

Motors I Automation I Energy I Transmission & Distribution I Coatings

CANopen

PLC300

User’s Manual

CANopen User’s Manual

Series: PLC300

Language: English

Document Number: 10003124832 / 00

Publication Date: 10/2014

CONTENTS

PLC300 | 3

CONTENTS

CONTENTS ... 3

ABOUT THE MANUAL ... 5

ABBREVIATIONS AND DEFINITIONS ... 5
NUMERICAL REPRESENTATION ... 5
DOCUMENTS .. 5

1 INTRODUCTION TO THE CANOPEN COMMUNICATION ... 6

1.1 CAN ... 6
1.1.1 Data Frame ... 6
1.1.2 Remote Frame .. 6
1.1.3 Access to the Network .. 6
1.1.4 Error Control ... 6
1.1.5 CAN and CANopen .. 7

1.2 NETWORK CHARACTERISTICS .. 7
1.3 PHYSICAL LAYER ... 7
1.4 ADDRESS IN THE CANOPEN NETWORK ... 7
1.5 ACCESS TO THE DATA .. 7
1.6 DATA TRANSMISSION .. 7
1.7 COMMUNICATION OBJECTS - COB... 8
1.8 COB-ID ... 8
1.9 EDS FILE .. 9

2 CAN COMMUNICATION INTERFACE ... 10

2.1 CAN INTERFACE CHARACTERÍSTICS.. 10
2.2 CONNECTOR PINOUT .. 10
2.3 POWER SUPPLY ... 10
2.4 INDICATIONS ... 10

2.4.1 Indication Patterns... 11
2.4.2 Error LED (red) ... 11
2.4.3 Run LED (green) ... 11

3 CANOPEN NETWORK INSTALLATION .. 12

3.1 BAUD RATE ... 12
3.2 ADDRESS IN THE CANOPEN NETWORK ... 12
3.3 TERMINATION RESISTOR .. 12
3.4 CABLE .. 12
3.5 CONNECTION IN THE NETWORK ... 13

4 CAN INTERFACE CONFIGURATION .. 14

BAUD RATE .. 14
ADDRESS .. 14

5 OBJECT DICTIONARY ... 15

5.1 DICTIONARY STRUCTURE .. 15
5.2 DATA TYPE .. 15
5.3 COMMUNICATION PROFILE – COMMUNICATION OBJECTS ... 15
5.4 MANUFACTURER SPECIFIC OBJECTS .. 16

6 COMMUNICATION OBJECTS DESCRIPTION ... 18

CONTENTS

PLC300 | 4

6.1 IDENTIFICATION OBJECTS ... 18
6.1.1 Object 1000h – Device Type .. 18
6.1.2 Object 1001h – Error Register .. 18
6.1.3 Object 1018h – Identity Object ... 19

6.2 SERVICE DATA OBJECTS – SDOS .. 19
6.2.1 Object 1200h – SDO Server ... 20
6.2.2 SDOs Operation ... 20

6.3 PROCESS DATA OBJECTS – PDOS .. 21
6.3.1 PDO Mapping Objects ... 22
6.3.2 Receive PDOs ... 22
6.3.3 Transmit PDOs ... 24

6.4 SYNCHRONIZATION OBJECT – SYNC ... 27
6.5 NETWORK MANAGEMENT – NMT .. 27

6.5.1 Slave State Control .. 27
6.5.2 Error Control – Node Guarding ... 29
6.5.3 Error Control – Heartbeat .. 30

6.6 INITIALIZATION PROCEDURE ... 32

7 OPERATION IN CANOPEN NETWORK – MASTER MODE 33

7.1 ENABLING OF THE MASTER CANOPEN FUNCTION .. 33
7.2 CHARACTERISTICS OF THE CANOPEN MASTER .. 33
7.3 OPERATION OF THE MASTER... 33
7.4 BLOCKS FOR THE CANOPEN MASTER ... 34

7.4.1 CANopen SDO Read .. 34
7.4.2 CANopen SDO Write .. 35
7.4.3 CANopen Master Control/Status ... 37
7.4.4 CANopen Slave Status .. 38

8 CAN/CANOPEN SYSTEM MARKERS ... 40

8.1 READING SYSTEM MARKERS ... 40
8.2 WRITING SYSTEM MARKERS ... 41

9 FAULTS AND ALARMS RELATED TO THE CANOPEN COMMUNICATION 42

CAN INTERFACE WITHOUT POWER SUPPLY .. 42
BUS OFF .. 42
NODE GUARDING/HEARTBEAT ... 42

ABOUT THE MANUAL

PLC300 | 5

ABOUT THE MANUAL

This manual provides the necessary information for the operation of the PLC300 frequency inverter using the
CANopen protocol. This manual must be used together with the PLC300 user manual.

ABBREVIATIONS AND DEFINITIONS

CAN Controller Area Network
CiA CAN in Automation
COB Communication Object
COB-ID Communication Object Identifier
SDO Service Data Object
PDO Process Data Object
RPDO Receive PDO
TPDO Transmit PDO
NMT Network Management Object
ro Read only
rw Read/write

NUMERICAL REPRESENTATION

Decimal numbers are represented by means of digits without suffix. Hexadecimal numbers are represented with
the letter ‘h’ after the number.

DOCUMENTS

The CANopen protocol for the PLC300 was developed based on the following specifications and documents:

Document Version Source
CAN Specification 2.0 CiA
CiA DS 301
CANopen Application Layer and Communication Profile

4.02 CiA

CiA DRP 303-1
Cabling and Connector Pin Assignment

1.1.1 CiA

CiA DSP 306
Electronic Data Sheet Specification for CANopen

1.1 CiA

CiA DSP 402
Device Profile Drives and Motion Control

2.0 CiA

In order to obtain this documentation, the organization that maintains, publishes and updates the information
regarding the CANopen network, CiA, must be consulted.

