Ethernet

SCA06

Manual do Usuário

Manual do Usuário - Ethernet

Série: SCA06 Idioma: Português Nº do Documento: 10003986896 / 00 Build 529

Data de publicação: 09/2016

Sumário

Sc	bbre o Manual	6
1	Características do Equipamento em Rede Ethernet	7
	1.1 Características específicas para Modbus TCP	7
	1.2 Características específicas para EtherNet/IP	7
	1.3 Características específicas para PROFINET IO	7
<u>م</u>	Vieño Coval ochva Ethernot	0
2	Visao Geral sobre Ethernet	8
		0
3	Descrição da Interface	9
	3.1 Acessório Ethernet	9
	3.2 Conectores	9
	3.3 LEDs de Indicação	9
4	Instalação em Rede	11
	4.1 Endereço IP	11
	4.2 Taxa de Comunicação	11
	4.3 Cabo	11
	4.4 Topologia da Rede	12
	4.5 Recomendações para Aterramento e Passagem dos Cabos	13
5	Parametrização	11
5	5.1 Símbolos para Deserição dos Propriodados	14 1/
	DO202 Mede de Operação	14 14
	P0202 - Miouo de Operação	14 14
	P0002 - Ação para Erro de Comunicação	14
	P0800 – Identificação do Modulo Ethernet	15
	P0801 – Estado da Comunicação Ethernet	10
	P0803 – Taxa de Comunicação Elhemet	10
	P0806 – Watchdog Modbus TCP	10
		17
		17
	P0812 – Endereço IP 2	17
		17
		17
	P0815 – CIDR Sub-rede	17
	P0816 – Gateway 1	18
	P0817 – Gateway 2	18
	P0818 – Gateway 3	18
	P0819 – Gateway 4	18
	P0820 P0831 – Palavras de Leitura Ethernet #5 #16	18
	P0835 P0846 – Palavras de Escrita Ethernet #5 #16	19
	P0849 – Atualiza Configuração Ethernet	20
6	Palavras de I/O com Função Específica	22
	6.1 Palavras de Entrada – Input (Escravo \rightarrow Mestre)	22
	6.1.1 1ª – Palavra de Estado	22
	6.1.2 2ª – Velocidade do Motor	22
	6.1.3 3ª – Corrente de Torque	23

		6.1.4	4 ^a – Modo de Controle Atual	23
	6.2	.2 Palavras de Saída – Output (Mestre \rightarrow Escravo) 23		
		6.2.1	1 ^a – Palavra de Controle	23
		6.2.2	2 ^a – Referência de Velocidade	24
		6.2.3	3 ^a – Referência de Torque	24
		6.2.4	4 ^a – Modo de Controle	24
7	Mod	dhue TC		25
'	7 1		vr	25
	7.1	Eupoõ		20
	7.2	Fulço	de Memória	20
	1.3			20
		7.3.1	Parametros	25
		7.3.2		26
	7.4	Erros c		26
	1.5	Coloca		27
		7.5.1	Instalação do Modulo Ethernet	27
		7.5.2	Configuração do Equipamento	27
		7.5.3	Configuração do Mestre	28
		7.5.4	Estado da Comunicação	28
		7.5.5	Operação Utilizando Dados de Processo	28
8	Ethe	erNet/IF)	29
	8.1	LEDs o	de indicação	29
	8.2	Dados	Cíclicos	29
	8.3	Dados	Acíclicos	29
	8.4	Arquivo	DEDS	29
	8.5	Conex	ões Modbus TCP	30
	8.6	Coloca	ção em Operação	30
		8.6.1	Instalação do Módulo Ethernet	30
		8.6.2	Configuração do Equipamento	30
		8.6.3	Configuração do Mestre	30
		8.6.4	Estado da Comunicação	31
		8.6.5	Operação Utilizando Dados de Processo	31
9	PR			32
Ū	91	I FDs c	le indicação	32
	92	Dados	Cíclicos	32
	9.3	Dados	Acíclicos	32
	9.4	Arquiv	xMI – GSDMI	33
	9.5	Conex	ões Modbus TCP	33
	9.6	Coloca	icão em Operação	33
	0.0	961	Instalação do Módulo Ethernet	33
		962	Configuração do Equipamento	33
		963	Configuração do Mestre	33
		9.0.0	Estado da Comunicação	34
		965	Operação Litilizando Dados de Processo	34
	_	0.0.0		04
10	Ser	vidor W	ЕВ	35
11	Fall	nas e Ala	armes	36
	F004	17/A014	7 - Ethernet Offline	36

F0048/A0148 - Erro de acesso à interface Ethernet 3	36
---	----

SOBRE O MANUAL

Este manual fornece a descrição necessária para a operação do servoconversor SCA06 utilizando a interface Ethernet. Este manual deve ser utilizado em conjunto com o manual do usuário e manual de programação do SCA06.

1 CARACTERÍSTICAS DO EQUIPAMENTO EM REDE ETHERNET

A seguir são listadas as principais características do acessório para comunicação Ethernet do servoconversor SCA06.

- Existem 3 acessórios diferentes, conforme protocolo de comunicação especificado:
 - ECO5: protocolo EtherNet/IP.
 - ECO6: protocolo Modbus TCP.
 - ECO7: protocolo PROFINET IO.
- Interface segue o padrão Fast Ethernet 100BASE-TX.
- Possibilita comunicação utilizando taxas de 10 ou 100 Mbps, em modo half ou full duplex.
- Possui um switch Ethernet de duas portas incorporado.
- As portas Ethernet funcionam com Auto-MDIX (automatic medium-dependent interface crossover), uma tecnologia que detecta automaticamente o tipo de cabo utilizado e configura a conexão de acordo, tornando desnecessária a utilização de cabos cruzados.
- Implementa um servidor Web (HTTP).

1.1 CARACTERÍSTICAS ESPECÍFICAS PARA MODBUS TCP

- Permite ao equipamento operar como servidor para comunicação Modbus TCP.
- O servidor disponibiliza até 4 conexões Modbus TCP simultâneas.
- Permite comunicação de dados para operação e para parametrização do equipamento, bem como marcadores e dados utilizados para programação em ladder do SCA06.

1.2 CARACTERÍSTICAS ESPECÍFICAS PARA ETHERNET/IP

- É fornecido juntamente com arquivo EDS para configuração do mestre da rede.
- Permite comunicação de até 16 words de entrada mais 16 words de saída para dados cíclicos.
- Disponibiliza dados acíclicos para parametrização.
- Suporta topologia linear e Device Level Ring (DLR).
- Disponibiliza até 2 conexões Modbus TCP.

1.3 CARACTERÍSTICAS ESPECÍFICAS PARA PROFINET IO

- É fornecido juntamente com arquivo XML para configuração do mestre da rede.
- Permite comunicação de até 16 palavras de entrada mais 16 palavras de saída para dados cíclicos.
- Disponibiliza dados acíclicos para parametrização.
- Disponibiliza até 2 conexões Modbus TCP.

2 VISÃO GERAL SOBRE ETHERNET

A seguir são apresentadas informações gerais sobre a tecnologia Ethernet.

2.1 TECNOLOGIA ETHERNET

Ethernet é uma tecnologia de interconexão para redes locais - Rede de Área Local (LAN) - baseada no envio de pacotes. Ela define cabeamento e sinais elétricos para a camada física, além do formato de pacotes e protocolos para a camada de controle de acesso ao meio (Media Access Control - MAC) do modelo OSI.

