и неисправность «F0767: Обнаружен безмасляный насос» в преобразователе частоты после остановки двигателя	

Р1034 - Скорость обнаружения безмасляного насоса

Регулируемый диапазон:	От 0 до 18000	Заводские настройки:	400
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет скорость, выше которой можно будет сравнить фактический крутящий момент двигателя с крутящим моментом двигателя для обнаружения безмасляного насоса, установленного в P1035.

ПРИМЕЧАНИЕ!

Этот параметр может отображаться в Гц или об/мин в зависимости от выбора в параметрах косвенной технической единицы 4 (Р0516 и Р0517):

- Установите Р0516 на 13 (Гц) и Р0517 на 1 (wxy.z) для отображения в Гц.
- Установите Р0516 на 3 (об/мин) и Р0517 на 0 (wxyz) для отображения в об/мин.

Р1035 – Крутящий момент для обнаружения безмасляного насоса

Регулируемый диапазон:	От 0,0 до 350,0 %	Заводские настройки:	20,0 %
Свойства:			
Группы доступа через ЧМИ:	SPLC		
через чил.			

Описание:

Этот параметр определяет крутящий момент двигателя, ниже которого будет определяться состояние безмасляного насоса.

Р1036 – Время обнаружения безмасляного насоса

Регулируемый диапазон:	От 0,00 до 650,00 с	Заводские настройки:	20,00 c
Свойства:			
Группы доступа через ЧМИ:	SPLC		
через чий.			

Описание:

Этот параметр определяет временной интервал, необходимый при активном состоянии безмасляного насоса для подачи сигнала тревоги (А0766) или неисправности (F0767) сухим насосом.

21.1.2 Оборванный ремень

Эта группа параметров позволяет пользователю настроить обнаружение обрыва ремня.

Обнаружение обрыва ремня предназначено для того, чтобы двигатель, приводимый в действие частотным преобразователем, не работал вхолостую, т. е. в случае возникновения механической проблемы между двигателем и нагрузкой продолжал работать. Это осуществляется путем определения рабочей скорости в сочетании с крутящим моментом двигателя.

Р1037 - Конфигурация обнаружения обрыва ремня

Регулируемый диапазон:	0 = Выкл. 1 = Включить сигнал тревоги 2 = Включить отказ	Заводские 0 настройки:
Свойства:		
Группы доступа через ЧМИ:	SPLC	

Описание:

Этот параметр определяет, как функция обнаружения безмасляного насоса будет действовать в преобразователе частоты.

Таблица 21.3: Описание конфигурации обнаружения безмасляного насоса

P1037	Описание
0	Определяет, что не будет выполняться обнаружение безмасляного насоса
1	Определяет, что обнаружение безмасляного насоса будет включено, и будет генерироваться только аварийное сообщение «А0766: Обнаружен безмасляный насос», т. е. преобразователь частоты продолжит управлять двигателем
2	Определяет, что обнаружение безмасляного насоса будет включено, и генерирует аварийное сообщение «А0766: Обнаружен безмасляный насос» при торможении двигателя и неисправность «F0767: Обнаружен безмасляный насос» в преобразователе частоты после остановки двигателя

Р1038 - Скорость обнаружения обрыва ремня

Регулируемый диапазон:	От 0 до 18000	Заводские настройки:	400
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет скорость, выше которой можно будет сравнить фактический крутящий момент двигателя с крутящим моментом двигателя для обнаружения обрыва ремня, установленным в P1039.

ПРИМЕЧАНИЕ!

Этот параметр может отображаться в Гц или об/мин в зависимости от выбора в параметрах косвенной технической единицы 4 (Р0516 и Р0517):

- Установите Р0516 на 13 (Гц) и Р0517 на 1 (wxy.z) для отображения в Гц.
- Установите Р0516 на 3 (об/мин) и Р0517 на 0 (wxyz) для отображения в об/мин.

Р1039 - Крутящий момент двигателя обнаружения обрыва ремня

Регулируемый диапазон:	От 0,0 до 350,0 %	Заводские настройки:	20,0 %
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет значение крутящего момента двигателя, ниже которого будет обнаружено состояние обрыва ремня.

Р1040 - Время обнаружения обрыва ремня

Регулируемый диапазон:	От 0,00 до 650,00 с	Заводские настройки:	20,00 c
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет временной интервал, необходимый при активном состоянии обрыва ремня, чтобы сгенерировать сигнал тревоги (А0768) или неисправность (F0769) из-за обрыва ремня.

21.1.3 Сигнализация о необходимости технического обслуживания фильтра

Эта группа параметров позволяет пользователю настроить работу сигнализации о необходимости технического обслуживания фильтра.

Сигнализация о необходимости замены фильтра предназначена для оповещения пользователя о необходимости замены фильтрующей системы. Он имеет функцию профилактического обслуживания в системе фильтрации.

Р1041 - Конфигурация сигнализации о необходимости технического обслуживания фильтра

Регулируемый диапазон:	0 = Выкл. 1 = Включить сигнал тревоги 2 = Включить отказ	Заводские настройки:	
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет, как функция сигнализации о необходимости технического обслуживания фильтра будет действовать в преобразователе частоты.

Таблица 21.4: Описание конфигурации сигнализации о необходимости технического обслуживания фильтра

P1041	Описание
0	Определяет, что не будет производиться подсчет времени работы по замене фильтрующей системы. Также сбрасывает время работы для сигнала о необходимости технического обслуживания фильтра в параметре P1043

1	Определяет, что отсчет времени работы фильтра будет включен, и будет генерироваться только аварийное сообщение «А0770: Обслуживание фильтра», т. е. преобразователь частоты продолжит управлять двигателем
2	Определяет, что отсчет времени работы фильтра будет включен, и будет генерироваться аварийное сообщение «А0770: Обслуживание фильтра» при торможении двигателя и неисправности «F0771: Обслуживание фильтра» в преобразователе частоты после остановки двигателя

P1042 – Время сигнализации о необходимости технического обслуживания фильтра

Регулируемый диапазон:	От 0 до 32000 ч	Заводские настройки:	5000 ч
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время работы двигателя, приводимого в действие преобразователем частоты, необходимое для замены системы фильтров. Это значение сравнивается со временем работы (Р1043), в результате чего генерируется сигнал тревоги (А0770) или неисправность (F0771) из-за обслуживания фильтра.

Р1043 – Время срабатывания сигнализации о необходимости обслуживания фильтра

Регулируемый диапазон:	От 0 до 32000 ч	Заводские настройки:	400
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр указывает время работы двигателя, приводимого в действие преобразователем частоты.

ПРИМЕЧАНИЕ!

■ Установите Р1041 на «0», чтобы сбросить время срабатывания сигнализации обслуживания фильтра.