INTRODUCTION TO THE CANOPEN COMMUNICATION

PLC300 | 6

1 INTRODUCTION TO THE CANOPEN COMMUNICATION

In order to operate the equipment in a CANopen network, it is necessary to know the manner this
communication is performed. Therefore, this section brings a general description of the CANopen protocol
operation, containing the functions used by the PLC300. Refer to the protocol specification for a detailed
description.

1.1 CAN

CANopen is a network based on CAN, i.e., it uses CAN telegrams for exchanging data in the network.

The CAN protocol is a serial communication protocol that describes the services of layer 2 of the ISO/OSI model
(data link layer)1. This layer defines the different types of telegrams (frames), the error detection method, the
validation and arbitration of messages.

1.1.1 Data Frame

CAN network data is transmitted by means of a data frame. This frame type is composed mainly by an 11 bit2
identifier (arbitration field), and by a data field that may contain up to 8 data bytes.

Identifier 8 data bytes
11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

1.1.2 Remote Frame

Besides the data frame, there is also the remote frame (RTR frame). This type of frame does not have a data
field, but only the identifier. It works as a request, so that another network device transmits the desired data
frame.

1.1.3 Access to the Network

Any device in a CAN network can make an attempt to transmit a frame to the network in a certain moment. If
two devices try to access the network simultaneously, the one that sends the message with the highest priority
will be able to transmit. The message priority is defined by the CAN frame identifier, the smaller the value of this
identifier, the higher the message priority. The telegram with the identifier 0 (zero) is the one with the highest
priority.

1.1.4 Error Control

The CAN specification defines several error control mechanisms, which makes the network very reliable and
with a very low undetected transmission error rate. Every network device must be able to identify the
occurrence of these errors, and to inform the other elements that an error was detected.

A CAN network device has internal counters that are incremented every time a transmission or reception error is
detected, and are decremented when a telegram is successfully transmitted or received. If a considerable
amount of errors occurs, the device can be led to the following states:

 Error Active: the internal error counters are at a low level and the device operates normally in the CAN

network. You can send and receive telegrams and act in the CAN network if it detects any error in the
transmission of telegrams.

 Warning: when the counter exceeds a defined limit, the device enters the warning state, meaning the
occurrence of a high error rate.

 Error Passive: when this value exceeds a higher limit, the device enters the error passive state, and it stops
acting in the network when detecting that another device sent a telegram with an error.

 Bus Off: finally, we have the bus off state, in which the device will not send or receive telegrams any more.
The device operates as if disconnected from the network.

1 In the CAN protocol specification, the ISO11898 standard is referenced as the definition of the layer 1 of this model (physical layer).
2 The CAN 2.0 specification defines two data frame types, standard (11 bit) and extended (29 bit). For this implementation, only the standard
frames are accepted.

INTRODUCTION TO THE CANOPEN COMMUNICATION

PLC300 | 7

1.1.5 CAN and CANopen

Only the definition of how to detect errors, create and transmit a frame, are not enough to define a meaning for
the data transmitted via the network. It is necessary to have a specification that indicates how the identifier and
the data must be assembled and how the information must be exchanged. Thus, the network elements can
interpret the transmitted data correctly. In that sense, the CANopen specification defines exactly how to
exchange data among the devices and how every one must interpret these data.

There are several other protocols based on CAN, as DeviceNet, CANopen, J1939, etc., which use CAN frames
for the communication. However, those protocols cannot be used together in the same network.

1.2 NETWORK CHARACTERISTICS

Because of using a CAN bus as telegram transmission means, all the CANopen network devices have the same
right to access the network, where the identifier priority is responsible for solving conflict problems when
simultaneous access occurs. This brings the benefit of making direct communication between slaves of the
network possible, besides the fact that data can be made available in a more optimized manner without the
need of a master that controls all the communication performing cyclic access to all the network devices for
data updating.

Another important characteristic is the use of the producer/consumer model for data transmission. This means
that a message that transits in the network does not have a fixed network address as a destination. This
message has an identifier that indicates what data it is transporting. Any element of the network that needs to
use that information for its operation logic will be able to consume it, therefore, one message can be used by
several network elements at the same time.

1.3 PHYSICAL LAYER

The physical medium for signal transmission in a CANopen network is specified by the ISO 11898 standard. It
defines as transmission bus a pair of twisted wires with differential electrical signal.

1.4 ADDRESS IN THE CANOPEN NETWORK

Every CANopen network must have a master responsible for network management services, and it can also
have a set of up to 127 slaves. Each network device can also be called node. Each slave is identified in a
CANopen network by its address or Node-ID, which must be unique for each slave and may range from 1 to
127.

The address of programmable controller PLC300 is programmed by the menu Setup.

1.5 ACCESS TO THE DATA

Each slave of the CANopen network has a list called object dictionary that contains all the data accessible via
network. Each object of this list is identified with an index, which is used during the equipment configuration as
well as during message exchanges. This index is used to identify the object being transmitted.

1.6 DATA TRANSMISSION

The transmission of numerical data via CANopen telegrams is done using a hexadecimal representation of the
number, and sending the least significant data byte first.

E.g: The transmission of a 32 bit integer with sign (12345678h = 305419896 decimal), plus a 16 bit integer with
sign (FF00h = -256 decimal), in a CAN frame.

Identifier 6 data bytes
11 bits 32 bit integer 16 bit integer

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
78h 56h 34h 12h 00h FFh

INTRODUCTION TO THE CANOPEN COMMUNICATION

PLC300 | 8

1.7 COMMUNICATION OBJECTS - COB

There is a specific set of objects that are responsible for the communication among the network devices. Those
objects are divided according to the type of data and the way they are sent or received by a device. The
PLC300 supports the following communication objects (COB):

Table 1.1: Types of Communication Objects (COB)

Type of object Description
Service Data Object
(SDO)

SDO are objects responsible for the direct access to the object dictionary of a device. By means of messages
using SDO, it is possible to indicate explicitly (by the object index) what data is being handled. There are two
SDO types: Client SDO, responsible for doing a read or write request to a network device, and the Server SDO,
responsible for taking care of that request. Since SDO are usually used for the configuration of a network node,
they have less priority than other types of message.

