LÍNEA G AIRCRAFT - 400 Hz

Alternadores de alto rendimiento para aeronaves en suelo

ALTERNADORES DE ALTO RENDIMIENTO PARA AERONAVES EN SUELO

Se desarrollaron alternadores con una frecuencia de 400 Hz para su aplicación en GPU (Ground Power Unit), como fuente de energía para energizar aeronaves en tierra. La GPU es utilizado en casos de mantenimiento de aeronaves y/o estancia prolongada en tierra, sustituyendo el generador de la aeronave APU (Auxiliary Power Unit), permitiendo mayores ahorros en combustible y mantenimiento.

Características

- Potencia: 60 hasta 180 kVA (otros bajo pedido)
- Frecuencia: 400 Hz
- Número de polos: 24 y 26 (otros bajo pedido)
- Rotación: 2.000 y 1.846 rpm
- Voltaje: 208/120 V ca o 200/115 V ca
- 4 cables de alimentación (3F + 1N) y 1 cable accesorio
- Temperatura ambiente: -15 °C hasta 40 °C
- Clase de aislamiento: H (180 °C)
- Factor de potencia: 0,8
- Altitud: 1.000 (m.a.n.m.)
- Excitación: Brushless Shunt
- Grado de protección: IP21 y IP23
- Rodamiento simple con discos de acoplamiento
- Distorsión armónica ≤ 3% / vacío (F-F)
- Regulador de voltaje suministrado por separado

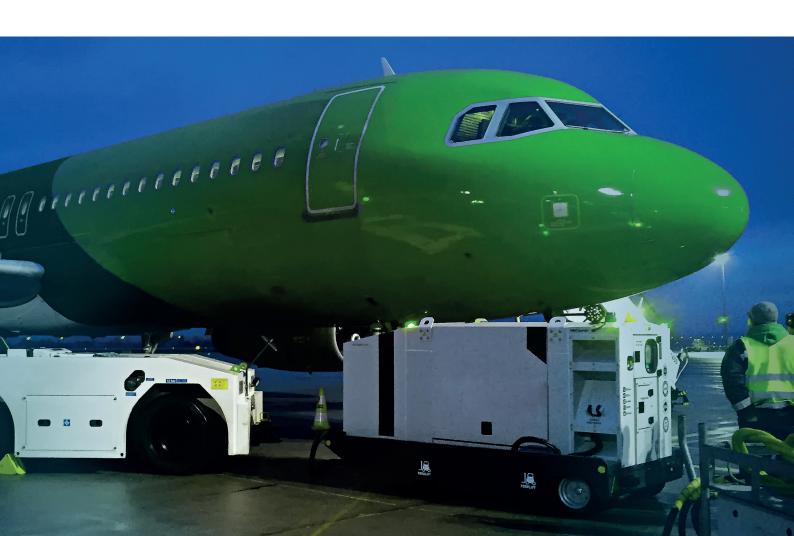
Opcionales

- Detectores de temperatura en los devanados del estator y en los cojinetes
- Resistencia al calentamiento
- Plan de pintura especial
- Rodamiento doble
- Voltaje 400/200 V ca 12 cables con tablero de terminales y con/sin caja de conexión (bajo pedido)

Certificaciones

WEG, líder en el mercado brasileño de alternadores, está presente en más de 40 países de los 5 continentes. Comprometido con crecimiento a escala global, invierte continuamente en sus unidades de fabricación, en tecnología, procesos y desarrollo de nuevas soluciones para el mercado.

WEG tiene certificado su sistema de calidad de acuerdo con los requisitos de la norma ISO 9001/14001. El sistema de calidad está auditado y certificado por Bureau Veritas Quality Institute, una organización de certificación internacional, cuyo objetivo es indicar estándares de calidad en producción, comercialización y medio ambiente. Para atender a los mercados más exigentes, los alternadores sincrónicos de la línea G Aircraft están certificados por importantes entidades, como C.E. (*European Community*) y UL (*Underwrites Laboratories*), siendo la segunda bajo pedido.



Estándares

Los generadores WEG se fabrican de acuerdo con los requisitos de MIL-704F STD, NBR5117, VDE0530 - parte 1, IEC 60034.1.

