
 
Motors I Automation I Energy I Transmission & Distribution I Coatings 

 
 
 
 
 
 
 
 
 
 
 

Modbus RTU 
 

PLC300 
 
 
 
 
 

User’s Manual 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modbus RTU User’s Manual 
 

Series: PLC300 
 

Language: English 
 

Document Number: 10002233450 / 00 
 
 

Publication Date: 04/2013 
 



Contents 

PLC300 | 3 

CONTENTS 

CONTENTS ............................................................................................................................... 3 

ABOUT THIS MANUAL............................................................................................................ 5 

ABBREVIATIONS AND DEFINITIONS ........................................................................................... 5 
NUMERICAL REPRESENTATION ................................................................................................ 5 
DOCUMENTS ............................................................................................................................ 5 

1 INTRODUCTION TO SERIAL COMMUNICATION ......................................................... 6 

2 NETWORK CONNECTIONS ............................................................................................. 7 

2.1 RS232 .............................................................................................................................. 7 
2.1.1 RS232 Interface Characteristics .................................................................................. 7 
2.1.2 Connector pinout ....................................................................................................... 7 
2.1.3 Connection with the RS232 Network ........................................................................... 7 

2.2 RS485 .............................................................................................................................. 7 
2.2.1 RS485 Interface Characteristics .................................................................................. 7 
2.2.2 Connector pinout ....................................................................................................... 7 
2.2.3 Indications................................................................................................................. 8 
2.2.4 Switches to Enable to Terminating resistor.................................................................. 8 
2.2.5 Connection with the RS485 Network ........................................................................... 8 

3 INTERFACE CONFIGURATION ....................................................................................... 9 

3.1 RS232 CONFIGURATION................................................................................................... 9 
BAUD RATE............................................................................................................................... 9 
PARITY ..................................................................................................................................... 9 
STOP BITS ................................................................................................................................ 9 
3.2 RS485 CONFIGURATION................................................................................................. 10 
BAUD RATE............................................................................................................................. 10 
PARITY ................................................................................................................................... 10 
STOP BITS .............................................................................................................................. 10 
OPERATION MODE .................................................................................................................. 10 
SLAVE ADDRESS ..................................................................................................................... 11 

4 MODBUS RTU PROTOCOL............................................................................................ 12 

4.1 TRANSMISSION MODES................................................................................................. 12 
4.2 MESSAGE STRUCTURE FOR RTU MODE ........................................................................ 12 

4.2.1 Address ................................................................................................................... 12 
4.2.2 Function Code ......................................................................................................... 12 
4.2.3 Data Field ................................................................................................................ 12 
4.2.4 CRC ........................................................................................................................ 12 
4.2.5 Time Between Messages .......................................................................................... 12 

5 OPERATION IN THE MODBUS RTU NETWORK – SLAVE MODE ............................ 14 

5.1 AVAILABLE FUNCTIONS AND RESPONSE TIMES............................................................. 14 
5.2 MEMORY MAP ............................................................................................................... 15 

5.2.1 Reading System Marker – %SB / %SW / %SD ........................................................... 15 
5.2.2 Command System Marker – %CB / %CW / %CD ....................................................... 15 
5.2.3 Inputs – %IB / %IW / %ID ......................................................................................... 15 
5.2.4 Outputs – %QB / %QW / %QD .................................................................................. 15 
5.2.5 Network Inputs – %IB / %IW / %ID............................................................................ 16 
5.2.6 Network Outputs – %QB / %QW / %QD .................................................................... 16 
5.2.7 Internal Marker – %MB / %MW / %MD ...................................................................... 16 



Contents 

PLC300 | 4 

5.3 DATA ACCESS ............................................................................................................... 16 

6 DETAILED DESCRIPTION OF THE FUNCTIONS ........................................................ 20 

6.1 FUNCTION 01 – READ COILS .......................................................................................... 20 
6.2 FUNCTION 02 – READ INPUT DISCRETE.......................................................................... 20 
6.3 FUNCTION 03 – READ HOLDING REGISTER..................................................................... 20 
6.4 FUNCTION 04 – READ INPUT REGISTER.......................................................................... 21 
6.5 FUNCTION 05 – WRITE SINGLE COIL............................................................................... 21 
6.6 FUNCTION 06 – WRITE SINGLE REGISTER ...................................................................... 22 
6.7 FUNCTION 15 – WRITE MULTIPLE COILS ........................................................................ 22 
FUNCTION 16 – WRITE MULTIPLE REGISTERS ......................................................................... 23 
6.8 FUNCTION 43 – READ DEVICE IDENTIFICATION .............................................................. 24 
6.9 COMMUNICATION ERRORS ........................................................................................... 25 

7 OPERATION IN THE MODBUS RTU NETWORK – MASTER MODE ........................ 27 

7.1 BLOCKS TO PROGRAM THE MASTER............................................................................. 27 
7.1.1 MB Read Binary – Reading of Bits ............................................................................. 27 
7.1.2 MB Read Register – Reading of Registers.................................................................. 28 
7.1.3 MB Write Binary – Writing of Bits............................................................................... 30 
7.1.4 MB Write Register – Writing of Registers ................................................................... 31 
7.1.5 MB Master Control/Status – Control and Status of Modbus RTU Master ..................... 33 
7.1.6 MB Slave Status – Modbus RTU Network Slave Status ............................................... 34 

8 SYSTEM MARKERS FOR RS232 AND RS485 ............................................................. 36 

8.1 READING SYSTEM MARKERS......................................................................................... 36 
8.2 WRITING SYSTEM MARKERS ......................................................................................... 36 

I. APPENDICES ................................................................................................................... 38 

APPENDIX A. ASCII TABLE .................................................................................................... 38 
APPENDIX B. CRC CALCULATION USING TABLES ................................................................. 39 

 



About this Manual 

PLC300 | 5 

ABOUT THIS MANUAL 

This manual supplies the necessary information for the operation of the PLC300 programable controller using 
the Modbus RTU protocol. This manual must be used together with the PLC300 user manual. 

ABBREVIATIONS AND DEFINITIONS 

ASCII American Standard Code for Information Interchange 
CRC Cycling Redundancy Check 
EIA Electronic Industries Alliance 
TIA Telecommunications Industry Association 
RTU Remote Terminal Unit 

NUMERICAL REPRESENTATION 

Decimal numbers are represented by means of digits without suffix. Hexadecimal numbers are represented with 
the letter ‘h’ after the number. Binary numbers are represented with the letter ‘b’ after the number. 

DOCUMENTS 

The Modbus RTU protocol was developed based on the following specifications and documents: 
 

Document Version Source 
MODBUS Application Protocol Specification, December 
28th 2006. 

V1.1b MODBUS.ORG 

MODBUS Protocol Reference Guide, June 1996. Rev. J MODICON 
MODBUS over Serial Line, December 20th 2006. V1.02 MODBUS.ORG 

 
In order to obtain this documentation, consult MODBUS.ORG, which is nowadays the organization that keeps, 
publishes and updates the information related to the Modbus protocol. 



Introduction to Serial Communication 

PLC300 | 6 

1 INTRODUCTION TO SERIAL COMMUNICATION 

In a serial interface the data bits are sent sequentially through a communication channel or bus. Several 
technologies use the serial communication for data transfer, including the RS232 and RS485 interfaces. 
 
The directions that specify the RS232 and RS485 standards, however, do neither specify the character format, 
nor its sequence for the data transmission and reception. Therefore, besides the interface, it is also necessary to 
identify the protocol used for the communication. Among the several existent protocols, one used a lot in the 
industry is the Modbus RTU protocol. 
 
In the sequence the characteristics of the RS232 and RS485 serial interfaces available for the product will be 
presented, as well as the Modbus RTU protocol for the use of those interfaces. 
 



Network Connections 

PLC300 | 7 

2 NETWORK CONNECTIONS 

The PLC300 programable controller has standard RS232 and RS485 interfaces. Information about the 
connection and installation of the equipment to the network is presented bellow. 

2.1 RS232 

2.1.1 RS232 Interface Characteristics 

 The interface follows the EIA/TIA-232 standard. 
 It operates only as a slave in the Modbus RTU network, configured for network address 1. 
 It allows communication baud rates from 1200 up to 57600 Kbit/s. 
 It allows the connection between the device and the network master (point-to-point). 
 Maximum distance between devices: 10 meters. 

2.1.2 Connector pinout 

The RS232 interface is available at the XC3 connector with the following connections: 
 

Table 2.1: RS232 connector pinout 

Pin Name Function 
9 TX Data transmission (connected to 

the master RX) 
10 RX Data reception (connected to the 

master TX) 
11 GND Reference for RS232 circuit 

2.1.3 Connection with the RS232 Network 

 The slave RX and TX signals must be connected to the master TX and RX, besides the connection of the 
reference signal (GND). 

 The RS232 interface is very susceptible to interferences. For this reason, the cable used for communication 
must be as short as possible – always shorter than 10 meters – and must be laid separately from the power 
cables that supply other devices. 

2.2 RS485 

2.2.1 RS485 Interface Characteristics 

 The interface follows the EIA/TIA-485 standard. 
 It operates as a slave or master in the Modbus RTU network. 
 It allows communication baud rates from 1200 up to 57600 Kbit/s. 
 The interface is electrically isolated and with differential signal, which grants more robustness against 

electromagnetic interference. 
 It allows the connection of up to 32 devices to the same segment. More devices can be connected by using 

repeaters1. 
 A maximum bus length of 1000 meters. 