Process Data Object
(PDO)

PDO are used for accessing equipment data without the need of indicating explicitly which dictionary object is
being accessed. Therefore, it is necessary to configure previously which data the PDO will be transmitting (data
mapping). There are also two types of PDO: Receive PDO and Transmit PDO. They are usually utilized for
transmission and reception of data used in the device operation, and for that reason they have higher priority
than the SDO.

Emergency Object
(EMCY)

This object is responsible for sending messages to indicate the occurrence of errors in the device. When an error
occurs in a specific device (EMCY producer), it can send a message to the network. In the case that any
network device be monitoring that message (EMCY consumer), it can be programmed so that an action be taken
(disabling the other devices, error reset, etc.).

Synchronization Object
(SYNC)

In the CANopen network, it is possible to program a device (SYNC producer) to send periodically a
synchronization message for all the network devices. Those devices (SYNC consumers) will then be able, for
instance, to send a certain datum that needs to be made available periodically.

Network Management
(NMT)

Every CANopen network needs a master that controls the other devices (slaves) in the network. This master will
be responsible for a set of services that control the slave communications and their state in the CANopen
network. The slaves are responsible for receiving the commands sent by the master and for executing the
requested actions. The protocol describes two types of service that the master can use: device control service,
with which the master controls the state of each network slave, and error control service (Node Guarding), with
which the slave sends periodic messages to the master informing that the connection is active.

All the communication of the inverter with the network is performed using those objects, and the data that can
be accessed are the existent in the device object dictionary.

1.8 COB-ID

A telegram of the CANopen network is always transmitted by a communication object (COB). Every COB has an
identifier that indicates the type of data that is being transported. This identifier, called COB-ID has an 11 bit
size, and it is transmitted in the identifier field of a CAN telegram. It can be subdivided in two parts:

Function Code Address
bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 Function Code: indicates the type of object that is being transmitted.
 Node Address: indicates with which network device the telegram is linked.

A table with the standard values for the different communication objects available in the PLC300 is presented
next. Notice that the standard value of the object depends on the slave address, with the exception of the COB-
ID for NMT and SYNC, which are common for all the network elements. Those values can also be changed
during the device configuration stage.

INTRODUCTION TO THE CANOPEN COMMUNICATION

PLC300 | 9

Table 1.2: COB-ID for the different objects

COB Function code
(bits 10 – 7)

Resultant COB-ID
(function + address)

NMT 0000 0
SYNC 0001 128 (80h)
EMCY 0001 129 – 255 (81h – FFh)

PDO1 (tx) 0011 385 – 511 (181h – 1FFh)
PDO1 (rx) 0100 513 – 639 (201h – 27Fh)
PDO2 (tx) 0101 641 – 767 (281h – 2FFh)
PDO2 (rx) 0110 769 – 895 (301h – 37Fh)
PDO3 (tx) 0111 897 – 1023 (381h – 3FFh)
PDO3 (rx) 1000 1025 – 1151 (401h – 47Fh)
PDO4 (tx) 1001 1153 – 1279 (481h – 4FFh)
PDO4 (rx) 1010 1281 – 1407 (501h – 57Fh)
SDO (tx) 1011 1409 – 1535 (581h – 5FFh)
SDO (rx) 1100 1537 – 1663 (601h – 67Fh)

Node Guarding/Heartbeat 1110 1793 – 1919 (701h – 77Fh)

1.9 EDS FILE

Each device in a CANopen network has an EDS configuration file that contains information about the operation
of the device in the CANopen network, as well as the description of all the communication objects available. In
general, this file is used by a master or by the configuration software for programming of devices present in the
CANopen Network.

The EDS configuration file for the PLC300 is supplied together with the product, and it can also be obtained
from the website http://www.weg.net. It is necessary to observe the inverter software version, in order to use an
EDS file that be compatible with that version.

http://www.weg.net/

CAN COMMUNICATION INTERFACE

PLC300 | 10

2 CAN COMMUNICATION INTERFACE

The programmable controller PLC300 has a CAN interface in the standard product. It is possible to use it for
communication on the CANopen protocol as network master or slave. Features of the interface are described
below.

2.1 CAN INTERFACE CHARACTERÍSTICS

Figure 2.1: CAN connector detail on the bottom of the product

 The interface is electrically isolated and with differential signal, which grants more robustness against

electromagnetic interference.
 External 24V supply.
 It allows the connection of up to 64 devices to the same segment. More devices can be connected by using

repeaters.
 A maximum bus length of 1000 meters.

2.2 CONNECTOR PINOUT

The CAN communication module presents a 5-wire plug-in connector (XC6) with the following pinout:

Table 2.1: CAN interface XC5 connector pinout

Pin Name Function
1 V- Power supply negative pole
2 CAN_L CAN_L communication signal
3 Shield Cable shield
4 CAN_H CAN_H communication signal
5 V+ Power supply positive pole

2.3 POWER SUPPLY

The CAN interface needs an external power supply between the pins 1 and 5 of the network connector. The
individual consumption and input voltage data are presented in the next table.

Table 2.2: CAN interface supply characteristics

Supply Voltage (VDC)
Minimum Maximum Recommended

11 30 24
Current (mA)

Typical Maximum
30 50

2.4 INDICATIONS

Besides the system markers, which provide information about the interface, the device has a bicolor LED –
green and red – in the front of the product, to indicate the CAN interface status.

CAN COMMUNICATION INTERFACE

PLC300 | 11

Figure 2.2: Indication LED of CAN interface

During equipment startup, both LEDs are lit to test for a period of approximately 500 ms alternately. After this
period, for the CANopen protocol, they will indicate as shown below.

