Multimedidor Eléctrico

MMW02

Manual de Operación & Instalación

Manual de Operación & Instalación

Série: MMW02

Idioma: Espanhol

Número do Documento: MMW201705-Rev0

Fecha de publicación: mai/2017

11

15

Sumário

8
8
8
8
9
9
9
9
-

2 VISIÓN GENERAL

2.1 MEDICIÓN DE MAGNITUDES ELÉCTRICAS BÁSICAS	11
2.2 MEDICIÓN DE THD	11
2.3 MEMORIA MASIVA	11
2.4 COMUNICACIÓN	11
2.5 MODOS DE CONEXIÓN EN EL SISTEMA	11
2.6 SOFTWARE WEG POWER MANAGER	11
2.7 MODELOS	11
2.8 ACCESORIOS	12
2.9 PANEL FRONTAL	12
2.10 PANEL TRASERO	13

3 INSTALACIÓN

3.1 SISTEMA ELÉCTRICO	.15
3.1.1 Transformadores de Potencial (TV) y Corriente (TI)	.15
3.1.2 Phase Identification	.15
3.2 MONTAJE EN PANEL	.15
3.3 ALIMENTACIÓN	.15
3.3.1 Tiempo de Estabilización	.16
3.4 CONEXIÓN A LA RED ELÉCTRICA	.16
3.5 ENTRADA DE CORRIENTE	.20
3.5.1 Sentido de Corriente	.20
3.5.2 Fase de la Medición	.21
3.5.3 Posición de los TIs	.21
3.5.4 Factor Térmico	.21

4 OPERACIONES BÁSICAS

20	

4.1 ENCENDER EL EQUIPO	22
4.2 NAVEGANDO POR LOS MENÚS	22
4.2.1 Menú Principal	22
4.2.2 Menú de Mediciones	23
4.3 CAMBIO DE PARÁMETROS	23
4.4 TECLAS DE ACCESO RÁPIDO	23
4.5 CONFIGURACIONES INICIALES	24
4.5.1 Sistema Eléctrico	24
4.5.1.1 Selección de la Conexión	24
4.5.1.2 Frecuencia Nominal	25
4.5.1.3 No Hay Tensión	25
4.5.2 Secuencia de Fase	25
4.5.3 Ajuste de Relaciones de TV y TI	26
4.5.4 Ajuste de la Polaridad de los Sensores de Corriente	27

4.6 RELOJ Y CALENDARIO	27
4.6.1 Ajuste de la Fecha y la Hora	27
4.6.2 Zona Horaria y el Horario de Verano	
4.7 INTERFAZ DE USUÁRIO	
4.8 COMUNICACIÓN	
4.9 ESTANDÁR DE FÁBRICA	

5 MEDICIONES

31

	• •
5.1 CONSIDERACIONES INICIALES	
5.2 TENSIÓN, CORRIENTE Y FRECUENCIA	
5.2.3 Medición	
5.3 POTENCIA Y FACTOR DE POTENCIA	
5.3.1 Método de Medición	
5.3.2 Configuración	34
5.3.3 Medición	34
5.4 DEMANDA DE POTENCIA	35
5.4.1 Método de Medición	35
5.4.2 Configuración	36
5.4.3 Medición	36
5.5 CONSUMO DE ENERGÍA	
5.5.1 Método de Medición	37
5.5.2 Medición	37
5.6 THD	37
5.6.1 Medición	
5.7 MENÚ PERSONALIZADO	
5.8 RESET DE VALORES	

6 DATALOG

6.1 ACCEDER AL DATALOG	
6.2 CONFIGURACIÓN	
6.2.1 Intervalo de Registro	41
6.2.2 Modos de Operación	
6.2.2.1 Modos de Inicio	41
6.2.2.2 Modos de Fin	41
6.2.3 Bloques de datos	
6.2.4 Uso de la Memoria	43
6.2.4.1 Modo Linear	43
6.2.4.2 Modo Circular	43
6.2.4.3 Autonomía	43
6.2.5 Vinculaciones	
6.3 OPERACIÓN	
6.3.1 Formatear la memoria	44
^	

/**!**` 45

PRECAUCIÓN! 45

Aseqúrese de que los datos de la	a memoria ya no son necesarios o que ya se han quardado porque, después c	de formatear, los datos no
se pueden recuperar. 45		
6.3.2 Iniciando el [Datalog	
6.3.3 Informacione	es del área	
6.3.4 Error Status.		
6.3.5 Parando el D	Datalog	

7 ALARMAS	48
7.1 CONFIGURACIÓN Y REGISTRO	
7.2 EXCLUSIÓN	
7.3 DISPARO	
7.4 DESACTIVADA	49
8 ESPECIFICACIONES	50
8.1 CARACTERÍSTICAS BÁSICAS	50
8.2 MAGNITUDES ELÉCTRICAS	50
8.2.1 Frequency	50
8.2.2 Tensión	50
8.2.3 Corriente	50
8.2.4 Potencia	51
8.2.4.1 Potencia Activa	51
8.2.4.2 Potencia Reactiva	51
8.2.4.3 Potencia Aparente	51
8.2.5 Factor de Potencia	51
8.2.6 Consumo de Energía	
8.2.6.1 Energía activa	
8.2.6.2 Energía Reactiva	
8.2.6.3 Energía Aparente	
8.2.7 Demanda de Potencia	
8.2.8 THD de Tensión y Corriente	53
8.3 SALIDA DIGITAL	53
8.4 ALARMS	53

9 MANUTENCIÓN

56

9.1 LIMPIEZA	
9.2 SOLUCIÓN DE PROBLEMAS	
9.2.1 Equipo no enciende	
9.2.2 Resultados de medición con guiones	
9.2.3 Mediciones de tension y potencia con valores anormales	
9.2.4 Potencia active y reactiva con la señal invertida	
9.2.5 Equipo no se comunica con software	
9.2.6 Datalog inicia, pero no aumenta registros	
9.3 GESTIÓN DE LA CALIBRACIÓN	57
9.4 MODO DE DIAGNÓSTICO	57

10 ANEXO A – REPORTE A ASISTENCIA TÉCNICA/1.0.X

58

12 ANEXO1 – COMUNICAÇÃO MODBUS RTU

12.1 MMW02: DOCUMENTACIÓN/MODBUS PROTOCOLO/ 1.0.1/ TABLA MODBUS	60
12.2 COIL	60
12.2.1 Entradas y Salidas Digitales	60
12.2.2 Coils Reset	60
12.3 HOLDING	61
12.3.1 Parametrización (Valores 16 bits)	61
12.3.2 Parametrización(32bits'valor)	64
12.3.3 Autonomía del Registrador (Datalog)	64
12.3.4 Reloj del Equipo	
12.3.5 Informaciones	65
12.3.6 Control del Registrador (Datalog)	65
12.4 INPUT	65
12.4.1 Magnitudes	65
12.4.2 Demanda	66
12.4.3 Energía	66
12.4.4 Estadísticas	67
12.4.5 Armónicas	68
12.4.6 Energía 64Bits	68

13 FUNCIONES DE MODBUS

13.1 17-REPORT SLAVE ID	
13.1.1 Solicitud	
13.1.2 Respuesta	
13.2 DESCARGAR LA MEMORIA MASIVA	
13.2.1 Informaciones de Área	
13.2.2 Información de la Observación	71
13.2.3 Adquisiciones de Datos	72
13.2.4 Adquisición de Encabezados	75
14 PROGRAMACIÓN DE LAS ALARMAS	76

14.1 CREANDO Y SELECCIONANDO UNA ALARMA	76
---	----

60

70

1 INTRODUCCIÓN

Este manual describe cómo instalar, configurar y utilizar el multímetro MMW02. Todas las pantallas muestran las conexiones predeterminadas de fábrica y sin ningún tipo de medición.Para asegurar la integridad de los equipos y su uso adecuado, así como para garantizar los aspectos relativos a la seguridad, leálo cuidadosamente.

1.1 DECLARACIÓN DE VALIDEZ DE LA CALIBRACIÓN

Estimado cliente, se sugiere que el equipo vuelva a WEG para su re-calibración después de un (1) año a partir de la fecha de expedición de la factura.

Para calibrar sus equipos, WEG utiliza el calibrador Fluke 6100A y el Omicron CMC 256plus. Su equipo fue calibrado por el método de comparación directa. Los resultados obtenidos pueden ser suministrados en una tabla de calibración. Esta, muestra los valores presentados por el instrumento bajo prueba con los valores obtenidos por comparación con los patrones.

1.2 DECLARACIÓN DE CONFORMIDAD

MMW02 Multimedidor y Registrador de Magnitudes Eléctricas

Fabricante:

WEG Equipamentos Elétricos - Automação Av. Pref. Waldemar Grubba, 3000 89256-900 Jaraguá do Sul, SC - Brasil www.weg.net

1.2.1 Normas de Referencia

- IEC 61557-12 : Electrical safety in low voltage distribution systems up to 1.000 V a.c. and 1.500 V d.c. Equipment for testing, measuring or monitoring protective measures Part 12: Performance Measuring and Monitoring Devices (PMD)
- IEC 61000-4-2 : Electrostatic Discharge (B)
- IEC 61000-4-3 : Radiated EM Field Immunity (A)
- IEC 61000-4-4 : Electric Fast Transient (B)
- IEC 61000-4-5 : Surge Immunity (B) IEC61000-4-5
- IEC 61000-4-6 : Conducted Immunity
- IEC 61000-3-2 : Limits for harmonic current emissions
- IEC 62052-11 : Electricity metering equipment (AC) General requirements, tests and test conditions Part 11: Metering equipment
- IEEE 754-2008 : IEEE Standard for Floating-Point Arithmetic IEEE Computer Society (August 29, 2008)
- ABNT NBR 14519 Electronic meters of electricity (static) Specification
- ABNT NBR 14520 Electronic meters of electricity Test methods
- ABNT NBR 14521 Acceptance of lots of electronic meters of electricity Procedure

1.3 INFORMACIÓN DE SEGURIDAD

Este equipo utiliza, para su funcionamiento, altas tensiones, así como está diseñado para operar en los sistemas eléctricos de alta potencia, por lo tanto debe ser operado con cuidado para evitar incendios o descargas eléctricas. Por estas razones, lea atentamente estas instrucciones y familiarizarse con el equipo antes de intentar instalarlo y operarlo.

PELIGRO!

Indica una situación de riesgo inminente.

Si no se tiene el cuidado adecuado, puede resultar en la muerte o causar daños graves.

PRECAUCIÓN!

Indica una situación de peligro potencial.

Si no se tiene el cuidado adecuado, puede provocar lesiones leves o moderadas a usuarios o equipos.

CONSEJO!

Indica una mensaje de sugerencia u observación, que puede ser utilizado en diferentes contextos con el fin de ayudar el usuario con el uso del equipo.

1.3.1 Peligros

- Sólo el personal técnico cualificado debe instalar y operar este equipo;
- Tenga conocimiento sobre el equipo antes de operarlo;
- Conozca las características del sistema en el que se instalará el equipo;
- Nunca trabaje solo;
- No haga mediciones en ambientes con presencia de gases inflamables. El uso del equipo puede generar chispas, que pueden provocar una explosión;
- Nunca haga mediciones con las superficies o las manos mojadas;
- No exceda los límites máximos permisibles para cualquier rango de medición;
- Conecte primero los cables de medición de tensión y de corriente en el equipo y sólo después en el circuito bajo prueba;
- Nunca desconecte los cables de medición de tensión o cables de sensores de corriente mientras el instrumento está en uso;
- No realice ninguna medición si el producto presenta una condición anormal, como cables con fallas en el aislamiento o partes metálicas expuestas.

1.3.2 Precaución

- No instalar componentes adicionales o hacer cualquier modificación en el equipo;
- Si necesita, póngase en contacto con el servicio técnico para su reparación, calibración o en caso de fallos de funcionamiento;
- No tire, poner cosas pesadas o de paso en cualquiera de los cables de los equipos;
- Tenga cuidado de no colocar los cables en contacto con superficies calientes;
- Si el equipo comienza a producir humo, sobrecalentarse o ventilar cualquier olor, desconecte inmediatamente, y si no representa un riesgo, retire los sensores de corriente y cables de medición de tensión. Cuando esto ocurre, póngase en contacto con la asistencia técnica;
- Usar siempre el EPI apropiado cuando se utiliza este tipo de equipo;
- Tenga cuidado con los conductores sometidos a prueba, ya que pueden estar calientes;
- Nunca coloque el equipo en fuertes vibraciones ni lo someta a fuertes golpes mecánicos;
- No exponga el equipo a altas temperaturas y humedad;
- No utilice productos abrasivos o disolventes para limpiar el equipo;
- No guarde el instrumento si está húmedo o mojado.

1.4 RECEBIR EL PRODUCTO

El MMW02 sale de fábrica envasado en una caja para proteger el equipo contra posibles daños durante el transporte. Al recibir comprobar las condiciones del mismo. Si algún artículo está dañado visualmente, comuníquese inmediatamente con el fabricante por los medios indicados en la sección Soporte y Asistencia Técnica. 1.5.

1.5 SOPORTE Y ASISTENCIA TÉCNICA

WEG cuenta con personal capacitado para aclarar cualquier duda sobre el equipo y uso del software. Para ponerse en contacto con asistencia técnica, utilice los siguientes medios:

E-mail: astec@weg.net

Si es necessário enviar el equipo a la fábrica para hacer reparaciones o calibración, utilice la siguiente dirección:

WEG Equipamentos Elétricos - Automação Assistência técnica Av. Pref. Waldemar Grubba, 3000 89256-900 Jaraguá do Sul, SC Brasil

El equipo debe ser enviado a WEG acompañado de la factura y del **Envío para reparación** y del **Informe de asistencia técnica** llenado.

En Brasil, utilice los siguientes códigos para la clasificación fiscal de la operación (CFOP):

- **5915** para facturas emitidas en el estado de Santa Catarina (SC);
- 6915 para facturas emitidas en los demás estados;

Para evitar posibles daños que pueden ser causados durante el transporte, se recomienda que el equipo esté embalado cuidadosamente.

2 VISIÓN GENERAL

MMW02 es un multimedidor con grande capacidad de realizar mediciones de magnitudes eléctricas. Proyectado para ser utilizado en diferentes aplicaciones de medidas relacionadas a la generación de energia eléctrica y a su distribuición, lo que permite a los usuarios monitorear y controlar.

2.1 MEDICIÓN DE MAGNITUDES ELÉCTRICAS BÁSICAS

Usando de métodos basados en normas internacionales, el MMW02 mide las magnitudes eléctricas básicas, tales como tensión, corriente y frecuencia, así como la potencia, la demanda de potencia y energía en los cuatro cuadrantes. Es decir, que se puede utilizar tanto en las etapas de generación como del consumo de energía eléctrica. El mismo se puede utilizar para controlar los valores instantáneos y estadísticos proporcionando resultados precisos y fiables, es posible leer todas las magnitudes en su propia pantalla o de forma remota a través del software.

2.2 MEDICIÓN DE THD

El equipo realiza la medición de la distorsión armónica total (THD) segundo norma IEC 61000-4-7, siendo posible visualizar em el equipo los valores de THD, de tensión y corriente.

2.3 MEMORIA MASIVA

Todas las magnitudes medidas por el MMW02 pueden ser grabadas en la memoria masiva, e incluso se puede seleccionar los grupos de datos (instantáneos, la demanda y la energía) que se quiere grabar. El produto permite la configuración del intervalo de registro por períodos que van de 1 segundo a 24 horas. Es posible terminar la grabación de los registros por el tiempo, el número de registros, la fecha previamente programada o manualmente. Esta característica es opcional y está presente sólo en algunos modelos.

2.4 COMUNICACIÓN

Para satisfacer las necesidades de integración con los sistemas existentes, el MMW02 proporciona una interfaz de comunicación serie RS-485 utilizando el protocolo Modbus RTU. De esta manera si puede crear una red de medidores en línea con las diversas plataformas de automatización existentes en el mercado hoy.

2.5 MODOS DE CONEXIÓN EN EL SISTEMA

Debido a la amplia posibilidad de modos de conexión, el MMW02 puede ser utilizado para medir diversas configuraciones del sistema. Los modos de conexión incluyen sistemas básicos como monofásica, de dos fases, estrella de 4 hilos y delta de 3 hilos y se extienden a sistemas tales como delta abierta, 4 hilos delta (high-leg) y sus variaciones de número de elementos de medición de corriente y tensión. En total hay 21 modos de conexión en el sistema.

2.6 SOFTWARE WEG POWER MANAGER

És posible bajar los datos de la memoria masiva, usando el software WEG Power Manager. El WEG Power Manager permite también configurar remotamente todos los parámetros del MMW02, evitando la necesidad de que el usuario vaya a campo para configurar el medidor, lo que permite un ahorro de tiempo en los servicios de mantenimiento.

2.7 MODELOS

El MMW02 está disponible en diferentes modelos para adaptarse mejor a las aplicaciones específicas de los clientes. Las variaciones de modelos incluyen la disponibilidad o no de la memoria masiva.

La lista completa de modelos disponibles para la serie MMW02, así como otra información sobre este medidor, está disponible en el sitio web de WEG Automação (http://www.weg.net).

2.8 ACCESORIOS

Además de los diferentes modelos disponibles, WEG también proporciona una serie de accesorios que se pueden utilizar en combinación con el MMW02. Algunos de estos accesorios se pueden utilizar, por ejemplo, para convertir el estándar de comunicación RS-485 para USB 2.0, o incluso RS-485 para Ethernet. La lista completa de acessorios disponibles para uso en conjunto con el MMW02 está disponible en el sitio web de WEG Automação (http://www.weg.net).

PRECAUCIÓN!

WEG recomienda utilizar únicamente accesorios originales. No aceptamos ninguna responsabilidad derivada del uso, o compatibilidad con accesorios de terceros.

2.9 PANEL FRONTAL

El MMW02 posee una interfaz de operación que comprende una pantalla de matriz y un teclado de membrana. La Figura 2.1 ilustra el panel frontal. La Tabla 2.1 describe las partes que componen el panel frontal.

Figura 2.1:Panel Frontal

Number	Description			
1	Pantalla de c configuraci	e cristal líquido de matriz de 4 filas por 16 columnas con luz de fondo. Muestra los datos de medición y de ación Nota: El redondeo de los valores en la pantalla depende de la representación binaria del número en cuestión en el formato IEEE 754.		
2	PROG	Confirmar o entrar en el modo de programación/configuración		
3	CLEAR	Cancela o sale del modo de programación y sube un nivel en el menú. Mantenga presionado para devolver el equipo a los valores por defecto de fábrica durante la inicialización del mismo (esta opción no eliminará la contraseña de protección).		

Number	Description				
		Mueve el menú hacia arriba o incrementa las variables.			
4		Mueve el menú o el cursor a la izquierda			
		Mueve el menú hacia abajo o decrementa las variables			
		Mueve el menú o el cursor a la derecha			

Tabla 2.1: Panel Frontal

2.10 PANEL TRASERO

A través del panel trasero del MMW02 se realizan las conexiones para la alimentación, la medición, comunicación y control. La Figura 2.2 ilustra los terminales de entrada del equipo con los conectores de tipo ojal. La Tabla 2.2 describe las partes que componen el panel trasero.