Ethernet, no entanto, define principalmente o meio físico e o formato dos pacotes. Baseado em Ethernet, diversos protocolos e serviços de mais alto nível foram especificados e desenvolvidos, de forma a permitir a realização das atividades desejadas via rede, como roteamento de pacotes, estabelecimento de conexão, transmissão e recepção de arquivos, etc. Vários destes protocolos também foram amplamente difundidos e utilizados, como IP, TCP, UDP, FTP, HTTP.

Amplamente utilizada para interconexão entre computadores no ambiente de escritório, a tecnologia Ethernet também começou a ser empregada em ambientes industriais para interconexão de equipamentos de campo. Para o ambiente industrial, também surgiram diferentes protocolos de comunicação baseados em Ethernet, dentre os quais pode-se citar Modbus TCP, EtherNet/IP, PROFINET.

3 DESCRIÇÃO DA INTERFACE

O servoconversor SCA06 utiliza um acessório para disponibilizar uma interface Ethernet para comunicação.

3.1 ACESSÓRIO ETHERNET

- Itens fornecidos no conjunto: – Bula de instalação.
 - Acessório Ethernet.

NOTA!

Existem 3 acessórios diferentes, conforme protocolo de comunicação especificado:

- ECO5: protocolo EtherNet/IP.
- ECO6: protocolo Modbus TCP.
- ECO7: protocolo PROFINET IO.

É importante que o modelo do acessório utilizado possua o protocolo desejado para a aplicação.

3.2 CONECTORES

O acessório para comunicação Ethernet possui dois conectores RJ45 para ligação com a rede. A pinagem do conector segue o padrão Fast Ethernet 100BASE-TX, utilizando dois pares de cabos para transmissão e recepção de dados.

As carcaças dos conectores Ethernet, que normalmente se conectam à blindagem do cabo, possuem ligação entre si, e ao terra de proteção através de um circuito RC.

3.3 LEDS DE INDICAÇÃO

O acessório Ethernet possui LEDs de indicação nas portas Ethernet, além de um LED bicolor de status. Este LED possui as seguintes funções e indicações:

Tabela 3.1: LEDs de indicação Ethernet

LED	Cor	Função
Link	Verde	LED de indicação de Link e Atividade.
Network Status (NS)	Bicolor (Verde/Vermelho)	Estado da rede. Possui comportamento diferente em função do proto- colo de comunicação utilizado, que é descrito no capítulo específico para cada protocolo.

Tabela 3.2: LED Link

Estado	Descrição
Apagado	Sem link ou equipamento desligado.
Verde sólido	Com link, sem atividade.
Verde piscando	Com link e com atividade.

4 INSTALAÇÃO EM REDE

Neste capítulo são apresentadas recomendações relacionadas à instalação do equipamento em rede Ethernet.

4.1 ENDEREÇO IP

Todo equipamento em uma rede Ethernet necessita de um endereço IP e de uma máscara de sub-rede.

O endereçamento IP é único na rede, e cada equipamento deve possuir um endereço IP diferente. A máscara da sub-rede serve para definir quais faixas de endereço IP são válidas na rede.

O servoconversor SCA06 permite a utilização de dois métodos para programação destas características, programável através do P0810:

- DHCP: habilita a configuração do SCA06 via servidor DHCP. O servidor DHCP pode atribuir automaticamente endereços IP, máscara de sub-rede, etc. aos equipamentos na rede. As configurações feitas nos parâmetros são desconsideradas.
- Parâmetros: utiliza as configurações de endereço IP, máscara e gateway conforme programado nos parâmetros do equipamento.

NOTA!

Após alteração destas propriedades, para que as modificações tenham efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

4.2 TAXA DE COMUNICAÇÃO

A interface Ethernet do servoconversor SCA06 pode comunicar utilizando as taxas de 10 ou 100 Mbps, em modo half ou full duplex.

A taxa de comunicação é definida através do parâmetro P0803.

- É importante que, para cada conexão Ethernet realizada entre dois pontos, a taxa de comunicação e o modo duplex sejam definidos com a mesma configuração. Se a opção utilizada for AUTO em um dos pontos, deve-se programar o outro ponto também para a opção AUTO, ou então para o modo half duplex.
- Para a interface PROFINET IO, a taxa de comunicação é fixa em 100 Mbps conforme exigido pelo protocolo.

4.3 CABO

Características recomendadas para o cabo utilizado na instalação:

- Cabo padrão Ethernet, 100Base-TX (FastEthernet), CAT 5e ou superior.
- Utilizar cabo blindado.
- Comprimento máximo para conexão entre equipamentos: 100 m.

Para realizar a instalação, recomenda-se a utilização de cabos Ethernet blindados específicos para a utilização em ambiente industrial.

4.4 TOPOLOGIA DA REDE

Para a ligação do servoconversor SCA06 em rede Ethernet, normalmente é feita a ligação em estrela, utilizando um switch industrial.

Figura 4.1: Topologia estrela

Também é possível fazer a ligação em cadeia (daisy chain), permitindo uma topologia equivalente a um barramento.

Figura 4.2: Topologia daisy chain

NOTA!

Ao desligar o equipamento, o switch incorporado também é desativado, impedindo a comunicação com os equipamentos subsequentes.

Um switch com suporte a tecnologia de redundância possibilita a utilização da topologia em anel.

Figura 4.3: Topologia anel

4.5 RECOMENDAÇÕES PARA ATERRAMENTO E PASSAGEM DOS CABOS

A conexão correta com o terra diminui problemas causados por interferência em um ambiente industrial. A seguir são apresentadas algumas recomendações a respeito do aterramento e passagem de cabos:

- Sempre utilizar cabos Ethernet com blindagem, bem como conectores com invólucro metálico.
- Fazer a ligação do terra ao equipamento, via borne de aterramento. Evitar a conexão do cabo em múltiplos pontos de aterramento, principalmente onde houver terras de diferentes potenciais.
- Passar cabos de sinal e comunicação em vias dedicadas. Evitar a passagem destes cabos próximo aos cabos de potência.

5 PARAMETRIZAÇÃO

Neste capítulo são descritos os parâmetros do servoconversor SCA06 que possuem relação direta com a comunicação Ethernet.

5.1 SÍMBOLOS PARA DESCRIÇÃO DAS PROPRIEDADES

- RO Parâmetro somente de leitura
- **RW** Parâmetro de leitura e escrita

DO202 MODO DE ODERAÇÃO

- CFG Parâmetro somente alterado com o motor parado
- **ETH** Parâmetro visível através da HMI se o produto possuir interface Ethernet instalada

FUZUZ - MODO DE OFERAÇÃO		
Faixa de	1 = Modo Torque	Padrão: 2
Valores:	2 = Modo Velocidade	
	3 = Reservado	
	4 = Modo Ladder	
	5 = CANopen/DeviceNet/EtherCAT	
	6 = Profibus DP/Ethernet	
Propriedades:	RW	

Descrição:

Este parâmetro define o modo de operação do servoconversor SCA06, permitindo programar qual variável deseja-se controlar no motor e a fonte de comandos para execução das funções.

Para que o equipamento seja controlado através da rede Ethernet, é necessário utilizar o modo 6 = Ethernet. Caso este modo esteja programado, comandos e referências para operação do produto serão dados via rede Ethernet.

- O controle do equipamento através dos objetos para drives somente é possível selecionando-se a opção desejada neste parâmetro, mas a comunicação Ethernet pode ser utilizada em qualquer modo de operação.
- A interface Ethernet permite o controle de velocidade e torque do servoconversor SCA06. Para realizar funções de posicionamento, deve-se utilizar o modo de operação Ladder, elaborando um programa aplicativo em ladder e utilizando parâmetros do usuário como interface com o mestre da rede para controle e monitoração do equipamento.