2.4.1 Indication Patterns

In addition to the ON and OFF states, the following behaviors may also be displayed:

 Blinking: LED is a period of 200 ms on, followed by a period of 200 ms off.
 One flash: the LED is a period of 200 ms on, followed by a period of 1 second off.
 Two flashes: the LED lights up twice for a period of 200 ms (with a period of 200 ms off between these

indications), followed by a period of 1 second off.

2.4.2 Error LED (red)

The red LED indicates errors of the physical layer of the CAN bus, and CANopen communication errors.

Table 2.3: Indications for Error LED (red)

Indication State Description
Off No error / No power The device is operating normally, shut down or unpowered CAN interface.

One Flash Warning state The internal error counters of the CAN controller reached the warning state due to
errors of CAN communication. This statement is also valid if the equipment is in
error passive state.

Two Flashes Error control services –
Node Guarding or Heartbeat

After the master initializes the Node Guarding or Heartbeat services, an exchange
timeout occurred between the master and slave, causing this error.

On Bus off The CAN controller has reached the bus off state. Communication is disabled.

2.4.3 Run LED (green)

The green LED indicates the status of the CANopen slave.

Tabela 2.4: Indication for Run LED (green)

Indication State Description
One flash STOPPED The device is in the stopped state.
Blinking PRE-OPERATIONAL The device is in the pre-operational state.

On OPERATIONAL The device is in operational state.

NOTE!
If the state of the CAN interface and CANopen communication is such that both LEDs should make
simultaneous indications, the red LED will take precedence over the green LED, the latter remaining
off.

CANOPEN NETWORK INSTALLATION

PLC300 | 12

3 CANOPEN NETWORK INSTALLATION

The CANopen network, such as several industrial communication networks, for being many times applied in
aggressive environments with high exposure to electromagnetic interference, requires that certain precautions
be taken in order to guarantee a low communication error rate during its operation. Recommendations to
perform the connection of the product in this network are presented next.

3.1 BAUD RATE

Equipments with CANopen interface generally allow the configuration of the desired baud rate, ranging from
10Kbit/s to 1Mbit/s. The baud rate that can be used by equipment depends on the length of the cable used in
the installation. The next table shows the baud rates and the maximum cable length that can be used in the
installation, according to the CiA recommendation3.

Table 3.1: Supported baud rates and installation size

Baud Rate Cable Length
1 Mbit/s 25 m

800 Kbit/s 50 m
500 Kbit/s 100 m
250 Kbit/s 250 m
125 Kbit/s 500 m
100 Kbit/s 600 m
50 Kbit/s 1000 m
20 Kbit/s 1000 m
10 Kbit/s 1000 m

All network equipment must be programmed to use the same communication baud rate. At the PLC300
programmable controller the baud rate configuration is done through the Setup menu.

3.2 ADDRESS IN THE CANOPEN NETWORK

Each CANopen network device must have an address or Node ID, and may range from 1 to 127. This address
must be unique for each equipment. For PLC300 programmable controller the address configuration is done
through the Setup menu.

3.3 TERMINATION RESISTOR

The CAN bus line must be terminated with resistors to avoid line reflection, which can impair the signal and
cause communication errors. The extremes of the CAN bus must have a termination resistor with a 121Ω /
0.25W value, connecting the CAN_H and CAN_L signals.

3.4 CABLE

The connection of CAN_L and CAN_H signals must done with shielded twisted pair cable. The following table
shows the recommended characteristics for the cable.

Table 3.2: CANopen cable characteristics

Cable length
(m)

Resistance per
meter (mOhm/m)

Conductor cross
section (mm2)

0 ... 40 70 0.25 ... 0.34
40 ... 300 <60 0.34 ... 0.60
300 ... 600 <40 0.50 ... 0.60

600 ... 1000 <26 0.75 ... 0.80

It is necessary to use a twisted pair cable to provide additional 24Vdc power supply to equipments that need
this signal. It is recommended to use a certified DeviceNet cable.

3 Different products may have different maximum allowed cable length for installation.

CANOPEN NETWORK INSTALLATION

PLC300 | 13

3.5 CONNECTION IN THE NETWORK

In order to interconnect the several network nodes, it is recommended to connect the equipment directly to the
main line without using derivations. During the cable installation the passage near to power cables must be
avoided, because, due to electromagnetic interference, this makes the occurrence of transmission errors
possible. In order to avoid problems with current circulation caused by difference of potential among ground
connections, it is necessary that all the devices be connected to the same ground point.

Figure 3.1: CANopen network installation example

To avoid voltage difference problems between the power supplies of the network devices, it is recommended
that the network is fed by only one power supply and the signal is provided to all devices through the cable. If it
is required more than one power supply, these should be referenced to the same point.

The maximum number of devices connected to a single segment of the network is limited to 64. Repeaters can
be used for connecting a bigger number of devices.

CAN INTERFACE CONFIGURATION

PLC300 | 14

4 CAN INTERFACE CONFIGURATION

To perform configuration of the CAN interface, the PLC300 Setup has the following menus:

BAUD RATE

Range: 0 = 1 Mbit/s Default: 0
 1 = Reserved
 2 = 500 Kbit/s
 3 = 250 Kbit/s
 4 = 125 Kbit/s
 5 = 100 Kbit/s
 6 = 50 Kbit/s
 7 = 20 Kbit/s

Description:
It allows programming the desired baud rate for the CAN interface, in bits per second. This rate must be the
same for all the devices connected to the network.

If this parameter is changed, the change takes effect only if the CAN interface is not powered or after the
equipment is switched off and on again.

ADDRESS

Range: 1 a 127 Default: 1

Description:
It allows programming the address used for the CAN communication. It is necessary that each element of the
network has an address different from the others.

If this parameter is changed, the change takes effect only if the CAN interface is not powered or after the
equipment is switched off and on again.