2.2.2 Connector pinout 

The RS485 interface is available at the XC3 connector with the following connections: 
 

Table 2.2: RS485 connector pinout 

Pin Name Function 
12 A-Line (-) RxD/TxD negative 
13 B-Line (+) RxD/TxD positive 
14 GND 0V isolated from the RS485 

circuit 

                                              
1 The limit number of devices that can be connected to the network depends also on the used protocol. 



Network Connections 

PLC300 | 8 

2.2.3 Indications 

Besides the system markers, which provide different kinds of information about the RS485 interface, the 
PLC300 programable controller has as bicolor LED – green and red – in the front part of the product used for 
Serial Interface indication. 

 
Figure 2.1: Indication LED of the Serial interface 

 
During the initialization of the equipment, both LEDs are On for test for a period of approximately 500 ms 
alternately. After this period, for the RS485 interface, they will make the following indications. 
 
 Green LED: turns on whenever a telegram is transmitted by the RS485 interface. 
 Red LED: turns on whenever a byte is incorrectly received (parity or frame error) or CRC error is detected in 

the telegram received by the RS485 interface. 

2.2.4 Switches to Enable to Terminating resistor 

 
 

It is necessary to enable a terminating resistor at both ends of the main bus for each segment of the RS485 
network. There are switches (S1) in the PLC300 programable controller that can be activated (by placing both 
switches to ON) to enable the terminating resistor. 

2.2.5 Connection with the RS485 Network 

The following points must be observed for the connection of the device using the RS485 interface: 
 
 It is recommended the use of a shielded cable with a twisted pair of wires. 
 It is also recommended that the cable has one more wire for the connection of the reference signal (GND). 

In case the cable does not have the additional wire, then the GND signal must be left disconnected. 
 The cable must be laid separately (and far away if possible) from the power cables. 
 All the network devices must be properly grounded, preferably at the same ground connection. The cable 

shield must also be grounded. 
 Enable the termination resistors only at two points, at the extremes of the main bus, even if there are 

derivations from the bus. 



Interface CONFIGURATION 

PLC300 | 9 

3 INTERFACE CONFIGURATION 

In order to configure the RS232 and RS485 interfaces, the following menus are provided by the Setup of the 
PLC300 programmable controller: 

3.1 RS232 CONFIGURATION 

BAUD RATE 
 
Range: 0 = 1200 bit/s Default: 4 
 1 = 2400 bit/s 
 2 = 4800 bit/s 
 3 = 9600 bit/s 
 4 = 19200 bit/s 
 5 = 38400 bit/s 
 6 = 57600 bit/s 
 
Description: 
It allows programming the baud rate for the serial communication interface, in bits per second. This baud rate 
must be the same for all the devices connected to the network. 
 
 
PARITY 
 
Range: 0 = no parity Default: 2 
 1 = odd parity 
 2 = even parity 
 
Description: 
It allows programming the parity of the serial interface bytes. This configuration must be identical for all the 
devices connected to the network. 
 
 
STOP BITS 
 
Range: 0 = 1 stop bit Default: 0 
 1 = 2 stop bits 
 
Description: 
It allows programming the stop bits of the serial interface bytes. This configuration must be identical for all the 
devices connected to the network. 
 
 

 
NOTE! 
The address of the Modbus RTU slave via RS232 interface is fixed in 1. 
 



Interface CONFIGURATION 

PLC300 | 10 

3.2 RS485 CONFIGURATION 

BAUD RATE 
 
Range: 0 = 1200 bit/s Default: 4 
 1 = 2400 bit/s 
 2 = 4800 bit/s 
 3 = 9600 bit/s 
 4 = 19200 bit/s 
 5 = 38400 bit/s 
 6 = 57600 bit/s 
 
Description: 
It allows programming the baud rate for the serial communication interface, in bits per second. This baud rate 
must be the same for all the devices connected to the network. 
 
 
PARITY 
 
Range: 0 = no parity Default: 2 
 1 = odd parity 
 2 = even parity 
 
Description: 
It allows programming the parity of the serial interface bytes. This configuration must be identical for all the 
devices connected to the network. 
 
 
STOP BITS 
 
Range: 0 = 1 stop bit Default: 0 
 1 = 2 stop bits 
 
Description: 
It allows programming the stop bits of the serial interface bytes. This configuration must be identical for all the 
devices connected to the network. 
 
 
OPERATION MODE 
 
Range: 0 = slave Default: 1 
 1 = master 
 
Description: 
Via RS485 interface, the PLC300 features two operating modes in the Modbus RTU network: 
 
 Slave: as slave of the network, it provides functions for the reading and writing of the data and markers 

used in the configuration and programming in ladder of the product. For further information about this 
operating mode, refer to item 5. 

 Master: as network master, the PLC300 provides blocks in ladder to send commands to the network 
slaves, according to the configuration in these blocks. In this mode, it will not be possible to access the 
data and configurations of the PLC300 via RS485 interface. Only one master can be configured to operate 
on the RS485 bus. For further information about this operating mode, refer to item 7 and the documentation 
of the WPS programming software. 

 
 



Interface CONFIGURATION 

PLC300 | 11 

SLAVE ADDRESS 
 
Range: 1 to 247 Default: 1 
 
Description: 
It allows programming the slave address used for the PLC300 in the Modbus RTU network via RS485 interface. 
This address is only used if the interface is programmed in the slave mode; it has no function if the PLC300 is 
programmed as network master. 



Modbus RTU Protocol 

PLC300 | 12 

4 MODBUS RTU PROTOCOL 

The Modbus RTU protocol was initially developed in 1979. Nowadays, it is a widely spread open protocol, used 
by several manufactures in many equipments. 

4.1 TRANSMISSION MODES 

Two transmission modes are defined in the protocol specification: ASCII and RTU. The modes define the way 
the message bytes are transmitted. It is not possible to use the two transmission modes in the same network. 
 
The PLC300 programable controller uses only the RTU mode for the telegram transmission. The bytes are 
transmitted in hexadecimal format and its configuration depends on the programming done by means of setup 
menu. 

4.2 MESSAGE STRUCTURE FOR RTU MODE 

The Modbus RTU structure uses a master-slave system for message exchange. It allows up to 247 slaves, but 
only one master. Every communication begins with the master making a request to a slave, which answers to 
the master what has been asked. In both telegrams (request and answer), the used structure is the same: 
Address, Function Code, Data and CRC. Only the data field can have a variable size, depending on what is 
being requested. 
 
Master (request telegram): 

Address 
(1 byte) 

Function 
(1 byte) 

Request Data 
(n bytes) 

CRC 
(2 bytes) 

 
Slave (response telegram): 

Address 
(1 byte) 

Function 
(1 byte) 

Response Data 
(n bytes) 

CRC 
(2 bytes) 

4.2.1 Address 

The master initiates the communication sending a byte with the address of the slave to which the message is 
destined. When sending the answer, the slave also initiates the telegram with its own address. The master can 
also send a message to the address 0 (zero), which means that the message is destined to all the slaves in the 
network (broadcast). In that case, no slave will answer to the master. 

4.2.2 Function Code 

This field also contains a single byte, where the master specifies the kind of service or function requested to the 
slave (reading, writing, etc.). According to the protocol, each function is used to access a specific type of data. 
 
For the available list of supported functions, refer to item 5. 

4.2.3 Data Field 

It is a variable size field. The format and contents of this field depend on the used function and the transmitted 
value. This field is described together with the function description (refer to item 5). 

4.2.4 CRC 

The last part of the telegram is the field for checking the transmission errors. The used method is the CRC-16 
(Cycling Redundancy Check). This field is formed by two bytes; where first the least significant byte is 
transmitted (CRC-), and then the most significant (CRC+). The CRC calculation form is described in the protocol 
specification; however, information for its implementation is also supplied in the Appendix B. 

4.2.5 Time Between Messages 

In the RTU mode there is no specific character that indicates the beginning or the end of a telegram. The 
indication of when a new message begins or when it ends is done by the absence of data transmission in the 
network, for a minimum period of 3.5 times the transmission time of a data byte (11 bits). Thus, in case a 



Modbus RTU Protocol 

PLC300 | 13 

telegram has initiated after the elapsing of this minimum time, the network elements will assume that the first 
received character represents the beginning of a new telegram. And in the same manner, the network elements 
will assume that the telegram has reached its end when after receiving the telegram elements, this time has 
elapsed again. 
 
If during the transmission of a telegram the time between the bytes is longer than this minimum time, the 
telegram will be considered invalid because the programable controller will discard the bytes already received 
and will mount a new telegram with the bytes that were being transmitted.  
 
For communication rates higher than 19200 bits/s, the used times are the same as for that rate. The next table 
shows us the times for different communication transmission rates: 
 

 
Table 4.1: Communication rates and the time periods involved in the telegram transmission 

Baud rate T11 bits T3,5x 
1200 bits/s 9.167 ms 32.083 ms 
2400 bits/s 4.583 ms 16.042 ms 
4800 bits/s 2.292 ms 8.021 ms 
9600 bits/s 1.146 ms 4.010 ms 

19200 bits/s 573 µs 2.005 ms 
38400 bits/s 573 µs 2.005 ms 
57600 bits/s 573 µs 2.005 ms 

 
 T11 bits = Time for transmitting one byte of the telegram. 
 Tbetween bytes = Time between bytes. 
 T3,5x = Minimum interval to indicated beginning and end of a telegram (3.5 x T11bits). 
 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 14 

5 OPERATION IN THE MODBUS RTU NETWORK – SLAVE MODE 

The PLC300 programable controller has the following characteristics when operated as a slave in Modbus RTU 
network: 
 
 Network connection via RS232 or RS485 serial interface. 
 Address2, communication rate and byte format defined by means of setup of the equipment. 
 It allows accessing all the markers and data used in the ladder program of the PLC300. 
 

