
Regenerative Frequency Converter

CFW-11 RB

User Manual

User Manual

Series: CFW-11 RB

Language: English

Document Nº: 10005022198 / 02

Models: 142...211 A / 220...230 V

105...760 A / 380...480 V

53...472 A / 500...690 V

Publication Date: 06/2024

Summary of Reviews

The table below describes the revisions made to this manual.

Version	Review	Description
-	R00	First edition
-	R01	General review
-	R02	General review

1	SAFETY INSTRUCTIONS	. 1-1
-	1.1 SAFETY WARNINGS IN THE MANUAL	
	1.2 SAFETY WARNINGS IN THE PRODUCT	1-1
	1.3 PRELIMINARY RECOMMENDATIONS	1-1
2	GENERAL INSTRUCTIONS	2_1
2	2.1 ABOUT THE MANUAL	
	2.2 TERMS AND DEFINITIONS USED IN THE MANUAL	
	2.3 ABOUT THE CFW-11 RB	
	2.4 IDENTIFICATION LABELS FOR THE CFW-11 RB	
	2.5 CFW-11 RB MODEL SPECIFICATION (SMART CODE)	
	2.6 RECEIVING AND STORAGE	
0	INGTALLATION AND CONNECTION	0.4
3	INSTALLATION AND CONNECTION	-
	3.1 MECHANICAL INSTALLATION	
	3.1.1 Installation Environment	
	3.1.2 Mounting Considerations	
	3.1.3 Cabinet Mounting	
	3.1.5 Access to the Control and Power Terminal Strips	
	3.1.6 Removal of the Cable Passage Plate - Frame Size E	
	3.1.7 HMI Installation at the Cabinet Door or Command Panel (Remote HMI)	
	3.2 ELECTRICAL INSTALLATION	
	3.2.1 Identification of the Power and Grounding Terminals	
	3.2.2 Pre-charge Circuit	
	3.2.3 Power/Grounding Wiring and Fuses	
	3.2.4 Power Connections	
	3.2.4.1 Input Connections	
	3.2.5 Grounding Connections	
	3.2.6 Input Filter	
	3.2.6.1 Basic Definitions	
	3.2.6.2 How to Specify the Filter Model	
	3.2.7 Synchronism	3-29
	3.2.8 Control Connections	3-30
	3.2.9 Typical Control Connection	
	3.3 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC	
	COMPATIBILITY	
	3.3.1 Conformal Installation	
	3.3.2 Standard Definitions	
	3.3.3 Emission and Immunity Levels	
	3.3.4 RFI Filters	3-37
4	HMI	. 4-1
	4.1 INTEGRAL KEYPAD - HMI - CFW-11 RB	4-1
	4.2 PARAMETERS ORGANIZATION	4-4
5	FIRST TIME POWER-UP AND START-UP	5-1
J	5.1 PREPARATIONS FOR THE START-UP	-
	5.1.1 Procedures for the First Time Power-up/Start-up	
	5.2 START-UP	
	5.2.1 Password Setting in P0000	
	5.2.2 Oriented Start-Up	
	5.3 SETTING DATE AND TIME	
	5.4 BLOCKING PARAMETERS MODIFICATION	
	5.5 HOW TO CONNECT TO A PC	
	5.6 FLASH MEMORY MODULE	

6 TROUBLESHOOTING AND MAINTENANCE 6.1 OPERATION OF THE FAULTS AND ALARMS	
6.2 FAULTS, ALARMS, AND POSSIBLE CAUSES	
6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS	
6.4 INFORMATION FOR CONTACTING TECHNICAL SUPPORT	
6.5 PREVENTIVE MAINTENANCE	
6.5.1 Cleaning Instructions	
7 OPTION KITS AND ACCESSORIES. 7.1 OPTION KITS. 7.1.1 24 Vdc External Control Power Supply. 7.2 ACCESSORIES.	
8 TECHNICAL SPECIFICATIONS	
8.1 POWER DATA	8-1
8.2 ELECTRONICS/GENERAL DATA	
8.2.1 Codes and Standards	
8.3 MECHANICAL DATA	8-8

1 SAFETY INSTRUCTIONS

This manual provides information for the proper installation and operation of the regenerative frequency converter CFW-11 RB.

Only trained and qualified personnel should attempt to install, start-up, and troubleshoot this type of equipment.

1.1 SAFETY WARNINGS IN THE MANUAL

The following safety warnings are used in this manual:

DANGER!

The procedures recommended in this warning have the purpose of protecting the user against death, serious injuries and considerable material damage.

ATTENTION!

The procedures recommended in this warning have the purpose of avoiding material damage.

NOTE!

The text intents to supply important information for the correct understanding and good operation of the product.

1.2 SAFETY WARNINGS IN THE PRODUCT

The following symbols are attached to the product and require special attention:

High voltages are present.

Components sensitive to electrostatic discharge. Do not touch them.

Mandatory connection to the protective ground (PE).

Connection of the shield to the ground.

Hot surface.

1.3 PRELIMINARY RECOMMENDATIONS

DANGER!

Only qualified personnel familiar with the CFW-11 RB regenerative frequency converter and associated equipment should plan or implement the installation, start-up and subsequent maintenance of this equipment.

These personnel must follow all the safety instructions included in this Manual and/or defined by local regulations.

Failure to comply with these instructions may result in death, serious injury and equipment damage.

NOTE!

For the purposes of this manual, qualified personnel are those trained and able to:

1. Install, ground, power-up and operate the CFW-11 RB according to this manual and the effective legal safety procedures.

2. Use protection equipment according to the established regulations.

3. Provide first aid.

ATTENTION!

When in operation, electric energy systems – such as transformers, converters, motors and cables – generate electromagnetic fields (EMF), posing a risk to people with pacemakers or implants who stay in close proximity to them. Therefore, those people must stay at least 2 meters away from such equipment.

DANGER!

Always disconnect the main power supply before touching any electrical component associated to the converter.

Several components can remain charged with high voltages and/or in movement (fans) even after the AC power supply is disconnected or switched off.

Wait at least 10 minutes to assure a total discharge of the capacitors.

Always connect the equipment frame to the protective earth (PE) at the suitable connection point.

ATTENTION!

Electronic boards have components sensitive to electrostatic discharges. Do not touch directly on components or connectors. If necessary, touch the grounded metallic frame before or use an adequate grounded wrist strap.

Do not execute any applied potential test on the CFW-11 RB! If necessary, contact WEG.

NOTE!

Regenerative frequency converter may interfere with other electronic equipment. In order to reduce these effects, take the precautions recommended in the Chapter 3 INSTALLATION AND CONNECTION on page 3-1.

NOTE!

Read this manual completely before installing or operating the converter.

ATTENTION!

The operation of this equipment requires installation instructions and detailed operation provided in the user manual, programming manual and manuals/guides for kits and accessories. The user manual and the parameters quick reference are supplied in a hard copy together with the converter. The user guides are also provided in a hard copy along with the accessories. The other manuals are they available for download on the website: **www.weg.net**.

2 GENERAL INSTRUCTIONS

2.1 ABOUT THE MANUAL

This manual presents how to install, to start-up, the main characteristics and how to troubleshoot the most common problems of the CFW-11 RB converter series.

For information on other functions, accessories and operation conditions please refer to the following manuals:

- Programming Manual, with a detailed description of the parameters and advanced functions of the CFW-11 RB.
- I/O Expansion Module Manual.

These manuals are available for download on the website: **www.weg.net**.

2.2 TERMS AND DEFINITIONS USED IN THE MANUAL

Regenerative Frequency Converter: three-phase switching frequency converter "boost type" (amplifier) that converts the AC voltage from the power supply to a DC voltage (DC Link). It has the capability of absorbing the energy of the power supply (AC) or to recover the energy back to the power supply, being used as a DC voltage source to supply voltage to several output inverter.

Output Inverter: frequency inverter fed by the DC Link bus bar supplied by the regenerative converter. It is responsible for the motor control.

Normal Duty Cycle (ND): converter duty cycle that defines the maximum continuous operation current (Inom-ND) and overload current conditions (110 % for 1 minute). The ND cycle is selected by setting P0298 (Application) = 0 (Normal Duty (ND)). The inverter overload conditions are reflected in the regenerative converter.

I nom-ND: converter rated current for use with the normal duty (ND) cycle. Overload: 1.1 x I nom-ND / 1 minute.

Heavy Duty Cycle (HD): converter duty cycle that defines the maximum continuous operation current (Inom-HD) and overload current conditions (150 % for 1 minute). The HD cycle is selected by setting P0298 (Application) = 1 (Heavy Duty (HD)). The inverter overload conditions are reflected in the regenerative converter.

 ${\rm I}_{\rm nom-HD}$: converter rated current for use with the heavy duty (HD) cycle. Overload: 1.5 x ${\rm I}_{\rm nom-HD}$ / 1 minute.

Pre-charge Circuit: charges the DC Link capacitors with limited current, which avoids higher peak currents at the converter power-up.

Link DC: converter intermediate circuit; DC voltage obtained from the AC input voltage rectification or from an external power supply; feeds the output IGBTs converter bridge.

Power Modules U, V, and W: set of two IGBTs of the regenerative converter input phases U, V, and W.

IGBT: Insulated Gate Bipolar Transistor; basic component of the power modules U, V and W. The IGBT works as an electronic switch in the saturated (closed switch) and cut-off (open switch) modes.

NTC: resistor which resistance value in ohms decreases proportionally to the temperature increase; used as a temperature sensor in power modules.

HMI: Human Machine Interface: it is a device that allows the visualization and modification of the converter parameters. The CFW-11 RB HMI presents keys for the regenerative converter control, navigation keys and a graphic LCD display.

Flash Memory: non-volatile memory that can be electronically written and erased.

Ram Memory: Random Access Memory (volatile).

General Information

USB: Universal Serial Bus; is a serial bus standard that allows devices to be connected using the "Plug and Play" concept.

PE: Protective Earth.

RFI Filter: Radio-Frequency Interference Filter for interference reduction in the Radio-Frequency range.

PWM: Pulse Width Modulation; pulsed voltage at the input of the regenerative converter.

Switching Frequency: frequency of the IGBTs switching, normally expressed in kHz.

General Enable: when activated, the converter controls the voltage at the DC Link. When deactivated, this function immediately blocks the PWM pulses. The General Enable function may be controlled through a digital input set to this function.

Heatsink: metal device designed to dissipate the heat generated by the power semiconductors.

Amp, A: ampères.

2

°C: celsius degree.

°F: Fahrenheit degree.

AC: alternated current.

DC: direct current.

CFM: Cubic Feet per Minute; unit of flow.

cm: centimeter.

ft: foot.

hp: horse power = 746 Watts; unit of power, used to indicate the mechanical power of electrical motors.

Hz: hertz.

in: inch.

kg: kilogram = 1000 grams.

kHz: kilohertz = 1000 Hertz.

I/s: liters per second.

Ib: pound.

m: meter.

mA: miliampère = 0.001 Ampère.

min: minute.

mm: millimeter.

ms: millisecond = 0.001 seconds.

N.m.: newton meter; unit of torque.

rms: root mean square; effective value.

2-2 | CFW-11 RB

rpm: revolutions per minute; unit of speed.

s: second.

V: volts.

Ω: ohms.

2.3 ABOUT THE CFW-11 RB

The regenerative frequency converter is a bidirectional three-phase boost type AC/DC converter that generates higher DC voltage than the line peak voltage. These converter are commonly known as AFE (Active Front End) drives. The CFW-11 RB line utilizes the "RB" sulfix which states for Regenerative Braking because it has the natural capacity of allowing the energy to flow from the converter to the power supply when the motor is braking. The DC voltage generated by the regenerative converter is used to feed other converter power units that are controlling three-phase motors.

The CFW-11 RB regenerative converter is a high performance product that allows three-phase power supply rectification with the following advantages:

- Low input current harmonic distortion.
- Capacity of recovering energy back to the power supply (regeneration) allowing high braking torque levels.

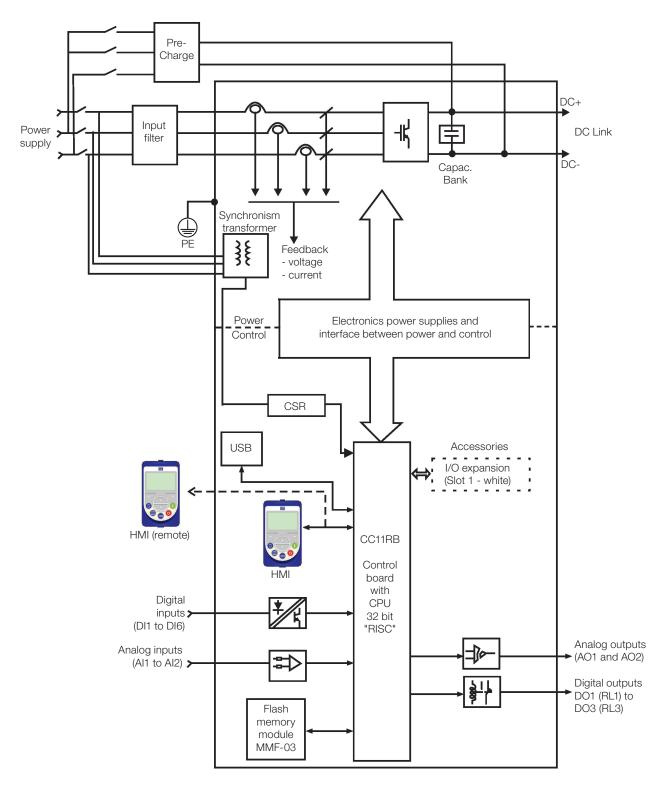
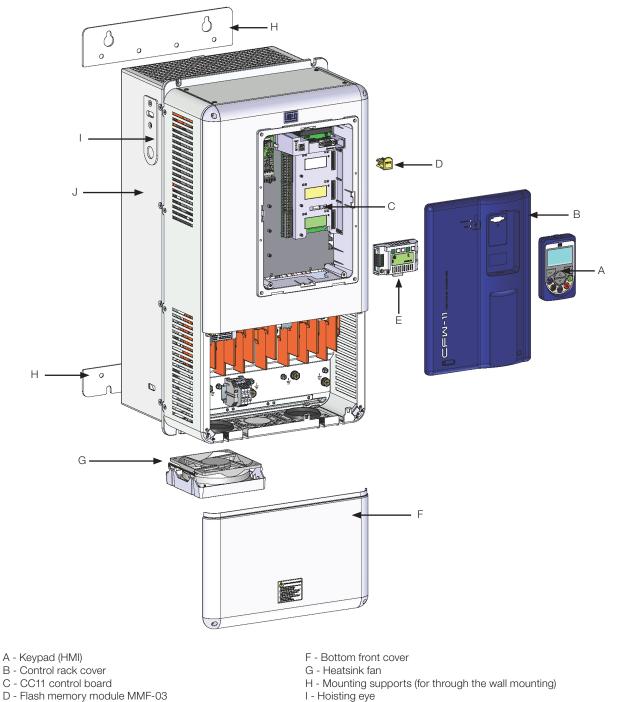


Figure 2.1: CFW-11 RB block diagram

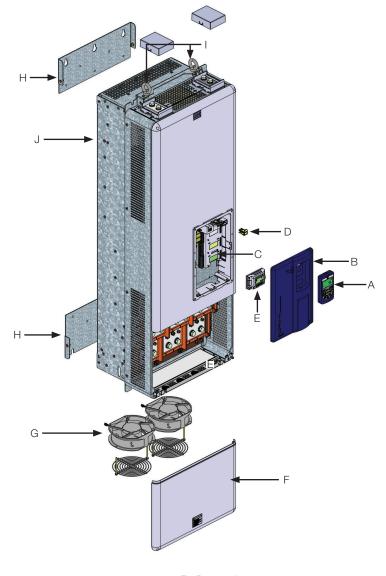
NOTE!


Additional itens are need for the assembly of the complete unit, such as output inverter, DC fuses in the DC link bus bar connection, external pre-charge circuit and filter.

2

NOTE!

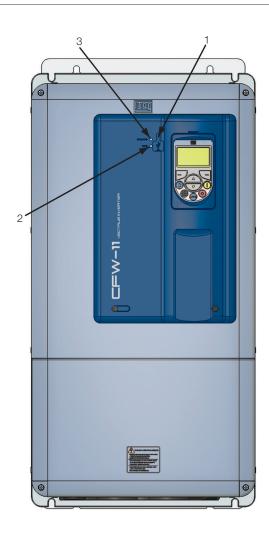
It is not necessary to add a current transformer (CT) for output short circuit protection to the ground since each CFW-11 RB module has its own internal protection.


