SoftPLC

CTW900

User's Manual

SoftPLC User's Manual

Series: CTW900 Language: English Document n°: 10002443955 / 00 Publication date: 11/2013

Revision	Description	Chapter
00	First edition	-

CONTENTS

Шер

1	ABOUT THE MANUAL	6						
1 1	ABBREVIATIONS AND DEFINITIONS	6						
1.1		6						
1.2		0						
2	INTRODUCTION TO THE SOFTPLC	7						
-								
2.1	SYMBOLS AND DATA TYPES	7						
_		_						
3	SOFTPLC MEMORY8							
31	MEMORY DIVISION	8						
3.2	DATA MEMORY	8						
012	3.2.1 Constants							
	3.2.2 Physical Inputs and Outputs (Hardware)	8						
	3.2.3 Volatile Markers (Variables)	a a						
	324 System Markers	10						
	3.2.5 Parameters	.12						
33	MODBUS	12						
0.0	3.3.1 SoftPLC Addresses in the Modbus Protocol	12						
	3.3.2 Protocol	12						
л		10						
4		13						
4 1	CONTACTS	13						
4.1	1 1 Normally Open Contact NO CONTACT	12						
	4.1.1 Normally Open Contact – NC CONTACT $4.1.2$ Normally Closed Contact – NC CONTACT	12						
	4.1.2 NOTITALLY CLOSED CONTACT	10						
	4.1.4 OP Logic with Contacts	1/						
10		. 14						
4.2		14						
	4.2.1 Normal Coll - COL	. 14						
	4.2.2 Negaled Coll - NEG COL	44						
		. 14						
	4.2.4 Reset COII - RESET COIL	45						
	4.2.5 Positive Transition Coll – PTS COL	15						
10		. 13						
4.3		. 15						
	4.3.1 Dimer - ION	. 13						
	4.3.2 Real Time Clock - RTC	10						
	4.3.3 Incremental Counter – CTU	. 10						
	4.3.4 Proportional-Integral-Derivative Controller – PID	10						
A A	4.3.5 LOW-Pass of High-Pass Filter - FILTER	. 10						
4.4	A 4 1 Comparator COMP	1/						
	4.4.1 Comparation – CONF.	. 17						
	4.4.2 Mathematical Operation - MATH	. 1 <i>1</i>						
	4.4.5 MiduleIIIdilCal FullCioli - FUNC	. 10 -10						
A E		10						
4.3	I NANOFEN DLUURO	10						
	4.5.1 Data Halister - INANGEER	10						
	4.5.2 Conversion from mileger (10 bit) to Floating Point - IN 12-L	19						
	4.5.0 User Fault of Alarm Generator – USEKEKK	. 19						
	4.5.4 Conversion from Floating Point to Integer (16 bit) - FL2IN I	.20						
	4.5.5 Indirect Data Transfer - IDATA	.20						
	4.5.0 initial proves DMUV	.∠U						
		.21						

Weq

5	CTW900 PARAMETER SETTINGS	22
5.1	SIMBOLS FOR PROPERTIES DESCRIPTION	22
5.2	CTW900 CONFIGURATION PARAMETERS	22
5.3	SOFTPLC EXCLUSIVE PARAMETERS	23
6	SUMMARY OF THE WLP MAIN FUNCTIONS	25
6.1	PROJECT – NEW	25
6.2	PROJECT – OPEN	25
6.3	PROJECT – PROPERTIES	25
6.4	VIEW - COMPILATION INFORMATION	
6.5	VIEW – USER PARAMETER CONFIGURATION	
6.6	CONSTRUCT – COMPILE	27
6.7	COMMUNICATION – CONFIGURATION	27
6.8	COMMUNICATION - DOWNLOAD	
6.9	COMMUNICATION - UPLOAD	
7	FAULTS, ALARMS AND POSSIBLE CAUSES	29

1 ABOUT THE MANUAL

This manual provides the necessary description for the operation of the CA/CC Converter CTW900 using the user programming module denominated SoftPLC. This manual must be used together with the CTW900 User's Manual and with the WLP Software Manual.

1.1 ABBREVIATIONS AND DEFINITIONS

- PLC: Programmable Logic Controller.
- **CRC:** Cycling Redundancy Check.
- RAM: Random Access Memory.
- WLP: Ladder Language Programming Software.
- **USB:** Universal Serial Bus.

1.2 NUMERICAL REPRESENTATION

Decimal numbers are represented by means of digits without suffix. Hexadecimal numbers are represented with the letter 'h' after the number.

2 INTRODUCTION TO THE SOFTPLC

The SoftPLC is a feature that incorporates to the CTW900 the functionalities of a PLC, adding flexibility to the product and allowing the user to develop applicative software (user programs).

The SoftPLC main features are:

- Ladder language programming, by using the WLP software.
- Access to all the CTW900 parameters and I/Os.
- 50 configurable user parameters.
- PLC, mathematical and control blocks.
- Applicative software transfer and on-line monitoring via USB.
- Transfer of the installed applicative software to the PC conditioned to a password.
- Storage of the applicative software in the FLASH memory board.
- Execution directly in the RAM memory.