 
NOTE! 
The RS232, RS485, USB and Ethernet interfaces, for using the same functions to access the data 
and programming of the equipment, must not be used simultaneously to perform program download 
or on-line monitoring functions of the programmable controller PLC300, because conflicts may occur 
during the simultaneous access to the data. 

5.1 AVAILABLE FUNCTIONS AND RESPONSE TIMES 

In the Modbus specification are defined the functions used to access different types of data. In the PLC300, in 
order to access those data the following services (or functions) have been made available: 
 
 Read Coils 
 Description: reading of bit blocks of the coil type. 
 Function code: 01. 
 
 Read Discrete Inputs 
 Description: reading of bit blocks of the discrete input type. 
 Function code: 02. 
 
 Read Holding Registers 
 Description: reading of register blocks of the holding register type. 
 Function code: 03. 
 
 Read Input Registers 
 Description: reading of register blocks of the input register type. 
 Function code: 04. 
 
 Write Single Coil 
 Description: writing in a single bit of the coil type. 
 Function code: 05. 
 
 Write Single Register 
 Description: writing in a single register of the holding type. 
 Function code: 06. 
 
 Write Multiple Coils 
 Description: writing in bit blocks of the coil type. 
 Function code: 15. 
 
 Write Multiple Registers 
 Description: writing in register blocks of the holding register type. 
 Function code: 16. 
 
 Read Device Identification 
 Description: identification of the device model. 
 Function code: 43. 
 
The response time, from the end of transmission of the master until the response of the slave, varies from the 
minimum time between bytes in the Modbus RTU communication to the equipment scan cycle value. 

                                              
2 Programmable address only for the RS485 interface; for the RS232 interface, the address is fixed in 1. 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 15 

5.2 MEMORY MAP 

The PLC300 programable controller has different types of data accessible through the Modbus communication. 
These data are mapped at data addresses and access functions as described in the following items. 
 

 
NOTE! 
The WPS programming software has lists that allow the viewing of all types of markers available for 
the PLC300. In these lists, there is a field for indication of the address of the Modbus register to 
access the marker. 

5.2.1 Reading System Marker – %SB / %SW / %SD 

The reading system markers represent the data of the PLC300 used for indication of status and monitoring of 
the equipment functions. 
 
 Access: read only. 
 Data type: input register or input discrete. 
 Modbus access functions: 02 and 04. 
 Modbus address range for access via input register: 3000 ... 4999. 
 Modbus address range for access via input discrete: 0 ... 15999. 
 
The system markers related to the serial communication available for the PLC300 are described in item 8. For 
the description of other markers available and function of each marker, refer to the user’s manual of the 
PLC300. 

5.2.2 Command System Marker – %CB / %CW / %CD 

The writing system markers represent the data of the PLC300 used to configure and control the equipment 
functions. 
 
 Access: read/write. 
 Data type: holding register or coil. 
 Modbus access functions: 01, 03, 05, 06, 15 and 16. 
 Modbus address range for access via holding register: 3000 ... 4999. 
 Modbus address range for access via coil. 0 ... 15999. 
 
The system markers related to the serial communication available for the PLC300 are described in item 8. For 
the description of other markers available and function of each marker, refer to the user’s manual of the 
PLC300. 

5.2.3 Inputs – %IB / %IW / %ID 

Markers that represent the data related to the physical analog and digital inputs, available on the hardware of 
the PLC300. 
 
 Access: read only. 
 Data type: input register or input discrete. 
 Modbus access functions: 02 and 04. 
 Modbus address range for access via input register: 5000 ... 5999. 
 Modbus address range for access via input discrete: 16000 ... 23999. 
 
For the precise description of which markers are available and function of each marker, refer to the user’s 
manual of the PLC300. 

5.2.4 Outputs – %QB / %QW / %QD 

Markers that represent the data related to the physical analog and digital outputs, available in hardware of the 
PLC300. 
 
 Access: read/write. 
 Data type: holding register or coil. 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 16 

 Modbus access functions: 01, 03, 05, 06, 15 and 16. 
 Modbus address range for access via holding register: 5000 ... 5999. 
 Modbus address range for access via coil. 16000 ... 23999. 
 
For the precise description of which markers are available and function of each marker, refer to the user’s 
manual of the PLC300. 

5.2.5 Network Inputs – %IB / %IW / %ID 

Markers that represent data related to values received through the PLC300 network interfaces. They have the 
same terminology as the physical inputs, but their numbering begins from marker 2000 (example: %IB2000). 
 
 Access: read only. 
 Data type: input register or input discrete. 
 Modbus access functions: 02 and 04. 
 Modbus address range for access via input register: 6000 ... 7999. 
 Modbus address range for access via input discrete: 24000 ... 39999. 

5.2.6 Network Outputs – %QB / %QW / %QD 

Markers that represent data related to values transmitted through the PLC300 network interfaces. They have 
the same nomenclature as the physical outputs, but their numbering begins from marker 2000 (example: 
%QB2000). 
 
 Access: read/write. 
 Data type: holding register or coil. 
 Modbus access functions: 01, 03, 05, 06, 15 and 16. 
 Modbus address range for access via holding register: 6000 ... 7999. 
 Modbus address range for access via coil. 24000 ... 39999. 

5.2.7 Internal Marker – %MB / %MW / %MD 

General purposes markers for programming in ladder of the PLC300. They represent the global variables, 
dynamically created during the development of the program on the WPS software. 
 
 Access: read/write. 
 Data type: holding register or coil. 
 Modbus access functions: 01, 03, 05, 06, 15 and 16. 
 Volatile markers: 
 Modbus address range for access via holding register: 8000 ... 27999. 
 Modbus address range for access via coil. 40000 ... 49999. 

 Retentive markers: 
 Modbus address range for access via holding register: 28000 ... 47999. 
 Modbus address range for access via coil. 50000 ... 59999. 

 
The quantity of markers available in this area depends on the markers created on the PLC300 programming 
software. In order to be able to access the desired marker, first it is necessary to create this marker and 
download the user's program using the programming software. 
 

 
NOTE! 
The quantity of data accessible via coils and input discretes do not correspond to the entire memory 
area accessible via registers. For example, if it is created a quantity of markers on memory greater 
than the quantity accessible via coil (10000 bits = 1250 bytes), the additional markers can only be 
accessed via holding registers. 

5.3 DATA ACCESS 

Each of the memory regions described above is distributed in bytes. The Modbus protocol, though, allows the 
access to be performed only by bits of by registers of 16 bits. In order to access these memory regions, it is 
necessary to establish the relationship between the type and numbering of the data on the PLC300 with the 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 17 

Modbus address type. The following tables show how the relationship between the numbering of the data on 
the PLC300 and the address of the Modbus registers that access these data is done. 
 

Reading System Markers 
Marker Number 

PLC300 
Register Address (input register) 

Modbus 
%SB3001 %SB3000 3000 
%SB3003 %SB3002 3001 

..
. 

..
. 

%SB3101 %SB3100 3050 

..
. 

..
. 

 
Command System Markers 

Marker Number 
PLC300 

Register Address (holding register) 
Modbus 

%CB3001 %CB3000 3000 
%CB3003 %CB3002 3001 

..
. 

..
. 

%CB3101 %CB3100 3050 

..
. 

..
. 

 
Inputs 

Marker Number 
PLC300 

Register Address (input register) 
Modbus 

%IB1 %IB0 5000 
%IB3 %IB2 5001 

..
. 

..
. 

%IB2001 %IB2000 6000 

..
. 

..
. 

 
Outputs 

Marker Number 
PLC300 

Register Address (holding register) 
Modbus 

%QB1 %QB0 5000 
%QB3 %QB2 5001 

..
. 

..
. 

%QB2001 %QB2000 6000 

..
. 

..
. 

 
Internal markers (volatile and retentive) 

Marker Number 
PLC300 

Register Address (holding register) 
Modbus 

%MB1 %MB0 8000 
%MB3 %MB2 8001 

..
. 

..
. 

%MB40001 %MB40000 28000 

..
. 

..
. 

 
The following table illustrates how the Modbus address is calculated with access via registers, for different types 
of data available for the PLC300: 
 

Data Description Data 
type 

Base 
address 

Base address 
offset 

Modbus 
address 

%SW3002 Reading system marker which represents the scan 
cycle time. 

Input 
Register 

3000 2 bytes 
(1 word) 

3001 

%CW3030 Writing system marker to set the hour of the RTC. Holding 
Register 

3000 30 bytes 
(15 words) 

3015 

%IB0 Physical inputs, representing the digital inputs 1 to 8. Input 
Register 

5000 0 bytes 
(0 words) 

5000 
byte low 

%MB11 Marker in volatile memory, representing a global 
variable created by the user with a size of one byte. 

Holding 
Register 

8000 11 bytes 
(5 words) 

8005 
byte high 

%MD40004 Marker on retentive memory, representing a global 
variable created by the user with a size of four bytes. 

Holding 
Register 

28000 4 bytes 
(2 words) 

28002 e 
28003 

 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 18 

Similarly, the access via binary data (coils or input discretes) also uses a base address plus the offset given by 
the number of the marker. However, since each byte has eight bits, for each byte from the base address, eight 
bits must be added to the address for access via binary data. 
 