E - Control accessory module (refer to the Section 7.2

ACCESSORIES on page 7-2)

- J Rear part of the converter (external part for flange mounting)

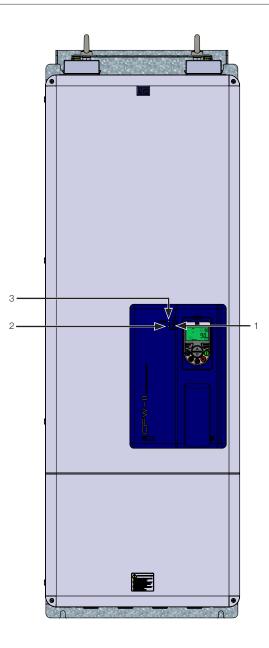
Figure 2.2: Main components of the CFW-11 RB - frame size E



A - Keypad (HMI)

- B Control rack cover C CC11 control board
- D Flash memory module MMF-03
- E Control accessory module

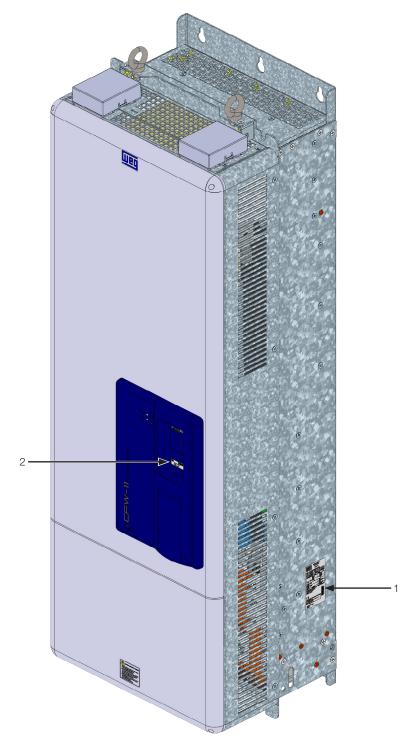
- F Bottom front cover
- G Heatsink fan
- H Mounting supports (for surface mounting)
- I Eyebolt J - Rear part of the converter (external part for flange mounting)
- Figure 2.3: Main components of the CFW-11 RB frame sizes F and G


1 - USB connector 2 - USB led

Off: without USB connection On/blinking: USB communication active

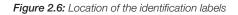
3 - Status led Green: normal operation without fault or alarm Yellow: in the alarm condition Blinking red: in the fault condition

Figure 2.4: leds and USB connector

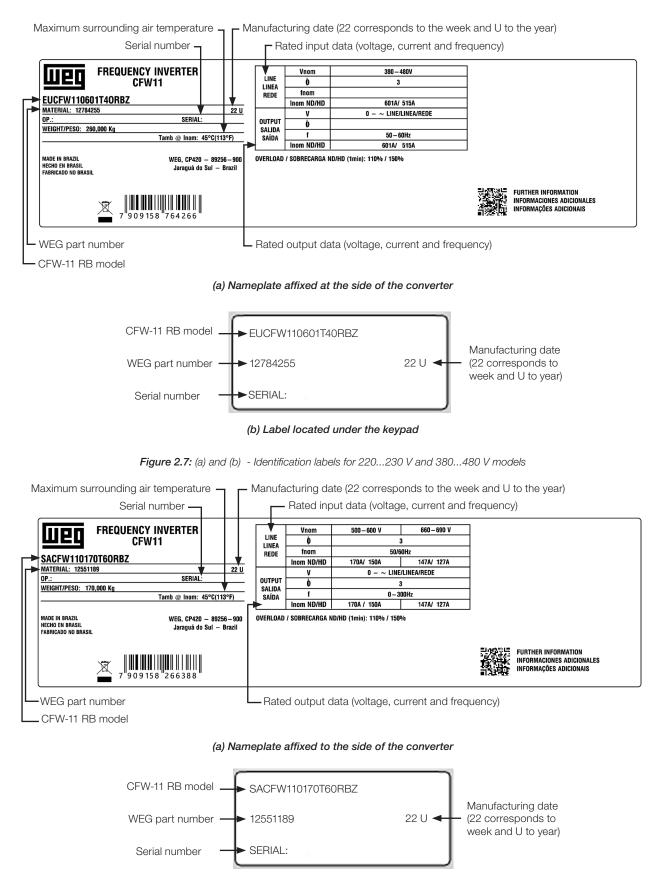

2

- 1 USB connector
- 2 USB led
 - Off: without USB connection On/blinking: USB communication active
- 3 Status led
 - Green: normal operation without fault or alarm Yellow: in the alarm condition Blinking red: in the fault condition

Figure 2.5: leds and USB connector


2.4 IDENTIFICATION LABELS FOR THE CFW-11 RB

There are two identification labels, one complete nameplate is affixed at the side of the converter and a simplified label is located under the keypad. The label under the keypad allows the identification of the most important characteristics of the converter even if they are mounted side-by-side.



1 - Nameplate affixed to the side of the heatsink

2 - Nameplate under the keypad

(b) Nameplate located under the keypad

Figure 2.8: (a) and (b) - Identification labels for 500...690 V models

2.5 CFW-11 RB MODEL SPECIFICATION (SMART CODE)

In order to specify the CFW-11 RB, it is necessary to fill in the desired voltage and current values in the respective fields for the nominal supply voltage and the rated input current for normal duty (ND) cycle in the smart code according to the example on Table 2.1 on page 2-11.

Table 2.1: Smart code						
		Z	Character that identifies the end of the code			
	Refer to the Chapter 7 OPTION KITS AND ACCESSORIES on page 7-1 for more details on the options		Special software	Blank = standard S1 = software n°1		
Available Option Kits	ON KITS AND , on the options		Special hardware	Blank = standard H1 = special hardware n°1		
Available	Refer to the Chapter 7 OPTION KITS AND A on page 7-1 for more details on the options		External 24 Vdc control power supply	Blank = standard (not available) W = with external 24 Vdc control power supply		
	Refer to the (on page 7-1 f	RB	Braking	RB = Blank = Regenerative standard (not available) W = with external 24 Vdc co		
		0	Option kit Braking	0 = product with option kit		
	Refer to Chapter 8 TECHNICAL SPECIFICATIONS on page 8-1 for the CFW-11 RB list of models and for the complete technical specifications	4	Number of Power supply power phases	T = 2 = 220230 V 0 = threephase 4 = 380480 V with 6 = 660690 V with option		
Converter Model	NICAL SPEC 1 RB list of r pecifications	⊢	Number of power phases			
Conver	Refer to Chapter 8 TECHNICAL SPEC bage 8-1 for the CFW-11 RB list of r he complete technical specifications	0370	Rated current for Normal Duty (ND) cycle	Possible options presented in Table 2.2 on page 2-12		
	Refer to Ch page 8-1 ft the comple	CFW11	WEG 11 frequency converter series			
		BR	Market identification (defines the manual language and the factory settings)	2 characteres		
		Example	Field description	Available options		

T2	T4	т	6
220230 V	380480 V	500600 V	660690 V
0142 = 142 A	0105 = 105 A	0053 = 53 A	0053 = 46 A
0180 = 180 A	0142 = 142 A	0063 = 63 A	0063 = 54 A
0211 = 211 A	0180 = 180 A	0080 = 80 A	0080 = 73 A
	0211 = 211 A	0107 = 107 A	0107 = 100 A
	0242 = 242 A	0125 = 125 A	0125 = 108 A
	0312 = 312 A	0150 = 150 A	0150 = 130 A
	0370 = 370 A	0170 = 170 A	0170 = 147 A
	0477 = 477 A	0216 = 216 A	0216 = 195 A
	0515 = 515 A	0289 = 289 A	0289 = 259 A
	0601 = 601 A	0315 = 315 A	0315 = 259 A
	0720 = 720 A	0365 = 365 A	0365 = 312 A
	0760 = 760 A	0435 = 435 A	0435 = 365 A
		0472 = 472 A	0472 = 427 A

Table 2.2: Nominal currents at normal duty cycle (ND)

2.6 RECEIVING AND STORAGE

The CFW-11 RB converters from the frame sizes E, F and G models are supplied packed in wooden boxes.

There is an identification label affixed to the outside of the package, identical to the one affixed to the side of the converter CFW-11 RB.

To open the package:

- 1. Remove the package front cover.
- 2. Take out the polystyrene foam protection.

Verify whether:

- 1. The CFW-11 RB nameplate corresponds to the purchased model.
- 2. Any damage occurred during transportation.

If any problems are detected, contact the carrier immediately.

If the CFW-11 RB is not installed soon, store it in a clean and dry location (temperature between -25 °C and 60 °C (-13 °F and 140 °F)), with a cover to prevent dust accumulation inside it.

ATTENTION!

When the converter is stored for a long period, it becomes necessary to perform the capacitor reforming. Verify the procedure on Section 6.5 PREVENTIVE MAINTENANCE on page 6-4.

3 INSTALLATION AND CONNECTION

This chapter provides information on installing and wiring the CFW-11 RB. The instructions and guidelines listed in this manual shall be followed to guarantee personnel and equipment safety, as well as the proper operation of the converter.

3.1 MECHANICAL INSTALLATION

3.1.1 Installation Environment

NOTE! The converter is designed for indoor use only.

Avoid:

- Direct exposure to sunlight, rain, high humidity, or sea-air.
- Inflammable or corrosive gases or liquids.
- Excessive vibration.
- Dust, metallic particles, and oil mist.

Permissible environmental conditions for the converter operation:

- Temperature (standard conditions (surrounding the converter), no frost allowed):
 - 10 °C to 45 °C (14 °F to 113 °F) for frame sizes E, F and G (except 720T4 and 760T4 models).
 - 10 °C to 40 °C (14 °F to 104 °F) for frame size G (only 720T4 and 760T4 models).
- From 40 °C to 45 °C (104 °F to 113 °F) for frame size G (only 760T4 model): 1 % of current derating for each Celsius degree above maximum temperature as specified in item above.

From 40 °C to 45 °C (104 °F to 113 °F) for frame size G: (only 720T4 model): 2 % of current derating for each Celsius degree above maximum temperature as specified in item above.

From 45 °C to 55 °C (113 °F to 131 °F) for frame sizes E, F and G: apply 2 % of current derating for each Celsius degree above maximum temperature as specified in item above.

Altitude: up to 1000 m (3.300 ft) above sea level - standard conditions (no derating required).

From 1000 m to 4000 m (3.300 ft to 13.200 ft) above sea level - 1 % of current derating for each 100 m (330 ft) above 1000 m (3.300 ft) altitude.

From 2000 m to 4000 m (6.600 ft to 13.200 ft) above sea level - reduction of maximum voltage (230 V for 220...230 V models, 480 V for 380...480 V models, 600 for 500...600 V models and 690 for 660...690 V models) of 1.1 % for each 100 m (330 ft) above 2000 m (6.600 ft).

- Humidity: from 5 % to 95 % non-condensing.
- Pollution degree: 2 (according to EN50178 and UL508C) with non-conductive pollution. Condensation shall not originate conduction through the accumulated residues.

3.1.2 Mounting Considerations

Consult the converter weight at Table 8.1 on page 8-2 to Table 8.4 on page 8-5.

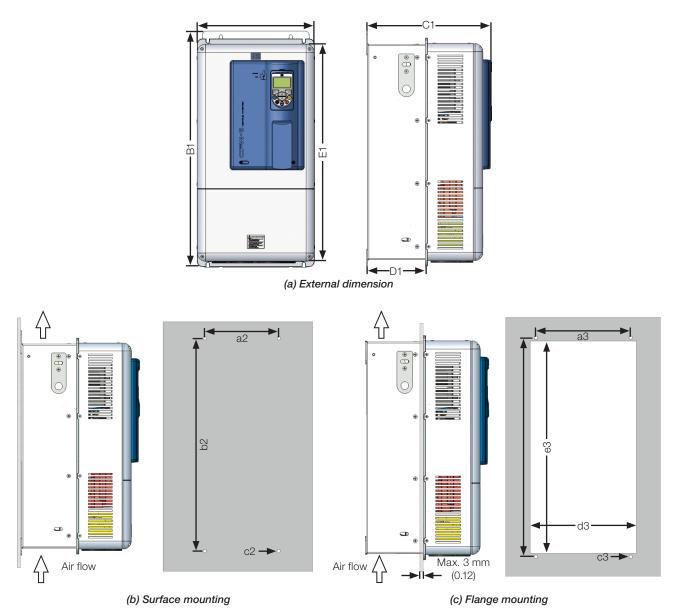
Mount the converter in the upright position on a flat and vertical surface.

External dimensions and fixing holes position according to Figure 3.1 on page 3-3 and Figure 3.2 on page 3-4. Refer to Section 8.3 MECHANICAL DATA on page 8-8, for more details.

First, mark the mounting points and drill the mouting holes. Then, position the converter and firmly tighten the screws in all four corners to secure the converter.

Minimum mounting clearances requirements for proper cooling air circulation are specified in Figure 3.3 on page 3-5 and Figure 3.4 on page 3-6 .

Do not install heat sensitive components right above the converter.


ATTENTION!

When arranging two or more converters vertically, respect the minimum clearance A + B (Figure 3.3 on page 3-5 and Figure 3.4 on page 3-6) and provide an air deflecting plate so that the heat rising up from the bottom converter does not affect the top converter.

ATTENTION!

Provide conduit for physical separation of the signal, control, and power conductors (refer to Section 3.2 ELECTRICAL INSTALLATION on page 3-12).

	A1	B1	C1	D1	E1	a2	b2	c2	a3	b3	c3	d3	e3	Torque (*)
Model	mm	mm	mm	mm	mm	mm	mm	М	mm	mm	м	mm	mm	N.m
	(in)	(in)	(in)	(in)	(in)	(in)	(in)	141	(in)	(in)	IVI	(in)	(in)	(ibf.in)
Frame	335	375	358	168	620	200	650	M8	275	635	M8	315	615	20.0
Size E	(13.2)	(26.6)	(14.1)	(6.6)	(24.4)	(7.8)	(25.6)	IVIO	(10.8)	(25)	IVIO	(24.21)	(24.21)	(177.0)

Tolerance for dimensions $33 \text{ and } e3: \pm 1.0 \text{ mm} (\pm 0.039 \text{ in}).$ Tolerance for the other dimensions: $\pm 1.0 \text{ mm} (\pm 0.039 \text{ in}).$ (*) Recommended torque for the converter mounting (valid for c2 and c3).

a3

eg

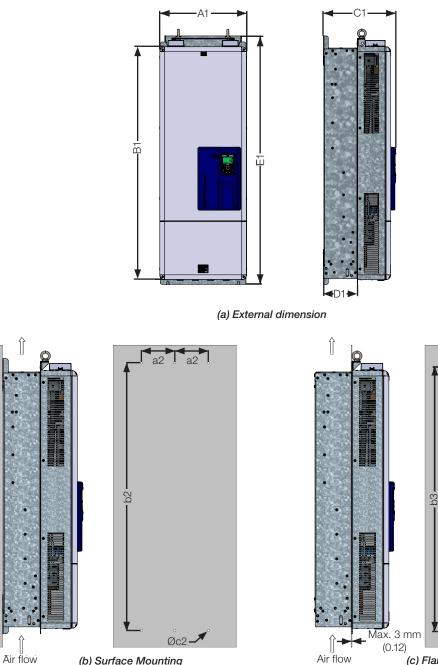
e3

mm

(in)

1146

(45.12)


1182

(46.53)

495

(19.49)

M10

(b) Surface Mounting				
B1 C1 D1 E1 a2 b2 c2	a3	b3	c3	d3
mm mm mm mm mm mm (in) (in) (in) (in) (in) (in)	mm (in)	mm (in)	м	mm (in)
1156 360 169 1234 150 1200 M10	350	1185	M10	391
(45.51) (14.17) (6.65) (48.58) (5.91) (47.24)	(13.78)	(46.65)		(15.39)

1225

(48.23)

400

(15.75)

M10

1220

(48.03)

Tolerance for dimensions d3 and e3: +1.0 mm (+0.039 in).	
Tolerance for the other dimensions: ± 1.0 mm (± 0.039 in).	

1190

(46.85)

426

(16.77)

202

(7.95)

1264

(49.76)

A1

mm

(in)

430

(16.93)

535

(21.06)

Model

Frame Size

F

Frame Size

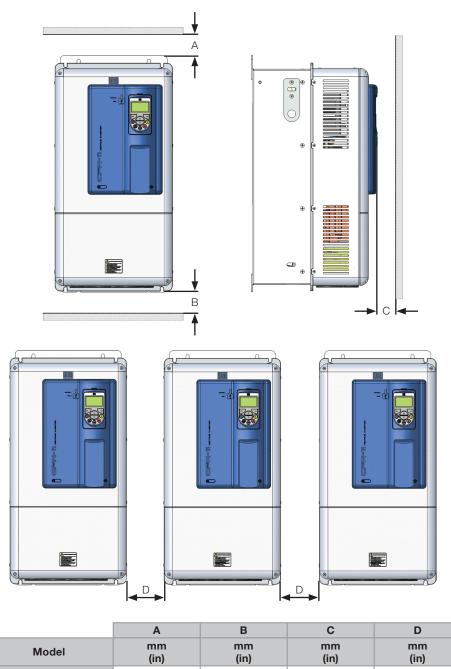

G

Figure 3.2: (a) to (c) - Mechanical installation details - frame sizes F and G

200

(7.87)

	· · /	· · · ·
Frame Size E	150	250
	(5.91)	(9.84)

Tolerance: ±1.0 mm (±0.039 in).

20 (0.78) 80 (3.15)

Installation and Connection

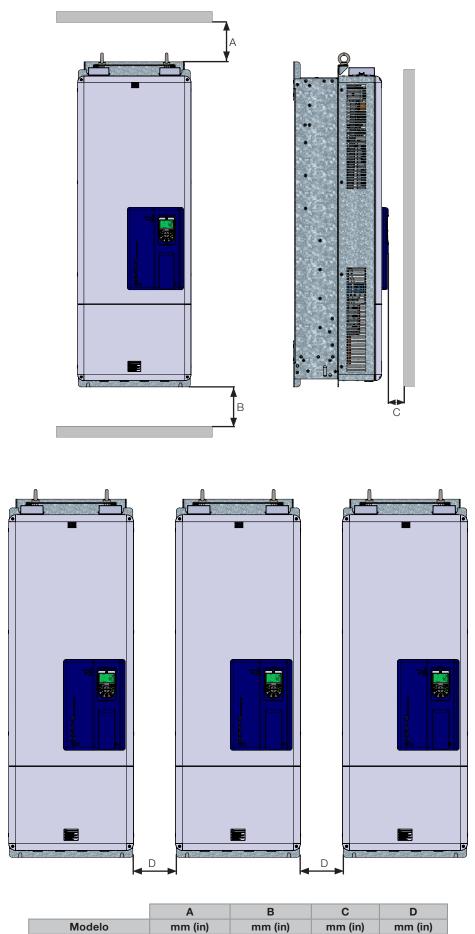


Figure 3.4: Free spaces around converter for ventilation - frames sizes F and G

3.1.3 Cabinet Mounting

There are two possibilities for mounting the converter: surface mounting or flange mounting (the heatsink is mounted outside the cabinet and the cooling air of the power module is kept outside the enclosure). The following information shall be considered in these cases:

Surface Assembly:

- Provide adequate exhaustion so that the internal cabinet temperature is kept within the allowable operating range of the converter.
- The power dissipated by the converter at its rated condition, as specified in Table 8.1 on page 8-2 to Table 8.4 on page 8-5 "Dissipated power in Watts Surface mounting".
- The cooling air flow requirements, as shown in Table 3.1 on page 3-7.
- The position and diameter of the mounting holes, according to Figure 3.1 on page 3-3 and Figure 3.2 on page 3-4.