21.1.4 Внутренний ПИД-контроллер – ПИДВнутр

Эта группа параметров позволяет пользователю настроить работу внутреннего ПИД-контроллера, ПИДВнутр.

Внутренний ПИД-контроллер должен использоваться для управления скоростью двигателя, а внешний ПИД-контроллер должен использоваться для подачи внешнего сигнала через аналоговый выход.

Управление скоростью двигателя, приводимого в действие преобразователем частоты, осуществляется путем сравнения регулируемой переменной процесса (обратной связи) с требуемой автоматической уставкой.

Внутренний ПИД-контроллер будет отмечен для работы в диапазоне от 0.0 до 100.0 %, где 0.0 % соответствует минимальной скорости, запрограммированной в P0133, а 100.0 % соответствует максимальной скорости, запрограммированной в P0134.

Управление переменной процесса заключается в том, что внутренний ПИД-контроллер принимает в качестве результата (обратной связи) свое управляющее действие, сравниваемое с заданным значением, необходимым для генерации ошибки управления.

То же самое считывается через аналоговый вход, поэтому вам нужно будет настроить, какой из аналоговых входов будет служить обратной связью для внутреннего ПИД-контроллера.

Принята«Академическая» структура внутреннего ПИД-контроллера, которая подчиняется следующему уравнению:

 $u(k) = u(K-1) + Kp \cdot [(1 + Ki \cdot Ts + (Kd/Ts)) \cdot e(k) - (Kd/Ts)) \cdot e(k-1)]$

где:

u(k) = выход внутреннего ПИД-контроллера.

u(K-1) = выход в последний момент.

Кр = пропорциональное увеличение.

Кі = Интегральное увеличение.

Kd = Производное усиление.

Ts = Время выборки.

е(k) = ошибка в текущий момент (заданное значение - обратная связь).

e(k-1) = ошибка в последний момент.

Р1011 - Автоматическая уставка внутреннего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	0
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет уставку внутреннего ПИД-контроллера в технической единице, когда он находится в автоматическом режиме.

ПРИМЕЧАНИЕ!

Этот параметр отображается как выбранный в параметрах косвенной технической единицы 1 (Р0510 и Р0511).

Р1012 - Ручная настройка внутреннего ПИД-контроллера

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	0,0 %
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет уставку внутреннего ПИД-контроллера в ручном режиме.

Р1013 – Переменная процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:
Свойства:	HMI ro	
Группы доступа через ЧМИ:	SPLC	

Описание:

Этот параметр показывает фактическое значение переменной процесса внутреннего ПИД-контроллера в технических единицах.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 1 (Р0510 и Р0511).

Р1014 - Управление действиями внутреннего ПИД-контроллера

Регулируемый диапазон:	0 = Выкл. ПИД 1 = Прямой режим 2 = Обратный режим	Заводские (настройки:)
Свойства:	cfg		
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет способ управления или регулирования действия внутреннего ПИД-контроллера.

Таблица 21.5: Описание конфигурации сигнализации о необходимости технического обслуживания фильтра

P1014	Описание
0	Он определяет, что внутренний ПИД-контроллер будет отключен для работы
1	Он определяет, что управление или регулирование действия внутреннего ПИД-контроллера будет включено в прямом режиме
2	Он определяет, что управление или регулирование действия внутреннего ПИД-контроллера будет включено в прямом режиме

ПРИМЕЧАНИЕ!

В ситуациях, когда для увеличения значения переменной процесса необходимо увеличить выходной сигнал ПИД-контроллера, управляющее действие ПИД-контроллера должно быть установлено в прямой режим. Например: Насос с приводом от преобразователя и наполнение бака. Для повышения уровня резервуара (переменной процесса) необходимо увеличение расхода, что достигается за счет увеличения скорости вращения двигателя. В ситуациях, когда для увеличения значения переменной процесса необходимо уменьшить выходной сигнал ПИД-контроллера, управляющее действие ПИД-контроллера должно быть установлено в обратный режим. Например: Вентилятор, управляемый преобразователем, охлаждает градирню. При увеличении температуры (переменная процесса) нужно ограничить вентиляцию, что обеспечивается за счет снижения частоты вращения двигателя.

Р1015 – Режим работы внутреннего ПИД-контроллера

Регулируемый 0 = всегда автоматический Заводские 0 диапазон: 1 = всегда ручной настройки: 2 = автоматический или ручной выбор через Dlx и без безударного перехода 3 = автоматический или ручной выбор через Network и без безударного перехода 4 = автоматический или ручной выбор через Dlx и с безударным переходом 5 = автоматический или ручной выбор через Network и с безударным переходом Свойства:

Группы доступа SPLC через ЧМИ:

Описание:

Этот параметр определяет, как будет работать внутренний ПИД-контроллер.

Таблица 21.6: Описание режима работы внутреннего ПИД-контроллера

P1015	Описание
0	Определяет, что внутренний ПИД-контроллер всегда будет работать в автоматическом режиме
1	Определяет, что внутренний ПИД-контроллер всегда будет работать в ручном режиме
2	Определяет, что цифровой вход Dlx, запрограммированный на автоматический/ручной режим, будет выбирать режим работы внутреннего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться без безударного перехода
3	Определяет, что бит 13 последовательного управляющего слова (Р0682) будет выбирать режим работы внутреннего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться без безударного перехода
4	Определяет, что цифровой вход Dlx, запрограммированный на автоматический/ручной режим, будет выбирать режим работы внутреннего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться с безуданым переходом
5	Определяет, что бит 13 последовательного управляющего слова (Р0682) будет выбирать режим работы внутреннего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться с безуданым переходом

ПРИМЕЧАНИЕ!

Безударный переход означает переход из ручного в автоматический режим или из автоматического в ручной режим без изменения выходного сигнала ПИД-контроллера. Когда происходит переход из ручного режима в автоматический, выходное значение в ручном режиме используется для запуска интегральной части ПИД-контроллера. Это гарантирует, что вывод начнется с этого значения. При переходе из автоматического режима в ручной режим выходное значение в автоматическом режиме используется в качестве уставки в ручном режиме.

Р1016 - Время выборки внутреннего ПИД-контроллера

 Регулируемый диапазон:
 От 0,10 до 60,00 с настройки:
 Заводские настройки:
 0,10 с настройки:

 Свойства:
 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет время выборки внутреннего ПИД-контроллера.

Р1017 – Пропорциональное усиление внутреннего ПИД-контроллера

 Регулируемый диапазон:
 От 0,000 до 32,767
 Заводские настройки:
 1,000

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет время выборки внутреннего ПИД-контроллера.