The data format and function in the memory area accessed, though, are not pre-defined, and depend on the 
programming done on the WPS software. For example, for the memory marker %M_0, it is possible to create 
the following variables on the WPS software: 
 
 %MB0: byte marker, it takes only one memory byte, and it can represent an 8-bit integer with or without 

signal. In the access via registers, since the Modbus protocol allows the reading or writing access of at least 
16 bits, whenever this marker is read or written, the bytes %MB0 and %MB1 are accessed. 

 %MW0: word marker, it takes two memory bytes, and it can represent a 16-bit integer with or without 
signal. In this case, the bytes %MB0 and %MB1 are reserved for this marker. 

 %MD0: double marker, it takes four memory bytes, and it can represent a 32-bit integer with or without 
signal. In this case, the bytes %MB0 and %MB3 are reserved for this marker. In the access by registers, it is 
necessary to read or write two registers in a row, with the least significant value in the first register, so that 
the four bytes will be accessed. 

 
Table 5.1: Example of data addressing for volatile markers on the PLC300 

Marker Type 
Modbus addr. 
Register (bit) 

Byte 
(%MB) 

Word 
(%MW) 

Double 
(%MD) 

8000 (40000 ... 40015) X X X 
X 

8001 (40016 ... 40031) X X 
X 

8002 (40032 ... 40047) X X X 
X 

8003 (40048 ... 40063) X X 
X 

 
Similarly, it is possible to access the data using the bit access functions. In this case, a bit can be accessed 
individually, or in a group of bits that represents a marker. For example, if it is defined on the WPS software a 
word marker in address 8000 – %MW0 – it is possible to access this marker by using the functions of multiple 
coil reading or writing, using the bits 40000 to 40015. 
 
At the memory addresses of the PLC300, variables with size above one byte are always stored with the least 
significant byte first. Thus, the available space on memory for Byte, Word or Double values follows the 
description of the following table. 
 

Table 5.2: Example of data addressing for volatiles markers on the PLC300 

Marker Type 
Modbus addr. 
Register (bit) 

Byte (%MB) Word (%MW) Double (%MD) 

8000 (40000 ... 40015) %MB0 Unique value %MW0 Value -signf. 
Value +signf. 

%MD0 Value -signf. 
... 
 

Value +signf. 

%MB1 Unique value 
8001 (40016 ... 40031) %MB2 Unique value %MW2 Value -signf. 

Value +signf. %MB3 Unique value 
8002 (40032 ... 40047) %MB4 Unique value %MW4 Value -signf. 

Value +signf. 
%MD4 Value -signf. 

... 
 

Value +signf. 

%MB5 Unique value 
8003 (40048 ... 40063) %MB6 Unique value %MW6 Value -signf. 

Value +signf. %MB7 Unique value 

 
Since the Modbus protocol defines that in order to transmit a 16-bit register, the most significant byte must be 
transmitted first, when accessing any register, the following memory address is transmitted first. Therefore, if 
four registers are read in a row, from the register 8000, the content of each register will be transmitted the 
following way: 
 

1st Register – 8000 2nd Register  – 8001 3rd Register – 8002 4th Register – 8003 
%MB1 %MB0 %MB3 %MB2 %MB5 %MB4 %MB7 %MB6 

 



Operation in the Modbus RTU Network – Slave Mode 

PLC300 | 19 

 
NOTE! 
For the PLC300 programmable controller, the maximum size of each telegram, including address, 
function, data field and CRC, must not exceed 67 bytes. 

 



Detailed Description of the Functions 

PLC300 | 20 

6 DETAILED DESCRIPTION OF THE FUNCTIONS 

A detailed description of the functions available in the PLC300 programable controller for the Modbus RTU is 
provided in this section. In order to elaborate the telegrams it is important to observe the following: 
 
 The values are always transmitted in hexadecimal. 
 The address of a datum, the number of data and the value of registers are always represented in 16 bits. 

Therefore, it is necessary to transmit those fields using two bytes – superior (high) and inferior (low). 
 The telegrams for request, as well as for response, cannot exceed 64 bytes. 

6.1 FUNCTION 01 – READ COILS 

It reads the content of a group of bits (coils) that must be necessarily in a numerical sequence. This function has 
the following structure for the request and response telegrams (each field represents a byte): 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Address of the initial bit (high byte) Byte count (number of data bytes) 
Address of the initial bit (low byte) Byte 1 
Number of bits (high byte) Byte 2 
Number of bits (low byte) Byte 3 
CRC- etc... 
CRC+ CRC- 
 CRC+ 

 
Each response bit is placed in a position of the data bytes sent by the slave. The first byte receives the eight first 
bits from the initial address indicated by the master. The other bytes keep the sequence if the number of reading 
bits is greater than eight. If the number of read bits is not a multiple of eight, the remaining bits of the last byte 
must be filled in with zero. 
 
Example: reading of the eight bits of the output marker 2000, mapped as coil from address 24000, considering 
this marker with value 100 (64h). 
 Address: 1 = 01h 
 Number of the initial bit: 24000 = 5DC0h 
 Number of read bits: 8 = 0008h 
 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 01h Function 01h 
Initial bit (high) 5Dh Byte count 01h 
Initial bit (low) C0h Bit status 1 to 8 64h 
Number of bits (high) 00h CRC- 50h 
Number of bits (low) 08h CRC+ 63h 
CRC- 2Eh   
CRC+ 5Ch   

 

6.2 FUNCTION 02 – READ INPUT DISCRETE 

 
NOTE! 
Function 02 – Read Input Discrete – has exactly the same structure as function 01. Only the function 
code and accessible data are different. 

6.3 FUNCTION 03 – READ HOLDING REGISTER 

It reads the content of a group of registers that must be necessarily in a numerical sequence. This function has 
the following structure for the request and response telegrams (each field represents a byte): 
 



Detailed Description of the Functions 

PLC300 | 21 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Address of the initial register (high byte) Byte count 
Address of the initial register (low byte) Datum 1 (high) 
Number of registers (high byte) Datum 1 (low) 
Number of registers (low byte) Datum 2 (high) 
CRC- Datum 2 (low) 
CRC+ etc... 
 CRC- 
 CRC+ 

 
Example: reading of the memory marker %MD0, representing a float IEEE that takes four bytes of the memory. 
Considering the float value equal to 1.0 (3F800000h in representation of float IEEE). 
 Address: 1 = 01h 
 Initial register address: 8000 = 1F40h 
 Number of read registers: 2 = 0002h 
 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 03h Function 03h 
Initial register (high) 1Fh Byte Count 04h 
Initial register (low) 40h Float value (low-high) 00h 
Number of registers (high) 00h Float value (low-low) 00h 
Number of registers (low) 02h Float value (high-high) 3Fh 
CRC- 02h Float value (high-low) 80h 
CRC+ 08h CRC- F7h 
  CRC+ CFh 

6.4 FUNCTION 04 – READ INPUT REGISTER 

 
NOTE! 
Function 04 – Read Input Register – has exactly the same structure as function 03. Only the function 
code and accessible data are different. 

6.5 FUNCTION 05 – WRITE SINGLE COIL 

This function is used to write a value for a single bit (coil). The value for the bit is represented using two bytes, 
the value FF00h represents the bit in 1, and the value 0000h represents the bit in 0 (zero). It has the following 
structure (each field represents a byte): 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Bit address (byte high) Bit address (high byte) 
Bit address (byte low) Bit address (low byte) 
Value for the bit (byte high) Value for the bit (high byte) 
Value for the bit (byte low) Value for the bit (low byte) 
CRC- CRC- 
CRC+ CRC+ 

 
Example: writing of the first bit of the output marker %QB0, mapped as coil from address 16000. 
 Address: 1 = 01h 
 Bit number: 16000 = 3E80h 
 Bit value: 1, so the value that must be written is FF00h 
 



Detailed Description of the Functions 

PLC300 | 22 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 05h Function 05h 
Bit number (high) 3Eh Bit number (high) 1Fh 
Bit number (low) 80h Bit number (low) 40h 
Value for the bit (high) FFh Value for the bit (high) FFh 
Value for the bit (low) 00h Value for the bit (low) 00h 
CRC- 80h CRC- 8Ah 
CRC+ 3Ah CRC+ 3Ah 

 
Note that for this function the slave response is an identical copy of the request made by the master. 

6.6 FUNCTION 06 – WRITE SINGLE REGISTER 

This function is used to write a value for a single register. It has the following structure (each field represents a 
byte): 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Register address (high byte) Register address (high byte) 
Register address (low byte) Register address (low byte) 
Value for the register (high byte) Value for the register (high byte) 
Value for the register (low byte) Value for the register (low byte) 
CRC- CRC- 
CRC+ CRC+ 

 
Example: writing of the writing system marker %CB3000. Since the writing is always done by sending a 16-bit 
register, the bytes mapped at addresses %CB3000 and %CB3001 will be written. 
 Address: 1 = 01h 
 Initial register address: 3000 = 0BB8h 
 Marker value: 50 = 0032h 
 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 06h Function 06h 
Register (high) 0Bh Register (high) 0Bh 
Register (low) B8h Register (low) B8h 
Value (high – %CB3001) 00h Value (high – %CB3001) 00h 
Value (low – %CB3000) 32h Value (low – %CB3000) 32h 
CRC- 8Ah CRC- 8Ah 
CRC+ 1Eh CRC+ 1Eh 

 
Note that for this function the slave response is an identical copy of the request made by the master. 