P0662 – AÇÃO PARA ERRO DE COMUNICAÇÃO

Faixa de	0 = Mostra Alarme	Padrão: 0
Valores:	1 = Gera Falha	
	2 = Executa função STOP	
	3 = Desabilita drive	
Propriedades:	RW	

Descrição:

Este parâmetro permite selecionar qual a ação deve ser executada pelo equipamento, caso ele seja controlado via rede e um erro de comunicação seja detectado.

Tabela 5.1: Opções para o parâmetro P0662

Opção	Descrição
0 = Mostra Alarme	Apenas indica alarme na HMI em caso de erro de comunicação. Se a comunicação for restabelecida, a indicação de alarme é retirada automaticamente.
1 = Causa Falha	No lugar de alarme, um erro de comunicação causa uma falha no equipamento, sendo necessário fazer o reset de falhas para o retorno da sua operação normal.
2 = Executa função STOP	Será feita a indicação de alarme juntamente com a execução do comando STOP. Para que o drive saia desta condição, será necessário realizar o reset de falhas ou desabilitar o drive.
3 = Desabilita drive	Será feita a indicação de alarme juntamente com a execução do comando desabilita.

São considerados erros de comunicação os seguintes eventos:

Comunicação Ethernet:

- Alarme A0147/Falha F0047: Erro de comunicação com mestre Ethernet.
- Alarme A0148/Falha F0048: Erro na interface Ethernet.

P0800 – IDENTIFICAÇÃO DO MÓDULO ETHERNET

Faixa de	0 = Não identificado	Padrão: -
Valores:	1 = Modbus TCP	
	2 = EtherNet/IP	
	3 = PROFINET IO	
Propriedades:	RO, ETH	

Descrição:

Permite identificar o tipo do módulo Ethernet conectado ao equipamento.

Tabela 5.2: Indicações do parâmetro P0800

Indicação	Descrição
0 = Não identificado	Módulo não conectado / não identificado.
1 = Modbus TCP	Módulo para comunicação Ethernet com protocolo Modbus TCP.
2 = EtherNet/IP	Módulo para comunicação Ethernet com protocolo EtherNet/IP.
3 = PROFINET IO	Módulo para comunicação Ethernet com protocolo PROFINET IO.

P0801 – ESTADO DA COMUNICAÇÃO ETHERNET

Faixa de	0 = Setup	Padrão: -
Valores:	1 = Init	
	2 = Wait Comm	
	3 = Idle	
	4 = Data Active	
	5 = Error	
	6 = Reservado	
	7 = Exception	
	8 = Access Error	
Propriedades:	RO, ETH	

Descrição:

Permite identificar o estado da comunicação Ethernet.

Tabela 5.3: Indicações do parâmetro P0801

Indicação	Descrição
0 = Setup	Módulo identificado, aguardando dados de configuração (automático).
1 = Init	Módulo realizando procedimento de inicialização da interface (automático).
2 = Wait Comm	Módulo inicializado, mas sem comunicação com o mestre da rede.
3 = Idle	Comunicação com o mestre da rede estabelecida, mas em modo Idle ou programação.
4 = Data Active	Comunicação com o mestre da rede estabelecida, e dados de I/O sendo comunicado com sucesso. "Online".
5 = Error	Detectado erro de comunicação.
6	Reservado
7 = Exception	Erro grave na interface de comunicação. Requer reinicialização da interface Ethernet.
8 = Access Error	Erro no acesso entre o equipamento e a interface Ethernet. Requer reinicialização da interface Ethernet.

P0803 – TAXA DE COMUNICAÇÃO ETHERNET

Faixa de	0 = Auto	Padrão: 0
Valores:	1 = 10Mbit/s, half duplex	
	2 = 10Mbit/s, full duplex	
	3 = 100Mbit/s, half duplex	
	4 = 100Mbit/s, full duplex	
Propriedades:	RW, ETH	

Descrição:

Permite ajustar a taxa de comunicação desejada para a interface Ethernet.

NOTA!

- Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.
- Para a interface PROFINET, a taxa de comunicação é fixa em 100Mbit/s conforme exigido pelo protocolo.

P0806 – WATCHDOG MODBUS TCP

Faixa de Valores:	0,0 a 65,5 s	Padrão: 0,0
Propriedades:	RW, ETH	

Descrição:

Permite programar um tempo para a detecção de erro de comunicação via interface Ethernet para o protocolo Modbus TCP. Caso o SCA06 fique sem receber telegramas válidos por um tempo maior do que o programado neste parâmetro, será considerado que ocorreu um erro de comunicação, mostrado A147 na HMI e a ação programada no P0662 será executada.

Depois de energizado, o SCA06 começará a contar este tempo a partir do primeiro telegrama válido recebido. O valor 0,0 desabilita esta função.

NOTA!

Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0810 – CONFIGURAÇÃO DO ENDEREÇO IP

Faixa de	0 = Parâmetros	Padrão: 1
Valores:	1 = DHCP	
Propriedades:	RW, ETH	

Descrição:

Permite programar como deve ser a configuração do endereço IP para o módulo Ethernet.

Tabela 5.4: Opções para o parâmetro P0810

Opção	Descrição
0 = Parâmetros	A programação do endereço IP, configurações da máscara da sub-rede e gateway, deve ser feita através dos parâmetros P0811 à P0819.
1 = DHCP	Habilita a função DHCP. O endereço IP e demais configurações de rede são recebidos de um servidor DHCP via rede.

NOTA!

Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0811 – ENDEREÇO IP 1

P0812 – ENDEREÇO IP 2

P0813 - ENDEREÇO IP 3

P0814 – ENDEREÇO IP 4

Faixa de Valores:	0 255	Padrão: 192.168.0.10
Propriedades:	RW, ETH	

Descrição:

Caso seja programado P0810 = 0 (Parâmetros), estes parâmetros permitem programar o endereço IP do módulo Ethernet. Para outra opção do P0810, estes parâmetros não possuem função.

Cada parâmetro programa um octeto do endereço IP, onde o P0811 é o octeto mais significativo. O endereço IP programado, então, possui o formato "P0811.P0812.P0813.P0814".

NOTA!

Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0815 – CIDR SUB-REDE								
Faixa de	1 31		Padrão: 24					
Valores:								
Propriedades:	RW, ETH							

Descrição:

Caso seja programado P0810 = 0 (Parâmetros), este parâmetro permite programar a máscara da sub-rede utilizada pelo módulo Ethernet. A máscara da sub-rede normalmente pode ser programada utilizando uma notação com 4 octetos separados por ponto, ou a notação CIDR, onde o valor programado representa a quantidade de bits com valor "1" na máscara da sub-rede. Para outra opção do P0810, este parâmetro não possui função.

A tabela a seguir mostra os valores permitidos para o CIDR e a notação com separação por pontos equivalente para a máscara da sub-rede:

CIDR	Máscara da Sub-rede	CIDR	Máscara da Sub-rede
1	128.0.0.0	17	255.255.128.0
2	192.0.0.0	18	255.255.192.0
3	224.0.0.0	19	255.255.224.0
4	240.0.0.0	20	255.255.240.0
5	248.0.0.0	21	255.255.248.0
6	252.0.0.0	22	255.255.252.0
7	254.0.0.0	23	255.255.254.0
8	255.0.0.0	24	255.255.255.0
9	255.128.0.0	25	255.255.255.128
10	255.192.0.0	26	255.255.255.192
11	255.224.0.0	27	255.255.255.224
12	255.240.0.0	28	255.255.255.240
13	255.248.0.0	29	255.255.255.248
14	255.252.0.0	30	255.255.255.252
15	255.254.0.0	31	255.255.255.254
16	255.255.0.0		

Tabela 5.5: Opções para o parâmetro P0815

NOTA!

Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0816 - GATEWAY 1

P0817 - GATEWAY 2

P0818 - GATEWAY 3

P0819 - GATEWAY 4

Faixa de Valores:	0 255	Padrão: 0.0.0.0
Propriedades:	RW, ETH	

Descrição:

Caso seja programado P0810 = 0 (Parâmetros), estes parâmetros permitem programar o endereço IP do gateway padrão utilizado pelo módulo Ethernet. Para outra opção do P0810, estes parâmetros não possuem função.

Cada parâmetro programa um octeto do endereço do gateway, onde o P0816 é o octeto mais significativo. O endereço IP do gateway programado, então, possui o formato "P0816.P0817.P0818.P0819".

NOTA!

Após alteração desta propriedade, para que a modificação tenha efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0820 ... P0831 - PALAVRAS DE LEITURA ETHERNET #5 ... #16

Faixa de	0 9999	Padrão: 0
Valores:		
Propriedades:	RW, ETH	

Descrição:

Permite programar a quantidade de palavras de leitura (input: escravo → mestre) recebidas pelo mestre da rede, bem como o conteúdo de cada palavra.

As quatro primeiras palavras de leitura estão pré-definidas, representando o valor das palavras de estado, velocidade do motor, corrente de torque e modo de controle atual (consulte o item 6.1), e sempre são enviadas para o mestre da rede. As palavras de #5 até #16 podem ser programadas pelo usuário. Utilizando os parâmetros P0820 à P0831, é possível programar o número de um outro parâmetro cujo conteúdo deve ser disponibilizado na área de leitura do mestre da rede. Por exemplo, caso se deseje ler do servoconversor SCA06 a corrente do motor em amperes, deve-se programar em algum dos parâmetros o valor 3, pois o parâmetro P0003 é o parâmetro que contém esta informação. Vale lembrar que o valor lido de qualquer parâmetro é representado com uma palavra de 16 bits. Mesmo que o parâmetro possua resolução decimal, o valor é transmitido sem a indicação das casas decimais. Por exemplo, se o parâmetro P0003 possuir o valor 4.7 A, o valor fornecido via rede será 47.

A quantidade de palavras de leitura é definida programando o valor zero no parâmetro seguinte ao último parâmetro desejado para comunicação. Além das quatro palavras de leitura pré-definidas, também será adicionado à área de leitura as palavras programadas nestes parâmetros, caso o conteúdo programado para estes parâmetros seja diferente de zero. O primeiro parâmetro programado como zero desabilita a utilização dele e dos demais parâmetros na sequência. Por exemplo, se for programado P0820 = 0, somente as quatro palavras de leitura pré-definidas (estado, velocidade, corrente de torque e modo de controle) serão comunicados com o mestre.

Tabela 5.6: Programação das palavras de leitura

A mesma quantidade de palavras programadas no equipamento deve ser programada no mestre durante a configuração da rede.

Para comunicação Modbus TCP, estes parâmetros não possuem função, uma vez que a comunicação não é baseada em dados de leitura e sim acessando diretamente os parâmetros do produto.

NOTA!

Caso deseje-se alterar a quantidade de palavras de entrada, para que as modificações tenham efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0835 ... P0846 - PALAVRAS DE ESCRITA ETHERNET #5 ... #16

Faixa de	0 9999	Padrão: 0
Valores:		
Propriedades:	RW, ETH	

Descrição:

Permite programar a quantidade de palavras de escrita (output: escravo \rightarrow mestre) enviadas pelo mestre da rede, bem como o conteúdo de cada palavra.

As quatro primeiras palavras de escrita estão pré-definidas, representando o valor das palavras de controle, referência de velocidade, referência de torque e modo de controle (consulte o item 6.2), e sempre são escritas pelo mestre da rede. As palavras de #5 até #16 podem ser programadas pelo usuário. Utilizando os parâmetros P0835 à P0846, é possível programar o número de um outro parâmetro cujo conteúdo deve ser disponibilizado na área de escrita pelo mestre da rede. Por exemplo, caso se deseje escrever no servoconversor SCA06 a rampa da função STOP, deve-se programar em algum dos parâmetros o valor 105, pois o parâmetro P0105 é o parâmetro onde esta informação é programada. Vale lembrar que o valor escrito de qualquer parâmetro é representado com uma palavra de 16 bits. Mesmo que o parâmetro possua resolução decimal, o valor é transmitido sem a indicação das casas decimais. Por exemplo, caso deseje-se programar o parâmetro P0105 com o valor 5,0s, o valor programado via rede deverá ser 50.

A quantidade de palavras de escrita é definida programando o valor zero no parâmetro seguinte ao último parâmetro desejado para comunicação. Além das quatro palavras de escrita pré-definidas, também será adicionado à área de escrita as palavras programadas nestes parâmetros, caso o conteúdo programado para estes parâmetros seja diferente de zero. O primeiro parâmetro programado como zero desabilita a utilização dele e dos demais parâmetros na sequência. Por exemplo, se for programado P0835 = 0, somente as quatro palavras de escrita pré-definidas (controle, referência de velocidade, referência de torque e modo de controle) serão comunicados com o mestre.

Tabela 5.7: Programação das palavras de escrita

A mesma quantidade de palavras programadas no equipamento deve ser programada no mestre durante a configuração da rede.

Para comunicação Modbus TCP, estes parâmetros não possuem função, uma vez que a comunicação não é baseada em dados de escrita e sim acessando diretamente os parâmetros do produto.

NOTA!

Caso deseje-se alterar a quantidade de palavras de entrada, para que as modificações tenham efeito, o equipamento deve ser desligado e ligado novamente, ou então deve ser realizada a atualização das configurações Ethernet através do P0849.

P0849 – ATUALIZA CONFIGURAÇÃO ETHERNET

Faixa de	0 = Operação Normal	Padrão: 0
Valores:	1 = Atualiza Configuração	
Propriedades:	RW, ETH	

Descrição:

Permite forçar uma reinicialização da interface Ethernet, para que as configurações feitas nos parâmetros sejam atualizadas. Ao programar este parâmetro com o valor "1", a interface Ethernet é reinicializada, implicando em perda da comunicação durante este processo. Após concluído o processo, este parâmetro automaticamente assume o valor "0".

6 PALAVRAS DE I/O COM FUNÇÃO ESPECÍFICA

O servoconversor SCA06 pode comunicar de 4 até 16 palavras de entrada/saída (I/O). As quatro primeiras palavras de I/O possuem função pré-definida, cujos formatos e funções são descritos a seguir.

6.1 PALAVRAS DE ENTRADA – INPUT (ESCRAVO ightarrow MESTRE)

6.1.1 1^a – Palavra de Estado

Palavra que indica o estado do equipamento, fornecendo informações sobre habilitação, falhas, etc.