Р1018 – Интегральное усиление внутреннего ПИД-контроллера

 Регулируемый диапазон:
 От 0,000 до 32,767
 Заводские настройки:
 0,430

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет интегральное усиление внутреннего ПИД-контроллера.

Р1019 – Производное усиление внутреннего ПИД-контроллера

 Регулируемый диапазон:
 От 0,000 до 32,767
 Заводские настройки:
 0,000 настройки:

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет производное усиление внутреннего ПИД-контроллера.

Р1020 – Конфигурация переменной процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	0 = сумма обратных связей 1 и 2 1 = разность между сигналами обратной связи 1 и 2 2 = среднее значение обратной связи 1 и 2	Заводские настройки:	0
Свойства:	cfg		
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет некоторые функции аналоговых входов, выбранных для обратной связи 1 и 2 внутреннего ПИД-контроллера.

Таблица 21.7: Конфигурация переменной процесса внутреннего ПИД-контроллера

P1020	Описание
0	Определяет, что переменная процесса внутреннего ПИД-контроллера будет суммой сигналов обратной связи 1 и 2
1	Определяет, что переменная процесса внутреннего ПИД-контроллера будет разностью сигналов обратной связи 1 и 2
2	Определяет, что переменная процесса внутреннего ПИД-контроллера будет разностью сигналов обратной связи 1 и 2

Р1021 – Минимальный уровень переменной процесса внутреннего ПИДконтроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	0
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет минимальное значение датчика аналогового входа, сконфигурированного для переменной процесса внутреннего ПИД-контроллера, в соответствии с его техническими единицами измерения.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 1 (Р0510 и Р0511).

Р1022 - Максимальный уровень переменной процесса внутреннего ПИДконтроллера

 Регулируемый диапазон:
 От -32768 до 32767
 Заводские настройки:
 1000

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет максимальное значение аналогового входного датчика, сконфигурированного для переменной процесса внутреннего ПИД-контроллера, в соответствии с его техническими единицами измерения.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 1 (Р0510 и Р0511).

Используя минимальный и максимальный уровни датчика переменной процесса и значения аналогового входа(ов) Aix, мы получаем уравнение кривой для преобразования переменной процесса внутреннего ПИД-контроллера.

P1013 [(P1022 - P1021) x (AIX)] + P1021

Где:

Р1013 = Переменная процесса внутреннего ПИД-контроллера.

Р1021 = Минимальный уровень переменной процесса внутреннего ПИД-контроллера.

Р1020 = Максимальный уровень переменной процесса внутреннего ПИД-контроллера.

AIX = Значение аналогового входа(ов) согласно Р1026.

Р1023 - Конфигурация сигналов обратной связи ПИДВнутр.

 Регулируемый диапазон:
 0 = Выкл.
 Заводские настройки:
 0 настройки:

 1 = Включить сигнал тревоги 2 = Включить отказ
 настройки:
 **

 Свойства:

 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет, как будут обрабатываться аварийные ситуации низкого и высокого уровня для переменной процесса внутреннего ПИД-контроллера.

Таблица 21.8: Конфигурация аварийных сигналов для внутреннего ПИД-контроллера

P1023	Описание
0	Определяет аварийные сигналы низкого и высокого уровня переменной процесса внутреннего ПИД-контроллера, которые будут отключены
1	Определяет, что сигналы тревоги по низкому и высокому уровню переменной процесса внутреннего ПИД-контроллера будут включены и будет генерироваться только сообщение о соответствующем сигнале тревоги, в то время как внутренний ПИД-контроллер остается активным и управляет двигателем, приводимым в действие преобразователем частоты
2	Определяет, что сигналы тревоги по низкому и высокому уровню переменной процесса внутреннего ПИД-контроллера будут включены, и на преобразователе частоты будет сгенерирован отказ. Сообщение о соответствующем сигнале тревоги будет генерироваться во время замедления двигателя и о соответствующей неисправности после остановки двигателя

Р1024 – Значение для сигнализации низкого уровня переменной процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	50
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет значение, ниже которого переменная процесса внутреннего ПИД-контроллера будет считаться низким уровнем в соответствии с ее техническими единицами.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 1 (Р0510 и Р0511).

Р1025 – Время для сигнализации низкого уровня переменной процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	От 0,00 до 650,00 с	Заводские настройки:	5,00 c
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет время, в течение которого будет возникать состояние низкого уровня переменной процесса внутреннего ПИД-контроллера, так что будет генерироваться аварийное сообщение «А0760: Аварийный сигнал низкого уровня переменной процесса внутреннего ПИД-контроллера». Если Р1023 запрограммирован на 2, ошибка «F0761: Ошибка низкого уровня переменной процесса внутреннего контроллера» будет генерироваться после того, как двигатель, приводимый в действие преобразователем частоты, замедлится и перестанет вращаться.

ПРИМЕЧАНИЕ!

Значение, установленное на 0,00 с, отключает обнаружение сигнала тревоги.

Р1026 - Значение сигнализации высокого уровня переменной процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	900
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет значение, выше которого переменная процесса внутреннего ПИД-контроллера будет считаться высоким уровнем в соответствии с ее техническими единицами.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 1 (Р0510 и Р0511).

Р1027 – Время сигнализации высокого уровня переменной процесса внутреннего ПИД-контроллера

Регулируемый диапазон:	От 0,00 до 650,00 с	Заводские настройки:	5,00 c
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет время, в течение которого будет возникать состояние высокого уровня переменной процесса внутреннего ПИД-контроллера, так что будет генерироваться аварийное сообщение «А0762: Аварийный сигнал высокого уровня переменной процесса внутреннего ПИД-контроллера». Если Р1023 запрограммирован на 2, ошибка «F0763: Ошибка высокого уровня переменной процесса внутреннего контроллера» будет генерироваться после того, как двигатель, приводимый в действие преобразователем частоты, замедлится и перестанет вращаться.

ПРИМЕЧАНИЕ!

Значение, установленное на 0,00 с, отключает обнаружение сигнала тревоги.

21.1.5 Режим ожидания ПИД

Значение сигнализации высокого уровня переменной процесса внутреннего ПИД-контроллера.

Режим ожидания – состояние управляемой системы, при котором запрос на управление равен нулю или почти равен нулю и в этот момент может быть остановлен двигатель, приводимый в действие преобразователем частоты; что не позволяет двигателю продолжать работать на низкой скорости, что мало помогает или вообще не помогает управляемой системе. Однако переменная процесса продолжает контролироваться, чтобы при необходимости (достижение уровня ниже требуемой уставки) управляемая система могла снова запустить двигатель (режим перезапуска).

ПРИМЕЧАНИЕ!

Режим ожидания работает только в том случае, если внутренний ПИД-контроллер включен и находится в автоматическом режиме.