6.7 FUNCTION 15 – WRITE MULTIPLE COILS 

This function allows writing values for a group of bits (coils), which must be in a numerical sequence. It can also 
be used to write in a single bit (each field represents a byte): 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Initial bit address (high byte) Initial bit address (high byte) 
Initial bit address (low byte) Initial bit address (low byte) 
Number of bits (high byte) Number of bits (high byte) 
Number of bits (low byte) Number of bits (low byte) 
Byte count (number of data bytes) CRC- 
Byte 1 CRC+ 
Byte 2  
Byte 3  
etc...  
CRC-  
CRC+  



Detailed Description of the Functions 

PLC300 | 23 

 
The value of each bit being written is placed in a position of the data bytes sent by the master. The first byte 
receives the first eight bits from the initial address indicated by the master. The other bytes (if the number of 
written bits is greater than eight) continue the sequence. If the number of written bits is not multiple of eight, the 
remaining bits of the last byte must be filled in with zero. 
 
Example: writing of 16 bits from output marker %QW0, mapped as coil from address 16000. 
 Address: 1 = 01h 
 Number of the first bit: 16000 = 3E80h 
 Quantity of bits: 16 = 0010h 
 Value for the bits 0 to 7: 10 = 0Ah 
 Value for bits 8 to 15: 20 = 14h 
 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 0Fh Function 0Fh 
Initial bit (high) 3Eh Initial bit (high) 1Fh 
Initial bit (low) 80h Initial bit (low) 40h 
Number of bits (high) 00h Number of bits (high) 00h 
Number of bits (low) 10h Number of bits (low) 10h 
Byte count 02h CRC- 52h 
Value for bits 0 to 7 0Ah CRC+ 07h 
Value for bits 8 to 15 14h   
CRC- 24h   
CRC+ 8Ch   

 

FUNCTION 16 – WRITE MULTIPLE REGISTERS 

This function allows writing values for a group of registers, which must be in a numerical sequence. It can also 
be used to write in a single register (each field represents a byte): 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
Initial register address (high byte) Initial register address (high byte) 
Initial register address (low byte) Initial register address (low byte) 
Number of registers (high byte) Number of registers (high byte) 
Number of registers (low byte) Number of registers (low byte) 
Byte count (number of data bytes) CRC- 
Datum 1 (high) CRC+ 
Datum 1 (low)  
Datum 2 (high)  
Datum 2 (low)  
etc...  
CRC-  
CRC+  

 
Example: writing of the writing memory marker %MD0, representing a 32-bit integer value – 4 bytes of the 
memory. Considering the value to be written equal to 16909060 decimal (01020304h). 
 Address: 1 = 01h 
 Initial register address: 8000 = 1F40h 
 Number of registers: 2 = 0002h 
 



Detailed Description of the Functions 

PLC300 | 24 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 10h Function 10h 
Initial register (high) 1Fh Initial register (high) 1Fh 
Initial register (low) 40h Initial register (low) 40h 
Number of registers (high) 00h Number of registers (high) 00h 
Number of registers (low) 02h Number of registers (low) 02h 
Byte Count 04h CRC- 47h 
Value for the integer (low-high) 03h CRC+ C8h 
Value for the integer (low-low) 04h   
Value for the integer (high-high) 01h   
Value for the integer (high-low) 02h   
CRC- BAh   
CRC+ 7Bh   

6.8 FUNCTION 43 – READ DEVICE IDENTIFICATION 

It is an auxiliary function that allows the reading of the product manufacturer, model and firmware version. It has 
the following structure: 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function 
MEI Type MEI Type 
Reading code Conformity Level 
Object number More Follows 
CRC- Next object 
CRC+ Number of objects 
 Code of the first object 
 Size of the first object 
 Value of the first object (n bytes) 
 Code of the second object 
 Size of the second object 
 Value of the second object (n bytes) 
 etc... 
 CRC- 
 CRC+ 

 
This function allows the reading of three information categories: Basic, Regular and Extended, and each 
category is formed by a group of objects. Each object is formed by a sequence of ASCII characters. For the 
PLC300 programable controller, only basic information formed by three objects is available: 
 
 Objeto 00h – VendorName: represents the product manufacturer. 
 Objeto 01h – ProductCode: formed by the product code (PLC300). 
 Objeto 02h – MajorMinorRevision: it indicates the product firmware version, in the format ‘VX.XX’. 
 
The reading code indicates what information categories are read, and if the objects are accessed in sequence 
or individually. The PLC300 supports the codes 01 (basic information in sequence) and 04 (individual access to 
the objects). The other fields are specified by the protocol, and for the PLC300 they have fixed values. 
 
Example: reading of basic information in sequence, starting from the object 02h, from a PLC300 at address 1: 
 



Detailed Description of the Functions 

PLC300 | 25 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 2Bh Function 2Bh 
MEI Type 0Eh MEI Type 0Eh 
Reading code 01h Reading code 01h 
Object number 02h Conformity Level 81h 
CRC- 70h More Follows 00h 
CRC+ 77h Next object 00h 
  Number of objects 01h 
  Object code 02h 
  Object size 05h 
  Object value 'V1.00' 
  CRC- 3Ch 
  CRC+ 53h 

 
In this example the value of the objects was not represented in hexadecimal, but using the corresponding ASCII 
characters instead. E.g.: for the object 02h, the value ‘V1.00’ was transmitted as being five ASCII characters, 
which in hexadecimal have the values 56h ('V'), 31h ('1'), 2Eh ('.'), 30h ('0') and 30h ('0'). 

6.9 COMMUNICATION ERRORS 

Communication errors may occur in the transmission of telegrams, as well as in the contents of the transmitted 
telegrams. Depending on the type of error, the slave may or not send a response to the master. 
 
When the master sends a message for an inverter configured in a specific network address, the product will not 
respond to the master if the following occurs: 
 
 Parity bit error. 
 CRC error. 
 Timeout between the transmitted bytes (3.5 times the transmission time of a byte). 
 
In those cases, the master must detect the occurrence of the error by means of the timeout while waiting for the 
slave response. In the event of a successful reception, during the treatment of the telegram, the slave may 
detect problems and send an error message, indicating the kind of problem found: 
 
 Invalid function (Error code = 1): The requested function has not been implemented for the equipment. 
 Invalid datum address (Error code = 2): the datum address does not exist. 
 Invalid datum value (Error code = 3): It occurs in the following situations: 
 The value is out of the permitted range. 
 An attempt to write in a datum that cannot be changed (reading only register/bit). 

 

 
NOTE! 
It is important that it be possible to identify at the master what type of error occurred, in order to be 
able to diagnose problems during the communication. 

 
In the event of any of those errors, the slave must send a message to the master indicating the type of error that 
occurred. The error messages sent by the slave have the following structure: 
 

Request (Master) Response (Slave) 
Slave Address Slave Address 
Function Function (with the most significant bit in 1) 
Data Error code 
CRC- CRC- 
CRC+ CRC+ 

 
Example: the master requests to the slave at the address 1 the writing in the register 2900 (nonexistent register): 
 



Detailed Description of the Functions 

PLC300 | 26 

Request (Master) Response (Slave) 
Field Value Field Value 
Slave Address 01h Slave Address 01h 
Function 06h Function 86h 
Register (high) 0Bh Error code 02h 
Register (low) 54h CRC- C3h 
Value (high) 00h CRC+ A1h 
Value (low) 00h   
CRC- CAh   
CRC+ 3Eh   

 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 27 

7 OPERATION IN THE MODBUS RTU NETWORK – MASTER MODE 

Besides the operation as a slave, the PLC300 programmable controller also allows operation as a master for the 
Modbus RTU network. For this operation, it is necessary to observe the following points: 
 
 Only interface RS485 allows operation as a network master. 
 It is necessary to program, in product configurations, the operation mode as "Master", besides the 

communication rate, parity, and stop bits, which must be the same for the whole equipment in the network. 
 The Modbus RTU network master does not have an address, so the address configured in the PLC300 is 

not used. 
 Sending and receiving telegrams via RS485 interface using the Modbus RTU protocol is programmed by 

using blocks in ladder programming language. It is necessary to know the available blocks and the ladder 
programming software in order to be able to program the network master. 

 The following functions are available for the sending of requisitions by the Modbus master: 
Function 01: Read Coils 
Function 02: Read Discrete Inputs 
Function 03: Read Holding Registers 
Function 04: Read Input Registers 
Function 05: Write Single Coil 
Function 06: Write Single Register 
Function 15: Write Multiple Coils 
Function 16: Write Multiple Registers 

7.1 BLOCKS TO PROGRAM THE MASTER 

In order to control and monitor the Modbus RTU communication using the PLC300 programmable controller, 
the following blocks were developed, and they must be used when programming in ladder. 

7.1.1 MB Read Binary – Reading of Bits 

Block for the reading of bits. It allows the reading of up to 128 sequential bits of the destination slave, using 
functions 1 (Read Coils) and 2 (Read Discrete Inputs) in the Modbus. 
 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. After the positive transition of "Execute", a new telegram is sent by the Modbus RTU 
master when the RS485 serial interface is free. At the operation successful end – response received from the 
slave – the "Done" output is activated, remaining active while the input is active, and the received data is copied 
to "Value". In case of error in the requisition performance, the "Error" output is enabled, and the error code is 
put to "ErrorID". 
 
Input: 
 

<arg0>: “SlaveAddress” – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Address of destination slave – 1 to 247. 

 
<arg1>: "Function#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: Reading function code: 1= "Read Coils"; 2= "Read Discrete Inputs". 