OBJECT DICTIONARY

PLC300 | 15

5 OBJECT DICTIONARY

The object dictionary is a list containing several equipment data which can be accessed via CANopen network.
An object of this list is identified by means of a 16-bit index, and it is based in that list that all the data exchange
between devices is performed.

The CiA DS 301 document defines a set of minimum objects that every CANopen network slave must have. The
objects available in that list are grouped according to the type of function they execute. The objects are
arranged in the dictionary in the following manner:

Table 5.1: Object dictionary groupings

Index Objects Description
0001h – 025Fh Data type definition Used as reference for the data type supported by the system.
1000h – 1FFFh Communication objects They are objects common to all the CANopen devices. They contain

general information about the equipment and also data for the
communication configuration.

2000h – 5FFFh Manufacturer specific objects In this range, each CANopen equipment manufacturer is free to define
which data those objects will represent.

6000h – 9FFFh Standardized device objects This range is reserved to objects that describe the behavior of similar
equipment, regardless of the manufacturer.

The other indexes that are not referred in this list are reserved for future use.

5.1 DICTIONARY STRUCTURE

The general structure of the dictionary has the following format:

Index Object Name Type Access

 Index: indicates directly the object index in the dictionary.
 Object: describes which information the index stores (simple variable, array, record, etc.).
 Name: contains the name of the object in order to facilitate its identification.
 Type: indicates directly the stored data type. For simple variables, this type may be an integer, a float, etc.

For arrays, it indicates the type of data contained in the array. For records, it indicates the record format
according to the types described in the first part of the object dictionary (indexes 0001h – 0360h).

 Access: informs if the object in question is accessible only for reading (ro), for reading and writing (rw), or if
it is a constant (const).

For objects of the array or record type, a sub-index that is not described in the dictionary structure is also
necessary.

5.2 DATA TYPE

The first part of the object dictionary (index 0001h – 025Fh) describes the data types that can be accessed at a
CANopen network device. They can be basic types, as integers and floats, or compound types formed by a set
of entries, as records and arrays.

5.3 COMMUNICATION PROFILE – COMMUNICATION OBJECTS

The indexes from 1000h to 1FFFh in the object dictionary correspond to the part responsible for the CANopen
network communication configuration. Those objects are common to all the devices, however only a few are
obligatory. A list with the objects of this range that are supported by the programmable controller PLC300,
working in slave mode.is presented next.

OBJECT DICTIONARY

PLC300 | 16

Table 5.2: Object list – Communication Profile

Índice Objeto Nome Tipo Acesso
1000h VAR device type UNSIGNED32 ro
1001h VAR error register UNSIGNED8 ro
1005h VAR COB-ID SYNC UNSIGNED32 rw
100Ch VAR guard time UNSIGNED16 rw
100Dh VAR life time factor UNSIGNED8 rw
1016h ARRAY Consumer heartbeat time UNSIGNED32 rw
1017h VAR Producer heartbeat time UNSIGNED16 rw
1018h RECORD Identity Object Identity ro

Server SDO Parameter
1200h RECORD 1st Server SDO parameter SDO Parameter ro

Receive PDO Communication Parameter
1400h RECORD 1st receive PDO Parameter PDO CommPar rw
1401h RECORD 2nd receive PDO Parameter PDO CommPar rw

...
1407h RECORD 8th receive PDO Parameter PDO CommPar rw

Receive PDO Mapping Parameter
1600h RECORD 1st receive PDO mapping PDO Mapping rw
1601h RECORD 2nd receive PDO mapping PDO Mapping rw

...
1607h RECORD 8th receive PDO mapping PDO Mapping rw

Transmit PDO Communication Parameter
1800h RECORD 1st transmit PDO Parameter PDO CommPar rw
1801h RECORD 2nd transmit PDO Parameter PDO CommPar rw

...
1807h RECORD 8th transmit PDO Parameter PDO CommPar rw

Transmit PDO Mapping Parameter
1A00h RECORD 1st transmit PDO mapping PDO Mapping rw
1A01h RECORD 2nd transmit PDO mapping PDO Mapping rw

...
1A07h RECORD 8th transmit PDO mapping PDO Mapping rw

These objects can only be read and written via the CANopen network, it is not available via the keypad (HMI) or
other network interface. The network master, in general, is the equipment responsible for setting up the
equipment before starting the operation. The EDS configuration file brings the list of all supported
communication objects.

Refer to item 6 for more details on the available objects in this range of the objects dictionary.

5.4 MANUFACTURER SPECIFIC OBJECTS

For indexes from 2000h to 5FFFh, each manufacture is free to define which objects will be present, and also the
type and function of each one. For PLC300, this object range has the network markers. The product can
communicate these markers through the CANopen interface and use them in the controller programming
software for designing the operation logic of the equipment. The next table illustrates how the markers are
distributed in the object dictionary.

OBJECT DICTIONARY

PLC300 | 17

Table 5.1: Object list – Manufacturer Specific

Index Object Name Type Access
Network Input Data – Byte Access

3000h VAR Network Input Byte 2000 – %IB2000 UNSIGNED8 rw
3001h VAR Network Input Byte 2001 – %IB2001 UNSIGNED8 rw
3002h VAR Network Input Byte 2002 – %IB2002 UNSIGNED8 rw

... … …
31FFh VAR Network Input Byte 2511 – %IB2511 UNSIGNED8 rw

Network Input Data – Word Access
3400h VAR Network Input Word 2000 – %IW2000 UNSIGNED16 rw
3402h VAR Network Input Word 2002 – %IW2002 UNSIGNED16 rw
3404h VAR Network Input Word 2004 – %IW2004 UNSIGNED16 rw

... … …
35FEh VAR Network Input Word 2510 – %IW2510 UNSIGNED16 rw

Network Input Data – Double Word Access
3800h VAR Network Input Double Word 2000 – %ID2000 UNSIGNED32 rw
3804h VAR Network Input Double Word 2004 – %ID2004 UNSIGNED32 rw
3808h VAR Network Input Double Word 2008 – %ID2008 UNSIGNED32 rw