Figura 2.2: Panel Trasero

Número	Conector	Descripción
2	+ 11 - + 12 - + 13 - Entradas de Corriente	En este conector hay seis terminales que se utilizan para la conexión de las entradas de tensión, un par para cada fase. Si no hay ningún TV, la conexión debe realizarse directamente, respetando la tensión máxima. La conexión debe cumplir con la siguiente nomenclatura: V1 - Tensión en la fase 1 (fase aN); V2 - Tensión en la fase 2 (fase bN); V3 - Tensión en la fase 3 (fase cN); Los límites máximos de tensión aplicable deben ser observadas en la sección Especificaciones
3	A RL B + D - + VAUX- Salida de Relé	Este conector tiene una salida de relé, identificado por RL, que se utiliza como salida de alarma programada
4	A RL B + D - + VAUX- Conexión Serial RS-485	Conexión RS-485 Este conector de 2 pinos se utiliza para la conexión a una red de medidores o directamente a un ordenador para realizar lecturas en línea, parametrización y descarga de datos de la memoria. El mismo está acoplado a un puerto RS-485 La conexión debe cumplir con la siguiente nomenclatura: D+ Serial RS-485 (+); D- Serial RS-485 (-).
5	ARLB + D - + VAUX- Alimentación Auxiliar	Es el conector donde el cable debe estar conectado para encender el MMW02. El mismo se identifica por Vaux. La conexión de este borne es sólo para encender el producto, sin interferir con la medición. Los límites de tensión aplicable deben ser observadas en la sección Especificaciones

Tabla 2.2: Panel Trasero

3 INSTALACIÓN

3.1 SISTEMA ELÉCTRICO

PRECAUCIÓN!

Antes de comenzar la instalación, lea las advertencias y precauciones que se deben tomar con respecto al uso de este equipo, que se describen en la sección Información de Seguridad.

3.1.1 Transformadores de Potencial (TV) y Corriente (TI)

Infórmese sobre los niveles de tensión del sistema. El MMW02 permite mediciones de corriente y tensión de forma directa, cuando los limites no excedan la capacidad del equipo, y medición de tensión de forma indireta con el uso de TVs. Tenga disponible el número de TVs requerido para el tipo seleccionado de enlace. También, tenga a mano la información sobre las relaciones de transformación de cada uno de ellos y la polaridad de los mismos. Para la conexión a transformadores de corriente, tenga a mano la misma información mencionada para TVs y siempre tenga en cuenta la capacidad máxima de medición de la corriente (TI) del sensor elegido. En el caso de mediciones con TIs utilizar la figura 3.1 para realizar la conexión eléctrica y configurar correctamente el equipo de acuerdo a las relaciones de transformación y los sensores de corriente empleados.

3.1.2 Phase Identification

Asegúrese de que las fases se identifiquen. Falta de identificación de las fases puede causar errores de medición.

3.2 MONTAJE EN PANEL

Para el montaje del MMW02 en el panel, proporcionar una abertura de 91.00 x 91.00mm. No se requieren herramientas, ya que con sólo los dos clips de sujeción que vienen con el producto, Es posible sostenerlo de manera segura. La Figura 3.1 ilustra la abertura con las dimensiones. Tenga en cuenta que las tolerancias del rasgo son de hasta 0,8mm.

Figura 3.1: Tamaño de la Apertura del Panel

3.3 ALIMENTACIÓN

En la energización del MMW02, se debe utilizar el conector en el panel posterior identificado por Vaux. Para conectar el equipo, se necesita sólo que los cables estén conectados a una tensión de servicio mínima, especificada en la sección Especificaciones. El MMW02 no tiene un interruptor de encendido/apagado, porque la alimentación se activa cuando se alimenta. La conexión a la red eléctrica debe cumplir con los límites establecidos para la fuente de alimentación y el equipo podría ser alimentado con una tensión CA o CC. Para la protección del medidor, utilice fusible de protección 0,5 A.

La Figura 3.2 ilustra el diagrama de conexión para la alimentación del medidor. Si existe la necesidad de alimentación por batería o fuente de alimentación auxiliar, póngase en contacto con Soporte técnico de WEG para comprobar la disponibilidad u obtener más informaciones.

Figura 3.2: Alimentación

3.3.1 Tiempo de Estabilización

El MMW02 viene calibrado de fábrica a temperatura y humedad relativa del aire controladas. Además, la calibración se realiza con el equipo en condiciones de funcionamiento normales, siendo el mismo previamente energizado durante un tiempo que se garantiza la estabilización de la temperatura de los circuitos internos. En estas condiciones, el MMW02 alcanza su máxima precisión.

Por esta razón, cuando el equipo es encendido, mientras que anteriormente estuviera desconectado por un largo período, es importante esperar un tiempo aproximado de 15 minutos antes de tomar mediciones.

3.4 CONEXIÓN A LA RED ELÉCTRICA

El MMW02 permite la selección de topologías de 21 conexiones. Para enlazar se utiliza una identificación de codificación, con el número de elementos de corriente y tensión y la configuración del sistema. La Figura 3.3 muestra cómo se codifican los vínculos. En el ejemplo se muestra una conexión estrella con 3 elementos para medir tensión y uno para medir corriente. En este caso, como hay sólo un elemento para la medición de la corriente, el sistema debe ser equilibrado, indicado por la letra B.

Figura 3.3: Codificación de Enlaces

Las siguientes figuras ilustran todos los sistemas eléctricos soportados por MMW02.

Figura 3.4: 1P2W-1V1C - Monofásico (LN).

Figura 3.6: 2P3W-2V2C - Bifásico (LL+N).

Figura 3.8: 3P4W-3V3C - Trifásico 4 Hilos, Delta, Conexión Directa, 3 Tl ("High Leg").

Figura 3.10: Sistema 04: 3P4W-3V3C - Trifásico 4 Hilos, Estrella, Conexión 3 TV, 3 TI.

Figura 5.5. 2F2W-TVTC - Bilasico (LL).

Figura 3.7: 3P4W-3V3C - Trifásico 4 Hilos, Estrella, Conexión Directa, 3 Tl

Figura 3.9: 3P4W-3V3C - Trifásico 4 Hilos, Delta Abierto, Conexión Directa, 3 Tl.

Figura 3.11: 3P4W-3V2C B - Trifásico 4 Hilos, Estrella Balanceado, Conexión 3 TV, 2 Tl.

Conexión Directa, 1 TI.

Figura 3.14: 3P4W-2V3C B - Trifásico 4 Hilos, Estrella Balanceado, Figura 3.15: 3P4W-2V2C B - Trifásico 4 Hilos, Estrella Balanceado, Conexión Directa, 2TV, 3 TI.

Figura 3.16: 3P4W-2V1C B - Trifásico 4 Hilos, Estrella Balanceado, Figura 3.17: 3P4W-1V3C B - Trifásico 4 Hilos, Estrella Balanceado, Conexión Directa, 1 TI.

Conexión Directa, 2 Tl.

Figura 3.12: 3P4W-3V1C B - Trifásico 4 Hilos, Estrella Balanceado, Figura 3.13: 3P4W-3V1C B - Trifásico 4 Hilos, Estrella Balanceado, Conexión 3TV, 1 TI.

Conéxion Directa, 2 Tl.

Conexión Directa, 3 Tl.

Figura 3.18: 3P4W-1V2C B - Trifásico 4 Hilos, Estrella Balanceado, Figura 3.19: 3P4W-1V1C B - Trifásico 4 Hilos, Estrella Balanceado, Conexión Directa, 1 Tl.

Figura 3.20: 3P3W-3V3C - Trifásico 3 Hilos, Delta, Conexión Directa, 3 Tl.

Figura 3.22: 3P3W-3V3C - Trifásico 3 Hilos, Delta Abierto, Conexión Directa, 3 Tl.

Figura 3.24: 3P3W-3V2C - Trifásico 3 Hilos, Estrella, Conexión 3 TV, 2 TI.

Conexión 3 TV, 1 TI.

Figura 3.21: 3P3W-3V3C - Trifásico 3 Hilos, Estrella Balanceado, Conexión 3 TV, 3 TI.

Figura 3.23: 3P3W-3V2C - Trifásico 3 Hilos, Delta, Conexión Directa, 2 Tl.

Figura 3.25: 3P3W-3V1C B - Trifásico 3 Hilos, Delta Balanceado, Conexión Directa, 1 Tl.

Figura 3.26: 3P3W-3V1C B - Trifásico 3 Hilos, Estrella Balanceado, Figura 3.27: 3P3W-2V3C - Trifásico 3 Hilos, Delta, Conexión 2 TV, 3 TI.

Figura 3.28: 3P3W-2V2C - Trifásico 3 Hilos, Delta, Conexión 2 TV, 2 TI.

Figura 3.30: 3P3W-1V3C B - Trifásico 3 Hilos, Delta Balanceado, Conexión 1 TV, 3 TI.

Nota para el usuario:

Tenga en cuenta que uno debe tener conocimiento de las fases del sistema para la correcta conexión para medir tensión y corriente. De lo contrario, la secuencia de fase se invierte, haciendo que el MMW02 mida de manera equivocada.

CONSEJO!

En los enlaces que no cuentan con los tres elementos de tensión o corriente (códigos 3P3W-3V2C, 3P3W-3V1C, 3P3W-2V2C, 3P3W-2V1C), el error es mayor en la fase calculada. El error es aceptable, ya que lo que se muestra es la "suma de los errores" de las fases que en realidad se están midiendo.

3.5 ENTRADA DE CORRIENTE

Mediante la conexión de las entradas de corriente en el equipo, se deben tomar algunas precauciones básicas:

3.5.1 Sentido de Corriente

Las entradas de corriente tienen una indicación del sentido de circulación de la corriente a través de un símbolo + y - situado junto a las terminales. Considerar que la corriente debe fluir desde el terminal positivo + al terminal negativo -. Compruebe siempre la dirección de la corriente antes de la instalación. Invertir el sentido de la corriente, sin el conocimiento, dará lugar a un error de medición de potencia, energía, demanda, etc.

Figura 3.29: 3P3W-2V1C B - Trifásico 3 Hilos, Delta Balanceado, Conexión 2 TV, 1 Tl.

Figura 3.31: 3P3W-1V2C B - Trifásico 3 Hilos, Delta Balanceado, Conexión 1 TV, 2 TI.

CONSEJO!

Si el sensor de corriente se ha instalado a la inversa, se puede utilizar la opción para ajustar polaridad descrito en la sección Ajuste de la Polaridad de los Sensores de Corriente para inversión del señal del sensor, permitiendo así que las mediciones queden correctas.

3.5.2 Fase de la Medición

Así como las tensiones, los sensores de corriente también necesitan ser posicionados correctamente de acuerdo con el tipo de conexión. Compruebe los tipos de conexión en la sección Conexión a la Red Eléctrica.

3.5.3 Posición de los TIs

Los TIs deben estar posicionados en el bús antes de la carga a la que queremos medir los parámetros eléctricos. Observar cuidadosamente los cables eléctricos en el bus principal y la posición de los sensores en los lugares apropiados. Asegúrese de que el conductor que fue elegido para la medición, solamente alimenta la carga que se examina.

3.5.4 Factor Térmico

Los Transformadores de Corriente (TIs) usan un parámetro denominado Factor de Corriente Térmica Continua. Este factor es definido como la corriente que puede circular continuamente en el devanado primario del transformador sin exceder el límite de elevación de temperatura especificado a 30°C de temperatura ambiente y su corriente nominal primária. Los valores más comunes para Factor Térmico son 1,0; 1,2; 1,3; 1,5 e 2,0.

La expresión que define el factor térmico es como sigue:

TF = Ipmax / Ipnominal (en estado estacionario)

El MMW02 puede ser usado con TIs externos (Medición Indirecta) hasta la corriente nominal primária del TI, o sea, considerando FT = 1,0. Con FT = 1,0 para el MMW02 se garantiza la precisión en las mediciones. Ejemplo de aplicación: una instalación tiene carga total de 100 A, pero como hay situaciones de sobrecarga, podrían ser instalados TIs de 100 / 5 A con FT = 1,5. De esta forma, los TIs 100 / 5 A pueden soportar corrientes máximas de 150 A en la primaria sin reducir su vida útil, o sin sufrir cambios en sus características. Sin embargo, para utilizar el MMW02 en la instalación del ejemplo, los TIs deben ser dimensionados para 150 / 5 A com FT = 1,0. De esta forma, garantizando la medición hasta los 150 A. En la práctica, FT mayores que 1,0 se utilizan junto con los relés de protección, en los que son necesario interrumpir el circuito si se produce una condición de sobrecarga.

4 OPERACIONES BÁSICAS

4.1 ENCENDER EL EQUIPO

El MMW02 no tiene ningún interruptor on/off, por lo tanto se encenderá unos segundos después de conectar los terminales a la red eléctrica. En este momento el equipo emite un pitido distintivo y luego muestra la pantalla de identificación del producto.

(1) Nombre del equipo(2) Modelo del equipo

(3) Versión de firmware(4) Número de serie

La pantalla respectiva con la información sobre el mismo se muestra en Figura 4.1.

Figura 4.1: Pantalla de Inicio

Si la fecha y la hora aún no se han establecido, aparece el siguiente mensaje de advertencia:

Pantalla indicando que el reloj debe ajustarse

Figura 4.2: Ajuste el reloj

Para ajustar la fecha y la hora, siga el procedimiento descrito en la sección Ajuste de la Fecha y la Hora.

ATTENTION!

Al alimentar el equipo no pulse ningún botón hasta la iniciación completa, al contrario el equipo puede entrar en modo de diagnóstico. Si entra en el modo de diagnóstico ver el capítulo Modo de Diagnóstico

4.2 NAVEGANDO POR LOS MENÚS

4.2.1 Menú Principal

Para navegar por las pantallas del MMW02, se utilizan menús en diferentes niveles. La pantalla MENÚ PRINCIPAL, que concentra las funciones globales del equipo, se puede acceder de la siguiente manera:

En cualquier pantalla presionar la tecla clear brevemente (volver un nivel) por el número de veces que representa el nivel en el que la pantalla se encuentra.

Opciones para ver las mediciones (MSR), Registro de datos (LOG), fecha y hora (CLK), configuraciones (CFG), borrar los valores de los acumuladores de las mediciones (RST) y alarmas (I/O)

Figura 4.3: Menú Principal

para avanzar y retroceder

Observación 1: La opción LOG está disponible en unos pocos modelos del MMW02

4.2.2 Menú de Mediciones

A través de MENÚ PRINCIPAL, puede acceder al MENÚ DE MEDICIONES (Figura 4.4), que cuenta con las opciones de las mediciones del MMW02.

MENU	MEDIC	IONES
⊕UI	PQS	DMD
E	THD	CST
B	Volt	s/Amps

Tensión/Corriente/Frecuencia (V-I), Potencia/Factor de potencia (PQS), Demanda de potencia (DMD), Consumo de energía (E) y THD y Armónicos individuales de tensión y corriente (THD) y pantallas personalizadas (CST).

0

Figura 4.4: Menú de Mediciones

Las características asociadas con las otras opciones MENÚ PRINCIPAL y MENÚ DE MEDICIONES se presentan en pantallas específicas, que muestran información o parámetros ajustables.

4.3 CAMBIO DE PARÁMETROS

Cuando se accede a las pantallas de configuración se inician los cambios de parámetros pulsando la tecla PROG

Dependiendo del tipo de la cantidad que se quiere modificar, los cambios son realizados por una de tres maneras diferentes:

- Incremento/decremento en la lista de opciones predefinidas. Utilice las teclas 1 Y
- Incremento/decremento de unidad, decena, centena, etc., para los valores numéricos. Utilice las teclas
 A v
- Incremento/decremento por unidad para los valores numéricos pequeños. Utilice las teclas (1) y

Programación de strings (frases). Utilice la combinación de teclas < + PROG para seleccionar entre los grupos:

números, símbolos, letras mayúsculas y minúsculas; utilice las teclas PROG

posiciones y las teclas (1) y U para seleccionar los caracteres.

Para terminar de editar el parámetro, debe presionar la tecla PROG. Para cancelar la edición, puede presionar la

tecla CLEAR

En las pantallas con más de un parámetro, la edición de los parámetros se realiza de forma secuencial, y el efecto del cambio sólo se producirá cuando se confirma el último parámetro.

4.4 TECLAS DE ACCESO RÁPIDO

Algunas características del MMW02 se puede acceder a través de la combinación de algunas teclas.

La combinación de teclas 🔄 + 🔿, cuando se pulsa brevemente, se presenta una pantalla de ayuda de la

pantalla seleccionada. Para desplazar el texto, utilice las teclas 🏠 y 🕕. Para volver a la pantalla de origen,

pulse ^{CLEAR}. La Figura 4.5 ejemplifica una pantalla de ayuda del MMW02.

(?) Prome	dio
trifásico	de
tensión y	I
corriente	9 y -

Figura 4.5: Pantalla de Ayuda

La combinación de teclas + + cuando se mantienen pulsadas, le permite bloquear o desbloquear las funciones del teclado, como se ve en la Figura 4.6.

(!) El teclado está bloqueado

Figura 4.6: Teclado Bloqueado

4.5 CONFIGURACIONES INICIALES

Después de terminar la instalación del MMW02, algunas configuraciones básicas deben llevarse a cabo, ellas son:

4.5.1 Sistema Eléctrico

Para que el MMW02 realice las mediciones correctamente, se debe configurar los parámetros del sistema eléctrico en el que se instalará. Para ajustar estas dos configuraciones, haga lo siguiente:

- 1. Acceda a la pantalla MENÚ PRINCIPAL;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >SYS Sistema<.

(1) Connection: Topology selection(2) Fnom: Indication of nominal frequency(3) No Freq: Operation mode without frequency

Figura 4.7: Configuración de la conexión

4.5.1.1 Selección de la Conexión

Como se describe en la sección Conexión a la Red Eléctrica, o MMW02 permite la conexión de hasta 21 tipos de sistemas. Después de instalar el medidor, debe ser informado en el mismo el tipo de conexión para que los cálculos se realicen correctamente. Por ejemplo, si el sistema del equipo está conectado a un sistema en estrella y la conexión es directa, utilizando tres elementos de medición de tensión y tres elementos de medición de corriente, como se muestra en la Figura 4.8, la opción seleccionada para este parámetro debe ser 04: 3P4W-3V3C. Los detalles de las topologías de conexión se muestran en la sección Instalación.

Figura 4.8: Ejemplo de conección en el sistema.

En esta pantalla, presionar la tecla PROG, s

se puede seleccionar entre 21 sistemas disponibles.

PRECAUCIÓN!

Dependiendo del tipo de conexión, algunos valores de corriente y tensión se pueden ocultar en las mediciones.

4.5.1.2 Frecuencia Nominal

La frecuencia nominal de la red eléctrica debe estar configurada en el equipo, y puede ser 50 o 60 Hz. Esta configuración servirá como base para el método de cálculo de las mediciones.

El equipo monitoriza continuamente la señal de período (frecuencia) para la exactitud de las mediciones. La adquisición se realiza mediante la medición de la tensión del canal V1. En su ausencia, el período se adquiere del canal de tensión V2, y en su ausencia de V3. Si las tres tensiones fallan, es posible utilizar la frecuencia nominal como referencia. Se recomienda conectar los canales de tensión siempre que sea posible.

4.5.1.3 No Hay Tensión

El modo de funcionamiento de los equipos en caso de que no se puede medir frecuencia en los canales de tensión, se puede programar para **Cortar**, **Nominal** y **Última**.

- **Cortar**: las mediciones no se mostrarán, con barras horizontales que aparecen en la pantalla;
- **Nominal**: se simula internamente una frecuencia igual a la frecuencia nominal programada en el equipo;
- **Última**: se simula internamente una frecuencia igual a la última frecuencia válida medida por el equipo.

4.5.2 Secuencia de Fase

Para medir la secuencia de fases correctamente, se debe configurar la secuencia de fases de la red, ABC o ACB. Para ajustar esta configuración, haga lo siguiente:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >SYS Sec Fase<;
- 4. Presionar la tecla **PROG** para comenzar la configuración.