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Função	Fim de Curso Anti- Horário Ativo	Fim de Curso Horário Ativo				reservado			Em Alarme	Função de Segurança Ativa	Em Stop	Potência Energizada	Em Falha	Habilitado		

Tabela 6.1: Funções dos bits para a palavra de estado específica do SCA06

Bit	Valor/Descrição
Bit 0 1	Reservado
Bit 2	0: Drive desabilitado.
Habilitado	1: Drive habilitado, esta acionando motor conforme modo de controle.
Bit 3	0: Sem falha no drive.
Em Falha	1: Drive em estado de falha.
Bit 4	0 : Sem alimentação no circuito de potência ou em subtensão.
Potência Energizada	1: Circuito de potência do drive plenamente energizado, pronto para habilitar.
Bit 5	0: Função STOP inativa.
Em Stop	1: Função STOP ativa.
Bit 6	0: Função parada de segurança (STO) inativa.
Parada de Segurança Ativa	1: Função parada de segurança (STO) ativa.
Bit 7	0: Sem alarme.
Em Alarme	1: Drive com algum alarme ativo.
Bit 8 13	Reservado
Bit 14	0: Sem sinal de fim de curso horário.
Fim de Curso Horário Ativo	1: Sinal de fim de curso horário foi ativado.
Bit 15	0: Sem sinal de fim de curso anti-horário.
Fim de Curso Anti-Horário	1: Sinal de fim de curso anti-horário foi ativado.
Ativo	

6.1.2 2^a – Velocidade do Motor

Palavra que indica a velocidade do motor. Velocidade do motor específica do SCA06, onde o valor 7FFFh (32767) equivale à uma rotação de 18750 rpm. Valores negativos representam o motor girando no sentido anti-horário.

NOTA!

Nesta palavra, é indicado o valor da velocidade instantânea, sem filtro. Por este motivo, é normal que o valor lido fique oscilando em torno do ponto de operação.

6.1.3 3^a – Corrente de Torque

Palavra que indica a corrente de torque, proporcional à corrente do equipamento que gera torque. A indicação é feita em amperes (A), com uma casa decimal de resolução. Exemplo: se o valor da corrente for 4,7A, o valor lido via rede será 47. Valores negativos representam corrente de torque negativa.

6.1.4 4^a – Modo de Controle Atual

Indica qual o modo de controle selecionado para equipamento:

Bit	15 14 13 12 11 10 9 8 7 6 5 4	3 2 1 0
Função	Reservado	Modo de Controle

Tabela 6.2: Funções dos bits para o modo de controle do SCA06

Bit	Valor/Descrição
Bit 0 3	Define o modo de controle atual do equipamento:
Modo de controle	0: Modo torque.
	1: Modo velocidade.
	3: Modo posição.
Bit 4 15	Reservado

6.2 PALAVRAS DE SAÍDA – OUTPUT (MESTRE ightarrow ESCRAVO)

6.2.1 1^a – Palavra de Controle

Palavra que permite o envio de comando para o equipamento. Somente é utilizada pelo SCA06 se o modo de operação for programado para Ethernet (P0202 = 6).

Bit	15 14 13 12 11 10 9 8	7	6 5 4	3	2	1 0
Função	Reservado	Reset de Falhas	Reservado	Habilita	Aciona STOP	Reservado

Bit	Valor/Descrição
Bit 0 1	Reservado
Bit 2 Aciona STOP	0: Sem função STOP. 1: Aciona função STOP.
Bit 3 Habilita	0: Desabilita drive. 1: Habilita Drive.
Bit 4 6	Reservado
Bit 7 Reset de Falhas	0 : Sem função. 0 \rightarrow 1 : Faz reset de falhas do equipamento.
Bit 8 15	Reservado

6.2.2 2ª – Referência de Velocidade

Palavra para programação da referência de velocidade do motor. Velocidade do motor específica do SCA06, onde o valor 7FFFh (32767) equivale à uma rotação de 18750 rpm. Valores negativos representam referência no sentido anti-horário.

6.2.3 3ª – Referência de Torque

Palavra que permite programar a referência para a corrente de torque do servomotor. A referência é programada em amperes (A), com uma casa decimal de resolução. Exemplo: ao enviar o valor 47, o drive irá assumir uma referência de igual a 4,7A. Valores negativos representam referência de corrente negativa.

6.2.4 4^a – Modo de Controle

Permite programar o modo de controle do equipamento:

Bit	15	14	13	12	11	10	6)	8	7	6	5	4	3	2		1	0
Função							Reservado									Modo de Controle		

Tabela 6.4: Funções dos bits para o modo de controle do SCA06

Bit	Valor/Descrição
Bit 0 3	Define o modo de controle atual do equipamento:
Modo de controle	0: Modo torque.
	1: Modo velocidade.
	Demais valores são reservados.
Bit 4 15	Reservado

NOTA!

A interface Ethernet permite controle de velocidade e torque do servoconversor SCA06. Para realizar funções de posicionamento, deve-se utilizar o modo de operação Ladder, elaborando um programa aplicativo em ladder e utilizando parâmetros do usuário como interface com o mestre da rede para controle e monitoração do equipamento.

7 MODBUS TCP

Neste capítulo são apresentadas características de operação do servoconversor SCA06 utilizando o acessório para comunicação como servidor Modbus TCP.

7.1 LEDS DE INDICAÇÃO

O LED NS presente no acessório Ethernet, para o protocolo Modbus TCP, possui as seguintes indicações:

Estado	Descrição
Apagado	Sem endereço IP ou equipamento desligado.
Verde sólido	Conexão estabelecida.
Verde piscando	Aguardando conexão.
Vermelho sólido	Endereço IP inválido/duplicado, ou erro fatal (reiniciar interface).
Vermelho piscando	Timeout na comunicação Modbus.

Tabela 7.1: LED Network Status (NS)

7.2 FUNÇÕES DISPONÍVEIS

Na especificação do protocolo Modbus são definidas funções utilizadas para acessar diferentes tipos de dados. No SCA06, para acessar estes dados, foram disponibilizados os seguintes serviços (ou funções):

Código	Nome	Descrição
01	Read Coils	Leitura de bloco de bits do tipo coil.
02	Read Discrete Inputs	Leitura de bloco de bits do tipo entradas discretas.
03	Read Holding Registers	Leitura de bloco de registradores do tipo holding.
04	Read Input Registers	Leitura de bloco de registradores do tipo input.
05	Write Single Coil	Escrita em um único bit do tipo coil.
06	Write Single Register	Escrita em um único registrador do tipo holding.
15	Write Multiple Coils	Escrita em bloco de bits do tipo coil.
16	Write Multiple Registers	Escrita em bloco de registradores do tipo holding.
43	Read Device Identification	Identificação do modelo do dispositivo.

Tabela 7.2: Funções Modbus Suportadas

7.3 MAPA DE MEMÓRIA

O servoconversor SCA06 possui diferentes tipos de dados acessíveis através da comunicação Modbus. Estes dados são mapeados em endereços de dados e funções de acesso conforme descrito nos itens seguintes.

7.3.1 Parâmetros

A comunicação Modbus para o servoconversor SCA06 é baseada na leitura/escrita de parâmetros do equipamento. Toda a lista de parâmetros do equipamento é disponibilizada como registradores de 16 bits do tipo holding. O endereçamento dos dados é feito com offset igual a zero, o que significa que o número do parâmetro equivale ao endereço do registrador. A tabela a seguir ilustra o endereçamento dos parâmetros, que podem ser acessados como registradores do tipo holding:

Parâmetro	Endereço Modbus (decimal)
P0000	0
P0001	1
÷	:
P0100	100
:	

Tabela 7.3: Acesso aos Parâmetros - Holding Registers

Para a operação do equipamento, é necessário então conhecer a lista de parâmetros do produto. Desta forma pode-se identificar quais dados são necessários para monitoração dos estados e controle das funções. Dentre os principais parâmetros pode-se citar:

Monitoração (leitura):

- P0002 (holding register 2): Velocidade do motor
- P0052 (holding register 52): Fração de volta ref. do usuário

Comando (escrita):

- P0099 (holding register 99): Habilitação
- P0121 (holding register 121): Referência de velocidade
- P1100 (holding register 1100): Parâmetro do usuário 1100

Consulte o manual de programação para a lista completa de parâmetros do equipamento.