2.1 SYMBOLS AND DATA TYPES

- %KW word type constants (16 bits).
- %KF float type constants (32 bits, floating point).
- %MX bit marker.
- %MW word marker (16 bits).
- %MF float marker (32 bits, floating point).
- %SX system bit marker.
- %SW system word marker (16 bits).
- %IX digital inputs.
- %IW analog inputs (16 bits).
- %QX digital outputs.
- %QW analog outputs (16 bits).

3 SOFTPLC MEMORY

The total size of the SoftPLC memory is 15360 bytes, divided between program memory and data memory. This amount can be reduced depending on the Trace function use.

3.1 MEMORY DIVISION

Trace function: 15360 x P0560/100
 SoftPLC function: 15360 x 100 - P0560/100

NOTE! P0560 = "Trace Memory", given in percentage. 100.0% is equal to 15360 bytes.

3.2 DATA MEMORY

In the SoftPLC, the data memory area (user variables) is shared with the program memory area. Therefore, the total size of an applicative may vary as a function of the number of variables applied by the user.

The bit, word and float markers are allocated according to the LAST address used in the applicative, i.e., the higher the last address, the bigger the allocated area. Therefore, it is recommended to use the markers in a SEQUENTIAL manner.

The word and float constants do also use the program memory area.

3.2.1 Constants

Sym.	Description	Bytes		
%KW	Word Constants (16 bits)	It depends on the quantity of different E.g.: If there were used: - %KW: 327 - %KW: 5; 67 - %KW: 13; 1000; 4	word constants. = 2 bytes = 4 bytes = 6 bytes	
%KF	Float Constants (32 bits – IEEE)	It depends on the quantity of different float constants. E.g.: If there were used: - %KF: -0,335 = 4 bytes - %KF: 5,1; 114,2 = 8 bytes - %KF: 0,0; 115,3; 13,333 = 12 bytes		

Table 3.1: Constant Memory Map

3.2.2 Physical Inputs and Outputs (Hardware)

Table 3.2: I/O Memory Map

Sym.	Description	Range	Bytes
%IX	Digital inputs	18	1
%QX	Digital outputs	1 5	1
%IW	Analog inputs	1 4	8
%QW	Analog outputs	1 4	8

\oslash	NOTE! The analog input (% SoftPLC, respect th P0258, P0261: %Q	IW) and analog output (%QW) values, respectively read and written via the eir gains (P0232, P0237, P0242, P0247: %IW1-%IW4 and P0252, P0255, W1-%QW4) and offsets (P0234, P0239, P0244, P0249: %IW1-%IW4).
	NOTE! The values read or w to the analog input P0253, P0256, P025 © Option: 0 to 10 V 0 V or 0 mA 10 V or 20 mA © Option: 4 to 20 m 4 mA 20 mA © Option: 10 V / 20 10 V or 20 mA 0 V or 0 mA © Option: 20 to 4 m 20 mA 4 mA © Option: -10 to +10 -10 V -5 V 0 +10 V © Option: 20 to 0 m 20 mA 0 mA	written via SoftPLC obey the following rules, respecting the parameters related and output signal types (P0233, P0238, P0243, P0248: %IW1-%IW4 and 59, P0262: %QW1-%QW4): / 20 mA = 0 = 32767 A = 0 = 32767 mA to 0 = 0 = 32767 A = 0 = 32767 OV = -32768 (or 32768 for a parameter without sign) = -16384 (or 49152 for a parameter without sign) = 0 = 32767 A = 0 = 32767

3.2.3 Volatile Markers (Variables)

They consist of variables that can be applied by the user to execute the applicative logics. They can be bit markers (1 bit), word markers (16 bit) or float markers (32 bit – IEEE).

Sym.	Description	Range	Quantity of Allocate	d Bytes
%MX	Bit markers	5000 6099	It depends on the last used marker. in byte pairs. E.g.:	They are organized
			- last marker: %MX5000	= 2 bytes
			- last marker: %MX5014	= 2 bytes
			- last marker: %MX5016	= 4 bytes
			- last marker: %MX5039	= 6 bytes
%MW	Word markers	8000 8199	It depends on the last used marker.	E.g.:
			- last marker: %MX8000	= 2 bytes
			- last marker: %MX8001	= 4 bytes
			- last marker: %MX8007	= 16 bytes
%MF	Float markers	9000 9199	It depends on the last used marker. E.g.:	
			- last marker: %MX9000	= 4 bytes
			- last marker: %MX9001	= 8 bytes
			- last marker: %MX9007	= 32 bytes

T. I.I. 0.0	VI-I-II- AA-I-	
Table 3.3:	volatile ivlarker	wernory wap

NOTE!

In order to minimize the applicative size, use the markers in a sequential manner. E.g.:

- Bit markers: %MX5000, %MX5001, %MX5002.
- Word markers: %MW8000, %MW8001, %MW8002.
- Float markers: %MF9000, %MF9001, %MF9002.