Р1028 - Скорость режима ожидания контроллера ПИД

Регулируемый	От 0 до 18000	Заводские	350
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет скорость двигателя, ниже которой будет считаться, что управление скоростью является низким, что активирует режим ожидания.

ПРИМЕЧАНИЕ!

Этот параметр может отображаться в Гц или об/мин в зависимости от выбора в параметрах косвенной технической единицы 4 (Р0516 и Р0517):

- Установите Р0516 на 13 (Гц) и Р0517 на 1 (wxy.z) для отображения в Гц.
- Установите Р0516 на 3 (об/мин) и Р0517 на 0 (wxyz) для отображения в об/мин.

ПРИМЕЧАНИЕ!

Значение, установленное на 0, отключает режим ожидания.

Р1029 – Время режима ожидания внутреннего ПИД-контроллера

Регулируемый диапазон:	От 0,00 до 650,00 с	Заводские настройки:	5,00 c
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время, в течение которого скорость двигателя находится в низких условиях, когда управляемая система находится в режиме ожидания, будет генерироваться аварийное сообщение «А0764: Режим ожидания активен».

Р1030 - Процентное отклонение перезапуска внутреннего ПИД-контроллера

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	5,0 %
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет процентную разницу (отклонение) между переменной управления (обратная связь) и автоматической уставкой внутреннего ПИД-контроллера, необходимую для возобновления работы управляемой системы (перезапуска). Когда разница между управляющей переменной и автоматической уставкой внутреннего ПИД-контроллера превышает этот запрограммированный процент, активируется условие перезапуска.

Р1031 – Время перезапуска внутреннего ПИД-контроллера

Регулируемый	От 0,00 до 650,00 с	Заводские	10,00 c
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время, в течение которого запрограммировано активированное условие перезапуска, в течение которого преобразователь частоты снова запускает двигатель.

Ниже приведена схема работы двигателя, приводимого в действие преобразователем частоты, для режимов ожидания и перезапуска.

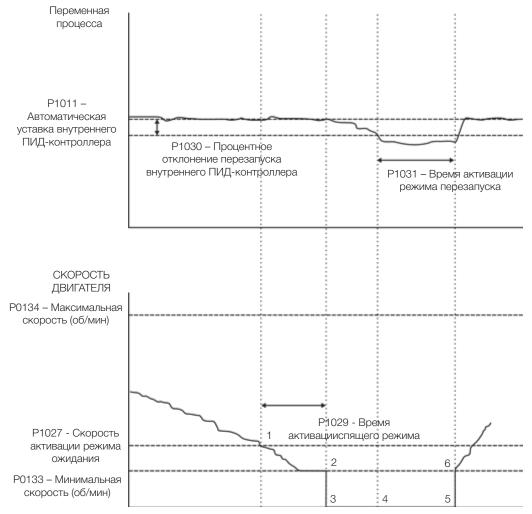


Рисунок 21.1: Схема работы режима ожидания и перезапуска

Анализ выявленных моментов следует ниже:

- 1. ПИД-контроллер контролирует скорость двигателя и начинает ее снижать. Скорость двигателя ниже значения для активации режима ожидания (Р1027), и начинается отсчет времени активации режима ожидания (Р1029).
- 2. Двигатель продолжает работать со скоростью ниже запрограммированной (Р1027), и время активации режима ожидания (Р1029) истекает. После этого активируется режим ожидания.

- 3. Команда на остановку двигателя выполнена; система остается включенной и продолжает контролировать переменную процесса.
- 4. Разница между переменной процесса и автоматической уставкой внутреннего ПИД-контроллера превышает значение, установленное для активации режима перезапуска (Р1030), и начинается отсчет времени для активации режима перезапуска (Р1031).
- 5. Разница между переменной процесса и автоматической уставкой регулятора ПИДВнутр остается больше запрограммированного значения (Р1030), и время активации режима перезапуска (Р1031) истекает; Затем активируется режим перезапуска.
- 6. Подается команда на запуск двигателя, и система снова управляет переменной процесса в соответствии с логикой управления.

21.1.6 Внешний ПИД-контроллер

Эта группа параметров позволяет пользователю настраивать работу внешнего ПИД-контроллера.

Внешний ПИД-контроллер позволяет управлять внешним приводом преобразователя частоты через аналоговый выход путем сравнения регулируемой переменной процесса (обратной связи) с требуемой уставкой.

Переменная процесса – это та переменная, которую ПИД-контроллер использует в качестве обратной связи о своих действиях по управлению, которые сравниваются с требуемой уставкой управления, тем самым генерируя ошибку для управления.

Он считывается через аналоговый вход; поэтому необходимо будет настроить, какой аналоговый вход будет обратной связью для внешнего ПИД-контроллер.

Принята «Академическая» структура внешнего контроллера ПИД, которая подчиняется следующему уравнению:

```
u(k) = i(k-1) + Kp \cdot [(1 + Ki \cdot Ts + (Kd/Ts)) \cdot e(k) - (Kd/Ts)) \cdot e(k-1)].
```

где:

u(k) = Выход внешнего ПИД-контроллера.

i(k-1) = Интегральная часть предыдущего момента.

Кр = пропорциональное увеличение.

Кі = Интегральное увеличение.

Kd = Производное усиление.

Ts = Время выборки.

е(k) = Ошибка в текущий момент (уставка управления - переменная процесса).

e(k-1) = Ошибка в предыдущий момент.

Р1044 – Автоматическая уставка внешнего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	0
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет уставку внешнего ПИД-контроллера в технической единице, когда он находится в автоматическом режиме.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 2 (Р0512 и Р0513).

Р1045 - Ручная уставка внешнего ПИД-контроллера

Регулируемый диапазон:	От 0,0 до 100,0 %	Заводские настройки:	0,0 %
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет уставку внешнего ПИД-контроллера в ручном режиме.

Р1046 - Переменная процесса внешнего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	SPLC	

Описание:

Этот параметр показывает фактическое значение переменной процесса внутреннего ПИД-контроллера в технических единицах.

ПРИМЕЧАНИЕ!

Этот параметр отображается как выбранный в параметрах косвенной технической единицы 2 (Р0512 и Р0513).

Р1047 – Управление действиями внешнего ПИД-контроллера

 Регулируемый диапазон:
 0 = Выкл. ПИД 1 = Прямой режим 2 = Обратный режим
 Заводские 0 настройки:

 Свойства:
 Группы доступа через ЧМИ:
 SPLC

Описание:

Этот параметр определяет, как осуществляется управление или регулирование внешнего ПИД-контроллера.