(1) Sec Fase: Secuencia de fase ABC o ACB

Figura 4.9: Configuración de secuencia de fase

4.5.3 Ajuste de Relaciones de TV y TI

El MMW02 permite realizar mediciones de tensión directamente en la red eléctrica o a través de transformadores de tensión (TV) y de corriente (TI), donde las tensiones de la red primária son mayores que 500 VAC entre fases e las corrientes mayores que 5 A. Independientemente de la opción de conexión (directa/indirecta), el ajuste de las configuraciones de TV y TI debe ser hecho, pués el valor informado de tensión y corriente de secundário servirán como base para las mediciones. La tensión de primário deberá ser siempre mayor o igual a la tensión de secundário. En el caso de TI, el valor secundario es siempre 5 A. Si la conexión es directa tanto el valor primario como el secundario debe establecerse en el mismo valor. La Figura 4.10 muestra el diagrama de un transformador de tensión, y la nomenclatura utilizada en la transformación de potenciales.

Figura 4.10: Relación primaria-secondaria

Para ajustar la configuración de TV y TI, haga lo siguiente:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >SYS Modo TV/TI<.

(1) Modo primario/secundario o relación para TV(2) Modo primario/secundario o relación para TI

Figura 4.11: Configuración de TV/TI

En esta pantalla, presionar la tecla ^{PROG}, se puede ajustar el modo de configuración, ya sea mediante la asignación del número de vueltas del primario y secundario, o la relación entre ellos.

Seleccionado el modo y pulsando la tecla , se presentan las pantallas que aparecen en la Figura 4.12 y en la Figura 4.13, dependiendo del modo de configuración, para ajustar los valores de TV. Telas similares para el

ajuste de los valores de TI, se muestran pulsando de nuevo la tecla 💔.

Figura 4.12: Modo primario/secundario

(1) Primario: Valor del primario
 (2) Secundario: Valor del secundario
 (3) RPT: Relación calculada de vueltas

(1) RPT: Relación de vueltas

Figura 4.13: Modo de Relación

Del mismo modo, pulse para editar los valores. Cuando seleccionado el modo "**Prim/Sec**", el valor de la relación presentada en la última línea se calculará automáticamente.

4.5.4 Ajuste de la Polaridad de los Sensores de Corriente

Con el fin de facilitar la instalación, el MMW02 permite cambiar la polaridad de los sensores de corriente si el mismo se instalara con el sentido de la medición invertido. Para ajustar la polaridad, haga lo siguiente:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- Seleccione la pantalla >SYS Polarização< pulsando la seta 🕔

4. Presionar la tecla **PROG** para iniciar la configuración de las polaridades.

SYS	Polarización
I1	Directo (+)
12	Directo (+)
13	Directo (+)

Ajuste la polaridad de los sensores de corriente (+) indica el sentido directo (de acuerdo con la seta del sensor), mientras (-) indica el sentido inverso

Figura 4.14: Polaridad

4.6 RELOJ Y CALENDARIO

4.6.1 Ajuste de la Fecha y la Hora

Para ajustar la fecha y la hora, siga los siguientes pasos:

- 1. Acceda a la pantalla MENÚ PRINCIPAL;
- 2. Seleccione el menú >CLK<;
- 3. Seleccione la pantalla >CLK Día/Hora<;
- 4. Presionar la tecla **PROG** para iniciar el ajuste de la fecha y la hora.

CLK D	a/Hora
Día	2011-03-23
	Miércoles
Hora	15:25:03

Pantalla de visualización y ajuste de la fecha y la hora

Figura 4.15: Fecha/Hora

PRECAUCIÓN!

El ajuste de la fecha y hora sólo será posible cuando el estado del Datalog esté como Detenido, de lo contrario el mensaje se muestra en la Figura 4.16 se presentará.

Mensaje de que la configuración no es posible porque el registro de datos está activo. En este caso, consulte la sección sobre las características del Datalog para cambiar el estado del mismo.

Figura 4.16: Mensaje de Datalog

El formato de la fecha se define conforme la norma internacional de la siguiente manera: AAAA-MM-DD, siendo AAAA el año entre 2000 y 2099 con cuatro dígitos, MM el mes entre 1 y 12 con dos dígitos, DD el día entre 1 y 31 con dos dígitos. Todas las fechas utilizadas en el equipo siguen este formato. El día de la semana se ajusta automáticamente.

El formato de la hora es hh:mm:ss, siendo hh la hora entre 0 y 23, m los minutos entre 0 y 59, y ss los segundos entre 0 y 59, todos con dos dígitos.

4.6.2 Zona Horaria y el Horario de Verano

El ajuste de la hora de la primera pantalla se refiere a la hora local, es decir, el tiempo universal (UTI - Coordinated Universal Time) referenciada pelo meridiano de Greenwich acrescida do fuso horário local (GMT - Greenwich Mean Time). Además, la hora local puede ser ajustada teniendo em cuenta el horario de verano (DST - Horario de Verano), que debe ser introducido por el usuario.

Para ajustar estos parámetros, GMT e DST, una segunda pantalla está disponible pulsando la tecla 💔 en la

pantalla de ajuste de Fecha y Hora. El ajuste de estos dos parámetros se debe realizar de acuerdo a la región donde se encuentra instalado el medidor, tomando en consideración si el tiempo es el tiempo normal o de horario de verano.

(1) Huso: Ajuste del huso horario(2) DST: Ajuste del horario de verano

Figura 4.17: GMT y DST

4.7 INTERFAZ DE USUARIO

Para ajustar la configuración de la interfaz con el usuario, como el idioma, la señalización de sonido y de frecuencia de actualización de la pantalla, haga lo siguiente:

- 1. Acceda a la pantalla MENÚ PRINCIPAL;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >UI Interfaz<;
- 4. Presionar la tecla **PROG** para iniciar el ajuste.

Figura 4.18: Interfaz de Usuario

(1) **Idioma:** El MMW02 tiene tres idiomas disponibles para la interfaz de usuario: Portugués, Inglés y Español

(2) **Bip**: Esta opción le permite activar/desactivar el pitido de teclado y alertas

(3) T**asa de LCD**: Establece la velocidad a la que la pantalla actualiza los valores, que va desde 50 milisegundos a 5 segundos

4.8 COMUNICACIÓN

El MMW02 posee una interfaz de comunicación serial RS485. Los detalles de la comunicación posibilitan el monitoreo del medidor por médio del software WEG PowerManager que facilita la configuración y parametrización del equipo y permite conectar el equipo a sistemas de monitoreo de energíaa de WEG o de terceiros.

El protocolo de comunicación utilizado para la transferencia de datos es el Modbus RTU, que permite el acceso de lectura y programación de variables a través de direcciones específicas. La tabla de variables Modbus del MMW02 pode ser obtida por meio de solicitação formal junto ao Soporte técnico. Con este medio de comunicación junto con el protocolo, se puede crear una red de medidores y acceder a ellos de forma individual para ponerlos en marcha o hacer lectura en línea. Para acceder al menú de configuración de la comunicación proceda de la siguiente manera:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >COM Modbus<;
- 4. Presionar la tecla **PROG** y ajustar los parámetros según sea necessário.

- 1. Dirección: 1 a 247
- 2. Formato: Corto (16 bits) o Largo (32 bits)
- 3. Byte/Word Swap: None/Byte/Word/Both

Figura 4.19: Parámetros Modbus

En esta pantalla, además de la dirección de la red, se puede establecer el número de bytes para direccionamiento y puede ser Corto (16 bits) o Largo (32-bit). El último parámetro se utiliza en situaciones específicas en las que es necesario cambiar el orden de los bytes o palabras en la comunicación. Para esta opción se puede seleccionar **None/Byte/Word/Both**. En la Tabla 4.1 abajo lista las cuatro maneras posibles de configuración.

Orden de bytes	Configuración
ABCD	None (Default)
BADC	Byte
CDAB	Word
DCBA	Both

Tabla 4.1: None/Byte/Word/Both.

Figura 4.20: Parámetros serial

- 1. **Baud Rate**: Establece la velocidad de comunicación en bits por segundo.
- Formato: Establecer parámetros para el puerto serie según la topología de la red que se utilizan en las opciones (8-N-1, 8-N-2, 8-E-1, 8-E-2, 8-O-1, 8-O-2); El primer elemento corresponde al número de bits de datos; el segundo, a la paridad (Ninguno, Par o impar); tercero, el número de bits de parada.

4.9 ESTANDÁR DE FÁBRICA

Para retornar el MMW02 con los valores por defecto de fábrica, haga lo siguiente:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Seleccione la pantalla >CFG Estándar Fca<;
- 4. Presionar la tecla PROG;
- 5. Confirme la operación teclando PROG de nuevo.

Figura 4.21: Estándar de Fábrica

PRECAUCIÓN!

Recuerde que toda la programación actual del equipo, incluida la contraseña de programación, se pierde.

CONSEJO!

Su uso hace que la configuración sea más rápida, además de permitir guardar perfiles de configuración específicas que se pueden utilizar para establecer más de un equipo.

5 MEDICIONES

5.1 CONSIDERACIONES INICIALES

Para identificar las mediciones, algunas definiciones anteriores son importantes. Una se refiere a la nomenclatura utilizada para identificar las magnitudes. Visto que el MMW02 fue diseñado en base a las normas internacionales, que utiliza la nomenclatura de las magnitudes, fases y tipos según señalado en estas bases, salvo en casos específicos, en los que debido a las limitaciones de la interfaz o reglas, nombres están definidos para representar mejor las cantidades medidas.

En cuanto a la identificación de las fases, se debe considerar lo siguiente: los valores trifásicos están representados por el índice 3&Phi, mientras que los valores por fase se representan mediante índices AN, BN, CN para tensiones de fase y AB, BC y CA para tensiones de línea. Para la corriente, se utilizan los índices A, B, C.

Las tensiones de fase se representan por la letra V, mientras que las tensiones de línea están representadas por la letra U.

5.2 TENSIÓN, CORRIENTE Y FRECUENCIA

Las mediciones de tensión de fase V [V], tensión de línea U [V], corriente I [A] y la frecuencia F [Hz] se muestran en las pantallas del menú >**V-I**<, que se accede a través de la pantalla del menú >**MSR**<.

Menú de medición de tensión, corriente y frecuencia.

Figura 5.1: Tensión/Corriente

PRECAUCIÓN!

El rango de medición de tensión y corriente se describe en la sección Especificaciones de este manual. Los valores medidos fuera del rango especificado pueden no tener su precisión garantizada. Los valores de tensión medidos arriba de 550 Vca están saturados en 550 V. Los valores por debajo de 5 Vca se muestran como guiones (---) y se interpretan como valores nulos en el registro de datos y Modbus. Lo mismo es cierto para la corriente en la conexión directa para los valores por encima de 6,5 A que están saturados, mientras que valores por debajo de 0,02 A se interpretan como nulo.

5.2.1 Método de Medición

La metodología utilizada en el cálculo de las magnitudes está de acuerdo con las definiciones de las normas IEC 61557-12 y IEC 61000-4-30. El MMW02 registra y muestra los intervalos de medición cada 1 segundo. Cuando se configura para la red de frecuencia nominal de 60 Hz, cada intervalo de 1 segundo se consideran 4 ciclos de onda para las mediciones, o 67 milisegundos. Para 50 Hz, en cada intervalo de 1 segundo se consideran 3 ciclos, o 60 milisegundos. El muestreo se realiza de forma secuencial en los seis canales de medición (tres de tensión y tres de corriente) a 128 muestras por ciclo, 12 bits por muestra.

La Figura 5.2 ilustra el método para sistemas de 60 Hz. La frecuencia se calcula contando los pasos por cero, y se hace referencia inicialmente a la Fase A. En caso de una interrupción en la fase A, la frecuencia se calculará en la fase B, y, en su defecto, en la fase C.

En el caso de ausencia total de señal en los canales de tensión, se puede elegir no medir (por defecto) o tomar la medición con la frecuencia nominal o el valor de la última frecuencia medida. Para editar esta configuración, consulte el capítulo Sistema Eléctrico.

Figura 5.2: Método de medición para redes 60Hz

Con base en estos rangos, los valores True RMS se calculan y luego se muestran en la pantalla, están disponibles en interfaces de comunicación y se registran en la memoria si el registro de datos está activo.

5.2.2 Secuencia de Fase

Las letras ABC o ACB indican la secuencia de fases establecida en el medidor. ABC se refiere a la secuencia directa (positiva) y ACB se refiere a la secuencia inversa (negativa). Cuando no se muestra cualquier símbolo a la izquierda de la letra A, significa que la secuencia de fases es conforme lo previsto. Cuando aparezca el símbolo "!", significa que la secuencia de fases es contraria a lo previsto. Cuando aparezca el símbolo "?", significa que la secuencia de fases por bajo nivel de tensión o falta de una fase. La secuencia de fase es actualizada cuando:

- El equipo se reinicia;
- La configuración de la conexión se cambia;
- La señal de tensión medida se apaga y se vuelve a encender.
- Se configura otra secuencia de fases (véase el capítulo Secuencia de Fase).

PRECAUCIÓN!

Dependiendo del parámetro de conexión, la secuencia de fases pierde su razón y, en este caso, se omitirá. Por ejemplo, en un sistema de una sola fase (enlace monofásico).

El número de símbolos de polaridad de los sensores de corriente depende del número de sensores de la conexión usada. Si una conexión tiene el número de sensores de corriente diferente de 3, sólo se mostrarán los símbolos que corresponden a los sensores existentes.

5.2.3 Medición

El mapa de pantallas de las mediciones de tensión, corriente y frecuencia se ilustra en la Figura 5.3 a continuación, que ilustra los valores representativos para cada medición. Para navegar por las pantallas, basta con utilizar las

Figura 5.3: Mapa de pantallas para tension, corriente y frecuencia

Nota 1: En las conexiones que no tienen el neutro, por ejemplo la delta, la pantalla de la tensión de fase y corriente de neutro se omiten.

Nota 2: Para restablecer los valores estadísticos, vea Reset de valores.

5.3 POTENCIA Y FACTOR DE POTENCIA

Las mediciones de Potencia y Factor de potencia se muestran en las pantallas del menú >**PQS**<, que se accede a través de la pantalla del menú >**MSR**<.

Menú de mediciones de potencia activa, reactiva y aparente y factor de potencia.

Figura 5.4: Potencia

5.3.1 Método de Medición

El MMW02 realiza mediciones de Potencia y Factor de potencia en base a los métodos definidos por la norma IEC 61557-12. Las mediciones se llevan a cabo en los cuatro cuadrantes, permitiendo la medición de generación o consumo de energía. De acuerdo con el ángulo de desfasaje entre tensión y corriente de cada fase, las potencias activas y reactivas pueden asumir valores positivos o negativos según el diagrama mostrado en la Figura 5.5. El diagrama sigue la convención utilizada en la norma IEC 61557-12.

Figura 5.5: Flujo de Potencia

En el diagrama, la corriente es la referencia, es decir, que permanece fija en el ángulo de 0° y la tensión cruza los cuadrantes. En la Tabla 5.1 se comprueba la señal de las potencias y su naturaleza.

	Potencia activa [W]		Potencia Reactiva [VAr]	
Cuadrante	Señal	Classificación	Señal	Classificación
I	Positivo	Importada	Positivo	Importada inductiva
II	Negativo	Exportada	Positivo	Importada capacitiva
	Negativo	Exportada	Negativo	Exportada inductiva
IV	Positivo	Importada	Negativo	Exportada capacitiva

Tabla 5.1: Flujo de Potencia para los 4 cuadrantes

5.3.2 Configuración

Para calcular la Potencia activa total, la Potencia reactiva total y el Factor de potencia total, se puede elegir para sumar dos modos: Aritmética o Vectorial, siendo el modo vectorial el modo preestablecido de fábrica. Para cambiar el modo de suma de las potencias, siga estos pasos:

- 1. Acceda a la pantalla >**MENÚ PRINCIPAL**<;
- 2. Seleccione el menú >CFG<;
- 3. Para eso, utilice las teclas (y), seleccione la pantalla >SYS Sistema<;
- 4. Para eso, utilice las teclas (1) y (1), seleccione la pantalla >SYS Modo Suma<;
- 5. Presionar la tecla **PROG** para cambiar el cálculo de la potencia.

1. **Modo Suma:** Ajuste del modo de suma de potencias. Las opciones son: Suma Vectorial o Suma Aritmética

Figura 5.6: Cálculo de potencia

Otra forma de acceder a esta configuración es presionando la tecla en cualquier pantalla de medición de potencia o del factor de potencia.

El **modo aritmético** calcula la potencia reactiva en función del valor de potencia aparente sin tener en cuenta el ángulo de fase entre tensión y corriente. El modo vectorial (por defecto de fábrica) calcula la potencia aparente en función del valor de potencia reactiva sin tener en cuenta el ángulo de fase entre tensión y corriente.

La Tabla 5.2 muestra las fórmulas usadas para el cálculo de las potencias. En el modo de cálculo aritmético, no se muestra la potencia por fase.

Potencia Activa	Potencia Reactiva	Potencia Aparente
$P_{\rm P} = \frac{1}{N} \cdot \sum_{k=0}^{N-1} (v_{\rm P} N_k \times i_{\rm P})$	$Q_{\rm p} = SignQ(\varphi_{\rm p}) \times \sqrt{S_{\rm p}^2 - P_{\rm p}^2}$	$S_{\rm P} = V_{\rm pN} \times I_{\rm P}$

Tabla 5.2: Calculo de la potencia por fase.

La Tabla 5.3 muestra las fórmulas usadas para el cálculo de las potencias totales en el modo vectorial y aritmético.

	Potencia Activa	Potencia Reactiva	Potencia Aparente
Modo Vectorial	$P = P_1 + P_2 + P_3$	$Qv = Q_1 + Q_2 + Q_3$	$Sv = \sqrt{P^2 + Qv^2}$
Modo Aritmético	P = P1 + P2 + P3	$QA = \sqrt{SA^2 - P^2}$	SA = S1 + S2 + S3

Tabla 5.3: Calculo de potencia total.

5.3.3 Medición

El mapa de pantallas de las mediciones de potencia y factor de potencia se ilustra en la Figura, que ilustra los valores representativos para cada medición. Los resultados de las mediciones se expresan en unidades de W, VAR y VA. Para navegar por las pantallas, basta con utilizar las teclas de navegación (1), (1), (2) y

Figura 5.7: Mapa de las pantallas de medición de potencia y factor de potencia

Nota 1: En las conexiones que no tienen neutro, por ejemplo delta, las pantallas de potencia por fase se omiten.

5.4 DEMANDA DE POTENCIA

Las mediciones de Demanda de potencia se muestran en las pantallas del menú >**DMD**<, que se accede a través de la pantalla del menú >**MSR**<.

MENU	MEDICIONES
E	THD CST Demanda

Figura 5.8: Demanda de potencia

Las mediciones de demanda están representadas por las letras siguientes:

- **Pd:** Demanda de potencia activa;
- **Qd:** Demanda de potencia reactiva;
- **Sd:** Demanda de potencia aparente.

5.4.1 Método de Medición

La Demanda de potencia se calcula en bloques fijos, es decir, la potencia se integra durante un intervalo fijo y al fin se divide por el intervalo de tiempo. El resultado de la demanda se refiere a este último bloque calculado. Los resultados de la demanda se refieren a las demandas totales, no de fase. La Figura 5.9 ilustra el método utilizado para el cálculo utilizando como ejemplo un intervalo de 15 minutos.

Figura 5.9: Cálculo de la demanda de potencia por bloques fijos

Las mediciones de demanda están separados por grupos identificados por los siguientes índices:

- **peak**: Demanda de pico;
- **pred**: Demanda anticipada;
- **c**: Demanda capacitiva;
- i: Demanda inductiva.

Nota: Cuando no se usa ningún índice, la demanda representada se refiere al último bloque calculado.

5.4.2 Configuración

Para ajustar el intervalo de demanda siga estos pasos:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Para ello, utilice las teclas 🚖 y 🍙, seleccione la pantalla >DMD Config<;
- 4. Presionar la tecla **PROG** para cambiar el intervalo de demanda.