3.2.4 System Markers

They consist of special variables that allow the user to read and change converter data that may or may not be available in the parameters. They can be: system bit markers (1 bit) or system word markers (16 bits).

Sym.	D	escription	Range	Bytes
Туре	System I	oits	3000 3040	4 bytes
%SX Writin		Vriting/Command (odd)		
	3001	1 General Enable		0: It disables the firing pulses of armature, interrupting the supply for the motor.
				1: It enables the firing pulses of armature, allowing the motor operation.
	3003	Run		0: It stops the motor by deceleration ramp.
				1: It starts the motor according the acceleration ramp up to reach the speed reference.
	3005	Reverse		0: It runs the motor in the forward direction.
				1: It runs the motor in the reverse direction.
	3007	JOG		0: It disables the JOG function.
				1: It enables the JOG function.
	3009	Remote		0: The converter goes to the LOCAL situation.
				1: The converter goes to the REMOTE situation.
	3011	Fault Reset		0: No function.
				1: If in a fault condition, it executes the reset of the converter.
				NOTE: When this command is executed the converter and the SoftPLC applicative are reinitialized. This is also valid for the reset via HMI.
	3013	Quick Stop		0: It does not execute the quick stop command. 1: It executes the quick stop command.
	3021 Second Ramp			 0: The converter uses the first ramp values, programmed in P0100 and P0101, as the motor acceleration and deceleration ramp times. 1: The converter is configured to use the second ramp values, programmed in P0102 and P0103, as the motor acceleration and deceleration ramp times. Obs.: Program P0105 in 5 to enable the selection by SoftPLC.

Sym.	n. Description Range		Range	Bytes		
Туре	System I	bits	3000 3040	4 bytes		
%SX	Reading	/Status (even)				
	3000	Enabled (READY)		0: The converter is not enabled.		
				1: The converter is enabled and ready to run the motor.		
	3002	Running		0: The converter is not sending the programmed reference to the motor.		
				1: The converter is running with the programmed reference.		
	3004	Reverse		0: The rotation is defined to the forward direction.		
				1: The rotation is defined to the reverse direction.		
	3006	JOG		0: The JOG function is not enabled.		
				1: The JOG function is enabled.		
	3008	Remote		0: The converter is in Local mode.		
				1: The converter is in Remote mode.		
	3010	With Fault		0: The converter is not in a fault condition.		
				1: The converter has detected a fault.		
				Obs.: The fault number can be read by means of the parameter P0049 -		
				Present Fault.		
	3012	Undervoltage		0: No undervoltage.		
				1: With undervoltage.		
	3014	4 FWD/REV Change		0: No function.		
				1: The converter is changing the direction of rotation.		
	3016	With Alarm		0: It is not in alarm condition.		
				1: It is in alarm condition.		
				Note: The alarm humber can be read by means of the parameter		
	2000	Cocond Domo		PUUZ I - Fleseni Aidin.		
	3020			1. It indicates that the second ramp is active.		
	2022	Rlockod		1. It indicates that the second ramp is active.		
	3022	DIOCKEU		1. The converter is blocked by logic stop.		
	3024	In Acceleration		0: The converter is not running the accelerating ramp		
	0024	In Acceleration		1. The converter is running the accelerating ramp.		
	3026	In Deceleration		O: The converter is not running the decelerating ramp		
	0020			1: The converter is running the decelerating ramp.		
	3028	Self-tuning		0: The converter is not running the self-tuning routine.		
				1: The converter is running the self-tuning routine.		
	3032	Start key (1)		0: Not pressed.		
	3034	Stop key (0)		1: Pressed during 1 scan cycle.		
	3036	Rotation Direction	n key (ひ)			
	3038	Local/Remote key	/			
	3040	JOG key		0: Not pressed.		
				1: Pressed.		

Table 3.4.b: Memory Map for the Even System Bits

Table 3.5: Memory Map for the Word System Markers

Sym.		Description	Range	Bytes
%SW	System Words		3300 3320	22 bytes
	Reading/	'Status (Even)		
	3300	Motor Speed [13 bits]		
	3302	Motor Rated Speed [rpm]		
	3304	Motor Speed [rpm]		
	3306	Speed Reference [rpm]		
	3308	Alarm		
	3310 Fault			

NOTE!

The system Word markers %SW3300 and %SW3301 use a 13 bits resolution (0 to 8191), that represents the rated speed of the motor (P0402). This way, for a motor with rated speed of 1800 rpm, if the speed reference by SoftPLC (%SW3301) is set to 4096, the motor will run at 900 rpm.

NOTE! Equation to calculate the motor speed in rpm:

Speed in rpm = $\frac{\text{Rated Speed in rpm x Speed in 13 bits}}{8192}$

3.2.5 Parameters

Parameters P1001 to P1059 do only appear on the CTW900 HMI when there is a valid applicative (user program) in the memory, i.e., P1000 > 0.