Таблица 21.9: Описание управления действиями внешнего ПИД-контроллера

P1047	Описание
0	Определяет, что внешний ПИД-контроллер 1 будет отключен для работы
1	Определяет, что управление или регулирование действия внешнего ПИД-контроллера 1 будет включено в прямом режиме
2	Определяет, что управление или регулирование действия внешнего ПИД-контроллера 1 будет включено в реверсивном режиме

ПРИМЕЧАНИЕ!

В ситуациях, когда для увеличения значения переменной процесса необходимо увеличить выходной сигнал ПИД-контроллера, управляющее действие внешнего ПИД-контроллера должно быть установлено в прямой режим. Например: Клапан установлен на входе воды в бак. Для повышения уровня резервуара (переменной процесса) необходимо увеличение расхода, что достигается открытием клапана. В ситуациях, когда для увеличения значения переменной процесса необходимо уменьшить выходной сигнал ПИД-контроллера, управляющее действие внешнего ПИД-контроллера должно быть установлено в обратный режим. Например: Клапан установлен на выходе воды в бак. Для повышения уровня резервуара (переменной процесса) необходимо уменьшение расхода, что достигается закрытием клапана.

Р1048 - Режим работы внешнего ПИД-контроллера

Регулируемый 0 = всегда автоматический Заводские 0 диапазон: 1 = всегда ручной настройки: 2 = автоматический или ручной выбор через Dlx и без безударного перехода 3 = автоматический или ручной выбор через Network и без безударного перехода 4 = автоматический или ручной выбор через Dlx и с безударным переходом 5 = автоматический или ручной выбор через Network и с безударным переходом Свойства: Группы доступа SPLC через ЧМИ:

Описание:

Этот параметр определяет, как будет работать внешний ПИД-контроллер.

Таблица 21.10: Описание управления действиями внешнего ПИД-контроллера

P1048	Описание
0	Определяет, что внешний ПИД-контроллер всегда будет работать в автоматическом режиме
1	Определяет, что внешний ПИД-контроллер всегда будет работать в ручном режиме
2	Определяет, что цифровой вход Dlx, запрограммированный на автоматический / ручной режим, будет выбирать режим работы внешнего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться без безударного перехода
3	Определяет, что бит 14 последовательного управляющего слова (Р0682) будет выбирать режим работы внешнего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться без безударного перехода
4	Определяет, что цифровой вход Dlx, запрограммированный на автоматический / ручной режим, будет выбирать режим работы внешнего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться с безуданым переходом
5	Определяет, что бит 14 последовательного управляющего слова (Р0682) будет выбирать режим работы внешнего ПИД-контроллера: автоматический (0) или ручной (1). Он также определяет, что переход с автоматического режима на ручной или с ручного на автоматический будет осуществляться с безуданым переходом

ПРИМЕЧАНИЕ!

Безударный переход означает переход из ручного в автоматический режим или из автоматического в ручной режим без изменения выходного сигнала внешнего ПИД-контроллера.

Когда происходит переход из ручного режима в автоматический, выходное значение в ручном режиме используется для запуска интегральной части внешнего ПИД-контроллера. Это гарантирует, что выходной сигнал начнется с этого значения. При переходе из автоматического режима в ручной режим выходное значение в автоматическом режиме используется в качестве уставки в ручном режиме.

Р1049 – Время выборки внешнего ПИД-контроллера

Регулируемый	От 0,10 до 60,00 с	Заводские	0,10 c
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время выборки внешнего ПИД-контроллера.

Р1050 – Пропорциональное усиление внешнего ПИД-контроллера

Регулируемый диапазон:	От 0,000 до 32,767	Заводские настройки:	1,000
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет пропорциональное усиление внешнего ПИД-контроллера.

Р1051 – Интегральное усиление внешнего ПИД-контроллера

 Регулируемый диапазон:
 От 0,000 до 32,767
 Заводские настройки:
 0,430

 Свойства:
 Группы доступа через ЧМИ:

Описание:

Этот параметр определяет интегральное усиление внешнего ПИД-контроллера.

Р1052 – Производное усиление внешнего ПИД-контроллера

 Регулируемый диапазон:
 От 0,000 до 32,767
 Заводские настройки:
 0,000 настройки:

 Свойства:

 Группы доступа через ЧМИ:
 SPLC

Описание:

Этот параметр определяет производное усиление внешнего ПИД-контроллера.

Р1053 – Минимальный уровень обратной связи контроллера внешнего ПИДконтроллера

 Регулируемый диапазон:
 От -32768 до 32767
 Заводские инастройки:
 О

 Свойства:
 Сруппы доступа через ЧМИ:
 SPLC
 Супинати не предоступа не предост

Описание:

Этот параметр определяет минимальное значение аналогового входа датчика обратной связи внешнего ПИД-контроллера 1 для преобразования в технические единицы.

ПРИМЕЧАНИЕ!

Этот параметр отображается как выбранный в параметрах косвенной технической единицы 2 (Р0512 и Р0513).

Р1054 – Максимальный уровень переменной процесса внешнего ПИД-контроллера

Регулируемый	От -32768 до 32767	Заводские	1000
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет максимальное значение датчика аналогового входа, сконфигурированного для обратной связи внешнего ПИД-контроллера, в соответствии с его техническими единицами измерения.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 2 (Р0512 и Р0513).

Используя минимальный и максимальный уровни датчика переменной процесса и значения аналогового входа(ов) Aix, мы получаем уравнение кривой для преобразования переменной процесса внешнего ПИД-контроллера:

P1046 [(P1054 - P1053) x (AIX)] + P1053

Где:

Р1046 = Переменная процесса внешнего ПИД-контроллера.

Р1053 = Минимальный уровень переменной процесса внешнего ПИД-контроллера.

Р1054 = Максимальный уровень переменной процесса внешнего ПИД-контроллера.

AIX = Значение аналогового входа AI1 или AI2.

Р1055 – Конфигурация сигналов тревоги для переменных процесса внешнего ПИД-контроллера

Регулируемый диапазон:	0 = Выкл. 1 = Включить сигнал тревоги 2 = Включить отказ	Заводские настройки:	
Свойства:	cfg		
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет, как будут обрабатываться аварийные ситуации низкого и высокого уровня для переменной процесса внешнего ПИД-контроллера.