Flange Assembly:

Frame Size E:

- The power specified in Table 8.1 on page 8-2 to Table 8.4 on page 8-5 "Dissipated power in Watts flange mounting" will be dissipated inside the cabinet. The remaining losses (power module) will be dissipated through the vents.
- The converter securing supports (position H of Figure 2.2 on page 2-5) and the hoisting eyes (position I of Figure 2.2 on page 2-5) must be removed and repositioned according to the Figure 3.5 on page 3-8 and Figure 3.6 on page 3-8.
- The portion of the converter that is located outside the cabinet is rated IP54. Provide an adequate gasket for the cabinet opening to ensure that the enclosure rating is maintained. Example: silicone gasket.
- Mounting surface opening dimensions and position/diameter of the mounting holes, as shown in Figure 3.1 on page 3-3

Frame Sizes F and G:

ATTENTION!

The part of the converter that stays outside the cabinet is rated IP20.

- The power specified in Table 8.1 on page 8-2 to Table 8.4 on page 8-5 under "Dissipated power in Watts

 Flange mounting" will be dissipated inside the cabinet. The other losses (power modules) will be dissipated
 at the external ventilation duct.
- The converter mounting supports and the hoisting eyes must be removed. Refer to the Figure 2.3 on page 2-6, positions H and I.
- Dimensions of the flange-mounting opening and the diameters of the securing holes must be according to the Figure 3.2 on page 3-4.

Frame Size	CFM	l/s	m³/min
E	265	125	7,5
F	460	217	13
G	680	321	19,3

Table 3.1: Minimum required cabinet cooling air flow

Installation and Connection

Figure 3.5: Repositioning the mounting supports - frame size E

3.1.4 Installation of the Converter Hoisting Eyes - Frame Size E

Two hoisting eyes for the converter lifting, which are mounted at the converter sides (rear part), are supplied. By inverting their position, as shown in Figure 3.6 on page 3-8, two points for hoisting the converter, which are very useful during the mechanical installation of the converter, are obtained.

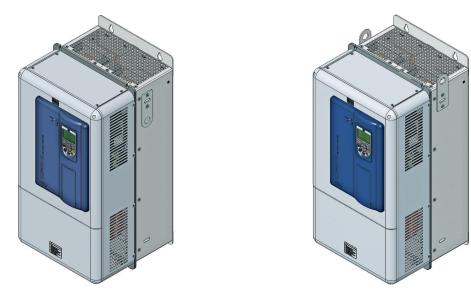


Figure 3.6: Installation of the converter hoisting eyes frame size E

3.1.5 Access to the Control and Power Terminal Strips

Frame Size E:

Шеп

It is necessary to remove the keypad (HMI) and the control rack cover in order to get access to the control terminal strip (see Figure 3.7 on page 3-9). In order to get access to the power terminal strip, remove the bottom front cover (see Figure 3.8 on page 3-9).

Figure 3.7: HMI and control rack cover removal - frame size E

Figure 3.8: Bottom front cover removal - frame size E

Frame Sizes F and G:

In order to get access to the control terminals, it is necessary to remove the HMI and the control rack cover, as showed in Figure 3.9 on page 3-10.

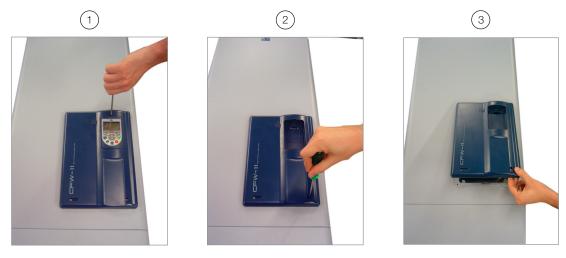


Figure 3.9: Removal of the HMI and the control rack cover - frame sizes F and G

In order to get access to the power terminals, it is necessary to remove the bottom front cover, as shown in Figure 3.10 on page 3-10.

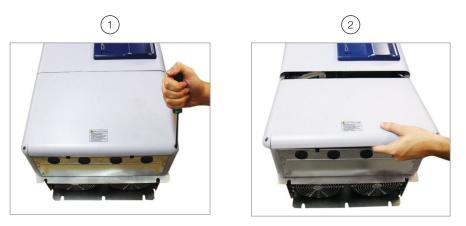


Figure 3.10: Removal of the bottom front cover to access the power terminals - frame sizes F and G

In order to connect the power cables (line and motor), remove the bottom plate, as shown in Figure 3.11 on page 3-10. In this case the protection degree of the converter bottom part will be reduced.

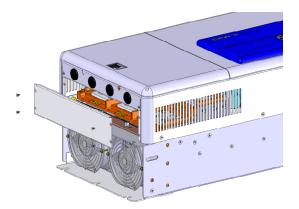


Figure 3.11: Removal of the bottom plate, to access the power terminals - frame sizes F and G

3.1.6 Removal of the Cable Passage Plate - Frame Size E

When it is not necessary neither IP20 nor Nema1 protection degree, the cable passage plate may be removed in order to make the converter electric installation easier. Remove the four M4 screws, according to the procedure presented in Figure 3.12 on page 3-11.

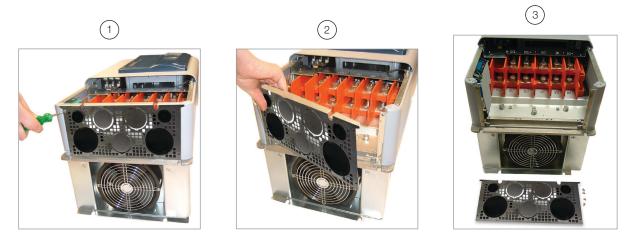


Figure 3.12: Removal of the cable passage plate - frame size E

3.1.7 HMI Installation at the Cabinet Door or Command Panel (Remote HMI)

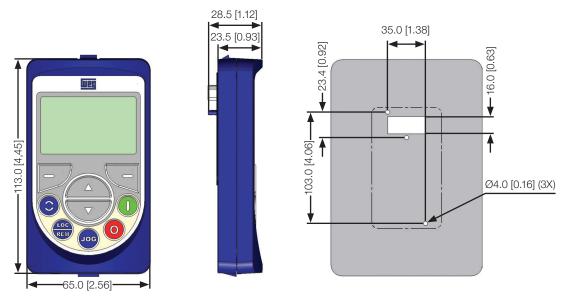


Figure 3.13: Data for the HMI installation at the cabinet door or command panel – mm [in]

The keypad frame accessory can also be used to fix the HMI as mentioned in the Table 7.1 on page 7-3.

3.2 ELECTRICAL INSTALLATION

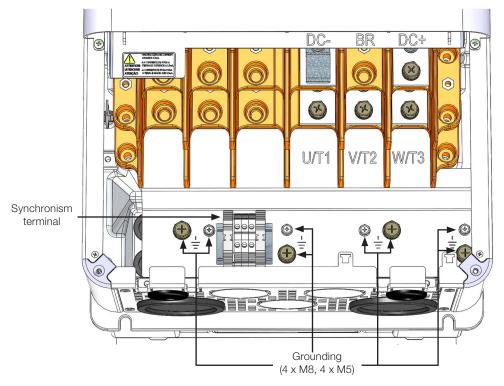
DANGER!

The following information is merely a guide for proper installation. Comply with applicable local regulations for electrical installations.

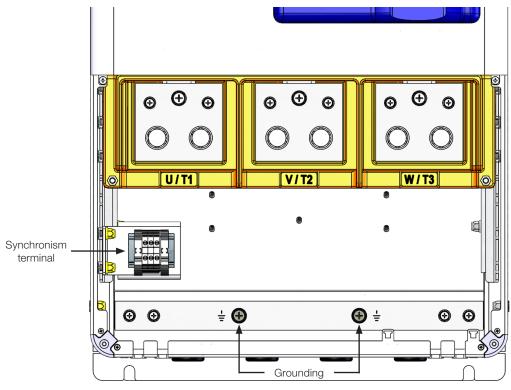
DANGER!

Make sure the AC power supply is disconnected before starting the installation.

ATTENTION!

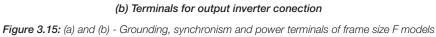

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with applicable local standards.

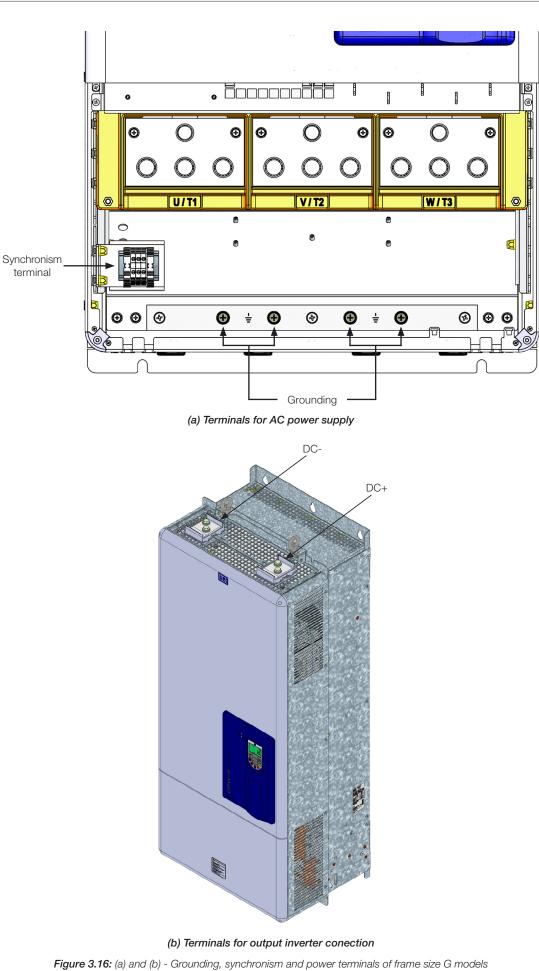
3.2.1 Identification of the Power and Grounding Terminals


U/T1, V/T2, W/T3: AC power supply.

DC-: this is the negative potential terminal in the DC Link circuit.

DC+: this is the positive potential terminal in the DC Link circuit.




Figure 3.14: Grounding, synchronism and power terminals of frame size E models

(a) Terminals for AC power supply

3.2.2 Pre-charge Circuit

The resistors of the pre-charge circuit must be sized according to the following criteria:

- Maximum voltage.
- Maximum energy.
- Power overload capacity of the resistors during the pre-charge period (energy dissipation capacity).

NOTE!
 The pre-charge resistor is sized considering that the CFW-11 RB is feeding a CFW-11 DC inverter of the same current value.

- In case the CFW-11 RB is not feeding an inverter of the same current value, contact WEG.
- In case the CFW-11 RB is feeding other converter, WEG must be consulted.

The characteristics of the resistors must be obtained with their manufacturer.

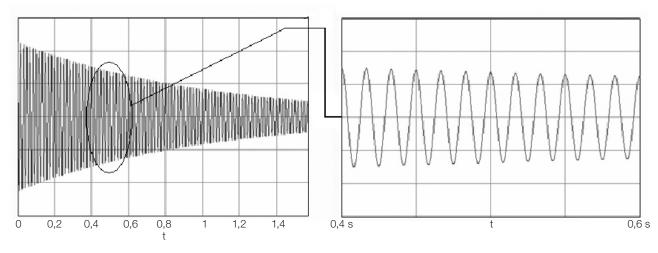


Figure 3.17: Current during the pre-charge

Table 3.2: Sizing of the pre-charge

6 ,	0
Peak current during the pre-charge (A)	0,83·(V _{line} /R)
Energy stored in the capacitor bank (J)	$k_E \cdot V_{line}^2$
Pre-charge duration (s)	$k_{\tau} \cdot R$

Where R is the ohmic value of the resistor used for each phase and N is the number of power units.

Medel	Le .	le le
Model CFW110142T2OBB	k _E	k _T
	0.0030	0.0180
CFW110180T2ORB	0.0053	0.0315
CFW110211T2ORB	0.0053	0.0315
CFW110105T4ORB	0.0030	0.0180
CFW110142T4ORB	0.0030	0.0180
CFW110180T4ORB	0.0053	0.0315
CFW110211T4ORB	0.0053	0.0315
CFW110242T4ORB	0.0094	0.0564
CFW110312T4ORB	0.0118	0.0705
CFW110370T4ORB	0.0141	0.0846
CFW110477T4ORB	0.0188	0.1128
CFW110515T4ORB	0.0235	0.1410
CFW110601T4ORB	0.0235	0.1410
CFW110720T4ORB	0.0329	0.1974
CFW110760T4ORB	0.0329	0.1974
CFW110053T6ORB	0.0010	0.0060
CFW110063T6ORB	0.0010	0.0060
CFW110079T6ORB	0.0015	0.0090
CFW110107T6ORB	0.0020	0.0120
CFW110125T6ORB	0.0025	0.0150
CFW110150T6ORB	0.0025	0.0150
CFW110170T6ORB	0.0063	0.0376
CFW110216T6ORB	0.0063	0.0376
CFW110289T6ORB	0.0078	0.0470
CFW110315T6ORB	0.0094	0.0564
CFW110365T6ORB	0.0125	0.0752
CFW110435T6ORB	0.0125	0.0752
CFW110472T6ORB	0.0125	0.0752

Table 3.3: Values of the constants for sizing the pre-charge

Example:

In a drive composed of a BRCFW110601T4ORBZ as regenerative converter and a BRCFW110601T4ODCZ as output inverter, whose line voltage in the converter input is 380 VRMS, the obtained values would be the following:

- For this model, the kE value is 0.024. Thus, the energy stored in the in capacitor bank is: $0.024.(380)^2 = 3466$ J.
- Using three 10 Ω resistors (one per phase), each resistor must withstand 1155 J.
- The manufacturer of the resistor can inform the energy the component withstands.
- The peak current during the pre-charge is 0.83. (380) /10 = 31.54 A.
- For this model, the kT value is 0.141. Thus, the duration of the pre-charge is 0.141x10 = 1.41 s.

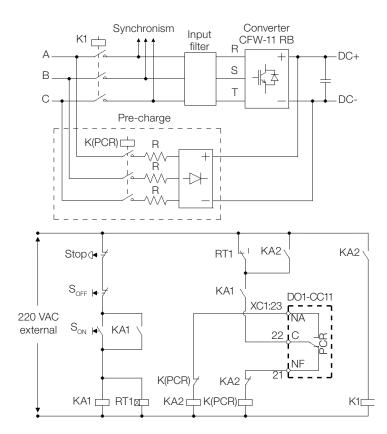


Figure 3.18: Pre-charge circuit example

A contactor or a motorized circuit breaker can be installed at the input of the CFW-11 RB (represented by K1) and its command must be interlocked with the pre-charge contactor K(PCR) command. Figure 3.18 on page 3-17 presents an example of the recommended pre-charge circuit for the CFW-11 RB converter with simplified power and command diagrams. There is already a digital output (D01) configured as "Pre-charge OK" function in the CC11 RB board. This digital output must be used to command the pre-charge contactor and the main contactor (motorized circuit breaker). Furthermore, the pre-charge timing must be set for the protection of the auxiliary circuit (resistors, rectifier bridge). This function is carried out by a timer relay with a normally-closed on-delay contact, represented as RT1 in the figure Figure 3.18 on page 3-17.

3.2.3 Power/Grounding Wiring and Fuses

ATTENTION!

Use proper cable lugs for the power and grounding connection cables.

ATTENTION!

Sensitive equipment such as PLCs, temperature controllers, and thermal couples shall be kept at a minimum distance of 0.25 m (9.84 in) from the converter and from the cables that connect the converter to the motor.

DANGER!

Wrong cable connection:

- Check all the connections before powering up the converter.
 - When replacing an existing converter by a CFW-11 RB, check if the installation and wiring is according to the instructions listed in this manual.

ATTENTION!

Residual Current Device (RCD):

When installing an RCD to guard against electrical shock, only devices with a trip current of 300 mA should be used on the supply side of the converter.

NOTE!

The wire gauges listed in Table 3.4 on page 3-18 to Table 3.6 on page 3-22 are orientative values. Installation conditions and the maximum permitted voltage drop must be considered for the proper wiring sizing.

Input fuses:

- The fuse to be used in the input must be of the UR type (Ultra-Fast).
- In order to meet UL requirements, use class J fuses at the converter supply with a current not higher than the values of Table 3.4 on page 3-18 to Table 3.6 on page 3-22.
- Optionally, slow blow fuses can be used at the input. They must be sized for 1.2 x the converter rated input current. In this case, the installation is protected against short-circuit, but not the converter input rectifier. This may result in major damage to the converter in the event of an internal component failure.