Sym.	Description	Range	Bytes	
%PW	System parameters (refer to the CTW900 User's Manual)	0999		
	SoftPLC Parameters	1000 1059	6 bytes	
	P1000: SoftPLC Status	0: No Applicative		
	[Read-only parameter]	1: Installing Applica	1: Installing Applicative	
		2: Incompatible Ap	plicative.	
		3: Stopped Applic	ative	
		4: Running Applica	ative	
	P1001: SoftPLC Control	0: Stop Applicative	9	
		1: Run Applicative 2: Delete Applicati	ve	
	P1002: Scan Cycle Time [ms]			
	[Read-only parameter]			
%UW	User Parameters	1010 1059	100 bytes	

3.3 MODBUS

3.3.1 SoftPLC Addresses in the Modbus Protocol

Table 3.7:	SoftPLC x	Modbus	Addresses	Range
------------	-----------	--------	-----------	-------

Sym.	Description	SoftPLC	Modbus
%IX	Digital inputs	1 8	22012208
%QX	Digital outputs	1 5	24012405
%IW	Analog inputs	1 4	26012604
%QW	Analog outputs	1 4	28012804

NOTE!

All the other data types have user addresses (SoftPLC) equal to the Modbus addresses. E.g., %PW100 = Modbus address 100; %MX5000 = Modbus address 5000; %SW3308 = Modbus address 3308.

3.3.2 Protocol

Refer to Modbus protocol chapter in the CTW900 Modbus RTU User's Manual.

4 SUMMARY OF THE FUNCTION BLOCKS

A summary of the function blocks that are available for the user programming will be presented in this chapter.

4.1 CONTACTS

They send to the stack the content of a programmed data (0 or 1), which may be of the type:

- %MX: Bit Marker.
- %IX: Digital Input.
- %QX: Digital Output.
- %UW: User Parameter.
- %SX: System Bit Marker Reading.

4.1.1 Normally Open Contact – NO CONTACT

Menu: Insert - Contacts - NO CONTACT. E.g.: It sends to the stack the content of the bit marker 5000.

4.1.2 Normally Closed Contact – NC CONTACT

Menu: Insert - Contacts - NC CONTACT.

E.g.: It sends to the stack the negated content of the digital output 1.

4.1.3 AND Logic with Contacts

When the contacts are in series, an AND logic is executed among them, storing the result in the stack. Examples:

Example	Truth Table			
%IX1 %IX2	%IX1	%IX2	Stack	
	0	0	0	
	0	1	0	
	1	0	0	
%IX1.%IX2	1	1	1	
%UW1010 %OV1	%UW1010	%QX1	Stack	
700 W1010 702A1	0	0	0	
	0	1	0	
	1	0	1	
%UW1010. (~%QX1)	1	1	0	

4.1.4 **OR Logic with Contacts**

When the contacts are in parallel, an OR logic is executed among them, storing the result in the stack. Examples:

Example	Operation	Т	ruth Table	
%IX1		%IX1	%IX2	Stack
1.1		0	0	0
	0/1×1 + 0/1×0	0	1	1
%IX2	701/1 + 701/2	1	0	1
		1 1	1	
\neg				
%IIW1010		%UW1010	%QX1	Stack
		0	0	1
-1		0	1	0
%OX1	%UW1010 + (~%QX1)	1	0	1
i a l		1	1	1

4.2 COILS

They save the stack content (0 or 1) in the programmed element:

- %MX: Bit Marker.
- %QX: Digital Output.
- %UW: User Parameter.
- %SX: System Bit Marker Writing.

It is allowed to add coils in parallel at the last column.

4.2.1 Normal Coil – COIL

4.2.2 Negated Coil – NEG COIL

%QX2 Menu: Insert - Coils - NEG COIL E.g.: It sets the digital output 2 with the negated content of the stack.

4.2.3 Set Coil – SET COIL

%UW1011 Menu: Insert - Coils - SET COIL -(<u>S</u>)-E.g.: It sets the user parameter P1011, provided that the content of the stack is not 0.

4.2.4 Reset Coil – RESET COIL

E.g.: It resets the user parameter P1011, provided that the content of the stack is not 0.

4.2.5 Positive Transition Coil – PTS COIL

Menu: Insert - Coils - PTS COIL E.g.: It sets the bit marker 5002 during 1 scan cycle, provided that a transition from 0 to 1 in the stack is detected.

4.2.6 Negative Transition Coil – NTS COIL

Menu: Insert - Coils - NTS COIL E.g.: It sets the system bit marker 3011 during 1 scan cycle, provided that a transition from 1 to 0 in the stack is detected.

4.3 PLC BLOCKS

4.3.1 Timer – TON

In the example above, if the IN input is active and the content of the word marker 8000 is higher or equal than the content of the user parameter P1010, the output Q is set.