Таблица 21.11: Конфигурация сигналов тревоги для внешнего ПИД-контроллера

P1055	Описание
0	Определяет сигналы тревоги низкого и высокого уровня переменной процесса внешнего ПИД-контроллера, которые будут отключены
1	Определяет, что сигналы тревоги по низкому и высокому уровню переменной процесса внешнего ПИД-контроллера будут включены и будет генерироваться только сообщение о соответствующем сигнале тревоги, в то время как внешний ПИД-контроллер остается активным и управляет двигателем, приводимым в действие преобразователем частоты
2	Определяет, что сигналы тревоги по низкому и высокому уровню переменной процесса внешнего ПИД-контроллера будут включены, и на преобразователе частоты будет сгенерирован отказ. Сообщение о соответствующем сигнале тревоги будет генерироваться во время замедления двигателя и о соответствующей неисправности после остановки двигателя

Р1056 – Значение для сигнализации низкого уровня переменной процесса внешнего ПИД-контроллера

Регулируемый диапазон:	От -32768 до 32767	Заводские настройки:	2
Свойства:			
Группы доступа через ЧМИ:	SPLC		

Описание:

Этот параметр определяет значение, ниже которого будет считаться низкий уровень переменной процесса внешнего ПИД-контроллера в соответствии с его техническими единицами измерения.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 2 (Р0512 и Р0513).

Р1057 – Время для сигнализации низкого уровня переменной процесса внешнего ПИД-контроллера

Регулируемый	От 0,00 до 650,00 с	Заводские	5,00 c
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время, в течение которого переменная процесса внешнего ПИД-контроллера находится в состоянии низкого уровня, в результате чего будет генерироваться аварийное сообщение «А0786: Сигнал тревоги низкого уровня переменной процесса внешнего ПИД-контроллера». Если Р1055 запрограммирован на 2, ошибка «F0787: Ошибка низкого уровня переменной процесса внешнего контроллера» будет генерироваться после того, как двигатель, приводимый в действие преобразователем частоты, замедлится и перестанет вращаться.

ПРИМЕЧАНИЕ!

Значение, установленное на 0,00 с, отключает обнаружение сигнала тревоги.

Р1058 – Значение для сигнализации высокого уровня переменной процесса внешнего ПИД-контроллера

Регулируемый	От -32768 до 32767	Заводские	900
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет значение, выше которого переменная процесса внешнего ПИД-контроллера будет считаться высоким уровнем в соответствии с ее техническими единицами.

ПРИМЕЧАНИЕ!

Этот параметр будет отображаться в соответствии с выбором параметров для технического блока 2 (Р0512 и Р0513).

Р1059 – Время для сигнализации высокого уровня переменной процесса внешнего ПИД-контроллера

Регулируемый	От 0,00 до 650,00 с	Заводские	5,00 c
диапазон:		настройки:	
Свойства:			
Группы доступа	SPLC		
через ЧМИ:			

Описание:

Этот параметр определяет время, в течение которого переменная процесса внешнего ПИД-контроллера находится в состоянии высокого уровня, в результате чего будет генерироваться аварийное сообщение «А0788: Сигнал тревоги высокого уровня переменной процесса внешнего ПИД-контроллера». Если Р1055 запрограммирован на 2, ошибка «F0789: Ошибка высокого уровня переменной процесса внешнего контроллера» будет генерироваться после того, как двигатель, приводимый в действие преобразователем частоты, замедлится и перестанет вращаться.

ПРИМЕЧАНИЕ!

Значение в 0,00 с отключает обнаружение сигнала тревоги.

21.1.7 Логическое состояние функций РезПрилож

Эта группа параметров позволяет пользователю отслеживать состояние функций РезПрилож.

Р1032 - Логическое состояние функций РезПрилож

Регулируемый	От 0000h до FFFFh	Заводские
диапазон:		настройки:
Свойства:	HMI ro	
Группы доступа	SPLC	
через ЧМИ:		

Описание:

Этот параметр позволяет пользователю отслеживать логическое состояние функций РезПрилож. Каждый бит представляет определенный статус.

Таблица 21.12: Описание логического состояния 1 через сети связи (Р1032)

Биты	От 15 до 9	8	7	6	5	4	3	От 0 до 2
Функция	Резервный	Внешний ПИД- контроллер в автоматическом / ручном	Режим ожи- дания	Внутренний ПИД- контроллер в автоматическом / ручном	Техническое обслужи- ваниефильтра	Оборванный ремень	Безма- сляный насос	Резервный

Биты	Значения
Бит от 0 до 2	Резервный
Бит 3 Безмасляный насос	0: Состояние безмасляного насоса не обнаружено 1: Состояние безмасляного насоса было обнаружено
Бит 4 Обрыв ремня	0: Состояние обрыва ремня Состояние не было обнаружено 1: Состояние обрыва ремня было обнаружено
Бит 5 Техническое обслуживание фильтра	О: Сигнализация о необходимости обслуживания фильтра не обнаружена 1: Сигнализация о необходимости обслуживания фильтра обнаружена
Бит 6 Внутренний ПИД в автоматическом / ручном	0: Указывает на то, что внутренний ПИД-контроллер находится в автоматическом режиме 1: Указывает на то, что внутренний ПИД-контроллер находится в ручном режиме
Бит 7 Режим ожидания	0: Преобразователь не в режиме ожидания 1: Преобразователь работает в режиме ожидания
Бит 8 Внешний ПИД в автоматическом / ручном	0: Указывает на то, что внешний ПИД-контроллер находится в автоматическом режиме 1: Указывает на то, что внешний ПИД-контроллер находится в ручном режиме
Биты с 9 по 15	Резервный

21.1.8 Последовательность запуска внутреннего ПИД

21.1.8.1 Запуск (Внутренний ПИД)

Ниже приведены необходимые шаги для ввода в эксплуатацию функции внутреннего ПИД-контроллера Резидентного приложения.

ПРИМЕЧАНИЕ!

Чтобы приложение ПИД-контроллера работало правильно, важно проверить, правильно ли настроен преобразователь для управления двигателем на желаемой скорости. Для этого проверьте следующие настройки:

- Уровни ускорения и замедления (с Р0100 по Р0103).
- Ограничение тока (Р0135) для режимов управления V/f и VVW и ограничение крутящего момента (Р0169 / Р0170) для режимов векторного управления.
- увеличение крутящего момента (Р0136 и Р0137) и компенсацию скольжения (Р0138) в режиме управления V/f.
- Запустите процедуру самонастройки в векторном режиме.

Приложение внутреннего ПИД-контроллера будет настроено в соответствии с примером, показанным ниже, где:

- Преобразователь частоты CFW500 будет настроен для работы в дистанционном режиме.
- Цифровой вход DI1 будет использоваться для подачи команды «Пуск/Стоп» в дистанционном режиме.
- Цифровой вход DI3 будет использоваться для выбора внутреннего ПИД-контроллера: ручной (0) / автоматический (1).
- Переменная процесса внутреннего ПИД-контроллера (PV) будет подключена к аналоговому входу Al1 в диапазоне 4–20 мA, где 4 мA соответствует 0 бар, а 20 мA соответствует 10,00 бар.
- Уставка управления внутренним ПИД-контроллером (SP) будет осуществляться через ЧМИ (клавиши).