- Todos os parâmetros são tratados como registradores do tipo holding. Dependendo do mestre utilizado, estes registradores são referenciados a partir do endereço base 40000 ou 4x. Neste caso, o endereço para um parâmetro que deve ser programado no mestre é o endereço mostrado na tabela acima adicionado ao endereço base. Consulte a documentação do mestre para saber como acessar registradores do tipo holding.
- Deve-se observar que parâmetros com a propriedade somente leitura apenas podem ser lidos do equipamento, enquanto que demais parâmetros podem ser lidos e escritos através da rede.

7.3.2 Marcadores em Memória

Além dos parâmetros, outros tipos de dados como marcadores de bit, word ou float também podem ser acessados utilizando o protocolo Modbus. Estes marcadores são utilizados principalmente pela função SoftPLC disponível para o SCA06. Para a descrição destes marcadores, bem como o endereço para acesso via Modbus, deve-se consultar a documentação da SoftPLC.

7.4 ERROS DE COMUNICAÇÃO

Erros de comunicação podem ocorrer tanto na transmissão dos telegramas quanto no conteúdo dos telegramas transmitidos. Erros de transmissão e conexão são tratados diretamente pela interface Ethernet e pelo protocolo TCP/IP.

No caso de uma recepção com sucesso, se problemas forem detectados durante o tratamento do telegrama, uma mensagem indicando o tipo de erro ocorrido é retornada:

Código do Erro	Descrição
1	Função inválida: a função solicitada não está implementada para o equipamento.
2	Endereço de dado inválido: o endereço do dado (registrador ou bit) não existe.
3	 Valor de dado inválido: Valor está fora da faixa permitida. Escrita em dado que não pode ser alterado (registrador ou bit somente leitura).

	Tabela	7.4:	Códiaos	de erro	para	Modbus
--	--------	------	---------	---------	------	--------

NOTA!

É importante que seja possível identificar no cliente qual o tipo de erro ocorrido para poder diagnosticar problemas durante a comunicação.

7.5 COLOCAÇÃO EM OPERAÇÃO

A seguir são descritos os principais passos para colocação em funcionamento do servoconversor SCA06 em rede Ethernet utilizando o protocolo Modbus TCP. Os passos descritos representam um exemplo de uso. Consulte os capítulos específicos para detalhes sobre os passos indicados.

7.5.1 Instalação do Módulo Ethernet

- 1. Instale o módulo de comunicação Ethernet, conforme indicado na bula que acompanha o módulo.
- 2. Conecte os cabos Ethernet ao módulo, considerando os cuidados necessários na instalação da rede, conforme descrito no item 4:
 - Utilize cabo blindado.
 - Aterre adequadamente os equipamentos da rede.
 - Evite a passagem dos cabos de comunicação próximos aos cabos de potência.

7.5.2 Configuração do Equipamento

- 1. Seguir as recomendações descritas no manual do usuário para programar parâmetros de ajuste do equipamento, relativos à parametrização do motor, funções desejadas para os sinais de I/O, etc.
- 2. Programar fontes de comando conforme desejado para aplicação.
- 3. Programar parâmetros de comunicação, como DHCP, endereço IP, taxa de comunicação, etc.
- 4. Programar o timeout para comunicação Modbus TCP no parâmetro P0806.
- 5. Definir quais parâmetros serão lidos e escritos no servoconversor SCA06, baseado na sua lista de parâmetros. Não é necessário definir palavras de I/O. O protocolo Modbus TCP permite o acesso direto a qualquer parâmetro do equipamento, e não faz distinção entre dados cíclicos e acíclicos. Dentre os principais parâmetros que podem ser utilizados para controle do drive, podemos citar:
 - P0002 Velocidade do motor
 - P0052 Posição angular: fração de volta
 - P0099 Habilitação
 - P0121 Referência de velocidade
 - P1100 Parâmetro do usuário 1100
- 6. Se necessário, reiniciar o módulo Ethernet utilizando o P0849.

7.5.3 Configuração do Mestre

A forma como é feita a configuração da rede depende muito do mestre utilizado e da ferramenta de configuração. É fundamental conhecer as ferramentas utilizadas para realizar esta atividade. De uma maneira geral, os seguintes passos são necessários para realizar a configuração da rede.

- 1. Programe o mestre para ler e escrever registradores do tipo holding, baseado nos parâmetros do equipamento definidos para leitura e escrita. O número do registrador é baseado no número do parâmetro, conforme mostrado na tabela 7.3.
- 2. É recomendado que a leitura e escrita sejam feitas de maneira cíclica, para a correta detecção de erros de comunicação por timeout.

7.5.4 Estado da Comunicação

Uma vez que a rede esteja montada e o mestre programado, é possível utilizar os LEDs e parâmetros do equipamento para identificar alguns estados relacionados com a comunicação.

- Os LEDs "NS" e "Link" fornecem informações sobre o estado da interface e da comunicação.
- O parâmetro P0801 indica o estado da comunicação entre o equipamento e o mestre da rede.

O mestre da rede também deve fornecer informações sobre a comunicação com o escravo.

7.5.5 Operação Utilizando Dados de Processo

Uma vez que a comunicação esteja estabelecida, os dados são escritos e lidos do escravo Modbus TCP pelo mestre da rede automaticamente. Utilizando estes parâmetros, o mestre é capaz de controlar a operação do equipamento e monitorar seu funcionamento. É importante conhecer os parâmetros comunicados para programar o mestre conforme desejado para a aplicação.

8 ETHERNET/IP

A seguir são apresentadas características de operação do servoconversor SCA06 utilizando o acessório para comunicação EtherNet/IP.

8.1 LEDS DE INDICAÇÃO

O LED NS presente no acessório Ethernet, para o protocolo EtherNet/IP, possui as seguintes indicações:

Estado	Descrição
Apagado	Sem endereço IP ou equipamento desligado.
Verde sólido	On-line, conexão estabelecida.
Verde piscando	Aguardando conexão.
Vermelho sólido	Endereço IP inválido/duplicado, erro fatal (reiniciar interface).
Vermelho piscando	Time out em uma conexão de I/O.

Tabela 8.1: LED Network Status (NS)

8.2 DADOS CÍCLICOS

Dados cíclicos são os dados normalmente utilizados para monitoração do estado e controle da operação do equipamento. Para o protocolo EtherNet/IP, a interface suporta uma conexão de I/O que permite a comunicação de até 16 palavras de entrada mais 16 palavras de saída.

É necessário que esta configuração seja feita tanto no escravo quanto no mestre.

8.3 DADOS ACÍCLICOS

Além dos dados cíclicos, a interface também disponibiliza dados acíclicos via *explicit messaging*. Utilizando este tipo de comunicação, é possível acessar qualquer parâmetro do equipamento. O acesso a este tipo de dado normalmente é feito usando instruções para leitura ou escrita dos dados, onde deve-se indicar a classe, instância e atributo para o dado desejado. A tabela a seguir descreve como endereçar os parâmetros do servoconversor SCA06.