 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 28 

<arg2>: "InitialDataAddress" – VAR_IN: insert a variable (tag). 
Types of data: WORD 
Description: Address of initial bit – 0 to 65535. 

 
<arg3>: "NumberOfData" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Number of bits read in sequence starting with the initial address – 1 to 128. 

 
<arg4>: "Timeout#" – VAR_IN: insert a constant. 
Types of data: WORD 
Description: Waiting time for the arrival of the response by the slave, starting with the sending by the 
master – 20 to 5000 ms. 

 
<arg5>: "Offset#" – VAR_IN: insert a constant. 
Types of data: BOOL 
Description: It indicates if the address of the data programmed in "InitialDataAddress#" has offset, i.e. if 
the address of the data programmed in the block must be subtracted from 1 in order to send through 
the Modbus network. FALSE= "Without Offset"; TRUE= "With Offset of 1". 

 
Output: 
 

<arg6>: "Active" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Active block, requisition for reading sent to the slave and awaiting response. 
Note: The variable must have writing permission. 

 
<arg7>: "Busy" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Block enabled, though resource is not available (RS485 interface busy with another 
requisition), waiting for release so that the request is sent by the block. If the enabling input is removed 
while the block makes that indication, the requisition is rejected. 
Note: The variable must have writing permission. 

 
<arg8>: "Error" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: error during requisition performance. 
Note: The variable must have writing permission. 

 
<arg9>: "ErrorID" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: In case of requisition error, the type of error occurred will be indicated. Possible results: 0= 
"Successfully performed"; 1= "Some input data invalid" (example: Master disabled); 4= "Timeout in the 
response by the slave"; 5= "Slave returned error". 
Note: The variable must have writing permission. 

 
<arg10>: "Value" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL[1 ... 128] 
Description: Variable or array where the slave's read data will be stored. 
Note: The variable must have writing permission. 

7.1.2 MB Read Register – Reading of Registers 

Block for the reading of 16 bit registers. It allows the reading of up to 16 sequential registers of the destination 
slave, using functions 3 (Read Holding Registers) and 4 (Read Input Registers) in the Modbus. 
 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 29 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. After the positive transition of "Execute", a new telegram is sent by the Modbus RTU 
master when the RS485 serial interface is free. At the operation successful end – response received from the 
slave – the "Done" output is activated, remaining active while the input is active, and the received data is copied 
to "Value". In case of error in the requisition performance, the "Error" output is enabled, and the error code is 
put to "ErrorID". 
 
Input: 
 

<arg0>: "SlaveAddress" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Address of destination slave – 1 to 247. 

 
<arg1>: "Function#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: Reading function code: 3= "Read Holding Registers"; 4= "Read Input Registers". 

 
<arg2>: "InitialDataAddress" – VAR_IN: insert a variable (tag). 
Types of data: WORD 
Description: Address of initial register – 0 to 65535. 

 
<arg3>: "NumberOfData" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Number of registers read starting with the initial address – 1 to 16. 

 
<arg4>: "Timeout#" – VAR_IN: insert a constant. 
Types of data: WORD 
Description: Waiting time for the arrival of the response by the slave, starting with the sending by the 
master – 20 to 5000 ms. 

 
<arg5>: "Offset#" – VAR_IN: insert a constant. 
Types of data: BOOL 
Description: It indicates if the address of the data programmed in "InitialDataAddress#" has offset, i.e. if 
the address of the data programmed in the block must be subtracted from 1 in order to send through 
the Modbus network. FALSE= "Without Offset"; TRUE= "With Offset of 1". 

 
Output: 
 

<arg6>: "Active" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Active block, requisition for reading sent to the slave and awaiting response. 
Note: The variable must have writing permission. 

 
<arg7>: "Busy" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Block enabled, though resource is not available (RS485 interface busy with another 
requisition), waiting for release so that the request is sent by the block. If the enabling input is removed 
while the block makes that indication, the requisition is rejected. 
Note: The variable must have writing permission. 

 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 30 

<arg8>: "Error" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: error during requisition performance. 
Note: The variable must have writing permission. 

 
<arg9>: "ErrorID" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: In case of requisition error, the type of error occurred will be indicated. Possible results: 0= 
"Successfully performed"; 1= "Some input data invalid" (example: Master disabled); 4= "Timeout in the 
response by the slave"; 5= "Slave returned error". 
Note: The variable must have writing permission. 

 
<arg10>: "Value" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE[1 ... 32], SINT[1 ... 32], USINT[1 ... 32], WORD[1 ... 16], UINT[1 ... 16], INT[1 ... 
16], DWORD[1 ... 8], UDINT[1 ... 8], DINT[1 ... 8] or REAL[1 ... 8] 
Description: Variable or array where the slave's read data will be stored. 
Note: The variable must have writing permission. 

 

 
NOTE! 
 The Modbus RTU protocol, using functions 3 and 4, allows the reading of 16 bit registers only; for 

the reading of data with more than 16 bits (a REAL, for instance), it is possible to perform the 
reading of multiple registers and store the value in a variable which size is bigger than 16 bits. 

 It is important that the quantity of read registers is compatible with the size of the variable or the 
array where the data will be stored. 

7.1.3 MB Write Binary – Writing of Bits 

Block for the writing of bits. It allows the writing of up to 128 bits using functions 5 (Write Single Coil), and 15 
(Write Multiple Coils) in the Modbus. 
 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. After the positive transition of "Execute", a new telegram is sent by the Modbus RTU 
master when the RS485 serial interface is free. At the operation successful end – response received from the 
slave – the "Done" output is activated, remaining active while the input is active. In case of error in the requisition 
performance, the "Error" output is enabled, and the error code is put to "ErrorID". 
 
Input: 
 

<arg0>: "SlaveAddress" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Address of destination slave – 1 to 247. 

 
<arg1>: "Function#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: Writing function code: 5= "Write Single Coil"; 15= "Write Multiple Coils". 

 
<arg2>: "InitialDataAddress" – VAR_IN: insert a variable (tag). 
Types of data: WORD 
Description: Address of initial bit – 0 to 65535. 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 31 

 
<arg3>: "NumberOfData" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Number of bits written in sequence starting with the initial address – 1 to 128. 

 
<arg4>: "Timeout#" – VAR_IN: insert a constant. 
Types of data: WORD 
Description: Waiting time for the arrival of the response by the slave, starting with the sending by the 
master – 20 to 5000 ms. 

 
<arg5>: "Offset#" – VAR_IN: insert a constant. 
Types of data: BOOL 
Description: It indicates if the address of the data programmed in "InitialDataAddress#" has offset, i.e. if 
the address of the data programmed in the block must be subtracted from 1 in order to send through 
the Modbus network. FALSE= "Without Offset"; TRUE= "With Offset of 1". 

 
<arg6>: "Value" – VAR_IN: insert a variable (tag). 
Types of data: BOOL[1 ... 128] 
Description: Variable or array with the data to be written in the slave. 

 
Output: 
 

<arg7>: "Active" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Active block, requisition for reading sent to the slave and awaiting response. 
Note: The variable must have writing permission. 

 
<arg8>: "Busy" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Block enabled, though resource is not available (RS485 interface busy with another 
requisition), waiting for release so that the request is sent by the block. If the enabling input is removed 
while the block makes that indication, the requisition is rejected. 
Note: The variable must have writing permission. 

 
<arg9>: "Error" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: error during requisition performance. 
Note: The variable must have writing permission. 

 
<arg10>: "ErrorID" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: In case of requisition error, the type of error occurred will be indicated. Possible results: 0= 
"Successfully performed"; 1= "Some input data invalid" (example: Master disabled); 4= "Timeout in the 
response by the slave"; 5= "Slave returned error". 
Note: The variable must have writing permission. 

7.1.4 MB Write Register – Writing of Registers 

Block for the writing of registers. It allows the writing of up to 16 sequential registers using function 6 (Write 
Holding Register), or 16 (Write Multiple Registers) in the Modbus. 
 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 32 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. After the positive transition of "Execute", a new telegram is sent by the Modbus RTU 
master when the RS485 serial interface is free. At the operation successful end – response received from the 
slave – the "Done" output is activated, remaining active while the input is active. In case of error in the requisition 
performance, the "Error" output is enabled, and the error code is put to "ErrorID". 
 
Input: 
 

<arg0>: "SlaveAddress" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Address of destination slave – 1 to 247. 

 
<arg1>: "Function#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: Writing function code: 6= "Write Single Register"; 16= "Write Multiple Registers". 

 
<arg2>: "InitialDataAddress" – VAR_IN: insert a variable (tag). 
Types of data: WORD 
Description: Address of initial register – 0 to 65535. 

 
<arg3>: "NumberOfData" – VAR_IN: insert a variable (tag). 
Types of data: BYTE 
Description: Number of registers written starting with the initial address – 1 to 16. 

 
<arg4>: "Timeout#" – VAR_IN: insert a constant. 
Types of data: WORD 
Description: Waiting time for the arrival of the response by the slave, starting with the sending by the 
master – 20 to 5000 ms. 

 
<arg5>: "Offset#" – VAR_IN: insert a constant. 
Types of data: BOOL 
Description: It indicates if the address of the data programmed in "InitialDataAddress#" has offset, i.e. if 
the address of the data programmed in the block must be subtracted from 1 in order to send through 
the Modbus network. FALSE= "Without Offset"; TRUE= "With Offset of 1". 

 
<arg6>: "Value" – VAR_IN: insert a variable (tag). 
Types of data: BYTE[1 ... 32], USINT[1 ... 32], SINT[1 ... 32], WORD[1 ... 16], UINT[1 ... 16], INT[1 ... 
16], DWORD[1 ... 8], UDINT[1 ... 8], DINT[1 ... 8] or REAL[1 ... 8] 
Description: Variable or array with the data to be written in the slave. 