Otra forma de acceder a esta configuración es presionando la tecla PROG en cualquier pantalla de medición de demanda de potencia.

5.4.3 Medición

El mapa de pantallas de las mediciones de demanda de potencia se ilustra en la Figura 5.11, que ilustra los valores representativos para cada medición. Los resultados de las mediciones se expresan en unidades de W, VAR y VA.

Para navegar por las pantallas, basta con utilizar las teclas de navegación 🟠, 🍈, 🚖

Figura 5.11: Mapa de las pantallas de medición de demanda de potencia

Nota: Para restablecer las demandas, vea Reset de Valores.

5.5 CONSUMO DE ENERGÍA

Las mediciones de Consumo de energía se muestran en las pantallas del menú >**E**<, que se accede a través de la pantalla del menú >**MSR**<.

MENU	MEDIC	IONES
U-I	PQS	DMD
ΦE	THD	CST
E	E	nergia

Figura 5.12: Energía

Las mediciones de Consumo de energía están representadas por las letras siguientes:

- Ph: Energía ativa [Wh];
- Qh: Energía reactiva [VArh];
- **Sh:** Energía aparente [VAh].

5.5.1 Método de Medición

El MMW02 realiza las mediciones de energía en base a mediciones de potencia que tienen los métodos basados en la norma IEC 61557-12. La base de tiempo para la integración de potencia se obtiene por el reloj de tiempo real en el equipo. Para la energía activa y reactiva, los resultados se separan en grupos de acuerdo a la dirección del flujo de energía. Además, para la energía reactiva, una separación con referencia a la característica del sistema se lleva a cabo (inductiva o capacitiva).

Además de la medición de energía en cuatro cuadrantes, el MMW02 realiza la medición de la energía bruta, es decir, la medición de la energía activa y reactiva se puede medir la energía correspondiente a la suma de las energías directa e inversa en módulo.

Los siguientes índices se utilizan para identificar las energías:

- **sum:** Energía bruta;
- fwd: Energía directa (Importada);
- **rev:** Energía reversa (Exportada);
- **c:** Energía capacitiva;
- i: Energía inductiva.

La exactitud de los valores de energía se ajusta automáticamente con el valor medido. Para los valores de energía entre 1 y 1G (W, VAr o VA) la precisión será de 1 (W, VAR o VA). Para los valores de energía entre 1G y 39T (W, VAr o VA) la precisión será de 1k (W, VAR o VA).

5.5.2 Medición

El mapa de pantallas de las mediciones de energía se ilustra en la Figura 5.13, que ilustra los valores representativos para cada medición. Los resultados de las mediciones se expresan en unidades de Wh, VArh y VAh. Para navegar

por las pantallas, basta con utilizar las teclas de navegación 🟤, 🦚, 😋 y 🏚

Figura 5.13: Mapa de las pantallas de medición de energía.

Nota: Para restablecer los valores de energía acumulada, vea Reset de valores.

5.6 THD

Las mediciones de Distorsión armónica total - THD se muestran en las pantallas del menú >**THD**<, que se accede a través de la pantalla del menú >**MSR**<.

Menú de mediciones de distorsión armónica total y armónicas individuales.

Figura 5.14: Distorsión armónica

La distorsión armónica se puede definir como deformaciones en forma de componentes sinusoidales causadas por una forma de onda periódica cuya frecuencia es un múltiplo entero de la frecuencia fundamental de la red. El MMW02 mide la distorsión armónica de la tensión y la corriente, con resultados individuales para cada componente de cada fase hasta el orden 31. Además, presentan los valores de THD. Los resultados de la medición se presentan en porcentaje con referencia al valor True RMS de la componente fundamental, tanto para corriente o tensión.

5.6.1 Medición

Figura 5.15: Mapa de las pantallas de medición de THD de tensión y corriente

5.7 MENÚ PERSONALIZADO

Con el fin de atender necesidades específicas, el MMW02 cuenta con un menú adicional, que permite se muestren las medidas más pertinentes para el usuario en el día a día.

Estas mediciones preseleccionadas se muestran en las pantallas del menú >**CST**<, que se accede a través de la pantalla del menú >**MSR**<.

MEASU	RES N	1ENU
U-I	PQS	DMD
Ε	THD	*CST
		Custom

Menú de pantallas personalizadas.

Figura 5.16: Personalizado

La Figura 5.17 y la Figura 5.18 son ejemplos de las pantallas que se encuentran en este menú.

Figura 5.18: Mapa de las pantallas de medición de energía con valores en alta resolución.

5.8 RESET DE VALORES

El MMW02 realiza mediciones de Consumo de energía y Demanda de potencia utilizando valores de registro en la memoria no volátil, es decir, incluso si el equipo se reinicie, el valor de ciertas cantidades, o incluso variables auxiliares utilizadas en los cálculos, se quede con sus cantidades retenidas.

Estos registros se almacenan de forma indefinida hasta que se restablece por el usuario, o el registro de datos completan un intervalo de muestreo. Sin embargo, en ciertas situaciones, es posible que necesite restablecer las mediciones. Para borrar estos valores, siga los siguientes pasos:

- 1. Acceda a la pantalla >**MENÚ PRINCIPAL**<;
- 2. Seleccione el menú >RST<;
- 3. Seleccione el grupo que desea restablecer los valores y confirme la operación pulsando la tecla PROG

Figura 5.19: Resetear energías

6 DATALOG

La denominación Datalog es la funcionalidad asociada al registro de datos en la memoria de masa (memoria no volátil). En este capítulo se describe cómo utilizar el Datalog para el almacenamiento de las mediciones en la memoria flash interna del MMW02.

Para una mayor flexibilidad en el uso de la memoria de datos, el MMW02 le permite seleccionar los bloques de datos específicos agrupados por el tipo de medición. De esta manera, el usuario puede optimizar el uso de memoria seleccionando sólo los datos de interés.

El MMW02 registra los diferentes bloques de datos utilizando el concepto de zonas, cada zona puede contener uno o más bloques de datos siendo posible registrar un área a la vez. Las áreas se crean automáticamente cuando se inicia el registro de datos y en ellas contienen los datos de identificación y la configuración de los equipos.

El nombre de cada área se inicia por "AREA y rematada por un número de cuatro dígitos secuenciales, que se incrementa cada inicio de registro, por ejemplo, AREA0001.

6.1 ACCEDER AL DATALOG

El Datalog se puede acceder a través del MENÚ PRINCIPAL, al seleccionar la opción LOG.

MAIN MSR	MENU +LOG	CLK
CFG	RST	I/O
B	D	atalog

Figura 6.1: Selección de datalog

Cuando se accede al Datalog, como se muestra en la siguiente figura (6.2), que muestra el estado y las acciones disponibles para su funcionamiento.

Figura 6.2: Status de datalog

A continuación se describen los procedimientos para la instalación y operación del Datalog.

6.2 CONFIGURACIÓN

Antes de iniciar la operación del Datalog, es necesario establecer algunos parámetros básicos, tales como el modo de inicio, intervalo entre las mediciones y los bloques de datos. Para establecer estos parámetros, acceder al menú de configuración del Datalog conforme los siguientes pasos:

- 1. Acceda a la pantalla >**MENÚ PRINCIPAL**<;
- 2. Seleccione el menú >CFG<;
- 3. Para ello, utilice las teclas 🐟 y 🚖, seleccione la pantalla >LOG Intervalo<.
- 4. Presionar la tecla **PROG** para iniciar la edición de los parámetros.

6.2.1 Intervalo de Registro

La primera pantalla le permite ajustar el intervalo entre registros de las mediciones. Este intervalo se puede ajustar a valores que van de 1 segundo a 24 horas Los rangos para los minutos y segundos son siempre divisores enteros de 60 y divisores enteros de 24 para las horas. Esto permite la agregación de una serie completa de registros dentro de horas y minutos sincronizados en cero (medianoche).

Figura 6.3: LOG Intervalo

Para acceder a la siguiente pantalla de configuración sólo tiene que pulsar la tecla 🍈

6.2.2 Modos de Operación

Esta pantalla permite configurar el inicio y fin del modo datalog. Las cofiguraciones posibles son las siguientes:

- Modo inicio: manual o por fecha y hora
- Modo fin: manual, por fecha y hora, por cronometro o por contador de tiempo

LOG Oper	ación
Inicio Fin	Manual Manual

Figura 6.4: Inicio y fin del Datalog

El modo Manual es el modo en el que el registro de datos se inicia o para usando el teclado o el mando a distancia, independientemente de cualquier otro evento programado. Cuando se selecciona el modo de inicio por fecha/hora, el modo manual queda vinculado a este, es decir, es necesario presionar el teclado o enviar mando a distancia para activar el Datalog. Por lo tanto, cuando se inicia el Datalog, el estado será Aguardando hasta que la fecha y la hora programada se alcanza. Este proceso garantiza que el registro de datos está configurado correctamente y permite que intervalos de registros se mantienen sincronizados.

Cuando se configuran modo de inicio y parada no manuales, se presentan las siguientes pantallas de configuración, a las que se puede acceder pulsando la tecla , presentará los ajustes de fecha/hora, temporizador o contador, en función de la opción elegida.

6.2.2.1 Modos de Inicio

Las pantallas a continuación ilustran la configuración posible de acuerdo con el modo de inicio seleccionado.

De esta manera, el Datalog se iniciará después de la fecha y hora configuradas.

Figura 6.5: Inicio por Fecha/Hora

6.2.2.2 Modos de Fin

Las pantallas a continuación ilustran la configuración posible de acuerdo con el modo de fin seleccionado.

Figura 6.7: Fin por contador

6.2.3 Bloques de datos

Las siguientes pantallas, se acceden pulsando la tecla PROG, se utilizan para seleccionar los bloques de datos de medición que desea grabar en la memoria.

Figura 6.9: Bloques de datos (2)

A continuación, la descripción de cada bloque de datos:

- Instantáneos: son los datos relacionados con las mediciones con agrupaciones mínimas. Por ejemplo, tensión y corriente True RMS agrupados en intervalos de 1 segundo, que representan 4 ciclos a 60 Hz;
- Estadísticas: son los datos sobre los valores de las mediciones estadísticas (mínimo, máximo y promedio) para todas las cantidades, a excepción de los armónicos. Los valores estadísticos registrados en este bloque representan los datos del intervalo de muestra seleccionado;
- Demandas: son los datos sobre mediciones de demanda de potencia;
- Energías: son los datos sobre mediciones de consumo de energía;
- Armónicas: son los datos sobre mediciones de armónicas de tensión y corriente, así como las distorsiones harmónicas totales;

6.2.4 Uso de la Memoria

El MMW02 le permite dos modos de grabación: lineal o circular.

Ambos modos le permiten separar los datos en múltiples áreas. Cuando se activa esta opción, cada vez que el Datalog se inicia, una nueva área se creará preservando al mismo tiempo los datos de las áreas previamente grabados.

El modo lineal llena la memoria del equipo de forma secuencial. Los datos más antiguos se encuentran al principio de la memoria, mientras que los datos más recientes al final.

6.2.4.2 Modo Circular

6.2.4.1 Modo Linear

El modo circular permite que los datos más antiguos se sobrescriban con los datos más recientes. En este modo la autonomía de grabación se reduce a un tercio de la autonomía del modo lineal. De este modo se asegura que, desde el principio de la lectura de datos, el equipo proporciona el número de registros grabados durante la autonomía completa.

Por ejemplo, para una autonomía calculada de 12 horas en el inicio del registro, desde el momento en que se inicia la lectura de los registros, los datos registrados en las últimas 12 horas están disponibles para su descarga. Todo este proceso se puede hacer mientras el equipo registra y sin pérdida de información en el Datalog.

6.2.4.3 Autonomía

A continuación un ejemplo de la autonomía del equipo.

Equipo	Integración	Tensiones y corrientes	Potencias, consume y demandas	Armónicas individuales de tension y corriente	Todas las magnitudes medidas
	15 s	7.3 días	23.3 días	3.4 días	2.1 días
MMW02	5 min	145.,5 días	1.3 años	68 días	42.3 días
	15 min	1.2 años	3.8 años	204 días	126.9 días

PRECAUCIÓN!

La autonomía siempre depende de algunos datos como las cantidades a ser grabadas, intervalo de registro y memoria libre.

6.2.5 Vinculaciones

La pantalla de vinculaciones permite al usuario seleccionar algunas particularidades con respecto al registro de datos estadísticos y la energía.

Modo de registro de dados estadísticas e energía.

Figura 6.11: Vinculaciones

Estas configuraciones permiten la elección de los siguientes modos de grabación:

- Estadísticas: Cuando seleccionado Sí, al comienzo de cada intervalo de registros, estadísticas de todas las mediciones se restablecen. Así, las estadísticas (promedio, mínimo y máximo) sólo se están refiriendo a ese registro. Cuando la opción seleccionada es No, los valores estadísticos se calculan a partir del momento en que se restablecen las estadísticas a través del menú >RST<. Por lo tanto, a cada registro se almacena en la memoria los valores estadísticos relacionados con ese instante de tiempo calculado desde el último restablecimiento de los valores estadísticos;</p>
- Energías: Cuando seleccionado Sí, al comienzo de cada intervalo de registros, energías se restablecen. Así, los valores de la energía (activa, reactiva y aparente) sólo se refieren a ese intervalo. Cuando la opción seleccionada es No, los valores de energía se calculan a partir del momento en que se restablecen las energías a través del menú >RST<. Por lo tanto, a cada registro se almacena en la memoria los valores de energía relacionados con ese instante de tiempo calculado desde el último restablecimiento de los valores de energías;
- 1º Registro: Cuando seleccionado Sí El valor de agregación medida durante el intervalo de tiempo en el que el Datalog tiene el estado Sincronización se almacena en la memoria. Cuando seleccionado No sólo se considerarán los intervalos de integración completos.

6.3 OPERACIÓN

En este capítulo se describe cómo utilizar el Datalog para el almacenamiento de las mediciones realizadas por el MMW02.

Antes de iniciar el Datalog, asegúrese de que las configuraciones se ajustaron de acuerdo a sus necesidades.

6.3.1 Formatear la memoria

Para formatear la memoria siga estos pasos:

- 1. Acceda a la pantalla >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >LOG<;
- 3. Para ello, utilice las teclas 🛖 y 🍈 seleccione la pantalla >LOG Mem Livre<.

Figura 6.12: Informaciones del Datalog

Esta pantalla indica el número de bytes libres en la memoria interna, la autonomía, de acuerdo con los ajustes realizados, y por último la opción de formateo. La cantidad de memoria libre se representa en unidades de bytes GibiByte (GIB), MebiByte (MiB) y KibiByte (KiB) estándar definido por el IEEE 1541-2002. La autonomía está representada en años (y), días (d), horas (h) y minutos (min).

Para iniciar el proceso de formateo, pulse la tecla prog y confirme la operación, conforme Figura 6.13. Después de confirmar la operación, aparecerá un mensaje que se está formateando la memoria. Al final, aparece otro mensaje de formateo completo en la pantalla.

PRECAUCIÓN!

Asegúrese de que los datos de la memoria ya no son necesarios o que ya se han guardado porque, después de formatear, los datos no se pueden recuperar.

6.3.2 Iniciando el Datalog

Para iniciar la grabación de los registros en la memoria, vaya a la pantalla de inicio del Datalog, y con el Datalog en el estado Parado, mantenga presionada la tecla prog, por más de 1 segundo.

CONSEJO!

Otra forma de iniciar el Datalog es a través de comandos a través de la interfaz de comunicación. Para más información, póngase en contacto con soporte técnico.

PRECAUCIÓN!

Independientemente de la opción de modo de inicio, la tecla **PROG** siempre debe ser presionada para iniciar el proceso de registro de datos.

Si el Datalog está programado para el modo de empezar por **Fecha/Hora**, el estado cambiará a **Aguardando**. El Datalog quedará en este estado hasta que la fecha y la hora programada se alcancen.

Cuando se alcanza la condición de inicio, el estado del Datalog cambiará a **Preparación** lo que significa que se preparan los sistemas de archivos y escribir en la memoria la información relacionada con el área que se creará. Desde este punto, el estado del Datalog será **Sincronización** hasta que el reloj alcanza una hora que se puede sincronizar con el intervalo seleccionado. Por ejemplo, si la hora actual es 12:07:30, y el intervalo de registro se establece en 00:10:00 el Datalog solo empieza a registrar a partir de 12:10:00, permaneciendo durante dos minutos y 30 segundos en estado **Sincronización**.

A continuación se ilustran los diferentes estados del Datalog.

Datalog aguardando fecha y hora para iniciar la grabación de los datos en la memoria.

Figura 6.13: Status aguardando

Datalog preparando el sistema de archivos del área.

Figura 6.14: Status preparando

Datalog aguardando un divisor entero de hora para iniciar la grabación de los datos en la memoria.

Figura 6.15: Status sincronizando

Una vez que el Datalog se sincroniza comenzará la grabación de los bloques de datos a intervalos como seleccionado.

Datalog registrando.

Figura 6.16: Status registrando

En esta pantalla (Fig. 6.16), presionar la tecla brevemente, el Datalog quedará en modo Pausa. Manteniendo la

tecla presionada, el Datalog será finalizado.

6.3.3 Informaciones del área

Para visualizar la pantalla con as informaciones del área actual, presionar la tecla , en cuanto en la pantalla >LOG Status<.

Figura 6.17: Información de área

(1) Área: Informaciones del área.(2) Registros: Número de registros grabados en el área.(3) Bloques: Bloques de medición seleccionados.

Esta pantalla se informa la identificación del área, así como el número de registros y los bloques de medición grabados en ella. Las letras que componen el campo Bloques se refieren a los siguientes bloques de medición:

- I: Instantáneos;
- S: Estadísticas;
- D: Demandas;
- E: Energías;
- H: Armónicas;

Bloques no seleccionados se mostrarán con una guion bajo. Para cambiar esta configuración, consulte Bloques de datos.

6.3.4 Error Status

Si la memoria estuviera con algún defecto o hay cualquier otro problema en el proceso de grabación de datos, incluidos los errores de configuración, el Datalog queda en Estado de Error. Para visualizar el error, presionar la tecla . Para poner el Datalog de nuevo al estado **Parado**, mantenga presionada la tecla .

6.3.5 Parando el Datalog

Desde el momento en que el Datalog inicia el proceso de grabación, se puede detener la operación en cualquier momento manteniendo presionada la tecla proce, pressionada, independientemente si está programada la parada por cualquier otra opción. Si el Datalog está programado para parar por Fecha/Hora, Temporizador, o Contador, el mismo asume el estado Parado automáticamente cuando se alcanza la condición preestablecida sin la necesidad de intervención manual.

Cuando el Datalog está terminado, un mensaje informando el final del proceso se muestra en la pantalla.

Mensaje que indica que se completó la grabación de datos.

Figura 6.20: Datalog finalizado

En este momento el área se cerrará y estará disponible para su lectura en el software WEG Power Manager.

PRECAUCIÓN!

Visto que el MMW02 utiliza memoria tipo flash con el sistema de archivos FAT, cuando hay cualquier tipo de de-energización del equipo en cuanto se escribe un registro en la memoria, puede ocurrir de un registro en particular estar dañado. Los otros no se ven afectados.

7 ALARMAS

Las alarmas son una manera de alertar al usuario cuando los niveles de ciertas mediciones exceden los límites preestablecidos. El MMW02 le permite configurar hasta 20 eventos de diferentes alarmas, que funcionan de forma simultánea e independientemente. También puede programar una tolerancia (histéresis) de los límites del rango de control de mediciones. El disparo de la alarma puede ser en forma de pitido o el cierre de un determinado relé, si están presentes en el medidor.