Parâmetro	Classe	Instância	Atributo
P0001	162 (A2h)	1	5
P0002	162 (A2h)	2	5
P0003	162 (A2h)	3	5
:	÷	:	
P0400	162 (A2h)	400	5
			:

Tabela 8.2: Endereçamento dos parâmetros

O dado é transmitido como um valor inteiro, sem a indicação das casas decimais.

8.4 ARQUIVO EDS

Cada dispositivo em uma rede EtherNet/IP possui um arquivo de configuração EDS, que contém informações sobre o funcionamento do dispositivo na rede. Em geral este arquivo é utilizado por um mestre ou software de configuração, SCA06 | 29

para programação dos dispositivos presentes na rede EtherNet/IP.

O arquivo de configuração EDS está disponível na página de internet da WEG (http://www.weg.net). É importante observar se o arquivo de configuração EDS é compatível com a versão de firmware do servoconversor SCA06.

8.5 CONEXÕES MODBUS TCP

O acessório para comunicação EtherNet/IP também disponibiliza até 2 conexões Modbus TCP. Estas conexões podem ser utilizadas para parametrização do equipamento, bem como acesso aos marcadores e dados utilizados para programação em ladder do SCA06.

8.6 COLOCAÇÃO EM OPERAÇÃO

A seguir são descritos os principais passos para colocação em funcionamento do servoconversor SCA06 em rede Ethernet utilizando o protocolo EtherNet/IP. Os passos descritos representam um exemplo de uso. Consulte os capítulos específicos para detalhes sobre os passos indicados.

8.6.1 Instalação do Módulo Ethernet

- 1. Instale o módulo de comunicação Ethernet, conforme indicado na bula que acompanha o módulo.
- 2. Conecte os cabos Ethernet ao módulo, considerando os cuidados necessários na instalação da rede, conforme descrito no item 4:
 - Utilize cabo blindado.
 - Aterre adequadamente os equipamentos da rede.
 - Evite a passagem dos cabos de comunicação próximos aos cabos de potência.

8.6.2 Configuração do Equipamento

- 1. Seguir as recomendações descritas no manual do usuário para programar parâmetros de ajuste do equipamento, relativos à parametrização do motor, funções desejadas para os sinais de I/O, etc.
- 2. Programar fontes de comando conforme desejado para aplicação.
- 3. Programar parâmetros de comunicação, como DHCP, endereço IP, taxa de comunicação, etc.
- 4. Programar a ação desejada para o erro de comunicação, através do P0662.
- 5. Definir quantidade de palavras de I/O, bem como o conteúdo de cada palavra, conforme parâmetros P0820 até P0831 e P0835 até P0846.
- 6. Se necessário, reiniciar o módulo Ethernet utilizando o P0849.

8.6.3 Configuração do Mestre

A forma como é feita a configuração da rede depende muito do mestre utilizado e da ferramenta de configuração. É fundamental conhecer as ferramentas utilizadas para realizar esta atividade. De uma maneira geral, os seguintes passos são necessários para realizar a configuração da rede.

1. Carregue o arquivo de configuração EDS¹ para a lista de equipamentos na ferramenta de configuração da rede.

¹O arquivo de configuração EDS está disponível na página de internet da WEG (http://www.weg.net). É importante observar se o arquivo de configuração EDS é compatível com a versão de firmware do servoconversor SCA06.

- 2. Selecione o servoconversor SCA06 na lista de equipamentos disponíveis no configurador da rede. Isto pode ser feito manualmente ou de forma automática, se a ferramenta permitir.
- 3. Para a configuração do mestre, além do endereço IP utilizado pelo módulo EtherNet/IP, é necessário indicar o número das instâncias de I/O e a quantidade de dados trocados com o mestre em cada instância. Para o módulo de comunicação EtherNet/IP, devem ser programados os seguintes valores:
 - Instância de entrada (input): 100
 - Instância de saída (output): 150
- 4. O módulo EtherNet/IP é descrito na rede como "Generic Ethernet Module". Utilizando estas configurações é possível programar o mestre da rede para se comunicar com o equipamento.

8.6.4 Estado da Comunicação

Uma vez que a rede esteja montada e o mestre programado, é possível utilizar os LEDs e parâmetros do equipamento para identificar alguns estados relacionados com a comunicação.

- Os LEDs "NS" e "Link" fornecem informações sobre o estado da interface e da comunicação.
- O parâmetro P0801 indica o estado da comunicação entre o equipamento e o mestre da rede.

O mestre da rede também deve fornecer informações sobre a comunicação com o escravo.

8.6.5 Operação Utilizando Dados de Processo

Uma vez que a comunicação esteja estabelecida, os dados mapeados na área de I/O são automaticamente atualizados entre mestre e escravo. Dentre os principais parâmetros que podem ser utilizados para controle do drive, podemos citar:

- Estado Lógico
- Velocidade do Motor
- Corrente de torque
- Modo de controle atual
- Palavra de controle
- Referência de velocidade
- Referência de torque
- Modo de controle

É importante conhecer estes parâmetros para programar o mestre conforme desejado para a aplicação.

9 **PROFINET**

A seguir são apresentadas características de operação do servoconversor SCA06 utilizando o módulo plug-in para comunicação PROFINET.

9.1 LEDS DE INDICAÇÃO

O LED NS presente no acessório Ethernet, para o protocolo PROFINET, possui as seguintes indicações:

Estado	Descrição
Apagado	Equipamento desligado ou sem conexão com o mestre.
Verde sólido	On-line, conexão estabelecida, em modo RUN.
Verde piscando	On-line, conexão estabelecida, em modo STOP.

Tabela 9.1: LED Network Status (NS)

9.2 DADOS CÍCLICOS

Dados cíclicos são os dados normalmente utilizados para monitoração do estado e controle da operação do equipamento. Para o protocolo PROFINET, a interface suporta uma conexão de I/O que permite a comunicação de até 16 palavras de entrada mais 16 palavras de saída.

É necessário que esta configuração seja feita tanto no escravo quanto no mestre.

9.3 DADOS ACÍCLICOS

Além da comunicação cíclica, o protocolo PROFINET também permite realizar requisições acíclicas utilizadas principalmente para transmitir dados de diagnóstico, parametrização e configuração do equipamento. Para o servoconversor SCA06 utilizando o módulo Ethernet, a lista de parâmetros pode ser acessada através desta forma de comunicação.

O protocolo PROFINET define a seguinte estrutura para o endereçamento dos componentes utilizados na configuração da rede:

- AR (Application Relation)
- API (Application Process Identifier)
- Slot
- Subslot

O AR e API são utilizados para identificar o módulo Ethernet durante a etapa de configuração da rede. Slot/Subslot não são relevantes para acesso acíclico dos dados. Uma vez identificado o módulo, os parâmetros são acessados indicando o índice (Index) e o tamanho do dado (Length) acessado:

- Index: representa o número do parâmetro;
- Length: o tamanho dos dados acessados. Todos os parâmetros do drive são acessados como Word (2 bytes).

O dado é transmitido como um valor inteiro, sem a indicação das casas decimais.

9.4 ARQUIVO XML – GSDML

Cada dispositivo em uma rede PROFINET possui um arquivo de configuração GSDML, que contém informações sobre o funcionamento do dispositivo na rede. Em geral este arquivo é utilizado por um mestre ou software de configuração, para programação dos dispositivos presentes na rede PROFINET.

O arquivo de configuração GSDML está disponível na página de internet da WEG (http://www.weg.net). É importante observar se o arquivo de configuração GSDML é compatível com a versão de firmware do servoconversor SCA06.