4.3.2 Real Time Clock – RTC

-	EN RTC Q		Menu:	Insert - Function Blocks - PLC - RTC
Mon-Tue-Wed-Thu-Fri 0	WEEK ERROR ♦ %	QX1	EN:	Enables the block
0 0 23 59			Q:	Goes to 1 when $IN \neq 0$ and the current time is posterior to the turning on time and anterior to the turning off time.
59	S]		Properties:	
Normal	▶ Q_OPT		WEEK:	Days of the week
Generate Alarm	ONERROR		H-T.ON:	Turning on hour
			M-T.ON:	Turning on minute
			S-T.ON:	Turning on second
			H-T.OFF:	Turning off hour
			M-T.OFF:	Turning off minute
			S-T.OFF:	Turning off second
			Q_OPT:	0: normal Q output, 1: inverted Q output
			ONERROR:	0: Generates A700 alarm, 1: Generates F701 fault
			ERROR:	It goes to 1 when there is an error in the block.

In the example above, if the EN input is active, the output Q is set every day from Monday through Friday between 7:30 and 9:00.

4.3.3 Incremental Counter – CTU

_	си сти	Q.—	Menu: Inputs:	Insert - Function Blocks - PLC - CTU
_	R		CU:	Captures the transitions from 0 to 1 at this input (Counter Up)
20)	PV	cv ♦ %MW8001	R: Output:	Resets CV
			Q: Properties:	Goes to 1 when $CV \ge PV$
			PV: CV:	Programmed Value (Preset Value) Counter Value

In the example above, if the content of the word marker 8001 is higher or equal than 20, the output Q is set.

4.3.4 Proportional-Integral-Derivative Controller – PID

- %UW1010 %MF9001	EN PID SELREF REF	EN0 OUT	Menu: Inputs: EN: Output:	Insert - Function Blocks - PLC - PID Enables the block
0.050 %MF9002 %MF9003	 CREF REFMANUAL FEEDBACK 		ENO: Properties:	EN input image
%MF9005 %MF9006 0.00e+000 1.00e+002 -1.00e+002	KP KI KD MAX MIN		SELREF: REF: δREF: REFMANUA	Automatic/manual reference Automatic reference Automatic reference filter time constant AL: Manual reference
Academic/Direct	▼ TYPE/OPT		FEEDBACK KP: KI: KD: MAX: MIN: TYPE: OPT: OUT:	2: Process feedback Proportional gain Integral gain Derivative gain Maximum output value Minimum output value Academic/parallel Direct/reverse Controller output

In the example above, if the EN input is active, the controller starts its operation. The content of the user parameter P1010 selects the reference that is active, i.e., whether it is the float marker 9001 (automatic reference) or the 9003 (manual reference). There is a 0.05s filter for the automatic reference. Since the derivative gain is fixed in 0, this indicates that the PID was converted into a PI. The control output OUT, represented by the float marker 9004, has the maximum and minimum limits of 100 and -100.

4.3.5 Low-Pass or High-Pass Filter – FILTER

EN FILTER ENO	Menu: Inputs:	Insert - Function Blocks - PLC - FILTER
%MF9000 ► IN OUT ► %MF9001 2.50e-001 ► TIME CONST	EN: Output:	Enables the block
Low-pass FITE	ENO:	EN input image
	Properties	
	TS:	Sampling Time
	IN:	Input data
	TIMECONS	ST: Filter time constant
	TYPE: OUT:	Low-pass/High-pass Input data filtered value

In the example above, if the EN input is active, the content of the float marker 9000 will be filtered with a time constant of 0.25s by means of a low-pass filter and will be transferred to the float marker 9001.

CALCULATION BLOCKS 4.4

4.4.1 Comparator – COMP

EN COMP ENO	Menu: Input:	Insert - Function Blocks – Calculation - COMP
%MF9000 ► DATA 1 > ► OPERATOR */MF9001 ► DATA 2	EN: Output:	Enables the block
	ENO:	Goes to 1 when the comparison condition is fulfilled
	Properties:	
	FORMAT:	Integer or floating point
	DATA 1:	Comparison data 1
	OPERATOR	Comparison operator
	DATA 2:	Comparison data 2

In the example above, if the EN input is active and the content of the float marker 9000 is higher than the content of the float marker 9001, then the output ENO is set.

NOTE!

If the FORMAT is integer, all the numeric data are considered words of 15 bits + sign (-32768 to 32767).

4.4.2 Mathematical Operation – MATH

Menu: Input: EN: Output: ENO:	Insert - Function Blocks - Calculation - MATH Enables the block Indicates whether the calculation has been
Properties:	executed
FORMAT:	Integer or floating point
DATA1:	Calculation data 1. It may also appear as DATA1H and DATA1L (representing the high and low parts of the data 1)
OPERATOF	R:Mathematic operator (+, -, *, etc)
DATA2:	Calculation data 2. It may also appear as DATA2H and DATA2L (representing the high and low parts of the data 2)
RES:	Calculation result. It may also appear as RESH and RESL (representing the high and low parts of the result) and also as QUOC and REM (representing the quotient and the reminder of a division)
OVER: SIGNAL:	Indicates whether the result exceeded its limit Result sign

In the example above, if the EN input is active, the value of the word marker 8000 is incremented at each scan cycle. When the bit marker 5000 goes to 1, it indicates overflow and the word marker 8000 remains in 32767.