Las alarmas se pueden acceder a través de MENÚ PRINCIPAL, al seleccionar la opción I/O.

MENU	PRINCIPAL
MSR	LOG CLK
CFG	RST +1/0
🛙 Ent	rada/Salida

Figura 7.1: Selección de alarmas

7.1 CONFIGURACIÓN Y REGISTRO

La primera pantalla le permite configurar el funcionamiento general de alarma e histéresis aplicada a la verificación de disparo de los límites de las funciones programadas en las alarmas.

(1) Global: Activar o desactivar todas las alarmas de forma simultánea

(2) Tolerancia: Se aplica una histéresis a los límites programados para actuar en la alarma

Figura 7.2: Configuración global de alarmas

A continuación aparece la pantalla de registro de alarmas, como se ve en la Figura 7.3. Como se ha registrado una alarma, esta se añade a la lista de alarmas. Al alcanzar el límite superior de las alarmas registradas, la pantalla de registro de nuevas alarmas se suprimirá, reapareciendo de nuevo cuando se elimina cualquiera de las otros alarmas.

(1) Se muestran el estado de la alarma y la medición monitoreada(2) La acción tomada por la alarma cuando actúe

- (3) Límite mínimo de actuación
- (4) Límite máximo de actuación

Figura 7.3: Register new alarm

Para registrar una nueva alarma, siga estos pasos, como se ilustra en la Figura 7.4:

- 1. Acceda a la pantalla de registro de alarmas, presionando las teclas 🏠 o 🦚;
- 2. Presionar la tecla PROG
- 3. Seleccione la medición monitoreada y la acción que debe adoptarse (bip o relé);
- 4. Seleccione los límites mínimos y máximos de actuación;
- 5. Seleccione la característica de los límites (inductivo, capacitivo o resistivo) si la medición monitoreada es el factor de potencia.

3.00

Figura 7.4: Flujo de registro de alarmas

Al final, la alarma se ha registrado y estará disponible en la lista de alarmas.

01	Uan
Accián	RL1
Min	118.00 V
Max	133.00 V

Para editar la alarma, presione la tecla PROG de nuevo.

7.2 EXCLUSIÓN

Para excluir una alarma, mantenga presionada la tecla CLEAR. En este momento, aparecerá un mensaje que le pide que confirme la operación.

Figura 7.6:- Excluir la alarma

7.3 DISPARO

La alarma se activa cada vez que la medición monitoreada sale del rango limitado por los valores máximo y mínimo. Cuando sucede esto, aparecerá un icono en la pantalla de alarma. Dependiendo de la acción programada para la alarma, una advertencia sonora se podrá expedir o el relé disponible en el medidor se puede cerrar.

01	Van
Accián	RL1
Min	118.00 V
Max	133.00 V

Figura 7.7: Alarma disparada

7.4 DESACTIVADA

Para desactivar la alarma sin que los demás también se desactiven, mantenga presionada la tecla PROG Un X aparece en la pantalla la indicación del estado, y acciones de alarma se apagarán, es decir, se detendrá el zumbador o el relé disponible en el medidor se abre.

01	Uan
Acción	RL1
Min	118.00 V
Max	133.00 V

Figura 7.8: Alarma desactivada

8 ESPECIFICACIONES

8.1 CARACTERÍSTICAS BÁSICAS

Item	Especificaciones	
Frecuencia nominal	50 y 60 Hz	
Muestreo	128 muestras por ciclos	
	4 ciclos/s a 60 Hz = 66.67ms/s o 3 ciclos/s a 50 Hz = 60ms/s	
	12 bits conversion secuencial de todos los canals de corriente y tensión	
Idioma de la pantalla	Portugués, Español y Inglés	
Software de supervisión	WEG Power Manager	
Impedancia de la entrada de tensión	2MO	
Tensión máxima admissible de medición	500 Vca Fase-Fase	
	289 Vca Tensión de Fase	

8.2 MAGNITUDES ELÉCTRICAS

8.2.1 Frequency

Ítem	Especificaciones	
Método de medición	Contaje de cruces por cero del component fundamental de la tension en la fase de referencia	
Rango de medición	42.5 a 57.5 Hz y 51.0 a 69.0 Hz	
Resolución	0.01 Hz	
Exactitud	±0.02 Hz	
Valores disponibles	Frecuencia instantánea F [Hz]	

8.2.2 Tensión

Ítem	Especificaciones		
Método de medición	Conforme IEC 61557-12		
	50 a 500 Vca (Tensión de línea)		
	50 a 289 Vca (Tensión de fase)		
	Indirecta con TV		
Resolución	0.01 V		
Exectitud	Típica: ±0.20 %VL ±0.05 %FE (*)		
Exactitud	Garantida: ±0.25 %VL ±0.10 %FE (*)		
Selección de rangos	Rango único de medición		
	Tensión de fase por fase Van, Vbn, Vcn [V]		
Valores disponibles	Tensión de fase trifásica V3 Φ [V]		
	Tensión de línea por fase Uab, Ubc, Uca [V]		
	Tensión de línea trifásica U3Φ [V]		

(*) Valor Leído (VL), Fondo de Escala (FE)

8.2.3 Corriente

Item	Especificaciones
Método de medición	Conforme IEC 61557-12
Rango de medición	Conexión directa: 0.02 a 5 A
	Conexión indirecta con TI, FT = 1.0 (**)
Resolución	0.01 A
Exactitud	Típica: ±0.20 %RV ±0.05 %FS (*)
	Garantida: ±0.25 %RV ±0.10 %FS (*)
Selección de rangos	Rango único de medición
Valores disponibles	Corriente por fase la, lb, lc [A]
	Corriente trifásica I3Φ [A]

(*) Valor Leído (VL), Fondo de Escala (FE) (**) Factor Térmico (FT))

8.2.4 Potencia

8.2.4.1 Potencia Activa

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	1kW a 260MW
Resolución	1 W, 1 VAr, 1 VA
Exactitud (excluyendo sensor de corriente)	Típica: ±0.40 %VL ±0.10 %FE (*)
	Garantida: ±0.50 %VL ±0.20 %FE (*)
Valores disponibles	Potencia activa total P [W]
	Potencia activa por fase Pa, Pb, Pc [W]

(*) Valor Leído (VL), Fondo de Escala (FE)

8.2.4.2 Potencia Reactiva

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	1kVAr a 260MVAr
Resolución	1 VAr
Exactitud	Típica: ±0.4 %VL ±0.1 %FE (*)
	Garantida: ±0.5 %VL ±0.2 %FE (*)
Valores disponibles	Potencia reactiva total Q [VAr]
	Potencia reactiva por fase Qa, Qb, Qc [VAr]

(*) Valor Leído (VL), Fondo de Escala (FE)

8.2.4.3 Potencia Aparente

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	1kVA a 260MVA
Resolución	1 VA
Exactitud	Típica: ±0.4 %VL ±0.1 %FE (*)
	Garantida: ±0.5 %VL ±0.2 %FE (*)
Valores disponibles	Potencia aparente total S [VA]
	Potencia aparente por fase Sa, Sb, Sc [VA]

(*) Valor Leído (VL), Fondo de Escala (FE)

8.2.5 Factor de Potencia

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	0 to 1 capacitivo
	0 to 1 inductivo
Resolución	0.01
Exactitud	±0.4 % (*)
Valores disponibles	Factor de potencia total PF
	Factor de potencia por fase PFa, PFb, PFc

(*) Exactitud con respect al Fondo de Escala (FE)

8.2.6 Consumo de Energía

8.2.6.1 Energía activa

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	20 Wh a 167GWh
Resolución	1 Wh para valores hasta 1GWh
	1kWh para valores hasta 39TWh
Exactitud	±0.4 %
Classificación	Clase B (ABNT NBR 14520) (*)
Valores disponibles	Energía activa total Ph [Wh]
	Energía activa directa y reversa bruta Ph sum [Wh]
	Energía active directa Ph fwd [Wh]
	Energía activa reversa Ph rev [Wh]

(*) Válido para variación de la temperatura ambiente, corriente magnitudes de influencia (tensión, frecuencia, armónicos, secuencia de fase y la interrupción de una o dos fases).

8.2.6.2 Energía Reactiva

Item	Especificaciones
Método de medición	Medición en cuatro cuadrantes, conforme IEC 61557-12
Rango de medición	20 VArh a 167GVArh
Decelución	1 VArh para valores hasta 1GVArh
Resolucion	1kVArh para valores hasta 39TVArh
Exactitud	±0.4 %
Classificación	Clase B (ABNT NBR 14520) (*)
	Energía reactiva total Qh [VArh]
Available values	Energía reactiva directa y reversa bruta Qh sum [VArh]
	Energía reactiva directa Qh fwd [VArh]
	Energía reactiva directa indutiva Qhi fwd [VArh]
	Energía reactiva directa capacitiva Qhc fwd [VArh]
	Energía reactiva reversa Qh rev [VArh]
	Energía reactiva reversa inductiva Qhi rev [VArh]
	Energía reactiva reversa capacitiva Qhc rev [VArh]

(*) Válido para variación de la temperatura ambiente, corriente y magnitudes de influencia (tensión, frecuencia, armónicos, secuencia de fase y la interrupción de una o dos fases).

8.2.6.3 Energía Aparente

Item	Especificaciones
Método de medición	Suma vectorial de la potencia active y reactiva integrada en el tiempo
Rango de medición	20 VAh a 167GVAh
Resolución	1 VAh para valores hasta 1GVAh
	1kVAh para valores hasta 39TVAh
Exactitud	±0.4 %
Valores disponibles	Energía aparente total Sh [VA]

8.2.7 Demanda de Potencia

Item	Especificaciones
Método	Integración de la potencia en el tiempo en bloques fijos
Rango de medición	1kW/VAr/VA a 260MW/VAr/VA
Resolución	1 W/VAr/VA
Exactitud	±0.4 %
Valores disponibles	Demanda de potencia active, reactiva y aparente
	Demanda de potencia de pico active, reactiva y aparente
	Demanda de potencia prevista active, reactiva y aparente

8.2.8 THD de Tensión y Corriente

Item	Especificaciones
Armónicas utilizadas	2 al 31º
Rango de medición	0 a 100 %
Resolución	0.1 %
Exactitud	±5 %
Valores disponibles	THD de tension por fase THDVa, THDVb, THDVc [%]
	THD de corriente por fase THDIa, THDIb, THDIc [%]

8.3 SALIDA DIGITAL

Item	Especificaciones
Тіро	Relé de contacto seco
Número de salidas	1 (RL1)
Tensión máxima admisible	250 Vca o 30 Vcc
Corriente máxima admisible (fusible)	3 A

8.4 ALARMS

Item	Especificaciones
Número de alarmas	Hasta 20 alarmas configurables con salidas direccionables al Bip o RL1.
Variables monitorizadas	VaN, VbN, VcN, Uab, Ubc, Uca, Ia, Ib, Ic, FPa, FPb e FPc, THDVaN, THDVbN, THDVcN, THDUab, THDUbc, THDUca, THDIa, THDIb, THDIc
Tolerancia	0 a 10 %

8.5 DATALOG

Item	Especificaciones		
Tipo	Flash, 16MB		
Formato de datos	FAT32		
Madaa da uga da la mamaria	Circular o linear		
Modos de uso de la memoria	Area unica o multipla		
Número máximo de áreas	12		
Modos de inicio	Manual o fecha/hora		
Modos de parada	Manual, temporizador, contador o fecha/fecha		
Bloques de datos seleccionables	Instantaneous, statistics, demands and energy		
	Mínima: 1 hora y 40 minutos para todos los bloques con interval		
	de registro de 1 segundo, con memoria lineal		
	Típica: 41 días, 20 horas y 50 minutos para todos los bloques		
Autonomía	con interval de registro de 10 minutos, con memoria lineal		
Autonomia	Máxima: 6029 días para todos los blogues con interval		
	de registro de 24h, con memoria lineal		
	Con memoria circular: 51 días para registro de los bloques		
	instantáneos, demandas e energía		

8.6 INTERFACE DE COMUNICACIÓN

Item	Especificaciones			
Interfaz	RS-485			
Baud rate	600 a 115200 bps			
Stop bits	1 o 2			
Data bits	8			
Paridad	Ninguna, par o impar			
Protocolo	MODBUS-RTU			

8.7 ALIMENTACIÓN

Item	Especificaciones		
Alimentación AC	85 a 265 Vca		
Alimentación DC	100 a 300 Vcc		
Consumo	< 10 VA		
Fusible de protección externo (no incluido)	1 A		

8.8 RELOJ Y CALENDARIO

Item	Especificaciones	
Tipo Supercap		
Autonomía	120 hora (típica) teniendo en cuenta equipo energizado durante al menos 10 horas	

8.9 INTERFAZ

8.9.1 Teclado

Item	Especificaciones	
Тіро	Teclado de membrane con 6 teclas multifunción en relieve tipo burbuja	
Teclas	Navigación (derecho, izquierda, arriba, abajo), Prog y Clear	

8.9.2 Pantalla

Item	Especificaciones		
Тіро	Pantalla de cristal líquido de matriz de 4 filas por 16 columnas, con luz de fondo		
Area visible (ancho x alto)	14.0 x 64.5mm		
Formato de los caracteres	5 x 8 Pixel		
Frecuencia de actualización	50ms a 5 s		

8.10 CARACTERÍSTICAS MECÁNICAS

Item	Especificaciones		
Caja	Plástico resistente al calor (ABS).		
Dimensiones (alto x ancho x profundidad)	98 x 98 x 101mm		
Corte del panel	91.0 x 91.0 -0.0/+0,8mm		
Peso	425 g		
Crada da protacción	Frontal: IP-40		
	Trasero: IP-00		

8.11 CONDICIONES AMBIENTALES

Item	Especificaciones	
Temperatura de almacienamiento	-25 a 75°C	
Temperatura de funcionamiento	0 a 60°C	
Humedad relativa	40 a 70 %	

8.12 RANGOS Y VALORES PREDETERMINADOS DE FÁBRICA

Submenú	Variable	Rangos	Estándar
	Config	21 conexiones; Vea la sección Conexión a la red eléctrica	04: 3P4W-3V3C
	Fnom [Hz]	{ 50 60 }	60
	S/ Freq	{ Cortar Nominal Última }	Cut
	Secuencia de fase	{ ABC ACB }	ABC
	Configuración IV	{ Prim/Sec Relación }	Prim/Sec
	TV Primario [V]	[50, 999999]	220
	Relación TV	0.00 - 20000.00	1.00
Sistema (SYS)	Configuración TI	{ Prim/Sec Relación }	Prim/Sec
	TI Primario [A]	5 – 99999	5
	TI Secundario [A]	5 (Fixo)	5
	Relación TI	0.01 – 20000.00	1.00
			1:+
	Polarización de TIs	{ + - }	12:+
			13:+
	Sum mode	{ Vectorial Aritmético }	Vectorial
Demandas (DMD)	Intervalo [min]	{ 1 2 3 4 5 6 10 12 15 20 30 60 }	15
Comunicación	Velocidad [bps]	{ 600 1200 1800 2400 4800 9600 19200 38400 57600 76800 115200 }	19200
serial(COM)	Formato	{ 8-N-1 8-N-2 8-E-1 8-E-2 8-O-1 8-O-2 }	8-N-1
	Dirección	1 – 247	1
Protocolo Modbus	Format	{ Long (32bits) Short (16 bits) }	Largo
	B/W Swap	{ None Byte Word Both }	Ninguno (None)
	Idioma (LNG)	{ PT-BR (Portugués) EN-US (Inglés) ES (Español) }	PT-BR
Interfaz (UI)	Bip (SND)	{ Activado Desactivado }	Activado
	Tasa de LCD [ms]	{ 50 100 200 500 1000 2000 5000 }	1000
	Global	{ Activado Desactivado }	Desactivado
	Histéresis [%]	0 a 10	0
	Hora	00:00:00 a 23:59:59	Hora actual
Fecha/Hora (CLK)	Fecha	2000-01-01 a 2099-12-31	Fecha actual
	Día de la semana (calculated)	Lunes a Domingo	Día actual
	Intervalo	00:00:00 a 24:00:00	00:10:00
	Operación modo início	{ Manual Fecha/Hora }	Manual
	Operación modo fin	{ Manual Contador Tiempo }	Manual
Datalog (LOG)	Bloques	Instantáneos (I), Estadísticas (S), Demandas (D), Energías (E), Armónicos (H) { Si No }	Sí, Sí, Sí, Sí, No (ISDE_)
	Modo uso de memoria	{ Lineal Circular }	Lineal
	Modo uso memoria áreas	{ Única Multiplas }	Única
	Vinculaciones	Estadísticas, energías, 1er registro { Si No }	Sí, No, No

9 MANUTENCIÓN

9.1 LIMPIEZA

Para limpiar el MMW02 utilice un paño húmedo con jabón suave. Nunca utilice alcohol o cualquier otro disolvente ya que el uso del mismo causa el deterioro del panel, además de borrar el texto escrito en el equipo.

9.2 SOLUCIÓN DE PROBLEMAS

9.2.1 Equipo no enciende

Probable des-energización de la fuente de alimentación del equipo. En este caso, comprobar que el cable de conexión del neutro y por lo menos una de las fases A, B o C están conectados correctamente. Además, tenga en cuenta el enchufe de conexión de los cables de medida de tensión y asegúrese de que está conectado correctamente. Compruebe también que la tensión disponible en el sistema cumple los requisitos mínimos para energizar el equipo.

9.2.2 Resultados de medición con guiones

El valor resultante de la medición está fuera del rango o la medición no es aplicable para la conexión seleccionada. Asegúrese de que los cables de medición de tensión y sensores de corriente están instalados correctamente y asegúrese de que la tensión y la corriente en el sistema cumplen con los límites mínimos para la medición del equipo. Cuando el medidor no detecta la frecuencia del sistema al que está conectado los valores aparecen como guiones, ya que muchos de los métodos de medición están basados en la frecuencia medida.

9.2.3 Mediciones de tension y potencia con valores anormales

Probable error de configuración de relación de entrada (Relación TV e Relação TI). En este caso los valores de tensión, corriente y potencia serán mayores o menores dependiendo de la configuración real. Para resolver este problema, vaya al menú de configuración de las mediciones y ajustar la relación de la entrada de acuerdo a la conexión del equipo. Si el equipo tiene conexión directa, asegúrese de que los valores primarios y secundarios son iguales.

9.2.4 Potencia active y reactiva con la señal invertida

Probable reversión de la dirección de sensores de corriente o la conexión incorrecta de los cables de medición de tensión. Compruebe el sentido de conexión de los TIs, observando la señal indicativa en el conector de de la parte posterior del equipo. Compruebe que los cables de medición de tensión se conectaron obedeciendo la secuencia de fases del sistema.

9.2.5 Equipo no se comunica con software

Probable error de configuración de la comunicación serial o protocolo Modbus. Asegúrese de que el cable de comunicación está correctamente conectado al puerto serie del equipo. Este puerto se identifica como PC en el panel lateral. Asegúrese de que el puerto COM correcto ha sido seleccionado en el software. Para eso identifique el puerto serie virtual creado usando el administrador de dispositivos de Windows. Asegúrese de que la configuración del software de comunicación serial son los mismos del equipo. Compruebe la velocidad de transferencia de datos (velocidad de transmisión), el formato, la dirección de red, modo de direccionamiento y orden de bytes en la transmisión. Los ajustes deben ser los mismos tanto en el equipo y en el software.

9.2.6 Datalog inicia, pero no aumenta registros

Este síntoma se produce porque el reloj (fecha y hora) del equipo aún no se ha ajustado. En esta situación, el Datalog no se inicia, quedándose con el estado Registrando, pero el incremento de los registros de contador no suceden. Para corregir este problema vaya al menú de Fecha/Hora y ajuste fecha y hora. También tenga en cuenta los ajustes de GMT e DST, situado en la pantalla debajo de la fecha / hora.