... … …
39FCh VAR Network Input Double Word 2508 – %ID2508 UNSIGNED32 rw

Network Output Data – Byte Access
4000h VAR Network Output Byte 2000 – %QB2000 UNSIGNED8 rw
4001h VAR Network Output Byte 2001 – %QB2001 UNSIGNED8 rw
4002h VAR Network Output Byte 2002 – %QB2002 UNSIGNED8 rw

... … …
41FFh VAR Network Output Byte 2511 – %QB2511 UNSIGNED8 rw

Network Output Data – Word Access
4400h VAR Network Output Word 2000 – %QW2000 UNSIGNED16 rw
4402h VAR Network Output Word 2002 – %QW2002 UNSIGNED16 rw
4404h VAR Network Output Word 2004 – %QW2004 UNSIGNED16 rw

... … …
45FEh VAR Network Output Word 2510 – % QW2510 UNSIGNED16 rw

Network Output Data – Double Word Access
4800h VAR Network Output Double Word 2000 – %QD2000 UNSIGNED32 rw
4804h VAR Network Output Double Word 2004 – %QD2004 UNSIGNED32 rw
4808h VAR Network Output Double Word 2008 – %QD2008 UNSIGNED32 rw

... … …
49FCh VAR Network Output Double Word 2508 – %QD2508 UNSIGNED32 rw

NOTE!
 Input Markers of Byte, Word and Double Word share the same internal memory area in the

product. Thus, for example, the markers %IB2000 and %IB2001 occupy the same memory area
that the marker %IW2000. Different objects exist only to provide objects of different sizes for
mapping data via CANopen. The same goes for the Output area.

 The data types used in these objects are defined as unsigned integer of 8, 16 or 32 bit. This type
is only to define the size of the data in CANopen communication. The actual markers type,
however, depends on the declared type in the controller programming software. The %QD2000
marker, for example, may represent a given type float, depending on what was stated in the
programming software.

 Network Input Markers can be mapped in the receive PDOs, while Network Output Markers can
be mapped to transmit PDOs.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 18

6 COMMUNICATION OBJECTS DESCRIPTION

This item describes in detail each of the communication objects available for the programmable controller
PLC300 working in slave mode. It is necessary to know how to operate these objects to be able to use the
available functions for the inverter communication.

NOTE!
The programmable controller PLC300 can operate as master or slave of the CANopen network. The
objects below describe the operation of the equipment as slave of the CANopen network. For a
description of the characteristics of the product operating as CANopen network master, refer to the
item 7 together with the WSCAN CANopen network configuration software.

6.1 IDENTIFICATION OBJECTS

There is a set of objects in the dictionary which are used for equipment identification; however, they do not have
influence on their behavior in the CANopen network.

6.1.1 Object 1000h – Device Type

This object gives a 32-bit code that describes the type of object and its functionality.

Index 1000h
Name Device type
Object VAR
Type UNSIGNED32

Access ro
PDO Mapping No
Range UNSIGNED32
Default value 0000.0000h

This code can be divided into two parts: 16 low-order bits describing the type of profile that the device uses,
and 16 high-order bits indicating a specific function according to the specified profile.

6.1.2 Object 1001h – Error Register

This object indicates whether or not an error in the device occurred. The type of error registered for the PLC300
follows what is described in the table 6.1.

Index 1001h
Name Error register
Object VAR
Type UNSIGNED8

Access ro
PDO Mapping Yes
Range UNSIGNED8
Default value 0

Table 6.1: Structure of the object Error Register

Bit Meaning
0 Generic error
1 Current
2 Voltage
3 Temperature
4 Communication
5 Reserved (always 0)
6 Reserved (always 0)
7 Specific of the manufacturer

If the device presents any error, the equivalent bit must be activated. The first bit (generic error) must be
activated with any error condition.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 19

6.1.3 Object 1018h – Identity Object

It brings general information about the device.

Index 1018h
Name Identity object
Object Record
Type Identity

Sub index 0
Description Number of the last sub-index
Access RO
PDO Mapping No
Range UNSIGNED8
Default value 4

Sub index 1
Description Vendor ID
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 0000.0123h

Sub index 2
Description Product code
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 0000.0220h

Sub index 3
Description Revision number
Access RO
PDO Mapping No
Range UNSIGNED32
Default value According to the equipment firmware version

Sub index 4
Description Serial number
Access RO
PDO Mapping No
Range UNSIGNED32
Default value Different for every PLC300

The vendor ID is the number that identifies the manufacturer at the CiA. The product code is defined by the
manufacturer according to the type of product. The revision number represents the equipment firmware version.
The sub-index 4 is a unique serial number for each programmable controller PLC300 in CANopen network.

6.2 SERVICE DATA OBJECTS – SDOS

The SDOs are responsible for the direct access to the object dictionary of a specific device in the network. They
are used for the configuration and therefore have low priority, since they do not have to be used for
communicating data necessary for the device operation.

There are two types of SDOs: client and server. Basically, the communication initiates with the client (usually the
master of the network) making a read (upload) or write (download) request to a server, and then this server
answers the request.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 20

Figure 6.1: Communication between SDO client and server

6.2.1 Object 1200h – SDO Server

The programmable controller PLC300 working in slave mode has only one SDO of the server type, which makes
it possible the access to its entire object dictionary. Through it, an SDO client can configure the communication,
the parameters and the drive operation. Every SDO server has an object, of the SDO_PARAMETER type, for its
configuration, having the following structure:

Index 1200h
Name Server SDO Parameter
Object Record
Type SDO Parameter

Sub index 0
Description Number of the last sub-index
Access RO
PDO Mapping No
Range UNSIGNED8
Default value 2

Sub index 1
Description COB-ID Client - Server (rx)
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 600h + Node-ID

Sub index 2
Description COB-ID Server - Client (tx)
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 580h + Node-ID

6.2.2 SDOs Operation

A telegram sent by an SDO has an 8 byte size, with the following structure:

Identifier 8 data bytes

11 bits
Command Index Sub-index Object data

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

The identifier depends on the transmission direction (rx or tx) and on the address (or Node-ID) of the destination
server. For instance, a client that makes a request to a server which Node-ID is 1, must send a message with
the identifier 601h. The server will receive this message and answer with a telegram which COB-ID is equal to
581h.