NOTE!

If the FORMAT is integer, all the numeric data are considered words of 15 bits + sign (-32768 to 32767).

4.4.3 Mathematical Function – FUNC

- EN FUNC ENO	Menu: Input:	Insert - Function Blocks - Calculation - FUNC
%MF9000 ► IN OUT ► %MF9001 sin ► FUNCTION	EN: Output:	Enables the block
	ENO:	Indicates whether the calculation has been executed
	Properties:	
	FORMAT:	Integer or floating point
	IN:	Data to be calculated
	FUNCTION:	Mathematic function (sin, cos, etc)
	OUT:	Calculation result

In the example above, if the EN input is active, the float marker 9001 presents the result of the float marker 9000 sine calculation.

NOTE! If the FORMAT is integer, all the numeric data are considered words of 15 bits + sign (-32768 to 32767).

4.4.4 Saturator – SAT

In the example above, when the EN input is active, the word marker 8000 contains the user parameter P1010 value, limited however, between the maximum of 100 and the minimum of -100.

NOTE!

If the FORMAT is integer, all the numeric data are considered words of 15 bits + sign (-32768 to 32767).

NOTE!

If the MIN value is higher than the MAX value, the outputs OUT and ENO are zeroed.

4.5 TRANSFER BLOCKS

4.5.1 Data Transfer – TRANSFER

_	EN TRANSFER END	Menu:	Insert - Function Blocks - Transfer - TRANSFER
1 🕨	SRC DST ♦ %\$X3001	Input: EN:	Enables the block
		ENO:	Indicates that the transfer has been done
		Properties:	
		SRC:	Source data
		DST:	Destination data

In the example above, if the EN input is active, the word constant 1 is transferred to the system bit marker 3001 (general enable).

4.5.2 Conversion from Integer (16 bit) to Floating Point – INT2FL

-	EN	INT2FL ENO	ŀ	Menu: Input:	Insert - Function Blocks - Transfer - INT2FL
%MW8153	INT	FLOAT	• %MF9005	EN:	Enables the block
			l	ENO:	Indicates that the transfer has been done
				INT: FLOAT:	Integer data Data converted into floating point

In the example above, if the EN input is active, the content of the word marker 8153 (taking into account its sign) is converted into floating point to the float marker 9005.

NOTE!

INT is treated as a word of 15 bits + sign (-32768 to 32767).

4.5.3 User Fault or Alarm Generator – USERERR

EN USERERR ENO	Menu: Input:	Insert - Function Blocks - Transfer - USERERR
750 ► CODE Alarm ► TYPE Low ► TEXT 1	EN: Output:	Enables the block
pressure TEXTL2	ENÖ:	Indicates 1 when EN = 1 and the alarm or the fault was actually generated.
	Properties:	
	CODE:	Alarm or fault code
	TYPE:	0: Generates alarm, 1: Generates fault
	TEXTL1: TEXTL2:	HMI line 1 text HMI line 2 text

In the example above, if the EN input is active, A750 will appear with the "Low pressure" text on the HMI.

NOTE!

If this block is configured as Fault, it is necessary to reset the converter to remove the text from the HMI and be able to enable it again.

4.5.4 Conversion from Floating Point to Integer (16 bit) - FL2INT

_	EN FL2I	INT ENO	-	Menu:	Insert - Function Blocks - Transfer - FL2INT
4.54e+004	FLOAT	INT	• %MW8000	EN:	Enables the block
				Output: ENO:	Indicates that the transfer has been done
				Properties:	
				FLOAT: INT:	Floating point data Data converted into integer
				INT:	Data converted into integer

In the example above, if the EN input is active, the float constant 4.54 x 10⁴ is converted into an integer with sign via the word marker 8000. However, after the conversion, the word marker 8000 will remain with the value of 32767, because this is the positive limit of a word.

NOTE! INT is treated as a word of 15 bits + sign (-32768 to 32767).

4.5.5 Indirect Data Transfer – IDATA

In the example above, if the EN input is active, the content of the bit marker 5000 is written to the digital output whose address is the content of the word marker 8000.

4.5.6 Multiplexer – MUX

_	EN	MUX	EN0	Menu:	Insert - Function Blocks - Transfer - MUX
%IX1 🕨	хө		₩ ♦ %UW1010	Input: FN [.]	Enables the mathematic operation
%IX2 🕨	X1			Output	
%IX3 🕨	X2				
Disable 🕨	ХЗ			ENO:	indicates that the transfer has been done
Disable 🕨	X4			Properties:	
Disable 🕨	X5			X0-X15:	Binary data vector
Disable 🕨	X6			W:	Resulting word
Disable 🕨	X7				ő
Disable 🕨	X8				
Disable 🕨	Х9				
Disable 🕨	X10				
Disable 🖡	X11				
Disable 🕨	X12				
Disable 🕨	X13				
Disable 🕨	X14				
Disable 🕨	X15				

In the example above, when the EN input is active, the digital inputs 1, 2 and 3 transfer their content to the bits 0, 1 and 2 of the user parameter P1010.