9.5 CONEXÕES MODBUS TCP

O módulo plug-in para comunicação PROFINET IO também disponibiliza até 2 conexões Modbus TCP. Estas conexões podem ser utilizadas para parametrização do equipamento, bem como acesso aos marcadores e dados utilizados para programação em ladder do SCA06. As funções Modbus disponíveis e os dados para comunicação seguem o descrito no item 7.

9.6 COLOCAÇÃO EM OPERAÇÃO

A seguir são descritos os principais passos para colocação em funcionamento do servoconversor SCA06 em rede Ethernet utilizando o protocolo PROFINET. Os passos descritos representam um exemplo de uso. Consulte os capítulos específicos para detalhes sobre os passos indicados.

9.6.1 Instalação do Módulo Ethernet

- 1. Instale o módulo de comunicação Ethernet, conforme indicado na bula que acompanha o módulo.
- 2. Conecte os cabos Ethernet ao módulo, considerando os cuidados necessários na instalação da rede, conforme descrito no item 4:
 - Utilize cabo blindado.
 - Aterre adequadamente os equipamentos da rede.
 - Evite a passagem dos cabos de comunicação próximos aos cabos de potência.

9.6.2 Configuração do Equipamento

- 1. Seguir as recomendações descritas no manual do usuário para programar parâmetros de ajuste do equipamento, relativos à parametrização do motor, funções desejadas para os sinais de I/O, etc.
- 2. Programar fontes de comando conforme desejado para aplicação.
- 3. Programar parâmetros de comunicação, como DHCP, endereço IP, taxa de comunicação, etc.
- 4. Programar a ação desejada para o erro de comunicação, através do P0662.
- 5. Definir quantidade de palavras de I/O, bem como o conteúdo de cada palavra, conforme parâmetros P0820 até P0831 e P0835 até P0846.
- 6. Se necessário, reiniciar o módulo Ethernet utilizando o P0849.

9.6.3 Configuração do Mestre

A forma como é feita a configuração da rede depende muito do mestre utilizado e da ferramenta de configuração. É fundamental conhecer as ferramentas utilizadas para realizar esta atividade. De uma maneira geral, os seguintes passos são necessários para realizar a configuração da rede.

- 1. Carregue o arquivo de configuração GSDML² para a lista de equipamentos na ferramenta de configuração da rede.
- 2. Selecione o servoconversor SCA06 na lista de equipamentos disponíveis no configurador da rede. Isto pode ser feito manualmente ou de forma automática, se a ferramenta permitir.
- 3. Para a configuração do mestre, é necessário indicar o número de palavras de I/O trocados com o mestre da rede. A seleção de palavras deve ser feita uma a uma, selecionado primeiro todas as palavras de entrada e então todas as palavras de saída.
- 4. O módulo PROFINET é descrito na rede como "SCA06", na categoria "General". Utilizando estas configurações é possível programar o mestre da rede para se comunicar com o equipamento.

9.6.4 Estado da Comunicação

Uma vez que a rede esteja montada e o mestre programado, é possível utilizar os LEDs e parâmetros do equipamento para identificar alguns estados relacionados com a comunicação.

- Os LEDs "NS" e "Link" fornecem informações sobre o estado da interface e da comunicação.
- O parâmetro P0801 indica o estado da comunicação entre o equipamento e o mestre da rede.

O mestre da rede também deve fornecer informações sobre a comunicação com o escravo.

9.6.5 Operação Utilizando Dados de Processo

Uma vez que a comunicação esteja estabelecida, os dados mapeados na área de I/O são automaticamente atualizados entre mestre e escravo. Dentre os principais parâmetros que podem ser utilizados para controle do drive, podemos citar:

- Estado Lógico
- Velocidade do Motor
- Corrente de torque
- Modo de controle atual
- Palavra de controle
- Referência de velocidade
- Referência de torque
- Modo de controle

É importante conhecer estes parâmetros para programar o mestre conforme desejado para a aplicação.

²O arquivo de configuração GSDML está disponível na página de internet da WEG (http://www.weg.net). É importante observar se o arquivo de configuração GSDML é compatível com a versão de firmware do servoconversor SCA06.

10 SERVIDOR WEB

Além do protocolo de comunicação, a interface Ethernet também disponibiliza um servidor WEB com uma página HTML simples para acesso a dados do servoconversor SCA06. Caso o endereço IP seja conhecido, é possível utilizar um navegador WEB, digitando o endereço IP na barra de endereços do navegador, e será apresentada uma página WEB com links para as configurações da interface ou para os dados do equipamento.

	SCA-06
Netw	ork configuration
IP Configuration	
IP address:	192.168.0.15
CIDR:	24
Gateway:	0.0.0.0
DHCP:	
	Store settings
Ethernet Configuration	
Comm Settings:	Auto 👻
	Store settings
	Reboot
► Main	Network interface

Figura 10.1: Página WEB de configuração da interface

Nas configurações da interface, são apresentados diversos campos para programação do endereço IP, sub-rede, DHCP, dentre outros. A lista de parâmetros do equipamento também pode ser acessada através do navegador WEB, através do link "Parameter Data". Esta lista é apresentada em um formato simplificado, apenas com os valores inteiros, sem indicação de casas decimais.

11 FALHAS E ALARMES

F0047/A0147 - ETHERNET OFFLINE

Descrição:

Indica falha na comunicação entre o escravo e o controlador da rede.

Atuação:

Atua quando, uma vez estabelecida comunicação entre o escravo e o mestre da rede, há uma interrupção nesta comunicação. O método para detecção da interrupção na comunicação depende da rede utilizada:

- Modbus TCP: não recebe um telegrama Modbus TCP válido pelo período programado no P0806.
- EtherNet/IP: timeout na conexão de I/O, ou mestre vai para o estado IDLE.
- PROFINET: timeout na comunicação cíclica entre mestre e escravo, ou mestre vai para o estado STOP.

Neste caso será sinalizada através da HMI a mensagem de alarme A0147 – ou falha F0047, dependendo da programação feita no P0662. Para alarmes, esta indicação desaparecerá automaticamente no momento em que a comunicação for restabelecida.

Possíveis Causas/Correção:

- Verificar se o mestre da rede está configurado corretamente e operando normalmente.
- Verificar curto-circuito ou mau contato nos cabos de comunicação.
- Verificar a instalação da rede de maneira geral passagem dos cabos, aterramento.

F0048/A0148 - ERRO DE ACESSO À INTERFACE ETHERNET

Descrição:

Indica falha na troca de dados entre o servoconversor SCA06 e o acessório Ethernet.

Atuação:

Atua quando o cartão de controle não consegue trocar dados com o módulo Ethernet, quando o módulo Ethernet identifica alguma falha interna, ou quando houver incompatibilidade de hardware.

Neste caso, será sinalizada através da HMI a mensagem de alarme A0148 – ou falha F0048, dependendo da programação feita no P0662. É necessário reinicializar o módulo Ethernet, desligando e ligando o produto ou através do P0849.

Possíveis Causas/Correção:

- Verificar se o acessório está corretamente encaixado.
- Conferir a versão de firmware do equipamento suporta o acessório Ethernet.
- Erros de hardware decorrentes, por exemplo, do manuseio ou instalação incorreta do acessório podem causar este erro. Se possível realizar testes substituindo o acessório de comunicação.

WEG Drives & Controls - Automação LTDA. Jaraguá do Sul – SC – Brasil Fone 55 (47) 3276-4000 – Fax 55 (47) 3276-4020 São Paulo – SP – Brasil Fone 55 (11) 5053-2300 – Fax 55 (11) 5052-4212 automacao@weg.net www.weg.net