The command code depends on the used function type. For the transmissions from a client to a server, the
following commands can be used:

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 21

Table 6.2: Command codes for SDO client

Command Function Description Object data
22h Download Write object Not defined
23h Download Write object 4 bytes
2Bh Download Write object 2 bytes
2Fh Download Write object 1 byte
40h Upload Read object Not used

60h or 70h Upload segment Segmented read Not used

When making a request, the client will indicate through its COB-ID, the address of the slave to which this
request is destined. Only a slave (using its respective SDO server) will be able to answer the received telegram
to the client. The answer telegram will have also the same structure of the request telegram, the commands
however are different:

Table 6.3: Command codes for SDO server

Command Function Description Object data
60h Download Response to write object Not used
43h Upload Response to read object 4 bytes
4Bh Upload Response to read object 2 bytes
4Fh Upload Response to read object 1 byte
41h Upload segment Initiates segmented response for read 4 bytes

01h ... 0Dh Upload segment Last data segment for read 8 ... 2 bytes

For readings of up to four data bytes, a single message can be transmitted by the server; for the reading of a
bigger quantity of bytes, it is necessary that the client and the server exchange multiple telegrams.

A telegram is only completed after the acknowledgement of the server to the request of the client. If any error is
detected during telegram exchanges (for instance, no answer from the server), the client will be able to abort the
process by means of a warning message with the command code equal to 80h.

NOTE!
The values received from these objects are not saved in nonvolatile memory. Thus, after a shutdown
or reset the equipment, the objects modified by the SDO return to its default value.

E.g.: A client SDO requests for a PLC300 at address 1 the reading of the object identified by the index 3000h,
sub-index 0 (zero), which represents an 16-bit integer. The master telegram has the following format:

Identifier Command Index Sub-index Data
601h 40h 00h 30h 00h 00h 00h 00h 00h

The PLC300 responds to the request indicating that the value of the referred object is equal to 9994:

Identifier Command Index Sub-index Data
581h 4Bh 00h 30h 00h E7 03h 00h 00h

6.3 PROCESS DATA OBJECTS – PDOS

The PDOs are used to send and receive data used during the device operation, which must often be
transmitted in a fast and efficient manner. Therefore, they have a higher priority than the SDOs.

In the PDOs only data are transmitted in the telegram (index and sub-index are omitted), and in this way it is
possible to do a more efficient transmission, with larger volume of data in a single telegram. However it is
necessary to configure previously what is being transmitted by the PDO, so that even without the indication of
the index and sub-index, it is possible to know the content of the telegram.

There are two types of PDOs, the receive PDO and the transmit PDO. The transmit PDOs are responsible for
sending data to the network, whereas the receive PDOs remain responsible for receiving and handling these
data. In this way it is possible to have communication among slaves of the CANopen network, it is only
necessary to configure one slave to transmit information and one or more slaves to receive this information.

4 Do not forget that for any integer type of data, the byte transfer order is from the least significant to the most significant.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 22

Figure 6.2: Communication using PDOs

NOTE!
PDOs can only be transmitted or received when the device is in the operational state. The figure 6.2
illustrates the available states for CANopen network node.

6.3.1 PDO Mapping Objects

In order to be able to be transmitted by a PDO, it is necessary that an object be mapped into this PDO content.
In the description of communication objects (1000h – 1FFFh), the filed “PDO Mapping” informs this possibility.
Usually only information necessary for the operation of the device can be mapped, such as enabling
commands, device status, reference, etc. Information on the device configuration are not accessible through
PDOs, and if it is necessary to access them one must use the SDOs.

For the manufacturer specific objects (2000h - 5FFFh), network input markers can be mapped in reception
PDOs, while network output markers can be mapped to transmission PDOs. Item 5.4 describes the objects
mappable to PDOs.

The EDS file brings the list of all available objects informing whether the object can be mapped or not.

6.3.2 Receive PDOs

The receive PDOs, or RPDOs, are responsible for receiving data that other devices send to the CANopen
network. The programmable controller PLC300 working in slave mode has 8 receive PDOs, each one being
able to receive up to 8 bytes. Each RPDO has two parameters for its configuration, a
PDO_COMM_PARAMETER and a PDO_MAPPING, as described next.

PDO_COMM_PARAMETER

Index 1400h up to 1407h
Name Receive PDO communication parameter
Object Record
Type PDO COMM PARAMETER

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 2

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 23

Sub index 1
Description COB-ID used by the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1400h: 200h + Node-ID

1401h: 300h + Node-ID
1402h: 400h + Node-ID
1403h: 500h + Node-ID
1404h – 1407h: 0

Sub index 2
Description Transmission Type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

The sub-index 1 contains the receive PDO COB-ID. Every time a message is sent to the network, this object will
read the COB-ID of that message and, if it is equal to the value of this field, the message will be received by the
device. This field is formed by an UNSIGNED32 with the following structure:

Table 6.4: COB-ID description

Bit Value Description
31 (MSB) 0 PDO is enabled

1 PDO is disabled
30 0 RTR permitted
29 0 Identifier size = 11 bits

28 – 11 0 Not used, always 0
10 – 0 (LSB) X 11-bit COB-ID

The bit 31 allows enabling or disabling the PDO. The bits 29 and 30 must be kept in 0 (zero), they indicate
respectively that the PDO accepts remote frames (RTR frames) and that it uses an 11-bit identifier. Since the
PLC300 frequency inverter does not use 29-bit identifiers, the bits from 28 to 11 must be kept in 0 (zero),
whereas the bits from 10 to 0 (zero) are used to configure the COB-ID for the PDO.