Aplicaciones

Generador para suministrar energía eléctrica a aeronaves en tierra - GPU (Ground Power Unity).

Beneficios

Bobinado con Paso Bobinado 2/3

Presentan menos distorsión armónica (THD), por lo tanto, se recomienda su uso para aplicaciones de carga sensibles y en sistemas trifásicos de 4 hilos.

Regulador de Voltaje Encapsulado

Desarrollado para lograr el máximo rendimiento, los reguladores de voltaje están encapsulados y pueden operar en entornos hostiles. Su rendimiento está garantizado en las más variadas aplicaciones, estando protegido contra el polvo, sal y arena.

Imanes Permanentes en el Estator de la Excitatriz

Insertados en el estator de la excitatriz, los imanes permanentes son responsables de mantener el flujo magnético residual que garantiza el cebado del alternador, incluso después de largos períodos de descanso. Esto hace que no haya necesidad de controladores externos. La presencia de estos imanes hace que la tensión residual en los terminales del estator principal es aproximadamente 600% más alto que los sistemas habituales, un factor importante para la confiabilidad del sistema, principalmente en aplicaciones de reserva, que se espera una respuesta rápida del grupo electrógeno.

Figura 1: imanes permanentes en el estator de la excitatriz

Diseño y Construcción Mecánica

Estructurada en acero laminado, la carcasa ha sido diseñada para soportar altos niveles de vibración y alta amortiguación mecánica. El formato de las patas del equipo lo hacen más robusto y compacto, además de proporcionar flexibilidad mecánica al montar el alternador en la base. Además de estos, los soportes de los polos y el ventilador son fabricados en aluminio, lo que los hace más robustos comparados con los modelos fabricados en plástico. Finalmente, cables de conexión debidamente identificados, cuentan con una tecnología ignífuga y a prueba de resecación, asegurando protección y mayor vida útil del equipo.

Diseño Electromagnético

Desarrollado con uso de herramientas de simulación por elementos finitos, apuntando a un producto más robusto con mayor eficiencia, el diferencial de esta línea es el aumento de la densidad de potencia en el mismo tamaño de carcasa, resultando un diseño innovador en el núcleo electromagnético y en las ranuras del estator.

Performance

Fabricado con materiales electromagnéticos nobles, los alternadores proporcionan una mayor economía de combustible para la aplicación. Además, bajas inducciones corrientes y densidades de corriente mantienen las temperaturas del rotor y del estator por debajo de las temperaturas máxima clase de aislamiento, evitando la degradación de los materiales aislantes.

Impregnación y Protección de Bobinas

Desarrollado con tecnologías modernas, la impregnación de VPI (Impregnación por Presión al Vacío) es utilizado por WEG como estándar para el 100% de los estatores, asegurando un perfecto aislamiento. Además, los alternadores cuentan con la protección de devanado estándar Grado 2©, recibiendo en el devanado principal y excitado del rotor y del estator una capa de pintura gris epoxi poliamida, que permite la aplicación del equipo en ambientes con alta humedad y condiciones climáticas adversas.

Alta Disponibilidad

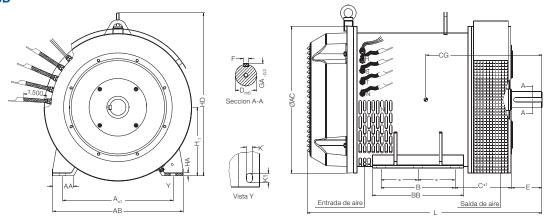
Proyecto mecánico diseñado para cumplir con los requisitos aplicación, en cuanto a facilidad de mantenimiento. Como se muestra en la Figura 2, la excitatriz y los diodos están en el exterior de la carcasa, protegidos por una cubierta de material polimérico, que proporciona practicidad y agilidad en el mantenimiento de los componentes.

Figura 2: excitador y rueda de diodos externos

Los cojinetes están sellados, es decir, no hay relubricación, siendo necesario cambiarlos cuando alcancen 20.000 horas de uso o 30 meses, lo que ocurra primero.