 
Output: 
 

<arg7>: "Active" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Active block, requisition for reading sent to the slave and awaiting response. 
Note: The variable must have writing permission. 

 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 33 

<arg8>: "Busy" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Block enabled, though resource is not available (RS485 interface busy with another 
requisition), waiting for release so that the request is sent by the block. If the enabling input is removed 
while the block makes that indication, the requisition is rejected. 
Note: The variable must have writing permission. 

 
<arg9>: "Error" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: error during requisition performance. 
Note: The variable must have writing permission. 

 
<arg10>: "ErrorID" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: In case of requisition error, the type of error occurred will be indicated. Possible results: 0= 
"Successfully performed"; 1= "Some input data invalid" (example: Master disabled); 4= "Timeout in the 
response by the slave"; 5= "Slave returned error". 
Note: The variable must have writing permission. 

 

 
NOTE! 
 The Modbus RTU protocol, using function 16, allows the writing of 16 bit registers only. For the 

writing of data with more than 16 bits (one REAL, for instance), it is possible to perform the writing 
of multiple registers, and use a variable which size is bigger than 16 bits as data source. 

 It is important that the quantity of written registers is compatible with the size of the variable or the 
array where the data will be used. 

7.1.5 MB Master Control/Status – Control and Status of Modbus RTU Master 

Block to control and monitor the master in the Modbus RTU network. Whenever a Modbus RTU network is 
assembled with the PLC300 as the network master, it is recommended to use this block in order to obtain 
information on the communication state. 
 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. While the "Execute" enabling input is active, the input data is used and the output data 
is updated. In case the input is zeroed, the input values are disregarded and the output arguments are zeroed. 
Output "Done" reflects the value of the input. 
 
Input: 
 

<arg0>: "DisableComm" – VAR_IN: insert a constant or a variable (tag). 
Types of data: BOOL 
Description: It allows to disable the Modbus master. When disabling the master, the Modbus RTU 
master's status counters and markers are also zeroed: 0= "Master in performance"; 1= "Disables 
master". 

 
Output: 
 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 34 

<arg1>: "CommDisabled" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: It indicates if the master is disabled or not. It may occur by user request, or, in case the 
interface is programmed to operate as the network slave: 0= "Master Enabled"; 1= "Master disabled". 
Note: The variable must have writing permission. 

 
<arg2>: "TxCounter" – VAR_OUT: insert a variable (tag). 
Types of data: WORD or UINT 
Description: Counter of requests sent by the network master to the slaves. It is zeroed whenever the 
equipment is disconnected or the master is disabled – 0 to 65535. 
Note: The variable must have writing permission. 

 
<arg3>: "RxCounter" – VAR_OUT: insert a variable (tag). 
Types of data: WORD or UINT 
Description: Counter of telegrams received by the network master. It is zeroed whenever the equipment 
is disconnected or the master is disabled – 0 to 65535. 
Note: The variable must have writing permission. 

 
<arg4>: "NoAnswerCounter" – VAR_OUT: insert a variable (tag). 
Types of data: WORD or UINT 
Description: Counter of requests by the master that were not responded by the slaves. It is zeroed 
whenever the equipment is disconnected or the master is disabled – 0 to 65535. 
Note: The variable must have writing permission. 

 
<arg5>: "ErrorResponseCounter" – VAR_OUT: insert a variable (tag). 
Types of data: WORD or UINT 
Description: Counter of requests by the master that the slaves responded with some error response. 
The error code may be obtained in the marker that indicates the code of the last detected error. It is 
zeroed whenever the equipment is disconnected or the master is disabled – 0 to 65535. 
Note: The variable must have writing permission. 

 
<arg6>: "LastErrorSlaveAddress" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: It indicates the address of the slave in which the last communication error was detected. It 
is zeroed whenever the equipment is disconnected or the master is disabled – 0 to 247. 
Note: The variable must have writing permission. 

 
<arg7>: "LastErrorResult" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: It indicates the operation result – timeout or error response, conforming to the block's 
ERROR ID – for the slave in which the last communication error was detected. It is zeroed whenever the 
equipment is disconnected or the master is disabled: 0= "Without detected error"; 4= "Timeout in the 
response by the slave"; 5= "Slave returned error". 
Note: The variable must have writing permission. 

 
<arg8>: "LastErrorCode" – VAR_OUT: insert a variable (tag). 
Types of data: BYTE or USINT 
Description: It indicates the error code, in case the master receives an error response from some slave. 
It is zeroed whenever the equipment is disconnected or the master is disabled – 0 to 255. 
Note: The variable must have writing permission. 

 

 
NOTE! 
The data accessed through the use of this block is also available through reading and writing system 
markers, as described in item 8. 

7.1.6 MB Slave Status – Modbus RTU Network Slave Status 

Block to monitor the slaves in the Modbus RTU network. It must be used in case it is desired to identify 
problems in the communication between the master and some slave in the Modbus RTU network. 
 



Operation in the Modbus RTU Network – Master Mode 

PLC300 | 35 

 
 
It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's 
successful performance. While the "Execute" enabling input is active, the input data is used and the output data 
is updated at every performance of the block. Output "Done" reflects the value of the input. 
 
Input: 
 

<arg0>: "ErrorsToSetOffline#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: It allows programming, for this block, the quantity of communication errors which the 
master must identify until the communication with a network slave is considered offline. The following is 
considered communication error: every request (reading or writing) a master sent to a slave and did not 
receive a response, the received response had CRC error. 

 
<arg1>: "AddressSlave1#" – VAR_IN: insert a constant. 
<arg2>: "AddressSlave2#" – VAR_IN: insert a constant. 
<arg3>: "AddressSlave2#" – VAR_IN: insert a constant. 
<arg4>: "AddressSlave2#" – VAR_IN: insert a constant. 
Types of data: BYTE 
Description: It allows programming the address of up to 4 slaves which quantity of communication 
errors will be monitored in order to make known if they are online or offline. In case the quantity of 
sequential communication errors detected in the reading and writing blocks via Modbus reaches the 
value programmed in "ErrorsToSetOffline", the respective output is activated. In case it is desired to 
monitor a smaller number of slaves, any of the inputs may be set in zero: 0= "Ignores input"; 1 to 247. 

 
Output: 
 

<arg5>: "GeneralOffline#" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: If any of the outputs of the indicated slaves is activated, this output will also be activated. It 
works as an OR logic between the 4 outputs of slave indication – 0 to 65535. 
Note: The variable must have writing permission. 

 
<arg6>: "Slave1Offline#" – VAR_OUT: insert a variable (tag). 
<arg7>: "Slave2Offline#" – VAR_OUT: insert a variable (tag). 
<arg8>: "Slave3Offline#" – VAR_OUT: insert a variable (tag). 
<arg9>: "Slave4Offline#" – VAR_OUT: insert a variable (tag). 
Types of data: BOOL 
Description: Output activated in case the quantity of sequential communication errors for the slaves 
indicated in the respective inputs reaches the value programmed in "ErrorsToSetOffline". 
Note: The variable must have writing permission. 



System Markers for RS232 and RS485 

PLC300 | 36 

8 SYSTEM MARKERS FOR RS232 AND RS485 

For RS232 and RS485 serial interfaces, the following reading system markers (%S) and writing system markers 
(%C) were provided for control and monitoring: 

8.1 READING SYSTEM MARKERS 

Modbus Master Status (RS485): reading marker set that indicates the Modbus master status, besides information for network 
diagnosis. 
Marker Description 
%SB3100 Status of the Modbus master: 

0 = Normal operation. 
1 = Mater disabled. 

%SB3101 Reserved. 
%SW3102 Counter of requests made by the master. 

Counter incremented every time a new telegram is sent by the Modbus RTU network master. It is reset whenever it 
reaches the maximum limit. 

%SW3104 Counter of successfully received responses. 
Counter incremented every time the master receives a successful response from a network slave. It is reset whenever it 
reaches the maximum limit. 

%SW3106 Counter of requests without response – timeout. 
Counter incremented every time a timeout occurs for a request made by the Modbus RTU network master to a slave. It 
is reset whenever it reaches the maximum limit or the interface is disabled. 

%SW3108 Counter of responses received with error. 
Counter incremented whenever the slave returns an error response to a request made by the Modbus RTU master. It is 
reset whenever it reaches the maximum limit or the interface is disabled. Whenever this error is detected, the data for 
the slave address, error type and error code will be saved on the markers %SB3110 to %SB3112. 

%SB3110 Last error occurred: slave address. 
%SB3111 Last error occurred: error type. 

0 = No error. 
4 = Timeout at the response. 
5 = Slave returned error response. 
It is reset whenever the interface is disabled. 

%SB3112 Last error occurred: code of the received error, if the type is error response. 
It is reset whenever the interface is disabled. 

%SB3113 Reserved. 

 
Status of the Modbus slave (RS485): set of reading markers that indicate the quantity of telegrams sent and received by the 
Modbus RTU slave. 
Marker Description 
%SW3120 Number of received telegrams. Specific for the slave mode. 
%SW3122 Number of transmitted telegrams Specific for the slave mode. 