9.3 GESTIÓN DE LA CALIBRACIÓN

El MMW02 tiene disponible en el proprio equipo la gestión y control de la última y la siguiente calibración, así como la periodicidad. La primera vez que el equipo se calibra, la fecha de la última calibración se llena con el tiempo que la calibración del dispositivo se llevó a cabo en la fábrica. El periodo entre calibraciones es sugerido por el fabricante (24 meses), y la fecha de la próxima calibración se rellena automáticamente en base a la última calibración y la periodicidad. El software de calibración de WEG, OmniCAL, es capaz de actualizar estos valores cada vez que se realiza una calibración. Sin embargo, se le permite al usuario cambiar manualmente estos valores si no tiene la aplicación OmniCAL. Si la fecha el equipo es posterior a la próxima fecha de calibración, al inicializar el equipo, aparece una pantalla de advertencia, que recuerda al usuario que debe realizar la calibración del equipo.

Para los usuarios que tienen su propia gestión de la calibración, este sistema proporcionado por el MMW02 se puede desactivar (predeterminado de fábrica).

Para acceder a las pantallas de calibración, proceda de la siguiente manera:

- 1. Acceda al >MENÚ PRINCIPAL<;
- 2. Seleccione el menú >CFG<;
- 3. Para ello, utilice las teclas 🚖 o 🌧 para seleccionar la opción INF Calibración;
- 4. Presionar la tecla **PROG** para activar la opción.
- 5. Para ello, utilice las teclas 🐽 y 🐢 para ver las fechas de la última y la próxima calibración, y el intervalo recomendado.
- 6. Apretar **PROG** para editar cualquier valor.

9.4 MODO DE DIAGNÓSTICO

El MMW02 tiene un modo llamado modo de diagnóstico, este modo es para pruebas internas en la fábrica y / o pruebas bajo la supervisión de soporte técnico Para entrar en modo de diagnóstico conecte la fuente de

alimentación del equipo en cuanto presiona las teclas **PROG** + **CLEAR**, caso entre por engaño en modo de diagnóstico

presionar la tecla

CLEAR hasta que el equipo reinicie en modo estándar.

PRECAUCIÓN!

Recuerde que este modo debe ser supervisado por Soporte Técnico de WEG, de lo contrario el equipo podría sufrir cambios reversibles sólo en fabrica.

10 ANEXO A – REPORTE A ASISTENCIA TÉCNICA/1.0.X

DATOS DE LA EMPRESA
NOMBRE DE LA EMPRESA:
DIRECCIÓN PARA ENTREGA DEL EQUIPO:
CIUDAD:
PROVINCIA:
TELÉFONO:
FAX:
E-MAIL:
CONTACTO:
TRANSPORTADORA:
DADOS DEL EQUIPO
EQUIPO: MMW02
NÚMERO DE SÉRIE:
DEFECTOS PRESENTADOS:
POSIBLES CAUSAS:

11 DECLARACIÓN DE GARANTÍA

TÉRMINO DE GARANTÍA LIMITADA PARA COMPONENTES ELECTRICOS WEG

WEG Equipamentos Elétricos - Automação, establecida en Av. Pref. Waldemar Grubba, 3000, 89256-900 Jaraguá do Sul, SC - Brasil, ofrece una garantía limitada para los defectos de fabricación o materiales para los componentes eléctricos WEG, de la siguiente manera:

Es una condición esencial para la validez de esta garantía que el comprador inspeccione cuidadosamente el producto adquirido inmediatamente después de la entrega, observando cuidadosamente sus características e instrucciones para la instalación, ajuste, operación y mantenimiento. El producto se considerará aceptado y aprobado de forma automática por el comprador, si no ocurre dar por escrito problemas técnicos o arrepentimiento, dentro de los siete días hábiles siguientes a la fecha de entrega.

El plazo de garantía es de doce meses a partir de la fecha de entrega de WEG o su distribuidor autorizado, demostrado a través de la factura de compra del producto, limitado a veinticuatro meses desde la fecha de producción, información contenida en el cuerpo producto.

La garantía total se compone de: (a) en el caso de relación de consumo, los primeros noventa (90) días serán considerados para efectos de la garantía a que se refiere en el punto II del artículo 26 de la Ley 8.078/90, el resto del período será considerado como una garantía contractual de conformidad con el artículo 50 de esta Ley; y (b) en los otros casos, los primeros treinta (30) días serán considerados para efectos de la garantía a que se refiere el primer párrafo del artículo 445 del Código Civil Brasileiro.

En caso de mal funcionamiento o funcionamiento inadecuado del producto bajo garantía, el servicio de garantía se llevará a cabo en su sede en Jaraguá do Sul - SC.

El producto, en caso de una anomalía debe estar disponible para el proveedor durante el período necesario para identificar la causa de la anomalía y sus reparaciones correspondientes.

WEG Automação examinará el producto enviado, y si confirma la existencia de un defecto cubierto por la garantía, hará la reparación, modificación o sustitución del producto defectuoso a su discreción, y sin costo alguno para el comprador, con excepción de los mencionados en el punto 8.

La responsabilidad de esta garantía se limita exclusivamente a la reparación, modificación o sustitución del producto suministrado no siendo responsable WEG por daños a personas, terceros, otros equipos o instalaciones, pérdida de beneficios u otros daños indirectos o consecuentes.

Otros gastos por flete, embalaje, montaje y desmontaje se pagarán exclusivamente por el comprador, incluyendo todos los honorarios y gastos de locomoción e estancia del personal de servicio, cuando se solicite un servicio en las instalaciones del usuario.

Esta garantía no cubre el desgaste normal por el uso del producto o daños resultantes de la operación o instalación incorrecta o negligente, de acuerdo con las especificaciones del producto, mantenimiento o almacenamiento inadecuado, malas instalaciones o influencias de la química, electroquímica, eléctrica, mecánica o atmosférica. Quedan excluidos de la responsabilidad por defectos de piezas o componentes que se consideran bienes de consumo, tales como goma o plástico de repuesto, bombillas incandescentes, fusibles, protectores de sobretensión, etc.

La garantía se extinguirá, independientemente de cualquier notificación, si el comprador sin el permiso previo por escrito de WEG, haga o mande hacer a terceros, cualquier modificación o reparaciones del equipo que falló durante la garantía.

La garantía se suspenderá en caso de incumplimiento o violación de las obligaciones del Comprador a WEG en conformidad con el artículo 476 del Código Civil, y el lapso de tiempo de la suspensión se considerará garantía caducada si el comprador más tarde, cumpla con sus obligaciones para con WEG.

Las reparaciones, cambios o sustituciones debidas a defectos de fabricación no detendrán ni ampliarán el período de garantía.

Cualquier petición, queja, comunicación, etc., con respecto a la garantía del producto, asistencia técnica, puesta en marcha, deberá dirigirse por escrito a la siguiente dirección: WEG Equipamentos Elétricos - Automação, A/C Departamento de Servicio Técnico, Av. Pref. Waldemar Grubba, 3000, 89256-900 Jaraguá do Sul - SC, Brasil, e-mail: astec@weg.net

La garantía ofrecida por WEG Equipamentos Elétricos - Automação está sujeta al cumplimiento de las presentes condiciones generales, que es el único término de garantía válido.

12 ANEXO1 – COMUNICAÇÃO MODBUS RTU

12.1 MMW02: DOCUMENTACIÓN/MODBUS PROTOCOLO/ 1.0.1/ TABLA MODBUS

ATENCIÓN!

Las direcciones con permiso de escrita no tienen protección contra valores inválidos.

Los tipos posibles para cada valor son:

- Bool: Valor lógico. 0 es falso y cualquier otro valor es verdadero;
- Short: 16 bits entero sin señal;
- Long: 32 bits entero sin señal;
- Float: formato de punto flotante IEEE754;
- DateTime: Timestamp en segundos desde 00:00:00 UTC, 1 de Enero, 1970;
- CaracFP: Característica de Factor de Potencia
 - 1: Ningún;
 - 0: Resistivo;
 - 1: Inductivo;
 - 2: Capacitivo;
- Fase: La fase del equipo en que la medición fue tomada
 - -1: Ningún;
 - 0: AN, AB o A;
 - 1: BN, BC o B;
 - 2: CN, CA o C;

12.2 COIL

12.2.1 Entradas y Salidas Digitales

Dirección		Formato Modo	Descripción	
Short	Long	Formato	MOGO	Descripcion
0	0	Bool	R	Estado Relé 1

12.2.2 Coils Reset

Dirección		Farma da	D	
Short	Long	Formato	Μοάο	Descripcion
50	50	Bool	W	Resetear energía
51	51	Bool	W	Resetear demanda
52	52	Bool	W	Resetear estadísticas
53	53	Bool	W	Valores de fábrica
54	54	Bool	W	Interno / no usado
55	55	Bool	W	Resetear los contadores
56	56	Bool	W	Formatear memoria
57	57	Bool	W	Interno / no usado
58	58	Bool	W	Interno / no usado
59	59	Bool	W	Interno / no usado
60	60	Bool	W	Interno / no usado
61	61	Bool	W	Interno / no usado
62	62	Bool	W	Interno / no usado
63	63	Bool	W	Interno / no usado
64	64	Bool	W	Interno / no usado
65	65	Bool	W	Interno / no usado
66	66	Bool	W	Interno / no usado
67	67	Bool	W	Interno / no usado
68	68	Bool	W	Interno / no usado
69	69	Bool	W	Interno / no usado
70	70	Bool	W	Resetear la demanda activa actual
71	71	Bool	W	Resetear la demanda activa pico

Dirección		Formata	Mada	Deseringión	
Short	Long	Formato	WOOD	Descripcion	
72	72	Bool	W	Resetear la demanda reactiva actual	
73	73	Bool	W	Resetear la demanda reactiva pico	
74	74	Bool	W	Resetear la demanda aparente actual	
75	75	Bool	W	Resetear la demanda aparente pico	
76	76	Bool	W	Resetear la energía activa directa	
77	77	Bool	W	Resetear la energía activa reversa	
78	78	Bool	W	Resetear la energía reactiva directa	
79	79	Bool	W	Resetear la energía reactiva reversa	
80	80	Bool	W	Resetear la energía aparente	

12.3 HOLDING

12.3.1 Parametrización (Valores 16 bits)

Dirección		Formato Modo		Descrinción		
Short	Long	Tormato	WIGGO	Boothpoion		
0	0	Short	R/W	COM-Nododered	Intervalode1hasta247	
					0-Short	
1	1	Short	R/W	COM-Formatomodbus32-bits	1-Long	
2	2	Short	R/W	COM-Indicaciór	ndeByteSwap	
3	3	Short	R/W	COM-Indicaciór	ndeWordSwap	
4	4	Short	R/W	COM-Baudrate[bps]	0-"600" 1-"1200" 2-"1800" 3-"2400" 4-"4800' 5-"9600" 6-"19200" 7-"38400" 8-"57600" 9 - "76800" 10 - "115200"	
5	5	Short	R/W	SYS - Frecuencia Nominal [Hz]	0 - "50" 1 - "60"	
6	6	Short	R/W	LOG - Modo de Inicio	0 - "Manual" 1 - "Fecha/Hora"	
7	7	Short	R/W	LOG - Modo de Parada	0 - "Manual" 1 - "Fecha/Hora" 2 - "Hora" 3 - "Contador"	
8	8	Short	R/W	LOG - Circular/Lineal	0 - "Lineal"	
9	9	Short	R/W	Interno / n	o usado	

Dire	cción	Formato Modo Descripción		oción	
10	10	Short	R/W	CLK - Huso horario	0 - "UTC-12:00"; 1 - "UTC-11:00"; 2 - "UTC-09:30"; 4 - "UTC-09:00"; 5 - "UTC-08:00"; 6 - "UTC-07:00"; 7 - "UTC-06:00"; 8 - "UTC-06:00"; 9 - "UTC-04:30"; 10 - "UTC-04:30"; 11 - "UTC-03:30"; 12 - "UTC-03:00"; 13 - "UTC-01:00"; 14 - "UTC-01:00"; 17 - "UTC+02:00"; 18 - "UTC+03:30"; 20 - "UTC+03:30"; 20 - "UTC+03:30"; 21 - "UTC+03:30"; 22 - "UTC+04:30"; 23 - "UTC+04:30"; 24 - "UTC+05:30"; 24 - "UTC+05:30"; 25 - "UTC+05:30"; 26 - "UTC+06:00"; 27 - "UTC+06:00"; 28 - "UTC+06:30"; 29 - "UTC+09:30"; 30 - "UTC+09:30"; 31 - "UTC+11:00"; 32 - "UTC+11:00"; 34 - "UTC+11:30"; 35 - "UTC+13:00"; 38 - "UTC+14:00"; 38 - "UTC+14:00"; 30 - "UTC+14:00"; 30 - "UTC+14:00"; 30 - "UTC+14:00"; 31 - "UTC+14:00"; 31 - "UTC+14:00"; 32 - "UTC+14:00"; 34 - "UTC+14:00"; 35 - "UTC+14:00"; 36 - "UTC+14:00"; 37 - "UTC+14:00"; 38 - "UTC+14:00"; 38 - "UTC+14:00"; 31 - "UTC+14:00"; 31 - "UTC+14:00"; 31 - "UTC+14:00"; 31 - "UTC+14:00"; 32 - "UTC+14:00"; 33 - "UTC+14:00"; 34 - "UTC+14:00"; 35 - "UTC+14:00"; 35 - "UTC+14:00"; 36 - "UTC+14:00"; 37 - "UTC+14:00"; 38 - "UTC+14:00"; 38 - "UTC+14:00"; 31 - "UTC+14:00"; 32 - "UTC+14:00"; 31 - "UTC+14:00"; 32 - "UTC+14:00"; 33 - "UTC+14:00"; 31
11	11	Short	R/W	Horariodeverano (DST- DaylightSaving Time)	0-"Invierno" 1-"Verano"
12	12	Short	R/W	LOG-Mododecreacióndelasáreas	0-"Unica" 1-"Multiplas"
13	13	Short	R/W	SYS-SecuenciadeFase	0-"ABC" 1-"ACB"
14	14	Short	R/W	SYS-Tiposdeconexióndelsistema	0-"01:1P2W-1V1C"; 1-"02:2P2W-1V1C"; 2-"03:2P3W-2V2C"; 3-"04:3P4W-3V3C"; 4-"05:3P4W-3V3CB"; 5-"06:3P4W-3V1CB"; 6-"07:3P4W-2V3CB"; 7-"08:3P4W-2V2CB"; 8-"09:3P4W-2V2CB"; 9-"10:3P4W-1V3CB"; 10-"11:3P4W-1V3CB"; 11-"12:3P4W-1V1CB"; 12-"13:3P3W-3V3CC"; 13-"14:3P3W-3V3CC"; 14-"15:3P3W-3V1CB"; 15-"16:3P3W-2V3C"; 16-"17:3P3W-2V3C"; 16-"17:3P3W-2V3CB"; 19-"20:3P3W-1V3CB"; 19-"20:3P3W-1V3CB"; 20-"21:3P3W-1V1CB";
15	15	Short	R/W	SYS-MododeconfiguracióndeTV	0-"Prim/Sec"; 1-"Relación";
16	16	Short	R/W	SYS-MododeconfiguracióndeTI	0-"Prim/Sec"; 1-"Relación";

Dire	Dirección		Mada	Descrinción			
Short	Long	Formato	WOOD	Descripcion			
17	17	Short	R/W	SYS-PolarizaciónTl1	0-"Directo(+)"; 1-"Reverso(-)";		
18	18	Short	R/W	SYS-PolarizaciónTl2	0-"Directo(+)"; 1-"Reverso(-)";		
19	19	Short	R/W	SYS-PolarizaciónTl3	0-"Directo(+)"; 1-"Reverso(-)";		
20	20	Short	R/W	SYS-Mododesumadelapotencia	0-"Vectorial"; 1-"Aritmético";		
21	21	Short	R/W	COM-Transmisión/ FormatodeRecepción	0-"8-N-1"; 1-"8-N-2"; 2-"8-E-1"; 3-"8-E-2"; 4-"8-O-1"; 5-"8-O-2";		
22	22	Short	R/W	UI-Idiomadelainterfazconelusuario	0-"PT-BR"; 1-"ES"; 2-"EN-US";		
23	23	Short	R/W	DMD-Intervalodeintegracióndelad emanda[min]	0-"1"; 1-"2"; 2-"3"; 3-"4"; 4-"5"; 5-"6"; 6-"10"; 7-"12"; 8-"15"; 9-"20"; 10-"30"; 11-"60";		
24	24	Short	R/W	Interno/no	busado		
25	25	Short	R/W	Interno/no	ousado		
26	26	Short	R/W	Interno/no	ousado		
27	27	Short	R/W	Interno/no	ousado		
28	28	Short	R/W	I/O-Estadoglobaldelasalarmas	0-"Off" 1-"On"		
29	29	Short	R/W	I/O-Lahistéresisdealarma[%]	Intervalode0 hasta10		
30	30	Short	R/W	LOG-Seleccióndelbloquedemedici óndeinstantáneos	0-"No" 1-"Sí"		
31	31	Short	R/W	LOG-Seleccióndelbloquedemedici óndeestadísticos	0-"No" 1-"Sí"		
32	32	Short	R/W	LOG-Seleccióndelbloquedemedici óndedemanda	0-"No" 1-"Sí"		
33	33	Short	R/W	LOG-Seleccióndelbloquedemedici óndeenergía	0-"No" 1-"Sí"		
34	34	Short	R/W	LOG-Seleccióndelbloquedemedici óndearmónicos	0-"No" 1-"Sí"		
35	35	Short	R/W	LOG-Sincronismoentreelintervalod eLogeintervalodeestadísticos	0-"No" 1-"Sí"		
36	36	Short	R/W	LOG-Sincronismoentreelintervalod eLogeintervalodeenergía	0-"No" 1-"Sí"		
37	37	Short	R/W	LOG-Gravarprimeroregistrodespu ésdesincronizar	0-"No" 1-"Sí"		
38	38	Short	R/W	UI-Tono	0-"Off" 1-"On"		

12.3.2 Parametrización(32bits'valor)

Dirección		Farmeta	Maria	Decevinción	
Short	Long	Formato	MOGO	Descripcion	
200	100	Long	R/W	SYS - Primario TV [V]	intervalo de 50 hasta 999999
202	101	Long	R/W	SYS - Secundario TV [V]	intervalo de 50 hasta 500
204	102	Float	R/W	SYS - Relación TV	0 hasta 20000
206	103	Long	R/W	SYS - Primario TI [A]	5 hasta 99999
208	104	Long	R	SYS - Secundario TI [A]	Valor afijado en 5
210	105	Float	R/W	SYS - Relación TI	0 hasta 20000
212	106	Long	R/W	LOG - Fecha/Hora para parar la grabación de datos en la memoria (Timestamp)	
214	107	Long	R/W	LOG - Intervalo entre los regist	ros [s]
216	108	Long	R/W	LOG - Tiempo para parar la grabación de datos en la memoria (Timestamp)	
218	109	Long	R/W	LOG - Contador regresivo para parar la grabación de datos en la memoria	0 hasta 999999
220	110	Long	R/W	LOG - Fecha/Hora para empezar la grabación de datos en la memoria (Timestamp)	

12.3.3 Autonomía del Registrador (Datalog)

Dirección		Formato Modo		Descripción
Short	Long			·
300	150	Long	R	Número de bytes a ser grabados por intervalo de registro
302	151	Long	R	Memoria libre
304	152	Float	R	Autonomía de la memoria para el registrador. La parte completa es el valor en segundos, mientras la fraccionada es un valor en milisegundos