Таблица 21.13: Последовательность программирования внутреннего ПИД-контроллера

Посл.	Действие / Результат	Индикация на дисплее
1	Группа ЗАПУСК . Активирует процедуру ориентированного запуска CFW500 в соответствии с пунктом 5.2.1 – Ориентированное меню запуска руководства пользователя CFW500	P0317 = 1
2	Группа ОСНОВНАЯ . Настраивает время ускорения в секундах в процедуре базового приложения CFW500 в соответствии с пунктом 5.2.2 – Меню базового приложения руководства пользователя CFW500	P0100 = 2.5 c
3	Время замедления в секундах	P0101 = 2,5 c
4	Минимальная скорость двигателя в Гц	Р0133 = 40.0 Гц
5	Максимальная скорость двигателя в Гц	Р0134 = 60.0 Гц
6	Группа SPLC . Загружает резидентный аппликатив в функцию SoftPLC CFW500	P1003 = 1
7	Группа ЧМИ . Выбирает параметр главного дисплея ЧМИ для отображения значения переменной процесса внутреннего ПИД-контроллера. Этот параметр является необязательным	P0205 = 1013
8	Выбирает параметр вторичного дисплея ЧМИ для отображения значения уставки управления внутреннего ПИД-контроллера. Этот параметр является необязательным	P0206 = 1011
9	Выбор параметра гистограммы ЧМИ для отображения значения текущей скорости двигателя. Этот параметр является необязательным	P0207 = 0002
10	Полная шкала гистограммы ЧМИ	P0213 = 600
11	Группа ВВОД/ВЫВОД . Выбор источника LOC/REM (ЛОКАЛЬН/ДИСТАНЦ). 3 = Клавиша LR (REM). Пожалуйста, выберите дистанционный режим с помощью клавиши LOC/REM для работы функции внутреннего ПИД-контроллера	P0220 = 3
12	Выбор задания в удаленном режиме. 12 = SoftPLC	P0222 = 12
13	Выбор команды «Пуск/Стоп» в дистанционном режиме. 1 = Dlx	P0227 = 1
14	Функция сигнала Al1. 16 = Обратная связь внутреннего ПИД-контроллера 1	P0231 = 16
15	Коэффициент усиления AI1	P0232 = 1,000
16	Сигнал Al1. 1 = от 4 до 20 мА. Пожалуйста, установите переключатель S1.1 в положение ON (ВКЛ)	P0233 = 1
17	Смещение Al1	P0234 = 0,00 %
18	Фильтр Al1	P0235 = 0,25 c
19	DI1 используется для подачи команды «Пуск» или «Останов» двигателя. 1 = Пуск/Останов	P0263 = 1

20	DI3 используется для установки ПИД-контроллера в ручной или автоматический режим. 47 = Внутренний ПИД Ручн / Автом	P0265 = 47
21	Группа SPLC . Технический блок 0 SoftPLC 1 = нет. Датчик переменной процесса в барах, и эта переменная недоступна в ЧМИ. Если используется буквенно-цифровой удаленный ЧМИ (P0215 = 1), можно запрограммировать P0209 на 26, чтобы отображать единицы измерения на удаленном ЧМИ	P0510 = 0
22	Форма индикации технического блока 1 SoftPLC 2 = wx.yz	P0511 = 2
23	Выбирает управляющее действие внутреннего ПИД-контроллера, обеспечивающее его работу 1 = Прямой	P1014 = 1
24	Выбирает режим работы внутреннего ПИД-контроллера. 4 = ручной/ автоматический через цифровой вход и безударный переход	P1015 = 4
25	Конфигурация переменной процесса внутреннего ПИД. 0 = Сумма обратных связей 1 и 2	P1020 = 0
26	Диапазон датчика, подключенного к AI1, составляет от 0 до 10,00 бар. Запрограммируйте этот параметр для минимального значения датчика, которое является максимальным значением аналогового входа 4 мА	P1021 = 0,00
27	Диапазон датчика, подключенного к AI1, составляет от 0 до 10,00 бар. Запрограммируйте этот параметр для максимального значения датчика, которое является максимальным значением аналогового входа 20 мА	P1022 = 10,00
28	Настройка уставки автоматического управления через ЧМИ	P1011 = 4,00
29	Настройка уставки ручного управления через ЧМИ	P1012 = 0,0 %
30	Период выборки внутреннего ПИД-контроллера	P1016 = 0,10 c
31	Пропорциональное усиление внутреннего ПИД-контроллера	P1017 = 1,000
32	Интегральное усиление внутреннего ПИД-контроллера	P1018 = 0,430
33	Производное усиление внутреннего ПИД-контроллера	P1019 = 0,000
34	Позволяет выполнять резидентное приложение CFW500	P1001 = 1

Параметры Р1016, Р1017, Р1018 и Р1019 должны быть установлены в соответствии с реакцией контролируемого процесса.

Ниже приведены предложения по начальным значениям времени выборки и настройкам усиления внутреннего ПИД-контроллера в соответствии с контролируемым процессом.

Таблица 21.14: Рекомендации по настройке усиления внутреннего ПИД-контроллера

Амплитуда	P1017 (Ts)t	P1018 (Kp)	P1018 (Ki)	P1019 (Kd)
Давление в пневматической системе	0,10 c	1,000	0,430	0,000
Расход в пневматической системе	0,10 c	1,000	0,370	0,000
Давление в гидравлической системе	0,10 c	1,000	0,430	0,000
Расход в гидравлической системе	0,10 c	1,000	0,370	0,000
Температура	0,50 c	2,000	0,040	0,005

21.1.9 Последовательность запуска внешнего ПИД

21.1.9.1 Запуск (Внешний ПИД)

Ниже приведены необходимые шаги для ввода в эксплуатацию функции внешнего ПИД-контроллера Резидентного приложения.

ПРИМЕЧАНИЕ!

Выход внешнего ПИД-контроллера является аналоговым, поэтому режим работы преобразователя частоты CFW500 не мешает его работе.

Приложение внешнего ПИД-контроллера будет настроено в соответствии с примером, показанным ниже, где:

- Цифровой вход DI4 будет использоваться для выбора внешнего ПИД-контроллера: ручной (0) / автоматический (1).
- Переменная процесса внешнего ПИД-контроллера (PV) будет подключена к аналоговому входу Al2 в диапазоне 0–10 В, где 0 В соответствует 0,0 %, а 10 В соответствует 100,0 %

■ Уставка управления внешним ПИД-контроллером (SP) будет осуществляться через ЧМИ (клавиши).