8.2 WRITING SYSTEM MARKERS 

Configuration of the RS232 Interface: set of writing markers to program the configurations of the RS232 interface. They are also 
accessible through the Setup menu. 
Marker Description 
%CB3060 Reserved. 
%CB3061 Reserved. 
%CB3062 Byte format: 

0 = no parity, 1 stop bit 
1 = odd parity, 1 stop bit 
2 = even parity, 1 stop bit 
3 = reserved 
4 = no parity, 2 stop bits 
5 = odd parity, 2 stop bits 
6 = even parity, 2 stop bits 

%CB3063 Baud rate for RS232: 
0 = 1200 bit/s 
1 = 2400 bit/s 
2 = 4800 bit/s 
3 = 9600 bit/s 
4 = 19200 bit/s 
5 = 38400 bit/s 
6 = 57600 bit/s 

 



System Markers for RS232 and RS485 

PLC300 | 37 

Configuration of the RS485 Interface: set of writing markers to program the configurations of the RS485 interface. They are also 
accessible through the Setup menu. 
Marker Description 
%CB3068 Serial address (slave modo) 1 ... 247. 
%CB3069 Operation mode: 

0 = Modbus RTU slave. 
1 = Modbus RTU master. 

%CB3070 Byte format: 
0 = no parity, 1 stop bit 
1 = odd parity, 1 stop bit 
2 = even parity, 1 stop bit 
3 = reserved 
4 = no parity, 2 stop bits 
5 = odd parity, 2 stop bits 
6 = even parity, 2 stop bits 

%CB3071 Baud rate for RS485: 
0 = 1200 bit/s 
1 = 2400 bit/s 
2 = 4800 bit/s 
3 = 9600 bit/s 
4 = 19200 bit/s 
5 = 38400 bit/s 
6 = 57600 bit/s 

 
Control of the Modbus Master (RS485): set of writing markers for control of the Modbus master. 
Marker Description 
%CW3100 Control of the Modbus master: 

0 = Normal operation. 
1 = Disable interface. 

 



Appendices 

PLC300 | 38 

I. APPENDICES 

APPENDIX A. ASCII TABLE 

Table I.1: ASCII Characters 

Dec Hex Chr  Dec Hex Chr Dec Hex Chr Dec Hex Chr 

0 00 NUL (Null char.) 32 20 Sp 64 40 @ 96 60 ` 
1 01 SOH (Start of Header) 33 21 ! 65 41 A 97 61 a 

2 02 STX (Start of Text) 34 22 " 66 42 B 98 62 b 

3 03 ETX (End of Text) 35 23 # 67 43 C 99 63 c 
4 04 EOT (End of Transmission) 36 24 $ 68 44 D 100 64 d 

5 05 ENQ (Enquiry) 37 25 % 69 45 E 101 65 e 

6 06 ACK (Acknowledgment) 38 26 & 70 46 F 102 66 f 
7 07 BEL (Bell) 39 27 ' 71 47 G 103 67 g 

8 08 BS (Backspace) 40 28 ( 72 48 H 104 68 h 

9 09 HT (Horizontal Tab) 41 29 ) 73 49 I 105 69 i 
10 0A LF (Line Feed) 42 2A * 74 4A J 106 6A j 

11 0B VT (Vertical Tab) 43 2B + 75 4B K 107 6B k 

12 0C FF (Form Feed) 44 2C , 76 4C L 108 6C l 

13 0D CR (Carriage Return) 45 2D - 77 4D M 109 6D m 
14 0E SO (Shift Out) 46 2E . 78 4E N 110 6E n 

15 0F SI (Shift In) 47 2F / 79 4F O 111 6F o 

16 10 DLE (Data Link Escape) 48 30 0 80 50 P 112 70 p 
17 11 DC1 (Device Control 1) 49 31 1 81 51 Q 113 71 q 

18 12 DC2 (Device Control 2) 50 32 2 82 52 R 114 72 r 

19 13 DC3 (Device Control 3) 51 33 3 83 53 S 115 73 s 
20 14 DC4 (Device Control 4) 52 34 4 84 54 T 116 74 t 

21 15 NAK (Negative Acknowledgement) 53 35 5 85 55 U 117 75 u 

22 16 SYN (Synchronous Idle) 54 36 6 86 56 V 118 76 v 
23 17 ETB (End of Trans. Block) 55 37 7 87 57 W 119 77 w 

24 18 CAN (Cancel) 56 38 8 88 58 X 120 78 x 

25 19 EM (End of Medium) 57 39 9 89 59 Y 121 79 y 
26 1A SUB (Substitute) 58 3A : 90 5A Z 122 7A z 

27 1B ESC (Escape) 59 3B ; 91 5B [ 123 7B { 

28 1C FS (File Separator) 60 3C < 92 5C \ 124 7C | 

29 1D GS (Group Separator) 61 3D = 93 5D ] 125 7D } 
30 1E RS (Record Separator) 62 3E > 94 5E ^ 126 7E ~ 

31 1F US (Unit Separator) 63 3F ? 95 5F _ 127 7F DEL 

 



Appendices 

PLC300 | 39 

APPENDIX B. CRC CALCULATION USING TABLES 

Next, a function using programming language “C” is presented, which implements the CRC calculation for the 
Modbus RTU protocol. The calculation uses two tables to supply pre-calculated values of the necessary 
displacement for the calculation. 
 
/* Table of CRC values for high–order byte */ 
static unsigned char auchCRCHi[] = { 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; 
 
 
 
/* Table of CRC values for low–order byte */ 
static char auchCRCLo[] = { 
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 
0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 
0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 
0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 
0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 
0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 
0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 
0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 
0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 
0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 
0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 
0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 
0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 
0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 
0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; 
 
 
/* The function returns the CRC as a unsigned short type */ 
unsigned short CRC16(puchMsg, usDataLen) 
unsigned char *puchMsg;                  /* message to calculate CRC upon    */ 
unsigned short usDataLen;                /* quantity of bytes in message     */ 
{ 
    unsigned char uchCRCHi = 0xFF;       /* high byte of CRC initialized     */ 
    unsigned char uchCRCLo = 0xFF;       /* low byte of CRC initialized      */ 
    unsigned uIndex;                     /* will index into CRC lookup table */ 
    while (usDataLen--)                  /* pass through message buffer      */ 
    { 
        uIndex = uchCRCLo ^ *puchMsgg++; /* calculate the CRC                */ 
        uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex}; 
        uchCRCHi = auchCRCLo[uIndex]; 
    } 
 
    return (uchCRCHi << 8 | uchCRCLo); 
} 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
WEG Equipamentos Elétricos S.A.   
Jaraguá do Sul - SC - Brazil  
Phone 55 (47) 3276-4000 - Fax 55 (47) 3276-4020 
São Paulo - SP - Brazil  
Phone 55 (11) 5053-2300 - Fax 55 (11) 5052-4212 
automacao@weg.net 
www.weg.net 

http://www.weg.net/

	Contents
	About this Manual
	Abbreviations and Definitions
	Numerical Representation
	Documents

	1 Introduction to Serial Communication
	2 Network Connections
	2.1 RS232
	2.1.1 RS232 Interface Characteristics
	2.1.2 Connector pinout
	2.1.3 Connection with the RS232 Network

	2.2 RS485
	2.2.1 RS485 Interface Characteristics
	2.2.2 Connector pinout
	2.2.3 Indications
	2.2.4 Switches to Enable to Terminating resistor
	2.2.5 Connection with the RS485 Network


	3 Interface CONFIGURATION
	3.1 RS232 Configuration
	Baud rate
	PariTY
	Stop Bits
	3.2 RS485 Configuration
	Baud rate
	PariTY
	Stop Bits
	Operation Mode
	Slave Address

	4 Modbus RTU Protocol
	4.1 Transmission Modes
	4.2 Message Structure for RTU Mode
	4.2.1 Address
	4.2.2 Function Code
	4.2.3 Data Field
	4.2.4 CRC
	4.2.5 Time Between Messages


	5 Operation in the Modbus RTU Network – Slave Mode
	5.1 Available Functions and Response Times
	5.2 Memory MAP
	5.2.1 Reading System Marker – %SB / %SW / %SD
	5.2.2 Command System Marker – %CB / %CW / %CD
	5.2.3 Inputs – %IB / %IW / %ID
	5.2.4 Outputs – %QB / %QW / %QD
	5.2.5 Network Inputs – %IB / %IW / %ID
	5.2.6 Network Outputs – %QB / %QW / %QD
	5.2.7 Internal Marker – %MB / %MW / %MD

	5.3 Data Access

	6 Detailed Description of the Functions
	6.1 Function 01 – Read Coils
	6.2 Function 02 – Read Input Discrete
	6.3 Function 03 – Read Holding Register
	6.4 Function 04 – Read Input Register
	6.5 Function 05 – Write Single Coil
	6.6 Function 06 – Write Single Register
	6.7 Function 15 – Write Multiple Coils
	Function 16 – Write Multiple Registers
	6.8 Function 43 – Read Device Identification
	6.9 Communication Errors

	7 Operation in the Modbus RTU Network – Master Mode
	7.1 Blocks to program the master
	7.1.1 MB Read Binary – Reading of Bits
	7.1.2 MB Read Register – Reading of Registers
	7.1.3 MB Write Binary – Writing of Bits
	7.1.4 MB Write Register – Writing of Registers
	7.1.5 MB Master Control/Status – Control and Status of Modbus RTU Master
	7.1.6 MB Slave Status – Modbus RTU Network Slave Status


	8 System Markers for RS232 and RS485
	8.1 READING SYSTEM MARKERS
	8.2 WRITING SYSTEM MARKERS

	I. Appendices
	Appendix A. ASCII Table
	Appendix B.  CRC Calculation Using Tables