Table 3.4: Recommended Wire size/ Fuses	- use only copper wire [75 °C (167	°F)] - 220230 V supply voltage
---	------------------------------------	--------------------------------

	۵	P	ower Terminals			Wi	re Size		WEG	a Recomm	nended	Fuses
Model	Frame Size	Terminals	Bolt (wrench/screw	Recommended Torque	Overload class	mm ²	AWG	Terminals	Туре	NH aR Contact	Type NH aR Flush End	
-	Fra	Terminais	head type)	N.m (lbf.in)	Ó		AWG	Term	In [A]	Model	In [A]	Model
.RB		U/T1,V/T2,W/T3,	M8 (hexagonal	15 (132.75)	HD	50	1/0			¥-		
2T2O		DC+,DC-	phillips screw)	10 (102.70)	ND	70	2/0	Ring tongue	250	-250K	_	_
CFW110142T20RB		(PE)	M5 and M8 (hexagonal phillips screw))	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	35	2	Ring t	200	FNH00-250K-A		
RB		U/T1,V/T2,W/T3,	M10 (hexagonal	30 (265.5)	HD	70 (2 x 25)	2/0 (2 x 4)			T		A-≻
0T2O	E	DC+,DC-	screw)	30 (203.3)	ND	120 (2 x 35)	4/0 (2 x 2)	Ring tongue	350	FNH1-350K-A	450	M-450
CFW110180T20RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	50	1	Ring t	000	FNH1-	+00	FNH3FEM-450Y-A
RB		U/T1,V/T2,W/T3,	M10 (parafuso	20 (065 F)	HD	120 (2 x 35)	4/0 (2 x 2)			T		A-≻
1T20		DC+,DC-	sextavado)	30 (265.5)	ND	150 (2 x 50)	300 (2 x 1)	Ring tongue	400	⁻ NH1-400K-A	450	M-450
CFW110211T20RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	70	2/0	Ring t	400	FNH1-	400	FNH3FEM-450Y-A

	e	P	ower Terminals	i		Wi	re Size		WEGI	WEG Recommended Fuses			
Model	Frame Size	Taunainala	· ·	Recommended	Overload class			Terminals	Type I Knife C			NH aR h End	
~	Fra	Terminals	screw head type)	Torque N.m (lbf.in)	ó	mm²	AWG	Term	In [A]	Model	In [A]	Model	
RB		U/T1,V/T2,W/T3,	M8 (hexagonal		HD	35	2			A			
5740		DC+,DC-	phillips screw)	15 (132.75)	ND	50	1	Ring tongue	160	-160K-	_		
CFW110105T40RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	25	4	Ring t	100	FNH00-160K-A			
RB		U/T1,V/T2,W/T3,	M8 (hexagonal	15 (132.75)	HD	50	1/0			A			
2T40		DC+,DC-	phillips screw)	15 (132.75)	ND	70	2/0	Ring tongue	250	=NH00-250K-A	_	_	
CFW110142T40RB	_	(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	35	2	Ring t	200	FNHOC			
RB	E	U/T1,V/T2,W/T3,	M10 (hexagonal	30 (265.5)	HD	70 (2 x 25)	2/0 (2 x 4)			-		K-A	
0T4O		DC+,DC-	screw)	30 (205.5)	ND	120 (2 x 35)	4/0 (2 x 2)	tongue	350	FNH1-350K-A	450	M-450	
CFW110180T40RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	50	1	Ring t	300	FNH1-	400	FNH3FEM-450Y-A	
RB		U/T1,V/T2,W/T3,	M10 (hexagonal		HD	120 (2 x 35)	4/0 (2 x 2)			-		ŕ-A	
1T40		DC+,DC-	screw)	30 (265.5)	ND	150 (2 x 50)	300 (2 x 1)	tongue	400	400K-4	450	M-450	
CFW110211T40RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ND	70	2/0	Ring t	400	FNH1-400K-A	400	FNH3FEM-450Y-A	

Table 3.5: Recommended Wire size/ Fuses	- use only copper wire [75 °C (167 °F)] - 380480 V supply voltage

Installation and Connection

	ze	P	ower Terminals	i de la companya de la	σ	Wi	re Size		WEG I	Recomm	ended I	uses
Model	Frame Size	Tomainala		Recommended	Overload class		414/0	Terminals	Type I Knife C			NH aR h End
~	Fra	Terminals	screw head type)	Torque N.m (lbf.in)	ó	mm²	AWG	Term	In [A]	Model	In [A]	Model
			M12 (hexagonal	60	HD	2 x 50	2 x 1/0					
.BB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	2 x 70	2 x 1/0			4		A-≻
CFW110242T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	50	1/0	Ring tongue	450	=NH2-450K-A	450	-NH3FEM-450Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	70	1/0					Z L
			M12 (hexagonal	60	HD	2 x 70	2 x 1/0					
RB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	2 x 95	2 x 4/0			4		∀-≻
CFW110312T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	50	1/0	Ring tongue	630	-NH2-630K-A	450	-NH3FEM-450Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0					Z L
	F		M12 (hexagonal	60	HD	2 x 120	2 x 4/0					
BB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	2 x 120	2 x 4/0					A-Y
CFW110370T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	50	1/0	Ring tongue	710	FNH2-710K-A	500	=NH3FEM-500Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0					Z L
			M12 (hexagonal	60	HD	2 x 120	2 x 4/0					
RB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	2 x 185	2 x 350			4		∀-≻
CFW110477T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	50	1/0	Ring tongue	900	FNH3-900K-A	630	FNH3FEM-630Y-A
CFW	CFW11	(PE) M8 (hexagonal phillips screw) 10 (88.6		10 (88.5)	HD/ND	185	350					Z

	ze	Р	ower Terminals	q	Wi	re Size		WEG Recommended Fuses				
Model	Frame Size			Recommended	Overload class			inals	Type N Knife C			NH aR h End
2	Frai	Terminals	screw head type)	Torque N.m (Ibf.in)	Õ	mm²	AWG	Terminals	In [A]	Model	In [A]	Model
			M12 (hexagonal	60	HD	3 x 120	3 x 4/0					
RB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	3 x 120	3 x 4/0			A		K-A
CFW110515T40RB	DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0	Ring tongue	1000	FNH3-1000K-A	700	FNH3FEM-700Y-A	
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0					L
			M12 (hexagonal	60	HD	3 x 120	3 x 4/0					
.BB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	3 x 150	3 x 300			ব	800	А-У
CFW110601T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0	Ring tongue	2 x 630 ⁽¹⁾	-NH2-630K-A		FNH3FEM-800Y-A
CFW	G	(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	150	300					Z L
			M12 (hexagonal	60	HD	3 x 120	3 x 4/0					
.RB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	3 x 185	3 x 350			ব		Y-A
CFW110720T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0	Ring tongue	2 x 710 ⁽¹⁾	FNH2-710K-A	900	FNH3FEM-900Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	185	350					ΕL
			M12 (hexagonal	60	HD	3 x 150	3 x 300					
BB		U/T1, V/T2, W/T3	phillips screw)	(531.00)	ND	3 x 185	3 x 500	1		-		Y-A
CFW110760T40RB		DC+,DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	120	4/0	Ring tongue	2 x 710 ⁽¹⁾	FNH2-710K-A	900	FNH3FEM-900Y-A
CFW	CFW110	(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ND	185	500					EN

 (1) For this application, the fuses cannot be mounted on FSW and RFW switch-disconnectors; only on individual BNH mounting bases.

Table 3.6: Recommended Wire size/ Fuses - use only copper wire [75 °C (167 °F)] - 500...690 V supply voltage

	ze	Pe	ower Terminals	6	7	w	ire Size		WE	G Recomr	nended	Fuses		
Model	Frame Size		•	Recommended	Overload class			nals		NH aR Contact		NH aR sh End		
2	Frai	Terminals	screw head type)	Torque N.m (lbf.in)	õ	mm²	AWG	Terminals	In [A]	Model	In [A]	Model		
RB		U/T1,V/T2,W/T3,	M8	45 (100 75)	HD	10	6			7				
ЗТ6О		DC+,DC-	(hexagonal screw)	15 (132.75)	ND	25	4	Ring tongue	80	-80K-/				
CFW110053T60RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	25	4	Ring to	80	FNH00-80K-A	-	-		
RB		U/T1,V/T2,W/T3,	M8 (bayagapal				HD	25	5			A		
3T60		DC+,DC-	(hexagonal screw	15 (132.75)	ND	35	2	Ring tongue	100	100K-,				
CFW110063T6ORB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	25	4	Ring to	100	FNH00-100K-A	-	-		
RB		U/T1,V/T2,W/T3,	M8	15 (100 75)	HD	25	3			A				
DT60		DC+,DC-	(hexagonal screw)	15 (132.75)	ND	35	2	Ring tongue	125	-125K-,				
CFW110080T60RB	E	(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	25	4	Ring to	120	FNH00-125K-A	_	-		
RB	L	U/T1,V/T2,W/T3,	M8		HD	50	1			A				
760		DC+,DC-	(hexagonal screw)	15 (132.75)	ND	50	1	Ring tongue	160	-160K-				
CFW110107T60RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	35	2	Ring t	100	FNH00-160K-A				
RB		U/T1,V/T2,W/T3,	M8 (boyagapal	15 (132.75)	HD	50	1			A		∀-≻		
5T60		DC+,DC-	(hexagonal screw)	10 (102.70)	ND	50	1/0	ongue	200	-200K-	450	M-450		
CFW110125T60RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	35	2	Ring tongu	200	FNH00-200K-A	430	FNH3FEM-450Y-A		
.BB		U/T1,V/T2,W/T3,	M8	15 (100 75)	HD	50	1/0			A		A-Y		
JT60		DC+,DC-	(hexagonal screw)	15 (132.75) —	ND	70	2/0	Ring tongue	250	250K-	450	A-450`		
CFW110150T60RB		(PE)	M5 and M8 (hexagonal phillips screw)	M5: 3.5 (31.0) M8: 10 (88.5)	HD/ ND	50	1	Ring t	200	FNH00-250K-A	400	FNH3FEM-450Y-A		

	ize	P	ower Terminals	5	p	w	/ire Size		WEG Recommended Fuses			
Model	Frame Size	Terminals	Bolt (wrench/ screw head	Recommended Torque	Overload class	mm²	AWG	Terminals		NH aR Contact	Type NH aR Flush End	
	Fra	Terminais	type)	N.m (lbf.in)	õ		AWG	Term	In [A]	Model	In [A]	Model
		U/T1, V/T2, W/	M12	60	HD	70	2/0					
RB		T3	(hexagonal phillips screw)	(531.00)	ND	120 (2 x 35)	4/0 (2 x 2)	0		A		A-Y(
CFW110170T60RB		DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	50	1/0	Ring tongue	350	FNH1-350K-A	450	FNH3FEM-450Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	50	1			_		Ľ
		U/T1, V/T2, W/	M12	60	HD	120 (2 x 35)	4/0 (2 x 2)					
RB		T3	(hexagonal phillips screw)	(531.00)	ND	150 (2 x 50)	300 (2 x 1)			4		K-A
CFW110216T60RB	F	DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	50	1/0	Ring tongue	400	FNH1-400K-A	450	=NH3FEM-450Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	70	2/0			Ľ		Z
		U/T1, V/T2, W/	M12	60	HD	2 x 70	2 x 2/0					
RB		Т3	(hexagonal phillips screw)	(531.00)	ND	2 x 70	2 x 2/0			A		A-Y
CFW110289T60RB		DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	50	1/0	Ring tongue	630	=NH2-630K-A	450	FNH3FEM-450Y-A
CFW	CFW1	(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	70	2/0			ш.		Z

Installation and Connection

	ze	P	ower Terminals	3	q	w	/ire Size		WE	G Recom	nended	Fuses
Model	Frame Size			Recommended	Overload class			Terminals		NH aR Contact		NH aR sh End
2	Fra	Terminals	screw head type)	Torque N.m (lbf.in)	õ	mm²	AWG	Term	In [A]	Model	In [A]	Model
		U/T1, V/T2, W/	M12 (hexagonal	60	HD	2 x 70	2 x 2/0					
RB		T3	phillips screw)	(531.00)	ND	2 x 120	2 x 4/0			A		A-Y
CFW110315T60RB		DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	120	4/0	Ring tongue	630	FNH2-630K-A	450	FNH3FEM-450Y-A
CFW		(PE)	M8 (hexagonal phillips screw)						Z L			
		U/T1, V/T2, W/	M12	60	HD	2 x 120	2 x 4/0					
.RB		T3	(hexagonal phillips screw)	(531.00)	ND	2 x 120	2 x 4/0			4		A-Y
CFW110365T6ORB		DC+, DC-	M8 (parafuso sextavado phillips)	10 (88.5)	HD/ ND	120	4/0	Ring tongue	710	FNH2-630K-A	500	FNH3FEM-500Y-A
CFW	G	(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	120	4/0					Ľ
	G	U/T1, V/T2, W/	M12 (hexagonal	60	HD	2 x 120	2 x 4/0					
RB		T3	phillips screw)	(531.00)	ND	2 x 150	2 x 300			A		A-Y
CFW110435T60RB		DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	120	4/0	Ring tongue	800	FNH3-800K-A	630	FNH3FEM-630Y-A
CFW		(PE)	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	150	300					Ë
		U/T1, V/T2, W/	M12	60	HD	3 x 70	3 x 2/0					
BB		T3	(hexagonal phillips screw)	(531.00)	ND	3 x 120	3 x 4/0			4		A-Y
CFW110472T60RB		DC+, DC-	M8 (hexagonal phillips screw)	10 (88.5)	HD/ ND	120	4/0	Ring tongue	900	FNH3-900K-A	700	FNH3FEM-700Y-A
CFW	CFW11	(PE) M8 (hexago phillips sc		10 (88.5)	HD/ ND	150	300	ст		ц.		Z

3-24 | CFW-11 RB

3.2.4 Power Connections

W 2 A

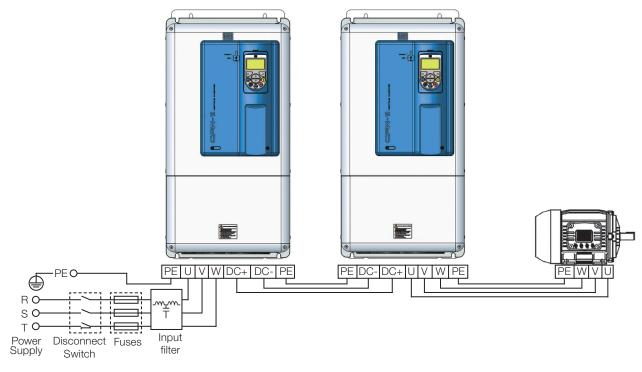


Figure 3.19: Power and grounding connections - frame size E

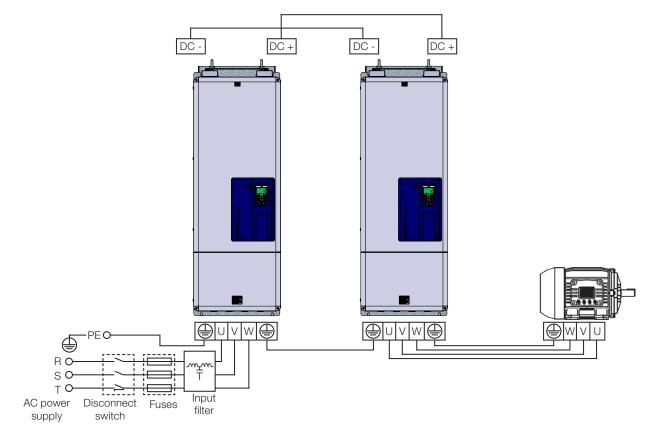


Figure 3.20: Power and grounding connections - frame sizes F and G

3.2.4.1 Input Connections

DANGER!

Provide a disconnection device for the input power supply of the converter. This device shall disconnect the input power supply for the converter when needed (for instance, during servicing).

ATTENTION!

The power supply that feeds the converter shall have a grounded neutral.

NOTE!

The input power supply voltage shall be compatible with the converter rated voltage.

NOTE!

Power factor correction capacitors are not needed at the converter input (U, V, W).

3.2.5 Grounding Connections

DANGER!

Do not share the grounding wiring with other equipment that operate with high currents (e.g. high power motors, soldering machines, etc.). When installing several converters, follow the procedures presented in Figure 3.21 on page 3-27 for the grounding connection.

ATTENTION!

The neutral conductor of the network must be solidly grounded; however, this conductor must not be used to ground the converter.

DANGER!

The converter must be obligatorily connected to a protective ground (PE). Observe the following:

- Use a minimum wire gauge for ground connection equal to the indicated in Table 3.4 on page 3-18 a Table 3.6 on page 3-22. Conform to local regulations and/or electrical codes in case a different wire gauge is required.

- Connect the converter grounding connections to a ground bus bar, to a single ground point, or to a common grounding point (impedance \leq 10 Ω).

- To comply with IEC 61800-5-1 standard, connect the converter to the ground by using a single conductor copper cable with a minimum wire gauge of 10 mm2, since the leakage current is greater than 3.5 mA CA.

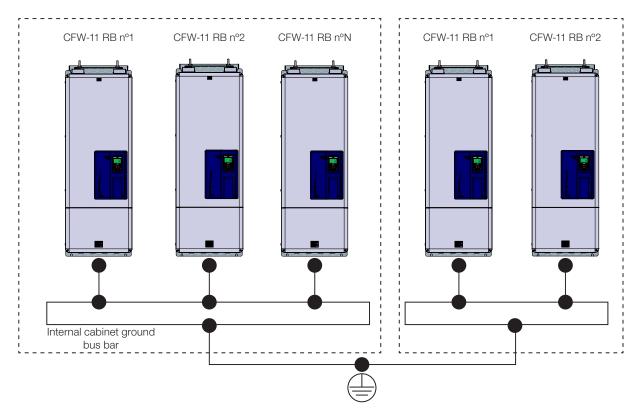


Figure 3.21: Grounding connections with multiple converters

3.2.6 Input Filter

3.2.6.1 Basic Definitions

The proper operation of the regenerative converter demands the use of a three-phase reactance between the input and the power supply. This three-phase reactance is known as L_{BOOST} (boost reactor). It is used an additional LC filter between the L_{BOOST} and the power supply in order to eliminate the high frequency currents flow generated by the IGBTs switching to the power supply. In this manual, the components connected between the power supply and the regenerative converter are identified as filters.

The input filter is the connection of two three-phase inductances (L1 and L2) between the power supply and the U, V and W terminals of the regenerative converter. Among these inductance is a branch with capacitors and damping resistors.

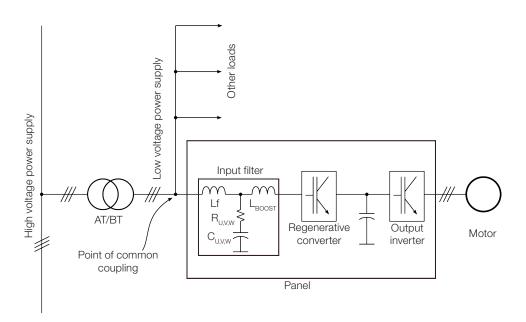


Figure 3.22: Filter simplified connection diagram

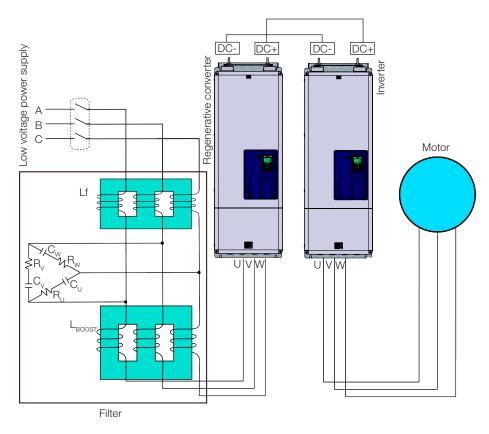


Figure 3.23: Simplified connection drawing of the filter 2

3.2.6.2 How to Specify the Filter Model

WEG has input filters ready to be used with each of its regenerative converters. In order to specify the input filter model, replace the voltage and current values in the respective rated supply voltage and rated input current fields of the smart code as in the example of Table 3.7 on page 3-28.