4.5.7 Demultiplexer – DMUX

In the example above, when the EN input is active, the bits 1, 2, 5, 6, 11, 13 and 15 of the word marker 8000 are transferred respectively to the bit markers 5001, 5002, 5005, 5006, 5011, 5013 and 5015.

5 CTW900 PARAMETER SETTINGS

Next, only the CTW900 parameters related to the SoftPLC will be presented.

5.1 SIMBOLS FOR PROPERTIES DESCRIPTION

- RO: Read-only parameter.
- CFG1: Configuration parameter level 1: modification not allowed with converter running.

5.2 CTW900 CONFIGURATION PARAMETERS

P0100 – Acceleration Ramp

P0101 – Deceleration Ramp

P0220 – LOCAL/REMOTE Mode Selection

P0221 – Speed Reference Selection in LOCAL Mode

P0222 – Speed Reference Selection in REMOTE Mode

P0223 – Forward/Reverse Selection in LOCAL Mode

P0226 – Forward/Reverse Selection in REMOTE Mode

P0224 – Run/Stop Selection in LOCAL Mode

P0227 – Run/Stop Selection in REMOTE Mode

P0225 – JOG Selection in LOCAL Mode

P0228 – JOG Selection in REMOTE Mode

P0251 – AO1 Function

P0254 – AO2 Function

P0257-AO3 Function

P0260 – AO4 Function

P0275 – DO1 Function

P0276 – DO2 Function

P0277 – DO3 Function

P0278 – DO4 Function

P0279 – DO5 Function

P0560 – Trace Available Memory

NOTE!

For further information, refer to the CTW900 User's Manual.

5.3 SOFTPLC EXCLUSIVE PARAMETERS

P1000 – SoftPLC Status

Adjustable Range:	0 = No Applicative 1 = Installing Applicative 2 = Incompatible Applicative 3 = Stopped Applicative	Factory Setting: -
	4 - Running Applicative	
Properties: RO		
Access groups	via HMI: 01 PARAMETER GROUPS	
0	L 40 SoftPLC	

Description:

It allows the user to visualize the SoftPLC status. If there is no installed applicative, the parameters from P1001 to P1059 will not be showed on the HMI.

If this parameter presents the option 2 (Incompatible App.), it indicates that the version that has been loaded in the flash memory board is not compatible with the current CTW900 firmware.

In this case, it is necessary to recompile the project in the WLP considering the new CTW900 version, and to download it again. If this is not possible, the upload of this applicative with the WLP can be done, provided that the applicative password is known or that the password is not enabled.

P1001 – SoftF	LC Control	
Adjustable	0 = Stop Applicative	Factory Setting: 0
Range	1 – Run Applicative	

Properties: CFG1

Access groups via HMI:	01 PARAMETER GROUPS	
	∟ 40 SoftPLC	

2 = Delete Applicative

Description:

It allows stopping, running or deleting an installed applicative. Therefore, the converter cannot be Running.

P1002 – Scan Cy	rcle Time	
Adjustable Range:	0 to 65535 ms	Factory Setting: -
Properties: RO		
Access groups	via HMI: 01 PARAMETER GROUPS ∟ 40 SoftPLC	

Description:

It consists in the applicative scanning time. The bigger the applicative, the longer the scanning time will be.

P1010 to P1059 – SoftPLC Parameters

Adjustable -32768 to 32767 Range: Factory Setting: 0

Properties: CFG1

L 40 SoftPLC

Description:

They consist of parameters with functions defined by the user by means of the WLP software. It is also possible for the user to configure these parameters as described in the section 6.5.

NOTE!

Parameters P1010 to P1019 can be visualized in the monitoring mode.

NOTE!

When P1011 is a writing parameter and it is programmed in P0205, P0206 or P0207, then its content can be changed with the HMI and vertices.

6 SUMMARY OF THE WLP MAIN FUNCTIONS

This chapter brings basic information on the operations performed with the WLP software for the CTW900 programming. Further information can be obtained in the WLP software help.

6.1 PROJECT – NEW

It creates a new project. Besides defining the project name, it is also necessary to configure the equipment and the respective firmware version.

New project	x
Name	<u>0</u> K
	<u>C</u> ancel
Equipment	
CTW900 -	
Firmware Version	
V1.00 💌	

6.2 PROJECT – OPEN

It opens the selected project.

ath				
:\weg\wlp v9.11\PROJECTS	ν			
oject				
Project	Equipment	Version		
CTW900 Falha FaltaTerra	CTW900	V1.00		Open Project
CTW900 Marcio	CTW900	V1.00	=	
SCA06 App1 Parametros	SCA06	V1.13		
SCA06_App2_Serial	SCA06	V1.13		
Tutor1	PLC1.01	V2.08		
Tutor10	PLC1.01	V1.80		
Tutor10e	PLC1.01	V1.80		
Tutor11	PLC1.01	V1.80		
Tutor11e	PLC1.01	V1.80		
Tutor1e	PLC1.01	V2.00		
Tutor2	PLC1.01	V1.80	Ŧ	

6.3 **PROJECT – PROPERTIES**

It allows the user to redefine the equipment and the firmware version. In this box it is also configured whether the project will have an upload password.