Tabla de Potencias

115/200-120/208 V (400 Hz) - Trifásico | 40 °C Temperatura Ambiente


Modelo	rpm	Clase F	Clase H
GSA311ZNHI	2.000	55 kVA	60 kVA
GSA311ZNHJ	2.000	82 kVA	90 kVA
GSA311ZNHR	2.000	91 kVA	100 kVA
GSA311ZNVS	2.000	110 kVA	120 kVA
GSA312ZNVI	2.000	137 kVA	150 kVA
GSA312ZNVJ	2.000	165 kVA	180 kVA

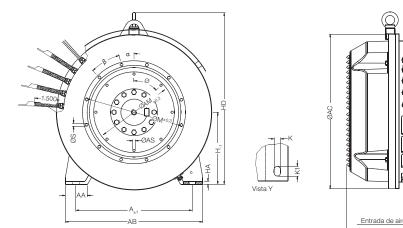
115/200-120/208 V (400 Hz) – Trifásico | 40 °C Temperatura Ambiente

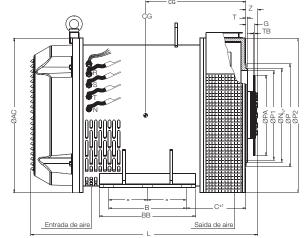
Modelo	rpm	Clase F	Clase H
GSA311ZNHI	1.846	55 kVA	60 kVA
GSA311ZNHJ	1.846	82 kVA	90 kVA
GSA311ZNHR	1.846	91 kVA	100 kVA
GSA311ZNVS	1.846	110 kVA	120 kVA
GSA312ZNVI	1.846	137 kVA	150 kVA
GSA312ZNVJ	1.846	165 kVA	180 kVA

Características Mecánicas

Modelo B3D

Carc	200	Dimensiones (mm)												
Gaic	Jasa	Α	В	AB	BB	AA	HA	K	K1	Н	HD	ØAC	С	L
31	11	EOO	262	600	344	OF.	10	28	40	315	750	676	260	1.000
31	12	308	508 340	000	420	95	13	20	42	313	730	0/0	260	1.081


Polaridad	Potencia (kVA)	Masa (kg)	CG (mm)		
	60	577	486,0		
GSA311	90	647	497,0		
24 polos	100	652	499,0		
	120	675	503,0		
GSA312	150	700	511,0		
24 polos	180	784	537,0		
	60	590	487,0		
GSA311	90	660	498,0		
26 polos	100	665	500,0		
	120	688	504,0		
GSA312	150	710	512,0		
26 polos	180	794	538,0		


Carcasa		Extremo del eje (mm)								
Garcasa	D	GA	F	Е						
311	74.5	70	20	140						
312	74,5	79	20	140						

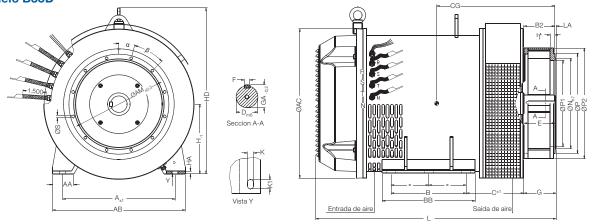
Características Mecánicas

Modelo B15D

Carcasa	Dimensiones (mm)										
Garcasa	А	В	AB	BB	AA	HA	K	K1	Н	ØAC	С
311	508	262	600	344	95	10	28	42	315	676	260
312	308	340	000	420	90	13	20	42	313	0/0	200

	Brida											
SAE	ØP2	ØР	ØN	ØP1	ØM	T	Agujeros	Ø	α	β		
3		450	409,6	390	428,6							
2	676	490	447,7	433,5	466,7	6	12	12,5	15°	30°		
1		553	511,2	496	530,2							

	Conexio	nes							
Disco		Brida							
SAE	1	1 2 3							
11,5	-	-	-						
14	-								


	Disco de acoplamiento											
SAE	SAE Ø Ø G TB AS Ø Agujeros Z L											
11,5	352,4	333,3	39,6	6.0	10,3	45°	o	51,2	992			
14	466,7	438,2	25,4	6,2	13,5	40	o	45,2	911			