Exemplo	WLCL	0242	Т	4
Field denomination	LCL WEG Filter	Filter rated current	Number of phases	Rated voltage
Possible options		Check Table 3.8 on page 3-28	T= three-phase	2 = 220230V 4 = 380480V 5 = 500600V 6 = 660690V

Table 3.7: Smart code of the input filters

220230 V	380480 V	500600 V	660690 V
0142 = 142 A	0105 = 105 A	0053 = 53 A	0046 = 46 A
0180 = 180 A	0142 = 142 A	0063 = 63 A	0054 = 54 A
0211 = 211 A	0180 = 180 A	0080 = 80 A	0073 = 73 A
	0211 = 211 A	0107 = 107 A	0100 = 100 A
	0242 = 242 A	0125 = 125 A	0108 = 108 A
	0312 = 312 A	0150 = 150 A	0130 = 130 A
	0370 = 370 A	0170 = 170 A	0147 = 147 A
	0477 = 477 A	0216 = 216 A	0195 = 195 A
	0515 = 515 A	0289 = 289 A	0259 = 259 A
	0601 = 601 A	0315 = 315 A	0312 = 312 A
	0720 = 720 A	0365 = 365 A	0365 = 365 A
	0760 = 760 A	0435 = 435 A	0427 = 427 A
		0472 = 472 A	

Table 3.8: Rated currents of the input filters

3.2.7 Synchronism

20

The CFW-11 RB monitors the line voltage (A, B and C) at the converter input with two transformers and asynchronism board. These signals are used for the regenerative converter control. In order to execute this monitoring, it is necessary to connect the power line to points 1, 2 and 3 of the synchronism terminal, as shown in Figure 3.24 on page 3-29.

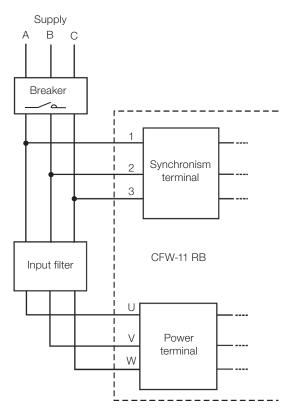


Figure 3.24: Synchronism connection diagram

Frames F and G have fuses inside the product to protect the synchronism circuit. Frame E does not have such fuses, which can be added outside the product. Example: Fuses manufacturer Ferraz Shawmut model FR14GG69V4.

3.2.8 Control Connections

The control connections (analog inputs/outputs, and digital inputs/outputs) must be made at the electronic control board CC11 RB terminal strip XC1.

Functions and typical connections are presented at Figure 3.25 on page 3-31.

		XC1 nnector	Factory Default Function	Specifications			
volt	7	AO1	Analog output 1: DC Link voltage	Galvanic Isolation Resolution: 11 bits Signal: 0 to 10 V ($R_L \ge 10 \text{ k}\Omega$) / 0 to 20 mA / 4 to 20 mA ($R_L \le 500 \Omega$) Protected against short-circuit			
	8	AGND (24 V)	Reference (0 V) for the analog outputs	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor			
	9	AO2	Analog output 2: AC Current	Galvanic Isolation Resolution: 11 bits Signal: 0 to 10 V ($R_{L} \ge 10 \text{ k}\Omega$) / 0 to 20 mA / 4 to 20 mA ($R_{L} \le 500 \Omega$) Protected against short-circuit			
	10	AGND (24 V)	Reference (0 V) for the analog outputs	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor			
<u>+</u>	11	DGND*	24 Vdc power supply	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor			
	12	COM	Digital inputs common point connection				
	13	24 Vcc	24 Vdc power supply	24 Vdc power supply, ±8 % Capacity: 500 mA			
/X	14	COM	Digital inputs common point connection				
	15	DI1	Digital input 1: General enable	6 isolated digital inputs High level ≥ 18 V			
	16	DI2	Digital input 2: No function	Low level $\leq 3 \text{ V}$ Maximum input voltage = 30 V			
	17	DI3	Digital input 3: No function	Input current: 11 mA @ 24 Vdc			
	18	DI4	Digital input 4: No function				
	19	DI5	Digital input 5: No function				
	20	DI6	Digital input 6: No function				
	21	NF1	Digital output 1 DO1	Contact rating:			
	22	C1	(RL1): Pre-charge OK	Maximum voltage: 240 Vac			
	23	NA1		Maximum current: 1 A NC - normally closed contact			
	24	NF2	Digital output 2 DO2	C - common			
	25	C2	(RL2): RUN	NO - normally open contact			
	26	NA2					
	27	NF3	Digital output 3 DO3 (RL3):	L3):			
	28	C3	No fault				
	29	NA3					

a) Digital inputs as active high

	XC1 C	onnector	Factory Default Function	Specifications
volt	7	AO1	Analog output 1: DC Link voltage	Galvanic Isolation Resolution: 11 bits. Signal: 0 to 10 V ($R_{L} \ge 10 \text{ k}\Omega$) / 0 to 20 mA / 4 to 20 mA ($R_{L} \le 500 \Omega$) Protected against short-circuit
	8	AGND (24 V)	Reference (0 V) for the analog outputs	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor
	9	AO2	Analog output 2: AC Current	Galvanic Isolation Resolution: 11 bits. Signal: 0 to 10 V ($R_{L} \ge 10 \text{ k}\Omega$) / 0 to 20 mA / 4 a 20 mA ($R_{L} \le 500 \Omega$) Protected against short-circuit
	10	AGND (24 V)	Reference (0 V) for the analog outputs	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor
<u>+</u>	11	DGND*	Reference (0 V) for the 24 Vdc power supply	Connected to the ground (frame) through impedance: 940 Ω resistor in parallel with a 22 nF capacitor
	12	COM	Digital inputs common point connection	
	13	24 Vcc	24 Vdc power supply	24 Vdc power supply, ±8 %. Capacity: 500 mA
	14	COM	Digital inputs common point connection	
	15	DI1	Digital input 1: General enable	6 isolated digital inputs High level ≥ 18 V
	- 16	DI2	Digital input 2: No function	Low level ≤ 3 V Maximum input voltage = 30 V Input current: 11 mA @ 24 Vdc
	17	DI3	Digital input 3: No function	
	18	DI4	Digital input 4: No function	
	19	DI5	Digital input 5: No function	
	20	DI6	Digital input 6: No function	
_	21	NF1	Digital output 1 DO1	Contact rating:
	22	C1	(RL1): Pre-charge OK	Maximum voltage: 240 Vac
	23	NA1		Maximum current: 1 A
	24 NF2 Digital output 2 DC		Digital output 2 DO2	NC - normally closed contact C - common.
	25	C2	(RL2): RUN	NO - normally open contact
	26	NA2		
	27	NF3	Digital output 3 DO3	
	28	C3	(RL3): No fault	
	29	NA3		

b) Digital inputs as active low

Figure 3.25: (a) and (b) XC1 connector signals

NOTE!

Remove the jumper between XC1:11 and 12 and install it between XC1:12 and 13 to use the digital inputs as active low.

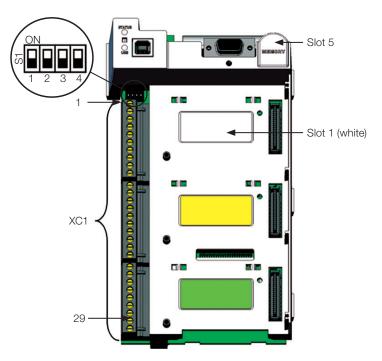


Figure 3.26: Connector XC1 and DIP-switches for selecting the signal type of the analog inputs and outputs

The analog inputs and outputs are factory set to operate from 0 to 10 V; this setting may be changed by using DIP-switch S1.

Signal	Signal Factory Default Function		Selection	Factory Setting
AO1	DC Link Voltage	S1.1	OFF: 4 to 20 mA / 0 to 20 mA ON: 0 to 10 V (factory setting)	ON
AO2	Input current	S1.2	OFF: 4 to 20 mA / 0 to 20 mA ON: 0 to 10 V (factory setting)	ON

Table 3.9: DIP-switches configuration for selecting the signal type of the analog outputs

Parameters related to the analog outputs (AO1 and AO2) shall also be programmed according to the DIP-switches settings and desired values.

Follow instructions below for the proper installation of the control wiring:

1. Wire gauge: 0.5 mm² (20 AWG) to 1.5 mm² (14 AWG).

2. Maximum tightening torque: 0.5 Nm (4.50 lbf.in).

3. Use shielded cables for the XC1 connections and run the cables separated from the remaining circuits (power, 110 V / 220 Vac control, etc.) as presented in Table 3.10 on page 3-32. If control wiring must cross other cables (power cables for instance), make it cross perpendicular to the wiring and provide a minimum separation of 5 cm (1.9 in) at the crossing point.

Table 3.10: Minimum	n separation	distances	between	wiring
---------------------	--------------	-----------	---------	--------

Cable Length	Minimum Separation Distance
≤ 30 m (100 ft)	≥ 10 cm (3.94 in)
> 30 m (100 ft)	≥ 25 cm (9.84 in)

4. The proper connection of the cable shield is shown in Figure 3.27 on page 3-33. Figure 3.28 on page 3-33 shows how to connect the cable shield to the ground.

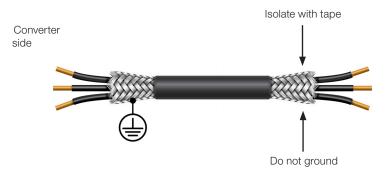


Figure 3.27: Shield connection

5. Relays, contactors, solenoids or coils of electromechanical brakes installed close to the converter may eventually create interferences in the control circuit. To eliminate this effect, RC suppressors (with AC power supply) or free-wheel diodes (with DC power supply) shall be connected in parallel to the coils of these devices.

Figure 3.28: Example of shield connection for the control wiring and synchronism

3.2.9 Typical Control Connection

Control connection 1 - Control via Keypad (HMI) with General Enable function.

The factory default settings allows the converter to operate in local mode. This operation mode is recommended for first-time users due to its easiness of implementation.

For the start-up in this operation mode, please follow instructions listed in Chapter 5 FIRST TIME POWER-UP AND START-UP on page 5-1.

DI1 is already set to General Enable as factory default (P0263 = 2).

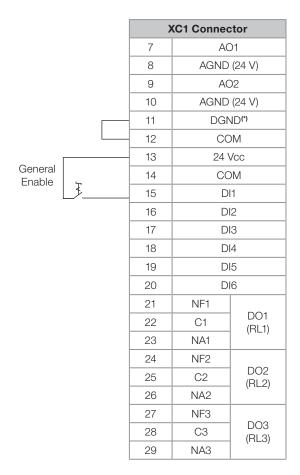


Figure 3.29: XC1 wiring for control connection 1

3.3 INSTALLATION ACCORDING TO THE EUROPEAN DIRECTIVE OF ELECTROMAGNETIC COMPATIBILITY

The CFW-11 RB converters, when properly installed, meet the requirements of the electromagnetic compatibility directive "EMC Directive 2004 / 108 / EC".

3.3.1 Conformal Installation

For the conformal installation use:

1. Input filter and RFI in order to comply with the conducted emission levels C3 categorie.

2. Shielded control cables, keeping them separate from the other cables as described at Item 3.2.8 Control Connections on page 3-30.

3. Converter grounding according to the instructions at Item 3.2.5 Grounding Connections on page 3-26.

4. Instruction for conformal installations applicable to converters controlling motors.

3.3.2 Standard Definitions

IEC/EN 61800-3: "Adjustable Speed Electrical Power Drives Systems"

Environment:

First Environment: includes domestic premises. It also includes establishments directly connected without intermediate transformer to a low-voltage power supply network which supplies buildings used for domestic purposes.

Exemplo: houses, apartments, commercial installations, or offices located in residential buildings.

Second Environment: includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes. Example: industrial area, technical area of any building supplied by a dedicated transformer.

Categories:

Category C1: converters with a voltage rating less than 1000 V and intended for use in the First Environment.

Category C2: converters with a voltage rating less than 1000 V, intended for use in the First Environment, not provided with a plug connector or a movable installations, and installed and commissioned by a professional. Note: a professional is a person or organization familiar with the installation and/or commissioning of converters, including the EMC aspects.

Category C3: converters with a voltage rating less than 1000 V and intended for use in the Second Environment only (not designed for use in the First Environment).

Category C4: converters with a voltage rating equal to or greater than 1000 V, or with a current rating equal to or greater than 400 Amps, or intended for use in complex systems in the Second Environment.

EN 55011: "Threshold values and measuring methods for radio interference from industrial, scientific and medical (ISM) high-frequency equipment".

Class B: equipment intended for use in the low-voltage power supply network (residential, commercial, and light-industrial environments).

Class A1: equipment intended for use in the low-voltage power supply network. Restricted distribution. **Nota:** quando forem usados em redes públicas deverão ser instalados e colocados em funcionamento por profissional.

Class A2: equipment intended for use in industrial environments.

3.3.3 Emission and Immunity Levels

Table 3.11 on page 3-36 shows the emission and immunity levels for the complete drive (AFW-11 RB) formed by the input filter, CFW-11 RB and CFW-11 DC.

EMC Phenomenon	Basic Standard	Level				
Emission:						
Mains Terminal Disturbance Voltage Frequency Range: 150 kHz to 30 MHz)	- IEC/EN61800-3	- Without external filter: C4 Category				
Eletromagmetic Radiation Disturbance Frequency Range: 30 kHz to 1 GHz)	1EC/EN01000-3	- With external filter: C2 or C3 Category				
Immunity:						
Electrostatic Discharge (ESD)	IEC/EN61000-4-2	4 kV for contact discharge and 8 kV for air discharge				
Fast Transient-Burst	IEC/EN61000-4-4	2 kV/5 kHz (coupling capacitor) power input cables 1 kV/5 kHz control cables, and remote keypad cables 2 kV/5 kHz (coupling capacitor) motor output cables				
Conduced Radio-Frequency Common Mode	IEC/EN61000-4-6	0.15 to 80 MHz; 10 V; 80 % AM (1 kHz) Control cables and remote keypad cables				
Surge Immunity	IEC/EN61000- 4-5	1.2/50 μs, 8/20 μs 1 kV line-to-line coupling 2 kV line-to-ground coupling				
Radio-Frequency Electromagnetic Field	IEC/EN61000-4-3	80 a 1000 MHz 10 V/m 80 % AM (1 kHz)				

Table 3.11: Emission and immunity levels

3.3.4 RFI Filters

To be used only if necessary to comply with conducted emission levels Category C3 daccording to IEC/EN61800-3. The models bellow are from the manufacturer Epcos.

Converter Model (with built-in RFI filter)	External RFI Filter Part Number (manufacturer Epcos)
CFW110142T2OBB	B84143B0150S020
CFW110180T2ORB	B84143B0180S020 ⁽¹⁾
CFW110211T20BB	B84143B0250S020 ⁽²⁾
CFW110105T4ORB	B84143B0150S020
CFW110142T4OBB	B84143B0150S020
CFW110180T4ORB	B84143B0180S020 ⁽¹⁾
CFW110211T4ORB	B84143B0250S020 ⁽²⁾
CFW110242T4ORB	B84143-B0250-S020
CFW110312T4ORB	B84143-B0320-S020
CFW110370T4ORB	B84143-B0400-S020
CFW110477T4OBB	B84143-B0600-S020
CFW110515T4OBB	B84143-B0600-S020
CFW110601T4OBB	B84143-B0600-S020
CFW110720T4OBB	B84143-B1000-S020
CFW110760T4OBB	B84143-B1000-S020
CFW110053T6QBB	B84143B180S081
CFW110063T6ORB	B84143B180S081
CFW110080T6QBB	B84143B180S081
CFW110107T6ORB	B84143B180S081
CFW110125T6ORB	B84143B180S081
CFW110150T6ORB	B84143B180S081
CFW110170T6ORB	B84143B0320S21
CFW110216T6ORB	B84143B0320S21
CFW110289T6ORB	B84143B0320S21
CFW110315T6ORB	B84143B0320S21
CFW110365T6ORB	B84143B0320S21
CFW110435T6ORB	B84143B0320S21
CFW110472T6ORB	B84143B0320S21

Table 3.12: Conducted and radiated emission levels and further information

(1) For converter/filter surrounding air temperature higher than 40 °C (104 °F) and continuous output current higher than 172 Arms, it's required to use 884143B0250S020 filter.

(2) For converter/filter surrounding air temperature of 40 °C (104 °F) and HD applications (heavy duty cycle, output current < 180 Arms), it's possible to use B84143B0180S020 filter.

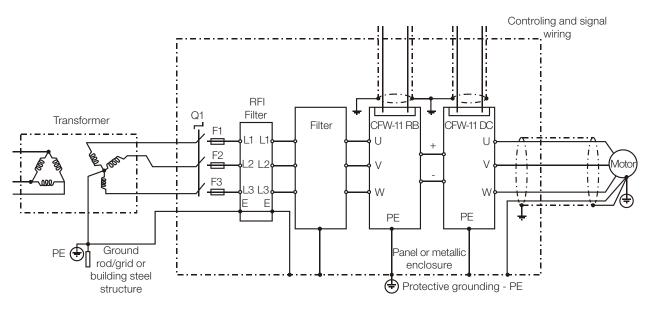


Figure 3.30: External RFI filter connections

Use only listed filters in lines with solid grounded neutral point. Do not use RFI filtes in IT networks, lines not grounded or grounded via a high impedance.

Take the usual precautions for EMC filters installation: do not cross the filter input cables with the output cables, mount the filter on a metallic plate assuring the biggest possible contact surface between the filter and the plate, connect this plate to the ground via cordage.

4 HMI

This chapter describes:

- The operator keys and their functions.
- The indications on the display.
- Parameters organization.

4.1 INTEGRAL KEYPAD - HMI - CFW-11 RB

The integral keypad can be used to operate and program (view / edit all parameters) of the converter. The converter keypad navigation is similar to the one used in cell phones and the parameters can be accessed in numerical order or through groups (Menu).

Figure 4.1: Keypad keys

Battery:

NOTE!

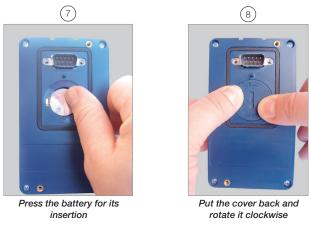
The battery is necessary only to keep the internal clock operation when the converter stays without power. If the battery is completely discharged or if it is not installed in the keypad, the displayed clock time will be invalid and an alarm condition A181 - Invalid clock time will be indicated whenever the AC power is applied to the converter.

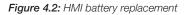
The battery life expectancy is of approximately 10 years. When necessary, replace the battery by another of the CR2032 type.