6.4 VIEW - COMPILATION INFORMATION

It allows the user to know the size in bytes of the compiled applicative (<projectname>.bin) to be sent to the equipment.

mpilation Info		×
WEG Ladder Prog Copyright (C) 1 ***** COMPILER	rammer V9.11 999-2012 WEG. All rights reserved. INFORMATION *****	E
- Equipament - Project - Time - Date - Elapsed time	: : CTW900.LDD : 16:58:29 : Tuesday, June 04, 2013 : 0 segcond(s)	
•		4
	<u>C</u> lose <u>H</u> elp	

6.5 VIEW – USER PARAMETER CONFIGURATION

It opens an attribute visualization window for all the user parameters. With a double click on the parameter, it is possible to configure these attributes, which include:

- Parameter descriptive text on the HMI (up to 21 characters).
- Text for the units (up to 5 characters).
- Maximum and minimum limits.
- Number of decimal positions.
- Hexadecimal or decimal format.
- Writing or read-only.
- Modifications only with a stopped motor, or online.
- With or without sign.
- Ignores the password (allows modification regardless of P0000) or normal.
- Visualizes or hides the parameter.

Allows saving the parameter value on power down (retentive), when it is used in some blocks (PLC, Calculation and Transfer).

Configuration parameter that allows modification with the motor running.

These configurations can be transferred to the CTW900 with the "Download key".

Шер

User Par	ameters Configurati	on											x
Parameter	Tag	Unit Minimum	Maximum	Dec. Digit	Hexadecimal	Read Only	Stop Motor	Signal	Ignore Password	Show in HMI	Retentive	Press Save to Use	
P1010	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1011	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1012	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	=
P1013	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1014	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1015	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1016	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1017	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1018	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1019	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1020	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1021	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1022	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1023	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	
P1024	SoftPLC Paramete	-32768	32767	0	0	0	0	1	0	1	0	0	Ŧ
<u>E</u> dit	Edit Open Download Close												

6.6 CONSTRUCT - COMPILE

It analyses the applicative and generates the code for the specified equipment.

WEG Ladder P	Programmer V9.11	
Copyright (C	, 1999-2012 WEG. AIT FIGHTS RESERVED.	
Message sint	ax:	
File name (F	age,Line,Column) :	
Code : messa	ige	
CTWOOD RTN -	0 = 0 = 0	
- Aplication	size : 200 bytes	
4		

6.7 COMMUNICATION - CONFIGURATION

The USB port is used with the CTW900. Therefore, the USB driver must be installed. The driver is found in the DRIVER_USB folder, inside the WLP V8.XX.

Communication Configuration					
USB 🗸					
USB port with error. No device connected.					
Cancel					

6.8 COMMUNICATION – DOWNLOAD

This command allows downloading the applicative and/or the user parameter configurations to the CTW900.

Download Inf	formation
Equipament	CTW900 20A 1.07
File	CTW900.bin
Size	200 Bytes
Date	04/06/2013
Time	16:59:10
Download file	?
Yes	<u>N</u> o

6.9 COMMUNICATION - UPLOAD

This command makes it possible to upload and open the applicative that is installed in the CTW900, provided that the password is valid.

Jpload : New project	×
Name	<u>0</u> K
	<u>C</u> ancel
Equipment	
CTW900 -]
Firmware Version	
V1.00]

7 FAULTS, ALARMS AND POSSIBLE CAUSES

Table 7.1:	Faults,	alarms	and	possible	causes
------------	---------	--------	-----	----------	--------

Fault/Alarm	Description	Possible Causes
A700: Disconnected HMI	It is the alarm that occurs when the RTC block is active, the "Alarm" option is programmed and the HMI is not connected to the converter.	Verify if the HMI is connected to the converter. Search for unplugged connector, broken cable etc.
F701: Disconnected HMI	It is the fault that occurs when the RTC block is active, the "Fault" option is programmed and the HMI is not connected to the converter.	Verify if the HMI is connected to the converter. Search for unplugged connector, broken cable etc.
A702: Converter Disabled	It occurs when the movement block (REF block) and the general enabling command of the converter is not active.	Verify if the general enabling command of the converter is active.
A704: Two Movem. Enabled	It occurs when 2 or more movement blocks (REF block) are enabled simultaneously.	Verify the user program logic.
A706: Not Program. Refer. SPLC	It occurs when a movement block is enabled and the speed reference is not programmed for the SoftPLC.	Verify the programming of the reference in the local and/or remote modes (P0220 and P0221).

WEG Drives & Controls - Automação LTDA. Jaraguá do Sul - SC – Brazil Phone 55 (47) 3276-4000 - Fax 55 (47) 3276-4020 São Paulo - SP – Brazil Phone 55 (11) 5053-2300 - Fax 55 (11) 5052-4212 <u>automacao@weg.net</u> www.weg.net