Polaridad	Potencia (kVA)	SAE 1 /	SAE 14	SAE 1 / S	SAE 11,5	SAE 2 / S	SAE 11,5	SAE 3 / 9	SAE 11,5
Folditudu	Fotelicia (KVA)	Masa (kg)	CG (mm)	Masa (kg)	CG (mm)	Masa (kg)	CG (mm)	Masa (kg)	CG (mm)
	60	616	365,5	614	365,0	609	367,0	596	372,5
GSA311	90	683	374,0	681	373,5	676	375,5	663	380,5
24 polos	100	686	372,0	684	375,5	679	377,5	667	382,5
	120	711	378,0	709	378,0	704	380,0	691	384,5
GSA312	150	751	386,0	750	385,0	745	387,0	732	391,5
24 polos	180	792	394,0	790	393,0	785	395,0	772	399,5
	60	627	366,0	625	366,0	620	368,0	607	373,0
GSA311	90	694	375,0	692	374,5	687	376,5	674	381,0
26 polos	100	697	377,0	695	376,5	690	378,5	677	383,0
	120	721	379,0	720	379,0	715	381,0	702	385,5
GSA312	150	762	387,0	760	386,0	755	388,0	742	392,5
26 polos	180	802	398,0	801	394,0	796	396,0	783	400,5

Características Mecánicas

Modelo B35D

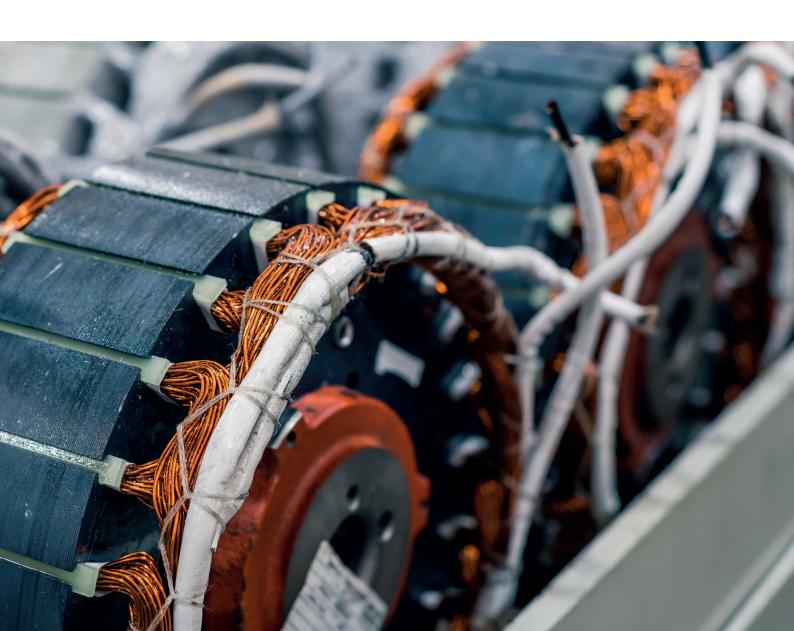
Carcasa		Dimensiones (mm)													
Garcasa	Α	В	AB	BB	AA	HA	K	K1	WH	HD	ØAC	С	G	B2	L
311	500	262	600	344	95	12	28	42	215	750	676	260	1.46	140	1.006
312	508	340	000	420	90	13	20	42	315	750	6/6	260	146	140	1.087

					Bri	da					
SAE	ØP2	ØP	ØN	ØP1	ØM	LA	Т	Agujeros	ØS	α	β
1/2	676	-	584,2	540	619,1	21		12	14	15°	30°
3	500	452	409,6	390	428,6	21		12	12,5	15°	30°
2	540	490	447,7	410	466,7	20	6	12	12,5	15°	30°
1	560	-	511,2	470	530,2	20		12	12,5	15°	30°
0	713,6	-	647,7	609,7	609,7	15		16	14	11,25°	22,5°

Carcasa	Extremo del eje (mm)						
	D	GA	F	E			
311	74.5	70	20	140			
312	74,5	79	20				