Cover for battery access

Press the cover and rotate it counterclockwise

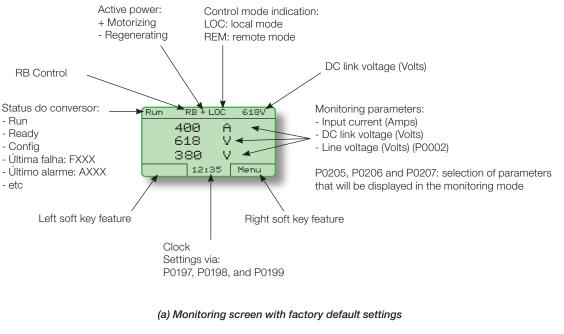
Remove the cover

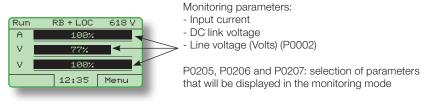

Remove the battery with the help of a screwdriver positioned in the right side

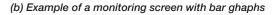


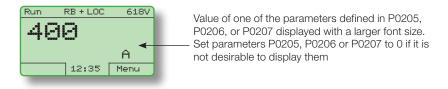
HMI without the battery

Install the new battery positioning it first at the left side




At the end of the battery useful life, please do not discard batteries in your waste container, but use a battery disposal site.


NOTE!


- The HMI can be installed or removed from the converter with or without AC power applied to the converter.
- The HMI supplied with the product can also be used for remote command of the converter. In this case, use a cable with male and female D-Sub9 (DB-9) connectors wired pin to pin (mouse extension type) or a market standard Null-Modem cable. Maximum cable length: 10 m (33 ft). It is recommended the use of the M3 x 5.8 standoffs supplied with the product. Recommended torque: 0.5 N.m (4.5 lbf.in).

When power is applied to the converter, the display automatically enters the monitoring mode. Figure 4.3 on page 4-3 (a) presents the monitoring screen displayed for the factory default settings. By properly setting specific converter parameters, other variables can be displayed in the monitoring mode or the value of a parameter can be displayed using bar graphs or with larger characters as presented in Figure 4.3 on page 4-3 (b) and (c).

(c) Example of a monitoring screen displaying a parameter with a larger font size

Figure 4.3: (a) to (c) Monitoring modes

4.2 PARAMETERS ORGANIZATION

When the right soft key ("MENU") is pressed in the monitoring mode, the display shows the first 4 groups of parameters. Table 4.1 on page 4-4 shows an example of parameter groups and how they are organized. The number and name of the groups may change depending on the firmware version used. For further details on the existent groups for the firmware version used, please refer to the programming manual.

Level 0	Level 1	Level 2	Level 3
	00 All Parameters		
		20 DC Link Voltage	
			90 Current Regulator
		21 Control	91 Reactive Regulator
		21 Control	92 Current Limiting
			93 DC Link Regulator
	01 Parameter Groups	22 HMI	
		24 Analog Outputs	
		25 Digital Inputs	
Monitoring		26 Digital Outputs	
INDITIONING		27 Converter Data	
		28 Protections	
	02 Oriented Start-up		
	03 Changed Parameters		
	04 Backup Parameters		
		24 Analog Outputs	
	05 I/O Configuration	25 Digital Inputs	
		26 Digital Outputs	
	06 Fault History		
	07 Read Only Parameters		

Table 4.1: CFW-11	RR narameter	s organization
	nd parameter	o organization

5 FIRST TIME POWER-UP AND START-UP

This chapter describes how to:

- Check and prepare the converter before power-up.
- Power-up the converter and check the result.

5.1 PREPARATIONS FOR THE START-UP

The converter shall have been already installed according to the recommendations listed in Chapter 3 INSTALLATION AND CONNECTION on page 3-1. The following recommendations are applicable even if the application design is different from the suggested control connections.

DANGER!

Always disconnect the main power supply before performing any converter connection.

5.1.1 Procedures for the First Time Power-up/Start-up

- 1. Verify all the panel connections.
- 2. Search for short-circuits at the input, DC Link, etc.
- 3. Make sure all the cables are correctly connected between the control and power units.
- 4. Verify the condition of all the fuses.
- 5. Inspect all the ground connections (panel, the door where the control is installed, etc.).
- 6. Remove all the material rests from the converter or panel interior.
- 7. Close the converter or panel covers.
- 8. Measure the line voltage making sure it is inside the permitted range.

9. Command the drive, perform the DC link pre-charge and close the main contactor/circuit breaker keeping the converters always connected to the DC link with the PWM pulses disabled.

10. Verify the proper operation of the fans. The fan control configuration is done via software through the parameter P0352 (refer to the CFW-11 RB programming manual). The power units do not have internal fans at the electronics, only at the heatsinks. At the factory default the fans stay on for a while during the energization and then they are switched off. They will only be switched on again if the heatsink temperature reaches 70 °C (158 °F), and off if the temperature drops below 60 °C (140 °F).

11. Observe the existence of faults/alarms. In case that a fault or alarm occurs, verify the possible causes and solve the problem.

- 12. Enable the converter PWM pulses via DI.
- 13. Verify if the DC link voltage at P0004 presents a value close to P0151.
- 14. Disable the converter.

15. Verify if the temperature reading parameters of the installed power units, P0800 to P0814 according to the case, indicate values close to the ambient temperature.

16. Follow the start-up routine of the output inverter according to the instructions described at the specific manual.

5.2 START-UP

The start-up procedure is described in three simple steps by using the existing parameter groups, **Oriented Start-up** routine and the **Basic Application** group.

Steps:

- 1. Set the password for parameter modification.
- 2. Execute the **Oriented Start-up** routine.
- 3. Set the parameters of the **Basic Application** group.

5.2.1 Password Setting in P0000

Step	Action/Result	Display Indication	Step	Action/Result	Display Indication
1	 Monitoring Mode Press "Menu" (right soft key) 	Run RB + LOC 618 V 400 A 618 V 380 V 15:45 Menu	5	When number 5 is displayed in the keypad, press "Save"	Run RB + LOC 618V P0000 Access to Parameters S Return 15:45
2	 Group "00 ALL PARAMETERS" is already selected Press "Select" 	RunRB + LOC618V00ALL PARAMETERS01PARAMETER GROUPS02OR IENTED START-UP03CHANGED PARAMETERSReturn15:45Select	6	 If the setting has been properly performed, the keypad should display "Access to Parameters P0000: 5" Press "Return" (left soft key) 	RunRB + LOC618VAccess to ParametersP0000:5Line VoltageP0002:380VReturn15:45Select
3	 Parameter "Access to Parameters P0000: 0" is already selected Pressione "Select" 	RunRB + LOC618VAccess to ParametersP8080:0Line VoltageP8082:388 VReturn15:45Select	7	Press "Return"	RunRB + LOC618V00ALL PARAMETERS01PARAMETER GROUPS02OR IENTED START-UP03CHANGED PARAMETERSReturn15:45Select
4	 To set the password, press the Up Arrow until number 5 is displayed in the keypad 	Run RB + LOC 618V P0000 Access to Parameters 0 Return 15:45	8	The display returns to the Monitoring Mode	Run RB + LOC 618V 400 A 618 V 380 V 15:45 Menu

Figure 5.1: Steps for allowing parameters modification via P0000

5.2.2 Oriented Start-Up

There is a group of parameters named "Oriented Start-up" that makes the converter settings easier. Within this group there is a parameter P0317, through which it is possible to enter the Oriented Start-Up routine.

The Oriented Start-Up routine presents the main parameters on the HMI in a logical sequence, so that their setting, according to the operation conditions, prepares the converter for the operation with the used line and motor.

In order to enter into the Oriented Start-up routine, follow the steps presented in Figure 5.2 on page 5-3, first modifying parameter P0317 to 1 and then, setting all remaining parameters as they are prompted in the display.

The use of the Oriented Start-up routine for setting the converter parameters may lead to the automatic modification of other internal parameters and/or variables of the converter.

During the Oriented Start-up routine, the message "Config" will be displayed at the left top corner of the keypad.

Шер

Powering up and Startup

Step	Action/Result	Display Indication	Step	Action/Result	Display Indication
1	 Monitoring Mode Press "Menu" (right soft key) 	Ready RB + LOC 618V Ø A 618 V 38Ø V 13:48 Menu	7	 The parameter value is modified to "P0317 = [001] Yes" Press "Save" 	Ready RB+LOC 618V P0317 Oriented Start-up E0013 Yes Return 13:48 Save
2	Group "00 ALL PARAMETERS" is already selected	ReadyRB + LOC618V90ALL PARAMETERS91PARAMETER GROUPS92OR IENTED START-UP93CHANGED PARAMETERSReturn13:48Select	8	 At this point the Oriented Start-up routine starts and the "Config" status is displayed at the top left corner of the keypad. The parameter "Language P0201: English" is already selected If needed, change the language by pressing "Select". Then, press Or Scroll through the available options and press "Save" to select a different language 	Config RB + LOC 618V Language P0201: English DI1 Function P0263: General Enable Reset 13:48 Select
3	Group "01 PARAMETER GROUPS" is selected	ReadyRB + LOC618V00ALL PARAMETERS01PARAMETER GROUPS02ORIENTED START-UP03CHANGED PARAMETERSReturn13:48Select	9	 If needed, change the value of P0263 according to the application. To do so, press "Select" It is necessary to have one DI set to General Enable in order the regenerative converter can be enabled 	Config RB + LOC 618V DI1 Function P0263: General Enable Line Rated Voltage P0296: 440 - 460V Reset 13:48 Select
4	 Group "02 ORIENTED START-UP" is then selected Press "Select" 	ReadyRB + LOC618V00ALL PARAMETERS01PARAMETER GROUPS02ORIENTED START-UP03CHANGED PARAMETERSReturn13:48Select	10	 If needed, change the value of P0296 according to the line voltage. To do so, press "Select". This change will affect P0151 	Config RB + LOC 618V DI1 Function P0263: General Enable Line Rated Voltage P0296: 440 - 460 V Reset 13:48 Select
5	 Parameter "Oriented Start-Up P0317: No" is already selected Press "Select" 	Ready RB + LOC 618V Oriented Start-Up P0317: No Return 13:48 Select	11	 If needed, change the value of P0298 according to the application. To do so, press "Select". The time and the activation level of the IGBT's overload protection will be affected as well To complete the Oriented Start-Up routine, press "Reset" (left soft key) 	Config RB+LOC 618V Switching Frequency P0297: 2.5 kHz Application P0298: Normal Duty (ND) Reset 13:48 Select
6	 The value of "P0317 = [000] No" is displayed 	Ready RB + LOC 618V P0317 Oriented Start-up E0001 No Return 13:48 Save	12	 After few seconds, the display returns to the Monitoring Mode 	Ready RB + LOC 618V Ø A 618 V 38Ø V 13:48 Menu

Figure 5.2: Oriented Start-up

5.3 SETTING DATE AND TIME

Step	Action/Result	Display Indication	Step	Action/Result Display Indication
1	 Monitoring Mode Press "Menu" ("right soft key") 	Run RB + LOC 618V 400 A 618 V 380 V 16:10 Menu	6	 Parameter "Day P0194" is already selected If needed, set P0194 according to the actual day. To do so, press "Select" and then or or to change P0194 value Follow the same steps to set parameters "Month P0195" to "Seconds P0199"
2	Group "00 ALL PARAMETERS" is already selected	RunRB + LOC618VØ0ALL PARAMETERSØ1PARAMETER GROUPSØ2OR IENTED START-UPØ3CHANGED PARAMETERSReturn16:10Select	7	 Once the setting of P0199 is over, the Real Time Clock is now updated. Press "Return" (left soft key) Run RB + LOC 618V Minutes P0198: 11 Seconds P0199: 34 Return 18:11 Select
3	 Group "01 PARAMETER GROUPS" is selected Press "Select" 	ReadyRB + LOC618V00ALL PARAMETERS01PARAMETER GROUPS02OR IENTED START-UP03CHANGED PARAMETERSReturn13:48Select	8	Run RB + LOC 618V 20 DC Link Voltage 21 Control 22 HMI 23 Analog Inputs Return 18:11 Select
4	 A new list of groups is displayed and group "20 DC Link Voltage" is selected Press until you reach group "22 HMI" 	RunRB + LOC618V20 DC Link Voltage21 Control22 HMI23 Analog InputsReturn16:10	9	Run RB + LOC 618V ØØ ALL PARAMETERS ØI PARAMETER GROUPS Ø2 ORIENTED START-UP Ø3 CHANGED PARAMETERS Return 18:11
5	 Group "22 HMI" is selected Press "Select" 	RunRB + LOC618V20 DC Link Voltage21 Control22 HMI23 Analog InputsReturn16:10Select	10	 The display returns to the Monitoring Mode Run RB + LOC 618V 400 A 618 V 380 V 18:11 Menu

Figure 5.3: Setting date and time

5.4 BLOCKING PARAMETERS MODIFICATION

To prevent unauthorized or unintended parameters modification, parameter P0000 should be set to a value different from 5. Follow the same procedures described in Item 5.2.1 Password Setting in P0000 on page 5-2. Refer to P0200 at the programming manual to know how to change the password.

5.5 HOW TO CONNECT TO A PC

NOTE!

Always use a standard host/device shielded USB cable. Unshielded cables may lead to communication errors.

 Recommended cables: Samtec: USBC-AM-MB-B-B-S-1 (1 meter) (39.36 in).
 USBC-AM-MB-B-B-S-2 (2 meter) (78.73 in).
 USBC-AM-MB-B-B-S-3 (3 meter) (118.10 in).

The USB connection is galvanically isolated from the mains power supply and from other high voltages internal to he converter. However, the USB connection is not isolated from the Protective Ground (PE). Use an isolated notebook for the USB connection or a desktop connected to the same Protective Ground (PE) of the converter.

5.6 FLASH MEMORY MODULE

Features:

- Stores a copy of the converter parameters.
- Transfers the parameters stored in the flash memory to the converter.
- Transfers the firmware stored in the flash memory to the converter.

Whenever the converter is powered up, this program is transferred to the Ram memory located in the converter control board and executed.

Refer to the CFW-11 RB programming manual for further details.

ATTENTION!

Before installing or removing the flash memory module, first disconnect the converter power supply and wait for the complete discharge of the capacitors and then disconnect the + 24 V control voltage.

6 TROUBLESHOOTING AND MAINTENANCE

This chapter presents the following:

- Lists all faults and alarms that may occur.
- Indicates the possible causes of each fault and alarm.
- Lists most frequent problems and corrective actions.
- Presents instructions for periodic inspections and preventive maintenance in the equipment.

6.1 OPERATION OF THE FAULTS AND ALARMS

When a fault is detected fault (FXXX):

- The PWM pulses are blocked.
- The keypad displays the fault code and description.
- The "Status" Led starts flashing red.
- The output relay set to "No Fault" opens.
- Some control circuitry data is saved in the EEPROM memory:
 - The fault or alarm code that occurred (shifts the last nine previous faults and alarms).
 - The state of the operating hours counter (P0043) and the powered-up hours counter (P0042).

Reset the converter to return the drive to a "Ready" condition in the event of a fault. The following reset options are available:

- Removing the power supply and reapplying it (power-on reset).
- Pressing the operator key (0) (manual reset).
- Through the "Reset" soft key.
- Automatically by setting P0340 (auto-reset).
- Through a digital input: DIx = 20 (P0263 to P0270).

When an alarm situation ("Alarm" (AXXX)) is detected:

- The keypad displays the alarm code and description.
- The "Status" Led changes to yellow.
- The PWM pulses are not blocked (the converter is still operating).

6.2 FAULTS, ALARMS, AND POSSIBLE CAUSES

Table 6.1: Faults, alarms and possible causes

Fault/Alarm	Description		Possible Causes
F006 Imbalance or Input Phase Loss	Phase missing in the input power supply or wrong phase sequency.		CSR11 board connections. Synchronism transformer connections. Power supply connections.
F021 DC Link Undervoltage	DC Link undervoltage condition occurred.	-	The input voltage is too low and the DC Link voltage dropped below the minimum permitted value (monitor the value at Parameter P0004): Ud < 223 V - For a 200 / 240 V input voltage (P0296 = 0). Ud < 385 V - For a 380 V input voltage (P0296 = 1). Ud < 405 V - For a 400 / 415 V input voltage (P0296 = 2). Ud < 446 V - For a 440 / 460 V input voltage (P0296 = 3). Ud < 487 V - For a 480 V input voltage (P0296 = 4). Ud < 530 V - For a 500 / 525 V input voltage (P0296 = 5). Ud < 580 V - For a 550 / 575 V input voltage (P0296 = 6). Ud < 605 V - For a 600 V input voltage (P0296 = 7). Ud < 696 V - For a 660 / 690 V input voltage (P0296 = 8). Phase loss in the input power supply. Pre-charge circuit failure. Parameter P0296 was set to a value above of the power supply rated voltage.
F022 DC Link Overvoltage	DC Link overvoltage condition occurred.	-	The input voltage is too high and the DC Link voltage surpassed the maximum permitted value: Ud > 400 V - For 220 / 230 V input models (P0296 = 0). Ud > 800 V - For 380 / 480 V input models (P0296 = 1, 2, 3 or 4). Ud > 1000 V - For 500 / 600 V input models (P0296 = 5, 6 or 7). Ud > 1200 V - For 660 / 690 V input models (P0296 = 8). Iner tia of the driven-load is too high or deceleration time is too short. Setting of P0151 too high.
F030 Power Module U Fault	Desaturation of IGBT occured in Power Module U.	-	Short-circuit between motor phases U and V or U and W.
F034 Power Module V Fault	Desaturation of IGBT occured in Power Module V.	-	Short-circuit between motor phases V and U or V and W.
F038 Power Module W Fault	Desaturation of IGBT occured in Power Module W.	-	Short-circuit between motor phases W and U or W and V.
A047 IGBT Overload Alarm	A IGBT overload alarm occurred.	-	Converter input current is too high.
F048 IGBT Overload Fault	A IGBT overload fault occurred.	-	Converter input current is too high.
A050 IGBT High Temperature U	A high temperature alarm was detected by the NTC temperature sensors located on the IGBTs. Note: It may be disabled by setting P0353 = 2 or 3.	=	Surrounding air temperature is too high (> 40 °C or 45 °C (104 °F or 113 °F) depending on the converter model - refer to Section 3.1 MECHANICAL INSTALLATION on page 3-1) and output current is too high. Blocked or defective fan. Very dirty heatsink.
F051 IGBT Overtemperature U	Overtemperature fault on the IGBTs of phase U.		
A053 High Temperature on IGBTs V	Alarm of high temperature measured at the temperature sensors (NTC) of the IGBTs. Note: It can be disabled by setting P0353 = 2 or 3.	-	
F054 Overtemperature on IGBTs V	Overtemperature fault on the IGBTs of phase V.	-	
A056 High Temperature on IGBTs W	Alarm of high temperature measured at the temperature sensors (NTC) of the IGBTs. Note: It can be disabled by setting P0353 = 2 or 3.		
F057 Overtemperature on IGBTs W	Overtemperature fault on the IGBTs of phase W.	1	
F071 Input Overcurrent	Input overcurrent fault.		Input reactance too low. Setting of P0169 and P0170 too high.