12.3.4 Reloj del Equipo

Dirección		Formato	Modo	Descripción	
Short	Long				
600	300	DateTime	R/W	Clock - Unix Timestamp	
602	301	Long	R/W	Clock - Año	
604	302	Long	R/W	Clock - Mes	
606	303	Long	R/W	Clock - Día	
608	304	Long	R/W	Clock - Hora	
610	305	Long	R/W	Clock - Minuto	
612	306	Long	R/W	Clock - Segundo	

12.3.5 Informaciones

Dirección		Formato	Formato Modo	Descripción	
Short	Long			·	
1040	520	Long	R	Contador Relé 1	
1042	521	Long	R	Interno / no usado	
1044	522	Long	R	Indica que algún registrador de energía llegó a un límite	

12.3.6 Control del Registrador (Datalog)

Dirección		Formata	Mada	Deseringión		
Short	Long	Formato	Modo	Descripci		
		Acciones (escrita)	0 - Parar 1 - Registrar 2 - Pausar 3 - Formatear			
1060	530	Short	R/W	Estado (lectura)	1 - Parado 2 - Preparando 3 - Esperando 4 - Sincronizando 5 - Registrando 6 - Finalizando 7 - Pausado 8 - Error	

12.4 INPUT

12.4.1 Magnitudes

Dirección		Formato Modo	Modo	Descrinción		
Short	Long	, i ormato	moue	beschpelon		
0	0	DateTime	R	Timestamp en el momento de medida		
2	1	Float	R	Tensión media de fase [V]		
4	2	Float	R	Tensión de fase A [V]		
6	3	Float	R	Tensión de fase B [V]		
8	4	Float	R	Tensión de fase C [V]		
10	5	Float	R	Corriente media [A]		
12	6	Float	R	Corriente en la fase A [A]		
14	7	Float	R	Corriente en la fase B [A]		
16	8	Float	R	Corriente en la fase C [A]		
18	9	Float	R	Tensión media de línea [V]		
20	10	Float	R	Tensión de línea AB [V]		
22	11	Float	R	Tensión de línea BC [V]		
24	12	Float	R	Tensión de línea CA [V]		
26	13	Float	R	Factor de Potencia Total		
28	14	Float	R	Factor de Potencia de fase A		
30	15	Float	R	Factor de Potencia de fase B		
32	16	Float	R	Factor de Potencia de fase C		
34	17	CaracFP	R	Característica de FP total		
36	18	CaracFP	R	Característica de FP en la fase A		
38	19	CaracFP	R	Característica de FP en la fase B		
40	20	CaracFP	R	Característica de FP en la fase C		

Dirección		Formato	Modo	Descripción	
Short	Long	, i onnato	mouo	Beschpolon	
42	21	Float	R	Potencia activa total [W]	
44	22	Float	R	Potencia activa de la fase A [W]	
46	23	Float	R	Potencia active de la fase B [W]	
48	24	Float	R	Potencia activa de la fase C [W]	
50	25	Float	R	Potencia reactiva total [VAr]	
52	26	Float	R	Potencia reactiva en la fase A [VAr]	
54	27	Float	R	Potencia reactiva en la fase B [VAr]	
56	28	Float	R	Potencia reactiva en la fase C [VAr]	
58	29	Float	R	Potencia aparente total [VA]	
60	30	Float	R	Potencia aparente en la fase A [VA]	
62	31	Float	R	Potencia aparente en la fase B [VA]	
64	32	Float	R	Potencia aparente en la fase C [VA]	
66	33	Float	R	Frecuencia Instantánea [Hz]	
68	34	Float	R	Interno / no usado	
70	35	Float	R	Interno / no usado	
72	36	Float	R	Interno / no usado	
74	37	Float	R	Corriente de neutro [A]	
76	38	Long	R	Fase en la cual la frecuencia fue obtenida	
78	39	Float	R	Ángulo de la corriente en la fase A [°]	
80	40	Float	R	Ángulo de la corriente en la fase B [°]	
82	41	Float	R	Ángulo de la corriente en la fase C [°]	

12.4.2 Demanda

Dire	Dirección		Formato Modo	Descrinción	
Short	Long	i ormato	mouo	2000 polon	
200	100	Float	R	Demanda Aparente esperada [VA]	
202	101	Float	R	Demanda aparente (último intervalo) [VA]	
204	102	Float	R	Pico de la demanda aparente [VA]	
206	103	Float	R	Demanda activa total esperada [W]	
208	104	Float	R	Demanda activa (último intervalo) [W]	
210	105	Float	R	Pico de la demanda activa [W]	
212	106	Float	R	Demanda reactiva total esperada [VAr]	
214	107	Float	R	Demanda reactiva total (último intervalo) [VAr]	
216	108	Float	R	Pico de la demanda reactiva total [VAr]	
218	109	Float	R	Demanda reactiva inductiva esperada [VAr]	
220	110	Float	R	Demanda reactiva inductiva (último intervalo) [VAr]	
222	111	Float	R	Pico de la demanda reactiva inductiva [VAr]	
224	112	Float	R	Demanda reactiva capacitiva esperada [VAr]	
226	113	Float	R	Demanda reactiva capacitiva (último intervalo) [VAr]	
228	114	Float	R	Pico de la demanda reactiva capacitiva [VAr]	

12.4.3 Energía

Dirección		Formato Modo		Descripción	
Short	Long				
300	150	Float	R	Energía activa total líquida [kWh]	
302	151	Float	R	Energía activa total bruta [kWh]	
304	152	Float	R	Energía activa directa[kWh]	

Dirección		Formato	Modo	Descripción	
Short	Long				
306	153	Float	R	Energía activa reversa [kWh]	
308	154	Float	R	Energía reactiva total líquida [kVArh]	
310	155	Float	R	Energía reactiva total bruta [kVArh]	
312	156	Float	R	Energía reactiva directa [kVArh]	
314	157	Float	R	Energía reactiva reversa [kVArh]	
316	158	Float	R Energía reactiva inductiva reversa [kVArh]		
318	159	Float	R	Energía reactiva capacitiva reversa [kVArh]	
320	160	Float	R	Energía reactiva directa inductiva [kVArh]	
322	161	Float	R	Energía reactiva directa capacitiva [kVArh]	
324	162	Float	R	Energía aparente total [kVAh]	
326	163	Long	R	Interno / no usado	

12.4.4 Estadísticas

Dire	cción	Formato	Modo	Descrinción	
Short	Long	i ormato		Description	
400	200	Float	R	Tensión mínima de la fase A [V]	
402	201	Float	R	R Tensión mínima de la fase B [V]	
404	202	Float	R	Tensión mínima de la fase C [V]	
406	203	Float	R	Tensión mínima de la línea AB [V]	
408	204	Float	R	Tensión mínima de la línea BC [V]	
410	205	Float	R	Tensión mínima de la línea CA [V]	
412	206	Float	R	Tensión media de la fase A [V]	
414	207	Float	R	Tensión media de la fase B [V]	
416	208	Float	R	Tensión media de la fase C [V]	
418	209	Float	R	Tensión media de la línea AB [V]	
420	210	Float	R	Tensión media de la línea BC [V]	
422	211	Float	R	Tensión media de la línea CA [V]	
424	212	Float	R	Tensión máxima de la fase A [V]	
426	213	Float	R	Tensión máxima de la fase B [V]	
428	214	Float	R	Tensión máxima de la fase C [V]	
430	215	Float	R	Tensión máxima de la línea AB [V]	
432	216	Float	R	Tensión máxima de la línea BC [V]	
434	217	Float	R Tensión máxima de la línea CA [V]		
436	218	Float	R	Corriente mínima de la fase A [A]	
438	219	Float	R	Corriente mínima de la fase B [A]	
440	220	Float	R	Corriente mínima de la fase C [A]	
442	221	Float	R	Corriente media de la fase A [A]	
444	222	Float	R	Corriente media de la fase B [A]	
446	223	Float	R	Corriente media de la fase C [A]	
448	224	Float	R	Corriente máxima de la fase A [A]	
450	225	Float	R	Corriente máxima de la fase B [A]	
452	226	Float	R	Corriente máxima de la fase C [A]	
454	227	Float	R	Factor de potencia mínimo de la fase A	
456	228	Float	R	Factor de potencia mínimo de la fase B	
458	229	Float	R	Factor de potencia mínimo de la fase C	
460	230	CaracFP	R	Característica mínima del FP en la fase A	
462	231	CaracFP	R	Característica mínima del FP en la fase B	
464	232	CaracFP	R	Característica mínima del FP en la fase C	

Dirección		Formato	Modo	Descripción		
Short	Long		mouo	Decemption		
466	233	Float	R	Factor de potencia medio de la fase A		
468	234	Float	R	Factor de potencia medio de la fase B		
470	235	Float	R	Factor de potencia medio de la fase C		
472	236	CaracFP	R	Característica media del FP en la fase A		
474	237	CaracFP	R	Característica media del FP en la fase B		
476	238	CaracFP	R	Característica media del FP en la fase C		
478	239	Float	R	Factor de potencia máximo de la fase A		
480	240	Float	R	Factor de potencia máximo de la fase B		
482	241	Float	R	Factor de potencia máximo de la fase C		
484	242	CaracFP	R	Característica del FP de la fase A		
486	243	CaracFP	R	Característica del FP de la fase B		
488	244	CaracFP	R	Característica del FP de la fase C		
490	245	Phase	R	Fase donde ocurrió la tensión de fase mínima		
492	246	DateTime	R	Timestamp de la tensión de fase mínima		
494	247	Phase	R	Fase donde ocurrió la tensión de fase máxima		
496	248	DateTime	R	Timestamp de la tensión de fase máxima		
498	249	Phase	R	Línea donde ocurrió la tensión de línea mínima		
500	250	DateTime	R	Timestamp de la tensión de línea mínima		
502	251	Phase	R	Línea donde ocurrió la tensión de línea máxima		
504	252	DateTime	R	Timestamp de la tensión de línea máxima		
506	253	Phase	R	Fase donde ocurrió la corriente mínima		
508	254	DateTime	R	Timestamp que ocurrió la corriente mínima		
510	255	Phase	R	Fase donde ocurrió la corriente máxima		
512	256	DateTime	R	Timestamp en que ocurrió la corriente máxima		

12.4.5 Armónicas

Dirección		Formato	Modo	Descripción	
Short	Long				
600	300	Float	R	THD Tensión AN AB [%]	
602	301	Float	R	THD Tensión BN BC [%]	
604	302	Float	R	THD Tensión CN CA [%]	
606	303	Float	R	THD Corriente A [%]	
608	304	Float	R	THD Corriente B [%]	
610	305	Float	R	THD Corriente C [%]	

12.4.6 Energía 64Bits

Dirección		Formato	Modo	Descripción
Short	Long			
12000	6000	Short	R	Energía activa NET [0]
12001	6001	Short	R	Energía activa NET [1]
12002	6002	Short	R	Energía activa NET [2]
12003	6003	Short	R	Energía activa NET [3]
12004	6004	Short	R	Energía activa SUM [0]
12005	6005	Short	R	Energía activa SUM [1]
12006	6006	Short	R	Energía activa SUM [2]

Dirección		Formato	Modo	Descripción	
Short	Long	, or mate	lineut	2000 point	
12007	6007	Short	R	Energía activa SUM [3]	
12008	6008	Short	R	Energía activa IMPORT [0]	
12009	6009	Short	R	Energía activa IMPORT [1]	
12010	6010	Short	R	Energía activa IMPORT [2]	
12011	6011	Short	R	Energía activa IMPORT [3]	
12012	6012	Short	R	Energía activa EXPORT [0]	
12013	6013	Short	R	Energía activa EXPORT [1]	
12014	6014	Short	R	Energía activa EXPORT [2]	
12015	6015	Short	R	Energía activa EXPORT [3]	
12016	6016	Short	R	Energía reactiva NET [0]	
12017	6017	Short	R	Energía reactiva NET [1]	
12018	6018	Short	R	Energía reactiva NET [2]	
12019	6019	Short	R	Energía reactiva NET [3]	
12020	6020	Short	R	Energía reactiva SUM [0]	
12021	6021	Short	R	Energía reactiva SUM [1]	
12022	6022	Short	R	Energía reactiva SUM [2]	
12023	6023	Short	R	Energía reactiva SUM [3]	
12024	6024	Short	R	Energía reactiva IMPORT [0]	
12025	6025	Short	R	Energía reactiva IMPORT [1]	
12026	6026	Short	R	Energía reactiva IMPORT [2]	
12027	6027	Short	R	Energía reactiva IMPORT [3]	
12028	6028	Short	R	Energía reactiva EXPORT [0]	
12029	6029	Short	R	Energía reactiva EXPORT [1]	
12030	6030	Short	R	Energía reactiva EXPORT [2]	
12031	6031	Short	R	Energía reactiva EXPORT [3]	
12032	6032	Short	R	Energía inductiva reactiva EXPORT [0]	
12033	6033	Short	R	Energía inductiva reactiva EXPORT [1]	
12034	6034	Short	R	Energía inductiva reactiva EXPORT [2]	
12035	6035	Short	R	Energía inductiva reactiva EXPORT [3]	
12036	6036	Short	R	Energía capacitiva reactiva EXPORT [0]	
12037	6037	Short	R	Energía capacitiva reactiva EXPORT [1]	
12038	6038	Short	R	Energía capacitiva reactiva EXPORT [2]	
12039	6039	Short	R	Energía capacitiva reactiva EXPORT [3]	
12040	6040	Short	R	Energía inductiva reactiva IMPORT [0]	
12041	6041	Short	R	Energía inductiva reactiva IMPORT [1]	
12042	6042	Short	R	Energía inductiva reactiva IMPORT [2]	
12043	6043	Short	R	Energía inductiva reactiva IMPORT [3]	
12044	6044	Short	R	Energía capacitiva reactiva IMPORT [0]	
12045	6045	Short	R	Energía capacitiva reactiva IMPORT [1]	
12046	6046	Short	R	Energía capacitiva reactiva IMPORT [2]	
12047	6047	Short	R	Energía capacitiva reactiva IMPORT [3]	
12048	6048	Short	R	Energía aparente [0]	
12049	6049	Short	R	Energía aparente [1]	
12050	6050	Short	R	Energía aparente (2)	
12051	6051	Short	R	Eneraía aparente (3)	
	1		1	- 0 1	

13 FUNCIONES DE MODBUS

13.1 17-REPORT SLAVE ID

Esta función permite leer la identificación del MMW02. La solicitud y la respuesta tienen las siguientes formas:

13.1.1 Solicitud

Descripción	Largura	Valor
Código de la función	1 byte	Ox11 (17)

13.1.2 Respuesta

Descripción	Largura	Valor
Código de la función	1 byte	Ox11 (17)
Byte Count	1 byte	0x17
Bytes Reservados	3 bytes	
Número de serie	4 bytes*	Específico del equipo
Tipo del equipo	2 bytes*	0x010A (266)
Modelo del equipo	1 byte	3 - MMW02
		4 - MMW02 - M
Versión del Firmware	4 bytes*	Específico del equipo
Tabla Modbus	1 byte	0X77 (w)
Bits de capacidad	8 bytes	Específico del equipo

(*) Valores leídos en little-endian;

13.2 DESCARGAR LA MEMORIA MASIVA

Para iniciar la lectura de los procedimientos de la memoria masiva del MMW02, es necesario requerir el número de áreas grabadas en el equipo. Cada área consiste en registrar la medición de los bloques (instantáneos, estadísticos, ...) seleccionados por el usuario por un determinado periodo.

Dirección		Formato I	Modo	Descripción	Valor Esperado
Short	Long				
20000	40000	Short	R	Cantidad total de áreas en la memoria del equipo.	Entre 0 (no área grabada) y 12 (máximo número de áreas grabadas al mismo tiempo)

13.2.1 Informaciones de Área

MMW02 registra información relacionada a las áreas grabadas en la memoria masiva del equipo. Cualquier información adquirida, es necesario seleccionar una de las áreas grabadas en el equipo.

Dirección		Formato	Modo	Descripción	Valor Esperado
Short	Long				•
20001	40001	Short	R/W	Área Seleccionada	El valor escrito, o leído, refleja el número de áreas grabadas en la memoria masiva del equipo. Los valores disponibles son: 0 - AREA0001 1 - AREA0002 n - AREAn, donde "n" es menor que el número total de áreas grabadas

Las siguientes informaciones pueden ser leídas como abajo:

Dirección		Formato	Mada	Deserinsión	Volor For an de
Short	Long	Formato	WOOO	Descripcion	
20002	40002	Short	R	Nombre de Area [1]	Dos caracteres. Ejemplo "AR"
20003	40003	Short	R	Nombre de Area [2]	Dos caracteres. Ejemplo "EA"
20004	40004	Short	R	Nombre de Area [3]	Dos caracteres. Ejemplo "00"
20005	40005	Short	R	Nombre de Area [4]	Dos caracteres. Ejemplo "01"
20008	40008	Short	R	Observaciones grabadas en la area	Cada bit representa una observación. La observación fue grabada si el bit es igual a 1, o 0 en el contrario, lo que significa: Bit 0: Observación 0 Bit 1: Observación 1 Bit n: Observación n Ejemplo: si ela valor registrado es 2, la unica observación presente es la 1. Por otro lado, si es leído 3, las observaciones 0 y 1 están presentes.

Los datos registrados son ordenados en diferentes archivos, llamados observaciones. Cada observación contiene un o más bloques de datos, dependiendo de la parametrización del área en el momento en que el registrador (datalog) es iniciado.

Para el MMW02, las observaciones presentes, juntamente con los bloques de medición que las componen, son:

- Observación 0 Instantáneo, Estadístico, Energías o Demandas;
- Observación 1 THD

13.2.2 Información de la Observación

Para adquirir los datos de las áreas del equipo MMW02, es necesario seleccionar la observación de interés.

Dirección		Formato	Modo	Descripción	Valor Esperado
Short	Long				
20009	40009	Short	R/W	Observación Seleccionada	El valor escrito, o leído, refleja el número de observaciones que el equipo puede grabar en la memoria. De igual manera, los valores posibles son: 0 - Observación 0 1 - Observación 1

En seguida, es necesario saber el tamaño y cuantos registros fueran grabados en la observación. Cada registro es igual a todas las medidas pertenecidas al bloque medido seleccionado en la observación, adquirida en el mismo momento. Haciendo analogía a una tabla, los registros son las líneas, mientras las medidas, son las columnas.

Dirección		Formato	Modo	Descripción	Valor Esperado
Short	Long				
20010	40010	Short	R	El total de registros	El total de registros en la observación seleccionada
20011	40011	Short	R	Tamaño de los Registros	El tamaño de cada registro, en bytes
20015	40015	Short	R	El total de medidas	Cantidades de medidas en el registrador
13.2.3 Adquisiciones de Datos

Una vez que la observación es seleccionada, el próximo paso es alterar el modo de operación para 15 – Lectura de Dato.

Dire	cción	Formato	Modo	Descripción	Valor Esperado
Short	Long				
20014	40014	Short	R/W	Modo de operación de la observación seleccionada	Desde el modo de operación, es possible abrir la observación por modo de lectura, o encabezados, o cerrar la observación. Los valores posibles son: 15 – Lectura de datos 240 – Lectura de encabezados 255 – Observación cerrada

Sabiendo el número total de registros y el total de medidas en el registrador, es posible situar el puntero del dato en la observación en cualquier punto del archivo.

Direc	cción	Formato	Modo	Descripción	Valor Esperado
Short	Long			-	
20013	40013	Short	R/W	Registro seleccionado	Los valores posibles empiezan en 0 hasta el número total de registro menos 1.
20016	40016	Short	R/W	Medida seleccionada	Los valores posibles empiezan en 0 hasta el número total de registro menos 1.

Posicione el puntero, la medida seleccionada, junto con las 149 medidas siguientes, que estarán disponibles para leer a través de la función 03. La posición del puntero no cambiará, siendo necesario posicionar el puntero manual.