Таблица 21.15: Последовательность программирования внешнего ПИД-контроллера

Посл.	Действие / Результат	Индикация на дисплее
1	Группа SPLC . Загружает резидентный аппликатив в функцию SoftPLC CFW500	P1003 = 1
2	Группа ЧМИ . Выбирает параметр главного дисплея ЧМИ для отображения значения переменной процесса внешнего ПИД-контроллера. Этот параметр является необязательным	P0205 = 1046
3	Выбирает параметр вторичного дисплея ЧМИ для отображения значения уставки управления внешнего ПИД-контроллера. Этот параметр является необязательным	P0206 = 1044
4	Выбор параметра гистограммы ЧМИ для отображения значения аналогового выхода АО1. Этот параметр является необязательным	P0207 = 0014
5	Масштабный фактор главного дисплея ЧМИ	P0208 = 1000
6	Техническая единица главного дисплея HMI. 10 = %	P0209 = 10
7	Форма индикации главного дисплея HMI. 1 = wxy.z	P0210 = 1
8	Полная шкала гистограммы ЧМИ	P0213 = 1000
9	Функция сигнала Al2. 18 = Обратная связь внешнего ПИД	P0236 = 18
10	Коэффициент усиления Al2	P0237 = 1,000
11	Сигнал Al2. 0 = От 0 до 10 В. Установите переключатель S2.1 в положение ОFF (ВЫКЛ)	P0238 = 0
12	Смещение Al2	P0239 = 0,00 %
13	Фильтр Al2	P0240 = 0.25 c
14	DI4 используется для установки ПИД-контроллера в ручной или автоматический режим. 48 = Внешний ПИД Ручн / Автом	P0266 = 48
15	Группа SPLC . Технический блок SoftPLC 2. 10 = %. Датчик переменной процесса в %.	P0512 = 10
16	Форма индикации технического блока 1 SoftPLC 1 = wxy.z	P0511 = 1
17	Выбирает управляющее действие внешнего ПИД-контроллера, обеспечивающее его работу. 1 = Прям.	P1047 = 1
18	Выбирает режим работы внешнего ПИД-контроллера. 4 = ручной/ автоматический через цифровой вход и безударный переход	P1048 = 4
19	Диапазон датчика, подключенного к Al2, составляет от 0 до 100,0 %. Запрограммируйте этот параметр для минимального значения датчика, которое является максимальным значением аналогового входа 4 мА	P1053 = 0,0
20	Диапазон датчика, подключенного к Al2, составляет от 0 до 100,0 %. Запрограммируйте этот параметр для максимального значения датчика, которое является максимальным значением аналогового входа 20 мА	P1054 = 100,0
21	Настройка уставки автоматического управления через ЧМИ	P1044 = 85,0
22	Настройка уставки ручного управления через ЧМИ	P1045 = 0,0 %
23	Период выборки внешнего ПИД-контроллера	P1049 = 0,10 c
24	Пропорциональное усиление внешнего ПИД-контроллера	P1050 = 1,000
25	Интегральное усиление внешнего ПИД-контроллера	P1051 = 0,430
26	Производное усиление внешнего ПИД-контроллера	P1052 = 0,000
27	Позволяет выполнять резидентное приложение CFW500	P1001 = 1

Параметры P1049, P1050, P1051 и P1052 должны быть установлены в соответствии с реакцией контролируемого процесса. Ниже приведены предложения по начальным значениям времени выборки и настройкам усиления внешнего ПИД-контроллера в соответствии с контролируемым процессом.

Таблица 21.16: Рекомендации по настройке усиления внешнего ПИД-контроллера

Амплитуда	P1049 (Ts)	P1050 (Kp)	P1051 (Ki)	P1052 (Kd)
Давление в пневматической системе	0,10 c	1,000	0,430	0,000
Расход в пневматической системе	0,10 c	1,000	0,370	0,000
Давление в гидравлической системе	0,10 c	1,000	0,430	0,000
Расход в гидравлической системе	0,10 c	1,000	0,370	0,000
Температура	0,50 c	2,000	0,040	0,005

22 ФУНКЦИОНАЛЬНАЯ БЕЗОПАСНОСТЬ

ПРИМЕЧАНИЕ!

Дополнительную информацию о функциях безопасности CFW500 см. в руководстве по безопасности CFW500-SFY2.

CFW500 может быть оснащен модулем функций безопасности CFW500-SFY2, который устанавливается сверху преобразователя, как описано в руководстве по безопасности CFW500-SFY2. Согласно IEC 61800-5-2 этот модуль охватывает следующие функции безопасности:

- STO безопасное отключение крутящего момента.
- SS1-t безопасный останов 1 с контролем времени.

Ниже приведено описание параметров CFW500, связанных с функциональной безопасностью.

Р0028 - Модуль функций безопасности

Регулируемый диапазон:	0 = перемычка STO 1 = CFW500-SFY2	Заводские настройки:
Свойства:	ro	
Группы доступа через ЧМИ:	READ	

Описание:

Идентифицирует модуль функций безопасности, подключенный к преобразователю частоты, согласно Таблица 22.1 на странице 22-1.

Таблица 22.1: Идентификация модуля функций безопасности

Наименование	Описание	P0028
Перемычка STO	Преобразователь частоты без функциональной безопасности	0
CFW500-SFY2	Преобразователь частоты оснащен модулем функций безопасности, способным выполнять STO и SS1-t	1

ПРИМЕЧАНИЕ!

Либо перемычка STO, либо CFW500-SFY2 должны быть установлены сверху преобразователя частоты. В противном случае во время включения преобразователь частоты отобразит сообщение о неисправности «F0086».

P0108 - Время SS1-t

Регулируемый	От 0 до 999 с	Заводские
диапазон:		настройки:
_ u		

Свойства: sy

Группы доступа через ЧМИ:

Описание:

Он определяет время задержки функции безопасности SS1-t, которая должна быть запрограммирована в модуле функций безопасности. Если значение времени задержки составляет 0 секунд, модуль функций безопасности запрограммирован с функцией безопасности STO.

ПРИМЕЧАНИЕ!

Р0108 отображается только на ЧМИ и, следовательно, может быть изменен только тогда, когда модуль функций безопасности находится в режиме программирования.

ПРИМЕЧАНИЕ!

Для параметра P0108 должно быть установлено время, равное или превышающее значение параметра P0106. В противном случае состояние отключения крутящего момента будет достигнуто до того, как нагрузка полностью прекратится.

Р0109 - Подтверждение времени SS1-t

	От 0 до 999 с	Заводские
диапазон:		настройки:
Свойства:	ro, sy	
Группы доступа		

Группы доступа через ЧМИ:

Описание:

Во время процедуры программирования модуля функций безопасности отображается фактическое значение времени задержки, запрограммированное в модуле функций безопасности, для подтверждения пользователя.

ПРИМЕЧАНИЕ!

Р0109 отображается только на ЧМИ и, следовательно, доступен только тогда, когда модуль функций безопасности находится в режиме программирования.