Fault/Alarm	Description		Possible Causes	
F074 Ground Fault	A ground fault occured. Note:		+UD or -UD short-circuit to ground.	
F080 CPU Watchdog	It may be disabled by setting P0343 = 0. Microcontroller watchdog fault.		Electrical noise.	
F082 Copy Function Fault	Fault while copying parameters.		An attempt to copy the keypad parameters to an converter with a different firmware version.	
F084 Auto-diagnosis Fault	Auto-diagnosis Fault.		Defect in the converter internal circuitry.	
A088 HMI Communication Lost	Indicates a problem with the keypad and control board communication.		Loose keypad cable connection. Electrical noise in the installation.	
A090 External Alarm	External alarm via digital input. Note: It is required to set a digital input to "No external alarm".		Wiring was not connected to the digital input (DI1 to DI8) set to "No external alarm").	
F091 External Fault	External fault via digital input. Note: It is required to set a digital input to "No external fault".		Wiring was not connected to the digital input (DI1 to DI8) set to "No external fault".	
F099 Invalid Current Offset	Current measurement circuit is measuring a wrong value for null current.		Defect in the converter internal circuitry.	
F101 Invalid Voltage Offset	Offset calculation error when reading the input voltage (synchronism).		Main contactor closed before the pre-charge is complete. CPU has reset and the main contactor did not open.	
A105 Reactive Injection in the Power Supply	Alarm for the reactive current injection in the power supply.		Voltage power supply much higher than the rated voltage. P0180 too low.	
F151 Flash Memory Module Fault	Flash Memory Module fault (MMF-01).		Defective flash memory module. Check the connection of the flash memory module.	
A152 Internal Air High Temperature	Alarm indicating that the internal air temperature is too high. Note: It may be disabled by setting P0353 = 1 or 3.	-	(104 °F or 122°F) according to the model - refer to Sectio 3.1 MECHANICAL INSTALLATION on page 3-1) an excessive output current.	
F153 Internal Air Overtemperature	Internal air overtemperature fault.		Fins of the book heatsink too dirty, impairing the air flow.	
A155 Undertemperature	Only one sensor indicates temperature below -30°C.		Surrounding air temperature \leq -30 °C (-22 °F).	
F156 Undertemperature	Undertemperature fault below -30 °C (-22 °F) in the IGBTs or rectifier measured by the temperature sensors.		Surrounding air temperature ≤ -30 °C (-22 °F). Defective internal circuitry of the power modules (supply, cables).	
F174 Left Fan Speed Fault	Fault on the heatsink left fan speed.		Dirt on the blades and rolling bearings of the fan. Defective fan.	
F175 Center Fan Speed Fault	Fault on the heatsink center fan speed.		Defective fan power supply connection.	
F176 Right Fan Speed Fault	Fault on the heatsink right fan speed.			
A177 Fan Replacement	Fan replacement alarm (P0045 > 50000 hours). Note: This function may be disabled by setting P0354 = 0.		Maximum number of operating hours for the heatsink fan has been reached.	
A178 Fan Speed Alarm	Alarm on the heatsink fan speed.		Dirt on the blades and rolling bearings of the fan. Defective fan. Defective fan power supply connection.	
F179 Heatsink Fan Speed Fault	Fan speed is under the minimum limit.		The fan is dirt or blocked.	
A181 Invalid Clock Value.	Invalid clock value alarm.		It is necessary to set date and time at parameters P0194 to P0199. Keypad battery is discharged, defective, or not installed.	
F182 Pulse Feedback Fault	Pulse feedback fault.		Defective converter internal circuitry.	

Fault/Alarm	Description	Possible Causes	
F183 IGBT Overload + Temperature.	Overtemperature related to the IGBTs overload protection.	Surrounding air temperature too high.Operation with overload.	

6.3 SOLUTIONS FOR THE MOST FREQUENT PROBLEMS

Table 6.2: Solutions for the most frequent problems

Problem	Point to be Verified	Corrective Action	
	Incorrect wiring connection	1. Check all power and control connections. For instance, the digital inputs set to start/stop, general enable, or no external fault shall be connected to the 24 Vdc or to DGND* terminals (refer to Figure 3.25 on page 3-31)	
	Incorrect settings	1. Check if parameters are properly set for the application	
	Fault	 Check if the converter is not blocked due to a fault condition Check if terminals XC1:13 and XC1:11 are not shorted (short-circuit at the 24 Vdc power supply) 	
Off display	Keypad connections	1. Check the external keypad connections	
	Open power supply fuse(s)	1. Replace fuses	
	24 Vdc power supply voltage	1. Check if the 24 Vds control voltage is proper connected and turned on	

6.4 INFORMATION FOR CONTACTING TECHNICAL SUPPORT

NOTE!

For technical support and servicing, it is important to have the following information in hand: Converter model.

- Serial number, manufacturing date, and hardware revision that are listed in the product nameplate (refer to Section 2.5 CFW-11 RB MODEL SPECIFICATION (SMART CODE) on page 2-11).
- Installed software version (check parameter P0023).
- Application data and converter settings.

6.5 PREVENTIVE MAINTENANCE

DANGER!

- Always turn off the mains power supply before touching any electrical component associated to the converter.
- High voltage may still be present even after disconnecting the power supply.
- To prevent electric shock, wait at least 10 minutes after turning off the input power for the complete discharge of the power capacitors.
- Always connect the equipment frame to the protective ground (PE). Use the adequate connection terminal in the converter.

6

ATTENTION!

The electronic boards have electrostatic discharge sensitive components.

Do not touch the components or connectors directly. If needed, first touch the grounded metallic frame or wear a ground strap.

Do not execute any applied potential test on the CFW11 RB! If needed, consult WEG.

The converter require low maintenance when properly installed and operated. Table 6.3 on page 6-5 presents main procedures and time intervals for preventive maintenance. Table 6.4 on page 6-5 provides recommended periodic inspections to be performed every 6 months after converter start-up.

Table 6.3: Preventive maintenance

Mai	ntenance	Interval	Instructions
Fan replacen	nent	After 50000 operating hours ⁽¹⁾	Replacement procedure shown in Figure 6.1 on page 6-6
Keypad batte	ery replacement	Every 10 years	Refer to Chapter 4 HMI on page 4-1
Electrolytic capacitors	If the converter is stocked (not being used): "Reforming"	Every year from the manufacturing date printed in the converter identification label (refer to Section 2.4 IDENTIFICATION LABELS FOR THE CFW-11 RB on page 2-9)	Supply the CFW-11 RB (at the +UD and -UD terminal) with a voltage 250 to 350 Vdc, during 1 hour at least. Then, disconnect the power supply and wait at least 24 hours before using the converter (reapply power)
	Converter is being used: replace	Every 10 years	Contact WEG technical support to obtain replacement procedures

(1) The converter are factory set for automatic fan control (P0352=2), which means that they will be turned on only when the heatsink temperature exceeds a reference value. Therefore, the operating hours of the fan will depend on the converter usage conditions (input current, cooling air temperature, etc.). The converter stores the number of operating hours of the fan in parameter P0045. When this parameter reaches 50000 operating hours, the keypad display will show alarm A177.

Component	Problem	Corrective Action
Terminals, connectors	Loose screws	Tighten
	Loose connectors	
Fans / Cooling system	Dirty fans	Cleaning
	Abnormal acoustic noise	Replace fan. Refer to Figure 6.1 on page 6-6
	Blocked fan	Check the fan connection
	Abnormal vibration	_
	Dust in the cabinet air filter	Cleaning or replacement
Printed circuit boards	Accumulation of dust, oil, humidity, etc	Cleaning
	Odor	Replacement
Power module /	Accumulation of dust, oil, humidity, etc	Cleaning
Power connections	Loose connection screws	Tighten
DC Link capacitors	Discoloration / odor / electrolyte leakage	Replacement
	Expanded or broken safety valve	
	Frame expansion	
Power resistors	Discoloration	Replacement
	Odor	
Heatsink	Dust accumulation	Cleaning
	Dirty	

6.5.1 Cleaning Instructions

When it becomes necessary to clean the converter, follow the instructions below:

Ventilation system:

- Cut off the converter supply and wait 10 minutes.
- Remove the dust accumulated at the ventilation inlets with a plastic brush or a flannel.
- Remove the dust accumulated on the heatsink fins and on fan blades using compressed air.

Electronic boards:

- Cut off the converter supply and wait 10 minutes.
- Remove the dust accumulated on the boards using an anti-static brush or ionized compressed air (E.g.: Charges Burtes Ion Gun (non nuclear) reference A6030-6DESCO).
- If necessary, remove the boards from the converter.
- Use always an ESD wrist strap.

Inspect the heatsink fins of the power units regularly verifying if there is any dirt accumulation that could impair the converter cooling. Therefore, remove the power unit side cover.

Releasing the latches of the fan cover Fan removal (a) Frame size E (only model CFW110105T4O...RB...)

3

Fan grill screws removal

Cable disconnection

З

Fan grill screws removal

Fan removal

(b) Frame size E (except model CFW110105T4O...RB...)

Fan removal (c) Frame sizes F and G (example on size F) Figure 6.1: (a) to (c) - Removal of the heatsink fans

Cable disconnection

7 OPTION KITS AND ACCESSORIES

This chapter presents:

- The option kits that can be integrated to the converter from the factory:
 - External 24 Vdc power supply for control and keypad.
- Instructions for the proper use of the option kits.
- The accessories that can be integrated to the converters.

Instructions for the installation, operation, and programming of the accessories are described in their own manuals and are not present in this chapter.

7.1 OPTION KITS

7.1.1 24 Vdc External Control Power Supply

Converters with the following codification: CFW11...O...W...

Converters with this option have a built-in DC/DC converter with a 24 Vdc input that provides adequate outputs for the control circuit. Therefore, the control circuit power supply will be redundant, i.e., it can be provided either by a 24 Vdc external power supply (connection as shown in Figure 7.1 on page 7-2) or by the standard internal switched mode power supply of the converter.

Observe that the converters with the external 24 Vdc power supply option use terminals XC1:11 and 13 as the input for the external power supply and no longer as an output as in the standard converter Figure 7.1 on page 7-2.

In case of interruption of the external 24 Vdc power supply, the digital inputs/outputs and analog outputs will no longer be fed, even if the mains power is on. Therefore, it is recommended to keep the 24 Vdc power supply always connected to the terminals XC1:11 and 13.

The keypad displays warnings indicating the converter status: whether the 24 Vdc power source is connected, whether the mains power source is connected, etc.

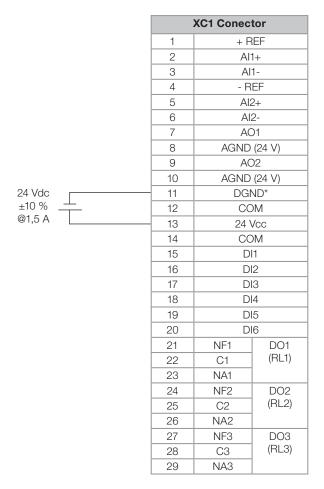


Figure 7.1: External 24 Vdc power supply capacity and connection terminals

NOTE!

A class 2 power supply must be used in order to comply with the UL508C standard.

7.2 ACCESSORIES

The accessories are installed in the converter easily and quickly using the "Plug and Play" concept. Once the accessory is inserted into the slot, the control circuitry identifies its model and displays the installed accessory code in P0027 or P0028. The accessory must be installed with the converter power supply off.

Part number and model of each available accessory are presented in Table 7.1 on page 7-3. The accessories can be ordered separately and will be shipped in individual packages containing the components and the manual with detailed instructions for the product installation, operation, and programming.

ATTENTION!

Only one module at a time can be fitted into each slot 1 or 5.

Table 7.1: Accessory models

WEG Part Number	Name	Description	Slot		fication neters
Number				P0027	P0028
11008162	IOA-01	IOA module: 1 voltage/current analog input (14 bits); 2 digital inputs; 2 voltage/current analog outputs (14 bits); 2 open-collector digital outputs	1	FD	
11008099	IOB-01	IOB module: 2 isolated analog inputs (voltage/current); 2 digital inputs; 2 isolated analog outputs (voltage/current) (the programming of the outputs is identical as in the standard CFW-11); 2 open-collector digital outputs	1	FA	
11719952	MMF-03	Flash memory module	5		XX ⁽¹⁾
11008913	HMI-01	Stand-alone HMI ⁽²⁾	HMI	-	-
11010521	RHMIF-01	Remote HMI frame kit (IP56)	-	-	-

(1) Refer to the programming manual.

(2) Use DB-9 pin, male-to-female, straight-through cable (serial mouse extension type) for connecting the keypad to the converter or Null-Modem standard cable. Maximum cable length: 10 m (33 ft).

Examples:

Mouse extension cable - 1.80 m (6 ft); Manufacturer: Clone.
Belkin pro series DB9 serial extension cable 5 m (17 ft); Manufacturer: Belkin.
Cables Unlimited PCM195006 cable, 6 ft DB9 m/f; Manufacturer: Cables Unlimited.

8 TECHNICAL SPECIFICATIONS

This chapter describes the technical specifications (electrical and mechanical) of the CFW-11 RB converter series.

8.1 POWER DATA

Power supply:

- Maximum rated line voltage: 480 V for models 380...480 V, 600 V for models 500...600 and 690 V for models 660...690 V, for altitude up to 2000 m. For higher altitudes, the voltage derating will be 1.1 % for each 100 m above 2000 m maximum altitude: 4000M.
- Voltage tolerance: 15 % to + 10 %.
- Frequency: 50/60 Hz (48 Hz to 62 Hz).
- Phase imbalance: $\leq 3 \%$ of the rated phase-phase input voltage.
- Overvoltage according to Category III (EN 61010/UL 508C).
- Transient voltages according to Category III.
- Typical efficiency: \geq 97 %
- Typical input power factor: 0,99 at rated condition.
- Typical Total Harmonic Distortion of the input current: 4 % at rated condition.

Use with Normal Duty (ND) Cycle	Use with Normal D	Use with Normal D	with Normal D	ormal D	Ō	uty (N	ID) Cycle			ő	se with	Heavy	Duty (H	Use with Heavy Duty (HD) Cycle				
Talle S	Frame S	Rated	Overload Current ⁽² [Arms]	ਸ 2	Rated Sv Frequen	Rated Curren	Dissipatec Power ⁽³⁾ [W]	ated er ⁽³⁾]	Rated Current ⁽¹⁾	Overload Current ⁽²⁾ [Arms]	load ent ⁽²⁾ ns]	Rated Sv Frequen	Rated Curren	Dissipated Power ⁽³⁾ [W]	Power ⁽³⁾]	Input Filter	Surrounding Air Temperature the	Weight [kg
		Input	min	ທ ຕ	-	-	Surface Mounting	Flange Mounting	Input ⁽⁴⁾ [Arms]	1 min	s C			Surface Mounting	Flange Mounting		Converter [°C]	Free A
CFW110142T20RB		142 15	156.2 2	213	2.5	163	1850	240	115	172,5	230	5 (5)	132	1700	230	WLCL0142T2		
CFW110180T20RB	ш	180 1	198 2	270	2.5	207	2200	410	142	213	284	5 (5)	163	2120	390	WLCL0180T2	-1045	64 (141)
CFW110211T20RB		211 2	232 3	317	2.5	242	2490	410	180	270	360	2.5	207	2240	400	WLCL0211T2		

Table 8.1: Technical specification for 220 to 230 Vac, three-phase power supply

	re [kg				04 (141)			105	(231)			155	(342)	
	Surrounding Air Temperature the	Converter [°C]			-1040			-		-1040				
	Input Filter		WLCL0105T4	WLCL0142T4	WLCL0180T4	WLCL0211T4	WLCL0242T4	WLCL0312T4	WLCL037074	WLCL0477T4	WLCL0515T4	WLCL0601T4	WLCL0720T4	WLCL076074
	l Power ⁽³⁾ /]	Flange Mounting	220	230	390	400	442	533	615	794	1062	1137	1060	1328
Use with Heavy Duty (HD) Cycle	Dissipated Power ⁽³⁾ [W]	Surface Mounting	1340	1710	2140	2530	1814	2481	3071	3743	4842	4719	5142	6341
Duty (H	Rated Curren	Output It [Acc]	101	132	163	207	243	278	359	426	549	592	644	069
l Heavy	Rated S Frequen	witching cy [kHz]	2.5	2.5	2.5	2	2	~	~	2	2	2	2	0
Jse with	Overload Current ⁽²⁾ [Arms]	3 s	176	230	284	360	422	484	624	740	954	1030	1120	1200
	Ove Curr [Ar	1 min	132	172.5	213	270	317	363	468	555	716	773	840	900
	Rated Current ⁽¹	Input ^{) (4)} [Arms]	88	115	142	180	211	242	312	370	477	515	560	600
	Dissipated Power ⁽³⁾ [W]	Flange Mounting	230	240	410	410	515	693	750	1028	1140	1334	1366	1253
ID) Cycle	Dissipa Powel [W]	Surface Mounting	1650	2230	2660	3040	2098	3228	3679	4866	5235	5543	6672	8070
Use with Normal Duty (ND)		Output It [Acc]	121	163	207	243	278	359	426	549	592	691	828	874
Normal		witching cy [kHz]	2.5	2.5	2.5	2.5	2	2	2	2	2	2	2	N
se with	Overload Current ⁽²⁾ [Arms]	3 S	157.5	213	270	317	363	468	555	716	773	006	1080	1140
Ď	Overloae Current [Arms]	1 min	115.5	156.2	198	232.1	266	343	407	525	567	662	792	836
	Rated Current ⁽¹	Input) ⁽⁴⁾ [Arms]	105	142	180	211	242	312	370	477	515	601	720	760
	Frame S	ize						1		1			5	
	Model		CFW110105T40RB	CFW110142T40RB	CFW110180T40RB	CFW110211T40RB	CFW110242T40RB	CFW110312T40RB	CFW110370T40RB	CFW110477T40RB	CFW110515T40RB	CFW110601T40RB	CFW110720T40RB	CFW110760T40RB 760 836 1140 2 874 8070 1253