Polaridad	Potencia (kVA)	SAE 0		SAE 1		SAE 2		SAE 3		SAE 1/2	
		Masa (kg)	CG (mm)								
GSA311 24 polos	60	619	457,0	595	465,0	611	461,0	597	471,0	637	448,0
	90	690	471,0	677	478,0	682	475,0	599	483,0	707	462,0
	100	695	473,0	682	480,0	687	477,0	664	485,0	712	464,0
	120	718	478,0	705	484,0	711	481,0	697	489,0	736	469,0
GSA312 24 polos	150	742	496,0	730	503,0	735	499,0	721	508,0	750	487,0
	180	827	512,0	814	519,0	820	517,0	806	524,0	844	505,0
GSA311 26 polos	60	632	458,0	609	466,0	624	462,0	610	472,0	650	449,0
	90	703	472,0	690	479,0	695	476,0	672	484,0	720	463,0
	100	708	474,0	695	481,0	700	478,0	677	486,0	725	465,0
	120	731	479,0	718	485,0	724	482,0	710	490,0	749	470,0
GSA312 26 polos	150	752	497,0	740	504,0	745	500,0	731	509,0	760	488,0
	180	837	513,0	824	520,0	830	518,0	816	525,0	854	506,0

Partes y Piezas Originales WEG


Luego de años en servicio, los alternadores precisan de recuperación para continuar funcionando adecuadamente. Para esta recuperación se aconseja la utilización de piezas originales suministradas por el fabricante. El equipo WEG está a disposición para un pronto atendimiento, así como para auxiliar en la identificación correcta de los componentes.

Asistencia Técnica

WEG pone a disposición de sus clientes, servicios de asistencia técnica, responsables por todo el soporte posventa. Hacen parte de estos servicios:

- Atención sobre consultas en general
- Soporte técnico a los clientes con respecto a cuestiones de almacenamiento, operación y mantenimiento
- Diagnóstico de la máquina
- Supervisión de montaje
- Puesta en marcha de máquinas y start-up
- Guardia 24h

La red de asistencia técnica de WEG está presente en todo el mundo, con un equipo entrenado y experimentado, capaz de lidiar con las situaciones de campo más diversas y brindar soporte remoto con equipamientos de última generación, brindando confiabilidad a los resultados.

Servicios

Para recuperar máquinas eléctricas de medio y gran porte, cuente con el equipo de servicios WEG. La misma tecnología utilizada para fabricar motores y generadores es utilizada para revisión y recuperación. Los servicios son ejecutados en campo (en el las instalaciones del propio cliente) o en las dos fábricas: Jaraguá do Sul (Brasil), São Bernardo do Campo (Brasil) y Sertãozinho (Brasil), que también está homologada para ejecución de servicios aplicados en equipos para uso en atmósferas explosivas. En estas fábricas están disponibles todos los procedimientos y el soporte de las áreas de ingeniería, procesos industriales y control de calidad, ejecutando los servicios con rapidez y calidad.

Atención a **productos de la marca WEG** y otras marcas:

- Motores y generadores de corriente continua
- Motores de inducción trifásicos (jaula o anillos, media y alta tensión)
- Motores síncronos (con o sin escobillas, media y alta tensión)
- Compensadores síncronos
- Turbogeneradores
- Hidrogeneradores
- Aerogeneradores
- Turbinas de vapor
- Turbinas hidráulicas
- Alternadores

Servicios WEG: flexibilidad, rapidez y experiencia para que usted optimice su tiempo y su productividad.

Garantía

Estos productos, cuando son operados en las condiciones estipuladas por WEG en los manuales de operación de cada producto, tienen garantía contra defectos de fabricación y de materiales por un período de doce (12) meses contados a partir del comienzo de operación o dieciocho (18) meses de la fecha de fabricación, lo que primero ocurrir.

La flexibilidad productiva de WEG permite llegar a los mercados (segmentos, productos y regiones geográficas) que ofrecen las mejores perspectivas de crecimiento y mercados con mejores rendimientos.

DIVERSIFICACIÓN

Para las operaciones
WEG en todo el mundo
visite puestro sitio web

www.weg.net

energia@weg.net