Dire	cción	Formato	Modo	Descripción	Valor Esperado
Short	Long				
20101	40202	Long	R	Memoria masiva [0]	Posición 0 desde el puntero de la observación
20102	40204	Long	R	Memoria masiva [1]	Posición 1 desde el puntero de la observación
20103	40206	Long	R	Memoria masiva [2]	Posición 2 desde el puntero de la observación
20104	40208	Long	R	Memoria masiva [3]	Posición 3 desde el puntero de la observación
20105	40210	Long	R	Memoria masiva [4]	Posición 4 desde el puntero de la observación
20106	40212	Long	R	Memoria masiva [5]	Posición 5 desde el puntero de la observación
20107	40214	Long	R	Memoria masiva [6]	Posición 6 desde el puntero de la observación
20108	40216	Long	R	Memoria masiva [7]	Posición 7 desde el puntero de la observación
20109	40218	Long	R	Memoria masiva [8]	Posición 8 desde el puntero de la observación
20110	40220	Long	R	Memoria masiva [9]	Posición 9 desde el puntero de la observación
20111	40222	Long	R	Memoria masiva [10]	Posición 10 desde el puntero de la observación
20112	40224	Long	R	Memoria masiva [11]	Posición 11 desde el puntero de la observación
20113	40226	Long	R	Memoria masiva [12]	Posición 12 desde el puntero de la observación
20114	40228	Long	R	Memoria masiva [13]	Posición 13 desde el puntero de la observación
20115	40230	Long	R	Memoria masiva [14]	Posición 14 desde el puntero de la observación
20116	40232	Long	R	Memoria masiva [15]	Posición 15 desde el puntero de la observación
20117	40234	Long	R	Memoria masiva [16]	Posición 16 desde el puntero de la observación
20118	40236	Long	R	Memoria masiva [17]	Posición 17 desde el puntero de la observación
20119	40238	Long	R	Memoria masiva [18]	Posición 18 desde el puntero de la observación
20120	40240	Long	R	Memoria masiva [19]	Posición 19 desde el puntero de la observación
20121	40242	Long	R	Memoria masiva [20]	Posición 20 desde el puntero de la observación
20122	40244	Long	R	Memoria masiva [21]	Posición 21 desde el puntero de la observación
20123	40246	Long	R	Memoria masiva [22]	Posición 22 desde el puntero de la observación
20124	40248	Long	R	Memoria masiva [23]	Posición 23 desde el puntero de la observación

Dire	cción	Formato	Modo	Descrinción	Valor Esperado
Short	Long	Tormato	WOOD	Descripcion	
20125	40250	Long	R	Memoria masiva [24]	Posición 24 desde el puntero de la observación
20126	40252	Long	R	Memoria masiva [25]	Posición 25 desde el puntero de la observación
20127	40254	Long	R	Memoria masiva [26]	Posición 26 desde el puntero de la observación
20128	40256	Long	R	Memoria masiva [27]	Posición 27 desde el puntero de la observación
20129	40258	Long	R	Memoria masiva [28]	Posición 28 desde el puntero de la observación
20130	40260	Long	R	Memoria masiva [29]	Posición 29 desde el puntero de la observación
20131	40262	Long	R	Memoria masiva [30]	Posición 30 desde el puntero de la observación
20132	40264	Long	R	Memoria masiva [31]	Posición 31 desde el puntero de la observación
20133	40266	Long	R	Memoria masiva [32]	Posición 32 desde el puntero de la observación
20134	40268	Long	R	Memoria masiva [33]	Posición 33 desde el puntero de la observación
20135	40270	Long	R	Memoria masiva [34]	Posición 34 desde el puntero de la observación
20136	40272	Long	R	Memoria masiva [35]	Posición 35 desde el puntero de la observación
20137	40274	Long	R	Memoria masiva [36]	Posición 36 desde el puntero de la observación
20138	40276	Long	R	Memoria masiva [37]	Posición 37 desde el puntero de la observación
20139	40278	Long	R	Memoria masiva [38]	Posición 38 desde el puntero de la observación
20140	40280	Long	R	Memoria masiva [39]	Posición 39 desde el puntero de la observación
20141	40282	Long	R	Memoria masiva [40]	Posición 40 desde el puntero de la observación
20142	40284	Long	R	Memoria masiva [41]	Posición 41 desde el puntero de la observación
20143	40286	Long	R	Memoria masiva [42]	Posición 42 desde el puntero de la observación
20144	40288	Long	R	Memoria masiva [43]	Posición 43 desde el puntero de la observación
20145	40290	Long	R	Memoria masiva [44]	Posición 44 desde el puntero de la observación
20146	40292	Long	R	Memoria masiva [45]	Posición 45 desde el puntero de la observación
20147	40294	Long	R	Memoria masiva [46]	Posición 46 desde el puntero de la observación
20148	40296	Long	R	Memoria masiva [47]	Posición 47 desde el puntero de la observación
20149	40298	Long	R	Memoria masiva [48]	Posición 48 desde el puntero de la observación
20150	40300	Long	R	Memoria masiva [49]	Posición 49 desde el puntero de la observación
20151	40302	Long	R	Memoria masiva [50]	Posición 50 desde el puntero de la observación
20152	40304	Long	R	Memoria masiva [51]	Posición 51 desde el puntero de la observación
20153	40306	Long	R	Memoria masiva [52]	Posición 52 desde el puntero de la observación
20154	40308	Long	R	Memoria masiva [53]	Posición 53 desde el puntero de la observación
20155	40310	Long	R	Memoria masiva [54]	Posición 54 desde el puntero de la observación
20156	40312	Long	R	Memoria masiva [55]	Posición 55 desde el puntero de la observación
20157	40314	Long	R	Memoria masiva [56]	Posición 56 desde el puntero de la observación
20158	40316	Long	R	Memoria masiva [57]	Posición 57 desde el puntero de la observación
20159	40318	Long	R	Memoria masiva [58]	Posición 58 desde el puntero de la observación
20160	40320	Long	R	Memoria masiva [59]	Posición 59 desde el puntero de la observación
20161	40322	Long	R	Memoria masiva [60]	Posición 60 desde el puntero de la observación
20162	40324	Long	R	Memoria masiva [61]	Posición 61 desde el puntero de la observación
20163	40326	Long	R	Memoria masiva [62]	Posición 62 desde el puntero de la observación
20164	40328	Long	R	Memoria masiva [63]	Posición 63 desde el puntero de la observación
20165	40330	Long	R	Memoria masiva [64]	Posición 64 desde el puntero de la observación
20166	40332	Long	R	Memoria masiva [65]	Posición 65 desde el puntero de la observación
20167	40334	Long	R	Memoria masiva [66]	Posición 66 desde el puntero de la observación
20168	40336	Long	R	Memoria masiva [67]	Posición 67 desde el puntero de la observación
20169	40338	Long	R	Memoria masiva [68]	Posición 68 desde el puntero de la observación
20170	40340	Long	R	Memoria masiva [69]	Posición 69 desde el puntero de la observación
20171	40342	Long	R	Memoria masiva [70]	Posición 70 desde el puntero de la observación
20172	40344	Long	R	Memoria masiva [71]	Posición 71 desde el puntero de la observación

Dire	cción	Formato	Modo	Descrinción	Valor Esperado
Short	Long	1 onnato	mouo	Description	
20173	40346	Long	R	Memoria masiva [72]	Posición 72 desde el puntero de la observación
20174	40348	Long	R	Memoria masiva [73]	Posición 73 desde el puntero de la observación
20175	40350	Long	R	Memoria masiva [74]	Posición 74 desde el puntero de la observación
20176	40352	Long	R	Memoria masiva [75]	Posición 75 desde el puntero de la observación
20177	40354	Long	R	Memoria masiva [76]	Posición 76 desde el puntero de la observación
20178	40356	Long	R	Memoria masiva [77]	Posición 77 desde el puntero de la observación
20179	40358	Long	R	Memoria masiva [78]	Posición 78 desde el puntero de la observación
20180	40360	Long	R	Memoria masiva [79]	Posición 79 desde el puntero de la observación
20181	40362	Long	R	Memoria masiva [80]	Posición 80 desde el puntero de la observación
20182	40364	Long	R	Memoria masiva [81]	Posición 81 desde el puntero de la observación
20183	40366	Long	R	Memoria masiva [82]	Posición 82 desde el puntero de la observación
20184	40368	Long	R	Memoria masiva [83]	Posición 83 desde el puntero de la observación
20185	40370	Long	R	Memoria masiva [84]	Posición 84 desde el puntero de la observación
20186	40372	Long	R	Memoria masiva [85]	Posición 85 desde el puntero de la observación
20187	40374	Long	R	Memoria masiva [86]	Posición 86 desde el puntero de la observación
20188	40376	Long	R	Memoria masiva [87]	Posición 87 desde el puntero de la observación
20189	40378	Long	R	Memoria masiva [88]	Posición 88 desde el puntero de la observación
20190	40380	Long	R	Memoria masiva [89]	Posición 89 desde el puntero de la observación
20191	40382	Long	R	Memoria masiva [90]	Posición 90 desde el puntero de la observación
20192	40384	Long	R	Memoria masiva [91]	Posición 91 desde el puntero de la observación
20193	40386	Long	R	Memoria masiva [92]	Posición 92 desde el puntero de la observación
20194	40388	Long	R	Memoria masiva [93]	Posición 93 desde el puntero de la observación
20195	40390	Long	R	Memoria masiva [94]	Posición 94 desde el puntero de la observación
20196	40392	Long	R	Memoria masiva [95]	Posición 95 desde el puntero de la observación
20197	40394	Long	R	Memoria masiva [96]	Posición 96 desde el puntero de la observación
20198	40396	Long	R	Memoria masiva [97]	Posición 97 desde el puntero de la observación
20199	40398	Long	R	Memoria masiva [98]	Posición 98 desde el puntero de la observación
20200	40400	Long	R	Memoria masiva [99]	Posición 99 desde el puntero de la observación
20201	40402	Long	R	Memoria masiva [100]	Posición 100 desde el puntero de la observación
20202	40404	Long	R	Memoria masiva [101]	Posición 101 desde el puntero de la observación
20203	40406	Long	R	Memoria masiva [102]	Posición 102 desde el puntero de la observación
20204	40408	Long	R	Memoria masiva [103]	Posición 103 desde el puntero de la observación
20205	40410	Long	R	Memoria masiva [104]	Posición 104 desde el puntero de la observación
20206	40412	Long	R	Memoria masiva [105]	Posición 105 desde el puntero de la observación
20207	40414	Long	R	Memoria masiva [106]	Posición 106 desde el puntero de la observación
20208	40416	Long	R	Memoria masiva [106]	Posición 106 desde el puntero de la observación
20209	40418	Long	R	Memoria masiva [107]	Posición 107 desde el puntero de la observación
20210	40420	Long	R	Memoria masiva [108]	Posición 108 desde el puntero de la observación
20211	40422	Long	R	Memoria masiva [109]	Posición 109 desde el puntero de la observación
20212	40424	Long	R	Memoria masiva [110]	Posición 110 desde el puntero de la observación
20213	40426	Long	R	Memoria masiva [111]	Posición 111 desde el puntero de la observación
20214	40428	Long	R	Memoria masiva [112]	Posición 112 desde el puntero de la observación
20215	40430	Long	R	Memoria masiva [113]	Posición 113 desde el puntero de la observación
20216	40432	Long	R	Memoria masiva [114]	Posición 114 desde el puntero de la observación
20217	40434	Long	R	Memoria masiva [115]	Posición 115 desde el puntero de la observación
20218	40436	Long	R	Memoria masiva [116]	Posición 116 desde el puntero de la observación
20219	40438	Long	R	Memoria masiva [117]	Posición 117 desde el puntero de la observación
20220	40440	Long	R	Memoria masiva [118]	Posición 118 desde el puntero de la observación

Dire	cción	Formato	Modo	Descrinción	Valor Esperado
Short	Long	1 ormato	mouo	Beschiption	
20221	40442	Long	R	Memoria masiva [119]	Posición 119 desde el puntero de la observación
20222	40444	Long	R	Memoria masiva [120]	Posición 120 desde el puntero de la observación
20223	40446	Long	R	Memoria masiva [121]	Posición 121 desde el puntero de la observación
20224	40448	Long	R	Memoria masiva [122]	Posición 122 desde el puntero de la observación
20225	40450	Long	R	Memoria masiva [123]	Posición 123 desde el puntero de la observación
20226	40452	Long	R	Memoria masiva [124]	Posición 124 desde el puntero de la observación
20227	40454	Long	R	Memoria masiva [125]	Posición 125 desde el puntero de la observación
20228	40456	Long	R	Memoria masiva [126]	Posición 126 desde el puntero de la observación
20229	40458	Long	R	Memoria masiva [127]	Posición 127 desde el puntero de la observación
20230	40460	Long	R	Memoria masiva [128]	Posición 128 desde el puntero de la observación
20231	40462	Long	R	Memoria masiva [129]	Posición 129 desde el puntero de la observación
20232	40464	Long	R	Memoria masiva [130]	Posición 130 desde el puntero de la observación
20233	40466	Long	R	Memoria masiva [131]	Posición 131 desde el puntero de la observación
20234	40468	Long	R	Memoria masiva [132]	Posición 132 desde el puntero de la observación
20235	40470	Long	R	Memoria masiva [133]	Posición 133 desde el puntero de la observación
20236	40472	Long	R	Memoria masiva [134]	Posición 134 desde el puntero de la observación
20237	40474	Long	R	Memoria masiva [135]	Posición 135 desde el puntero de la observación
20238	40476	Long	R	Memoria masiva [136]	Posición 136 desde el puntero de la observación
20239	40478	Long	R	Memoria masiva [137]	Posición 137 desde el puntero de la observación
20240	40480	Long	R	Memoria masiva [138]	Posición 138 desde el puntero de la observación
20241	40482	Long	R	Memoria masiva [139]	Posición 139 desde el puntero de la observación
20242	40484	Long	R	Memoria masiva [140]	Posición 140 desde el puntero de la observación
20243	40486	Long	R	Memoria masiva [141]	Posición 141 desde el puntero de la observación
20244	40488	Long	R	Memoria masiva [142]	Posición 142 desde el puntero de la observación
20245	40490	Long	R	Memoria masiva [143]	Posición 143 desde el puntero de la observación
20246	40492	Long	R	Memoria masiva [144]	Posición 144 desde el puntero de la observación
20247	40494	Long	R	Memoria masiva [145]	Posición 145 desde el puntero de la observación
20248	40496	Long	R	Memoria masiva [146]	Posición 146 desde el puntero de la observación
20249	40498	Long	R	Memoria masiva [147]	Posición 147 desde el puntero de la observación
20250	40500	Long	R	Memoria masiva [148]	Posición 148 desde el puntero de la observación

En caso del número de medidas, que siguen las medidas seleccionadas, sea menor que 149, las direcciones que pasan del número necesario deberán ser ignoradas.

Después de leer los datos, es obligatorio cerrar la observación.

13.2.4 Adquisición de Encabezados

La adquisición de encabezados es análoga, con la excepción de que el modo de operación de la observación debe ser configurado para 240 – Lectura de Encabezados. Cada encabezado es un identificador único de 8 bytes (ocupando, así, dos o cuatro direcciones de Modbus, respectivamente modos Long y Short) que caracteriza la manera con la cual una medición debe ser interpretada. Sin el encabezado, la medición medida leída no tiene sentido físico, siendo apenas datos en brutos. Después de la lectura de los encabezados, es obligatorio que la observación sea cerrada.

14 PROGRAMACIÓN DE LAS ALARMAS

Las alarmas constituyen una manera de alertar el usuario de cuando los niveles de una magnitud exceden los límites preestablecidos. El MMW02 permite la configuración de 20 eventos con diferentes alarmas que funcionan de manera simultánea e independiente. Es posible programar todavía una tolerancia (histéresis) para los límites de rango de control de magnitud. El disparo de las alarmas pueden ser en forma de pitido o cerrando un determinado relé.

14.1 CREANDO Y SELECCIONANDO UNA ALARMA

Las alarmas pueden ser creadas a través de la función 05. Después de que las 20 alarmas son creadas, escribir en las direcciones de la creación de alarmas estará prohibido, poniéndose disponible de nuevo cuando una de las alarmas es excluida.

Direc	cción	Formato	Modo	Descripción	Valor Esperado
Short	Long				
10	10	Bool	W	Creación de Alarmas	Debe ser escrito 0xFF00 para crear una nueva alarma. La dirección retornara como error caso el máximo de alarmas tenga sido creado.

Después de ser creado, la alarma es adicionada en el final de la lista de alarmas, de forma que su índice es la cantidad total de alarmas menos 1. Para editarlo, es necesario seleccionarlo.

Direc	ción				Valor Esporado
Short	Long	Formato	Modo	Descripción	Valor Esperado
702	1404	Long	R/W	Magnitud monitoreada	Los valores posibles son: 0 – Ninguna magnitud; 1 – Tensión de fase AN; 2 – Tensión de fase BN; 3 – Tensión de fase CN; 4 – Tensión de línea AB; 5 - Tensión de línea BC; 6 - Tensión de línea CA; 7 - Corriente A; 8 - Corriente B; 9 - Corriente C; 10 – Factor de potencia A; 11 - Factor de potencia B; 12 - Factor de potencia C; 13 - THD Tensión de fase AN; 14 - THD Tensión de fase BN; 15 - THD Tensión de fase CN; 16 - THD Tensión de línea AB; 17 - THD Tensión de línea BC; 18 - THD Tensión de línea CA; 19 - THD Corriente A; 20 - THD Corriente B; 21 - THD Corriente C;
703	1406	Long	R/W	Acción requerida	Los valores posibles son: 0 - No acción; 1 – Sonido de alerta; 2 – Cerrar el relé 1;
704	1408	Float	R/W	Valor mínimo	Intervalo desde 0 hasta 1 para factor de potencia, 0 hasta 100 para THD y 0 hasta 99999999 para otras magnitudes. El valor mínimo debe ser menor que el valor máximo.
705	1410	Float	R/W	Valor máximo	Intervalo desde 0 hasta 1 para factor de potencia, 0 hasta 100 para THD y 0 hasta 99999999 para otras magnitudes. El valor máximo debe ser mayor que el valor mínimo.
706	1412	Long	R/W	Característica del valor mínimo	En caso de que la magnitud monitoreada sea factor de potencia, es necesario atribuir una característica para el valor mínimo. En caso contrario, el campo debe ser ignorado. Los valores posibles son: 0 - capacitivo 1 - inductivo 2 - resistivo

Direc	cción				V. L. F. C. M. L.
Short	Long	Formato	Modo	Descripción	valor Esperado
707	1414	Long	R/W	Característica del valor máximo	En caso de que la magnitud monitoreada sea factor de potencia, es necesario atribuir una característica para el valor mínimo. En caso contrario, el campo debe ser ignorado. Los valores posibles son: 0 - capacitivo 1 - inductivo 2 - resistivo
708	1416	Long	R/W	Ignorar alarma	Para ignorar, o no, el monitoreo de la magnitud programada en la alarma. Los valores posibles son: 0 - No ignorar 1 - Ignorar
709	1418	Long	R	Estado de la alarma	Verificar si la alarma fue disparada o no. Los valores posibles son: 0 - Normal 1 - Disparada
710	1420	Long	W	Borrar la alarma	Escribir en esa dirección hace que la alarma seleccionada sea borrada. La edición del parámetro apuntará para la próxima alarma de la lista. En caso de la alarma borrada sea la última de la lista, será necesario seleccionar una nueva alarma.

NOTAS

Grupo WEG - Unidad Automatización Jaraguá do Sul - SC - Brasil Teléfono: +55 (47) 3276-4000 automacao@weg.net www.weg.net