 Table 8.2:
 Technical specification for 380 to 480 Vac, three-phase power supply

		lechnical s		iicau]
	Weight [kg				r, r 0	04 (141)				105 (231)	-		155	(342)		
	Surrounding Air Temperature the	Converter [°C]							-1040						-1040	
	Input Filter		WLCL0053T5	WLCL0063T5	WLCL0080T5	WLCL0107T5	WLCL0125T5	WLCL0150T5	WLCL0170T5	WLCL0216T5	WLCL0289T5	WLCL0315T5	WLCL0365T5	WLCL0435T5	WLCL0472T5	
	Dissipated Power ⁽³⁾ [W]	Flange Mounting	171	191	221	276	315	349	856	266	1279	1560	1682	1880	2201	
Use with Heavy Duty (HD) Cycle	Dissipated [W]	Surface Mounting	740	878	1076	1441	1700	1929	2167	2570	3377	4086	4435	5000	5854	
Duty (H	Rated Curren		51	61	76	104	123	140	173	207	276	332	362	411	481	
Heavy	Rated So Frequen		2	2	2	~	0	2	~	2	2	2	2	~	2	
se with	Overload Current ⁽²⁾ [Arms]	3 s	88	106	132	180	214	244	300	360	480	578	630	714	836	
5	Over Curre [Arr	1 min	66	79.5	66	135	160.5	183	225	270	360	433.5	472.5	535.5	627	
	Rated Current ⁽¹	Input ⁽⁴⁾ [Arms]	44	53	99	06	107	122	150	180	240	289	315	357	418	
	issipated Power ⁽³⁾ [W]	Flange Mounting	191	214	253	315	356	413	950	1166	1510	1682	1918	2247	2438	ade 8-5.
JD) Cycle	Dissipated Power ⁽³⁾ [W]	Surface Mounting	878	1030	1289	1700	1975	2356	2436	3054	4036	4435	5107	6049	6564	Table 8.4 on t
Use with Normal Duty (ND)	Rated Curren	Output t [Acc]	61	73	92	123	144	173	196	248	332	362	420	500	543	after the
Normal	Rated So Frequen		2	2	2	2	2	2	2	2	2	2	2	2	2	e located
se with	Overload Current ⁽²⁾ [Arms]	3 s	79.5	94.5	120	160.5	187.5	225	255	324	433.5	472.5	547.5	652.5	708	de 8-5 ar
ő	Over Curre [Arr	1 min	58.3	69.3	88	117.7	137.5	165	187	237.6	317.9	346.5	401.5	478.5	519.2	8.4 on na
	Rated Current ⁽¹	Input ⁽⁴⁾ [Arms]	53	63	80	107	125	150	170	216	289	315	365	435	472	2 a Table
	Frame S	ize			L	<u>ц</u>				ш.			(5		ade 8-5
	Model		CFW110053T6ORB	CFW110063T6ORB	CFW110080T6ORB	CFW110107T60RB	CFW110125T60RB	CFW110150T60RB	CFW110170T60RB	CFW110216T60RB	CFW110289T60RB	CFW110315T60RB	CFW110365T60RB	CFW110435T60RB	CFW110472T60RB	The notes for Table 8.1 on page 8-2 a Table 8.4 on page 8-5 are located after the Table 8.4 on page 8-5.

Table 8.3: Technical specification for 500 to 690 Vac, three-phase power supply

	Weight [kg	lícuí			1 1 1 1 2	04 (141)				105 (231)	-		155	(342)	
	Surrounding Air Temperature the	Converter [°C]						Li V V	-1040						-1040
	Input Filter		WLCL0046T6	WLCL0054T6	WLCL0073T6	WLCL0100T6	WLCL0108T6	WLCL0130T6	WLCL0147T6	WLCL0195T6	WLCL0259T6	WLCL0259T6	WLCL0312T6	WLCL0365T6	WLCL0427T6
	l Power ⁽³⁾ /]	Flange Mounting	177	196	237	303	331	366	963	1206	1590	1640	1858	2197	2570
Use with Heavy Duty (HD) Cycle	Dissipated Power ⁽³⁾ [W]	Surface Mounting	783	911	1185	1624	1807	2045	2472	3167	4264	4314	4936	5905	6908
Duty (H	Rated Curren	Output t [Acc]	45	53	71	98	109	124	146	190	259	259	298	359	420
Heavy	Rated Sv Frequen	witching cy [kHz]	2	2	2	2	2	2	2	2	2	2	2	2	2
se with	Overload Current ⁽²⁾ [Arms]	3 s	78	92	122	170	190	216	254	330	450	450	518	624	730
>	Overload Current [Arms]	1 min	58.5	69	91.5	127.5	142.5	162	190.5	247.5	337.5	337.5	388.5	468	547.5
	Rated Current ⁽¹⁾	Input ⁽⁴⁾ [Arms]	39	46	61	85	95	108	127	165	225	225	259	312	365
	ated er ⁽³⁾ /]	Flange Mounting	196	218	270	344	366	427	1091	1398	1808	1858	2197	2536	3042 2967
ID) Cycle	Dissipated Power ⁽³⁾ [W]	Surface Mounting	911	1057	1405	1899	2045	2447	2838	3716	4886	4936	5905	6874	
Use with Normal Duty (ND)	Rated Curren		53	62	84	115	124	150	169	224	298	298	259	420	427 469.7 640.5 2 491 8
Normal	Rated Switching Frequency [kHz]		2	2	2	2	2	2	2	2	2	2	2	2	2
se with	Overload Current ⁽²⁾ [Arms]	3 s	69	81	109.5	150	162	195	220.5	292.5	388.5	388.5	468	547.5	640.5
Ĵ	Over Curr [Ar	1 min	50.6	59.4	80.3	110	118.8	143	161.7	214.5	284.9	284.9	343.2	401.5	469.7
	Rated Current ⁽¹⁾		46	54	73	100	108	130	147	195	259	259	312	365	427
	Frame S	ize								ш				5	
	Model		CFW110053T60RB	CFW110063T60RB	CFW110080T60RB	CFW110107T60RB	CFW110125T60RB	CFW110150T60RB	CFW110170T60RB	CFW110216T60RB	CFW110289T60RB	CFW110315T60RB	CFW110365T60RB	CFW110435T60RB	CFW110472T60RB

Table 8.4: Technical specification for 660 to 690 Vac, three-phase power supply

Technical Specifications

(1) Steady-state rated current in the following conditions:

- Indicated switching frequencies or lower. For higher switching frequency consult WEG.
- Models on frame sizes E (only line 500...690 V), F and G are not allowed to operate at 10 kHz switching frequency.
- Surrounding air temperature as specified in tables. For higher temperatures, the input current must be derated according to Chapter 3 INSTALLATION AND CONNECTION on page 3-1.
- Relative air humidity: 5 % to 95 % non-condensing.
- Altitude: 1000 m (3.300 ft). Above 1000 m (3.300 ft) up to 4000 m (13.200 ft) the output current must be derated by 1 % for each 100 m (330 ft) above 1000 m (3.300 ft). 2000 m to 4000 m above sea level derating of 1.1% of the maximum voltage for each 100m above 2000 m.
- Ambient with pollution degree 2 (according to EN50178 and UL508C). (2) One overload each 10 minutes. Table 8.1 on page 8-2 to Table 8.4 on page 8-5 present only two points of the overload curve (activation time of 1 min
- and 3 s). The complete IGBT overload curves for Normal Duty (ND) and Heavy Duty (HD) cycles are presented in Figure 8.1 on page 8-6. Depending on the converter operational conditions such as surrounding air temperature and output frequency, the maximum time for operation of the converter with overload may be reduced.
- (3) The information provided about the converter losses is valid for the rated operating condition, i.e., for rated output current and rated switching frequency. (4) In frame size E, F and G, for operation with voltage on the DC link above 650 Vdc for P0296 = 1, 2, 3 and 4 (380, 400 / 415, 440 / 460 and 480 V), above 810 V
- Vdc for P0296 = 5, 6 and 7 (500 / 525, 550 / 575 and 600 V) and above 940 Vdc for P0297 = 8 (660 / 690 V), it is necessary to derate the input current. The derating is proportional to the difference between the DC link voltage and the voltage limit (650, 810 or 940 V, depending on the value of P0296). The derating is 10% for DC link voltage of 800 Vdc for P0296 = 1, 2, 3 and 4 (380, 400 / 415, 440 / 460 and 480 V), 1000 Vdc for P0296 = 5, 6 and 7 (500 / 525, 550 / 575 and 600 V) and 1200 Vdc for P0296 = 8 (660 / 690 V).
- (5) The switching frequency may be automatically reduced to 2.5 kHz, depending on the operating conditions (ambient temperature around the inverter, output current, etc.) if P0350 = 0 or 1. If it is necessary to operate always at 5 kHz, set P0350 = 2 or 3; in this case it is necessary to derate the inverter rated input current. In order to do so, contact WEG.

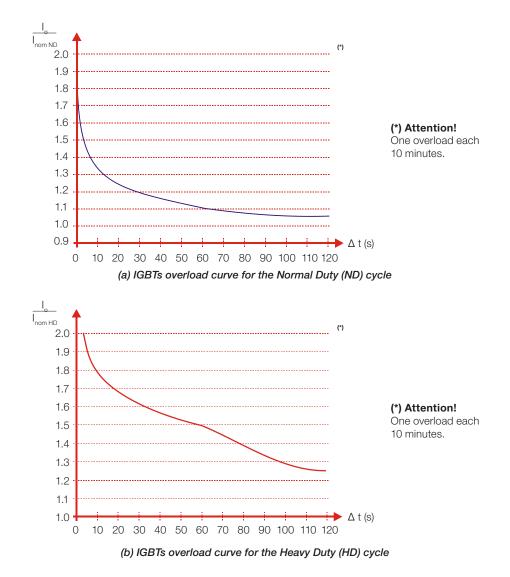


Figure 8.1: (a) and (b) - Overload curves for the IGBTs

8.2 ELECTRONICS/GENERAL DATA

Control	Method	 Type of control Vector Control PWM SVM (Space Vector Modulation) Current, DC link voltage and reactive regulators
Inputs (CC11 RB board)	Digital	6 isolated differential inputs, 24 Vdc, programmable functions
Outputs (CC11 RB board)	Analog	2 isolated analog outputs, (0 to 10) V, RL ≥ 10 kΩ (maximum load), 0 to 20 mA / 4 to 20 mA (RL ≤ 500 Ω) resolution: 11 bits, programmable functions
	Relay	■ 3 relay outputs with NO/NC contacts, 240 Vac, 1 A, programmable functions
Safety	Protection	 Input Overcurrent/Short-circuit Under/Overvoltage Phase loss Overtemperature IGBTs overload External Fault/Alarm CPU or memory fault DC link phase-ground short-circuit
Integral Keypad (HMI)	Standard Keypad	 4 keys: active : Up Arrow, Down Arrow, Right Soft Key and Left Soft Key. disabled: General Enable/Disable, Direction of Rotation, JOG, Local/Remote Graphical LCD display View/edition of all parameters Indication accuracy: - current: 5 % of the rated current Possibility of remote assembly
Enclosure	IP20	Frame size E
	IP00	Frames sizes F and G
PC Connection for Converter Programming	USB Connector	 USB standard Rev. 2.0 (basic speed) Type B (device) USB plug Interconnection cable: standard host/device shielded USB cable

8.2.1 Codes and Standards

Safety Standards	 UL 508C - Power conversion equipment UL 840 - Insulation coordination including clearances and creepage distances for electrical equipment EN61800-5-1 - Safety requirements electrical, thermal and energy EN 50178 - Electronic equipment for use in power installations EN 60146 (IEC 146) - Semiconductor converters
	 EN 61800-2 - Adjustable speed electrical power drive systems - Part 2: General requirements - Rating specifications for low voltage adjustable frequency AC power drive systems
Electromagnetic Compatibility (EMC)	 EN 61800-3 - Adjustable speed electrical power drive systems - Part 3: EMC product standard including specific test methods EN 55011 - Limits and methods of measurement of radio disturbance characteristics of industrial, scientific and medical (ISM) radio-frequency equipment CISPR 11 - Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement EN 61000-4-2 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 2: Electrostatic discharge immunity test EN 61000-4-3 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test EN 61000-4-4 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 3: Radiated, radio-frequency, electromagnetic field immunity test EN 61000-4-5 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test EN 61000-4-6 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test EN 61000-4-6 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test EN 61000-4-6 - Electromagnetic compatibility (EMC) - Part 4: Testing and measurement techniques - Section 5: Surge immunity test
Mechanical Standards	 EN 60529 - Degrees of protection provided by enclosures (IP code) UL 50 - Enclosures for electrical equipment

8.3 MECHANICAL DATA

Frame Size E

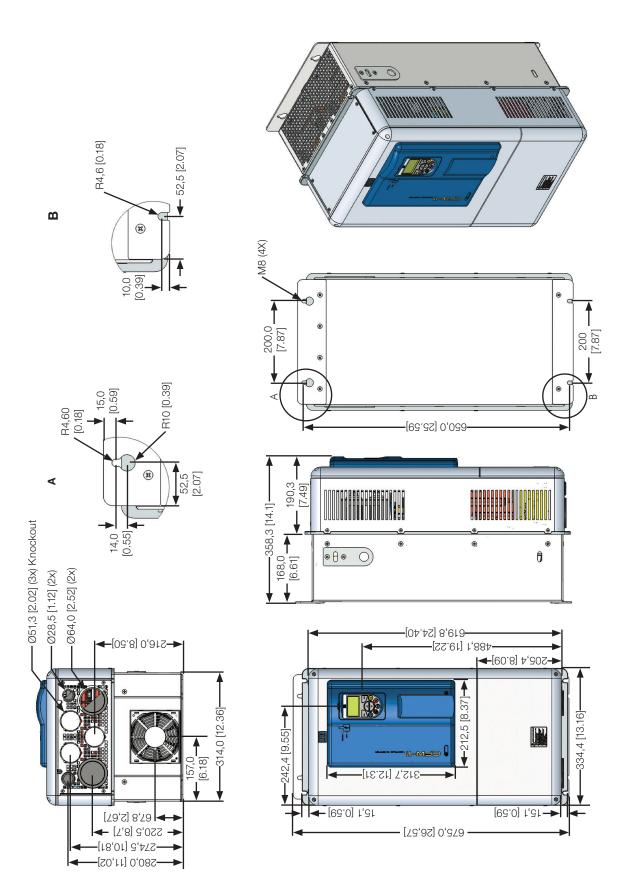


Figure 8.2: Frame size E dimensions - mm [in]

Frame Size F

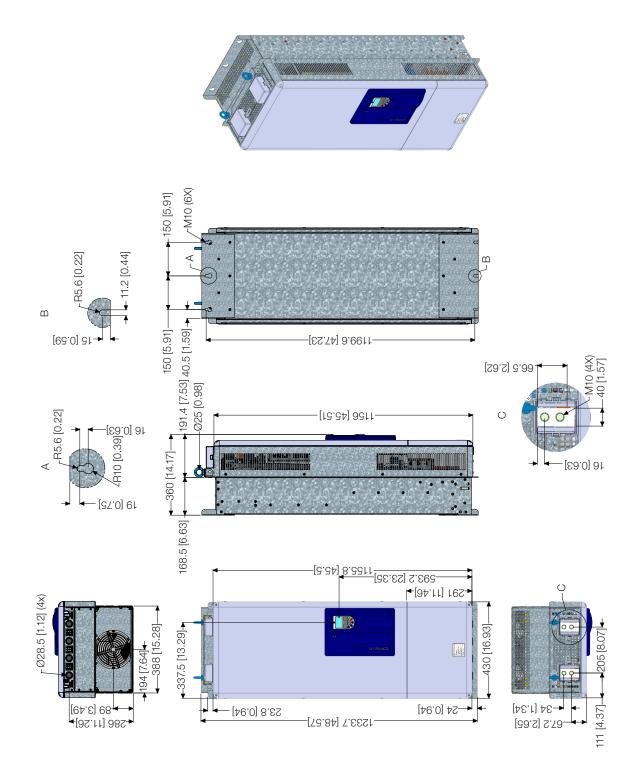


Figure 8.3: Frame size F dimensions - mm [in]

Frame Size G

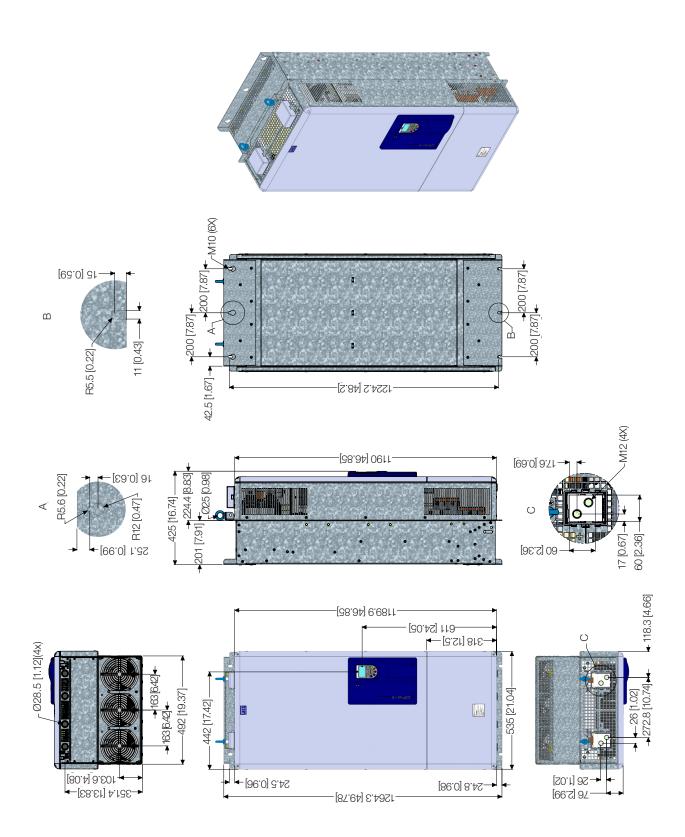


Figure 8.4: Frame size G dimensions - mm [in]