The sub-index 2 indicates the transmission type of this object, according to the next table.

Table 6.5: Description of the type of transmission

Type of transmission PDOs transmission
 Cyclic Acyclic Synchronous Asynchronous RTR
0 • •

1 – 240 • •
241 – 251 Reserved

252 • •
253 • •
254 •
255 •

 Values 0 – 240: any RPDO programmed in this range presents the same performance. When detecting a

message, it will receive the data; however it won't update the received values until detecting the next SYNC
telegram.

 Values 252 and 253: not allowed for receive PDOs.
 Values 254 and 255: they indicated that there is no relationship with the synchronization object. When

receiving a message, its values are updated immediately.

PDO_MAPPING

Index 1600h up to 1607h
Name Receive PDO mapping
Object Record
Type PDO MAPPING

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 24

Sub index 0
Description Number of mapped objects
Access RO
PDO Mapping No
Range 0 = disable

1 ... 8 = number of mapped objects
Default value 0

Sub index 1 up to 8
Description 1 up to 8 object mapped in the PDO
Access Rw
PDO Mapping No
Range UNSIGNED32
Default value According EDS file

This parameter indicates the mapped objects in the PLC300 receive PDOs. It is possible to map up to 8
different objects for each RPDO, provided that the total length does not exceed eight bytes. The mapping of an
object is done indicating its index, sub-index5 and size (in bits) in an UNSIGNED32, field with the following
format:

UNSIGNED32
Index

(16 bits)
Sub-index

(8 bits)
Size of the object

(8 bits)

For instance, analyzing the receive PDO standard mapping, we have:

 Sub-index 0 = 2: the RPDO has two mapped objects.
 Sub-index 1 = 3400.0010h: the first mapped object has an index equal to 3400h, sub-index 0 (zero), and

a size of 16 bits. This object corresponds to the input marked %IW6000
 Sub-index 2 = 3804.0020h: the second mapped object has an index equal to 3804h, sub-index 0 (zero),

and a size of 32 bits. This object corresponds to the input marked %ID6004.

It is possible to modify this mapping by changing the quantity or the number of mapped objects. Remembering
that only 8 objects or 8 bytes can be mapped at maximum.

NOTE!
 In order to change the mapped objects in a PDO, it is first necessary to write the value 0 (zero) in

the sub-index 0 (zero). In that way the values of the sub-indexes 1 to 8 can be changed. After the
desired mapping has been done, one must write again in the sub-index 0 (zero) the number of
objects that have been mapped, enabling again the PDO.

 In order to speed up the updating of data via PDO, the values received with these objects are not
saved in the inverter non-volatile memory. Therefore, after switching off or resetting the equipment
the objects modified by an RPDO get back to their default value.

 Do not forget that PDOs can only be received if the PLC300 is in the operational state.

6.3.3 Transmit PDOs

The transmit PDOs, or TPDOs, as the name says, are responsible for transmitting data for the CANopen
network. The programmable controller PLC300 has 8 transmit PDOs, each one being able to transmit up to 8
data bytes. In a manner similar to RPDOs, each TPDO has two parameters for its configuration, a
PDO_COMM_PARAMETER and a PDO_MAPPING, AS DESCRIBED NEXT.

PDO_COMM_PARAMETER

Index 1800h up to 1807h
Name Transmit PDO Parameter
Object Record
Type PDO COMM PARAMETER

5 If the object is of the VAR type and does not have sub-index, the value 0 (zero) must be indicated for the sub-index.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 25

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 5

Sub index 1
Description COB-ID used by the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1800h: 180h + Node-ID

1801h: 280h + Node-ID
1802h: 380h + Node-ID
1803h: 480h + Node-ID
1804h – 1807h: 0

Sub index 2
Description Transmission Type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

Sub index 3
Description Time between transmissions
Access rw
PDO Mapping No
Range UNSIGNED16
Default value -

Sub index 4
Description Reserved
Access rw
PDO Mapping No
Range UNSIGNED8
Default value -

Sub index 5
Description Event timer
Access rw
PDO Mapping No
Range 0 = disable

UNSIGNED16
Default value 0

The sub-index 1 contains the transmit PDO COB-ID. Every time this PDO sends a message to the network, the
identifier of that message will be this COB-ID. The structure of this field is described in table 6.4.

The sub-index 2 indicates the transmission type of this object, which follows the table 6.5 description. Its
working is however different for transmit PDOs:

 Value 0: indicates that the transmission must occur immediately after the reception of a SYNC telegram,

but not periodically.
 Values 1 – 240: the PDO must be transmitted at each detected SYNC telegram (or multiple occurrences of

SYNC, according to the number chosen between 1 and 240).
 Value 252: indicates that the message content must be updated (but not sent) after the reception of a

SYNC telegram. The transmission of the message must be done after the reception of a remote frame (RTR
frame).

 Value 253: the PDO must update and send a message as soon as it receives a remote frame.
 Values 254: The object must be transmitted according to the timer programmed in sub-index 5.
 Values 255: the object is transmitted automatically when the value of any of the objects mapped in this

PDO is changed. It works by changing the state (Change of State). This type does also allow that the PDO
be transmitted according to the timer programmed in sub-index 5.

In the sub-index 3 it is possible to program a minimum time (in multiples of 100μs) that must elapse after the a
telegram has been sent, so that a new one can be sent by this PDO. The value 0 (zero) disables this function.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 26

The sub-index 5 contains a value to enable a timer for the automatic sending of a PDO. Therefore, whenever a
PDO is configured as the asynchronous type, it is possible to program the value of this timer (in multiples of
1ms), so that the PDO is transmitted periodically in the programmed time.

NOTE!
 The value of this timer must be programmed according to the used transmission rate. Very short

times (close to the transmission time of the telegram) are able to monopolize the bus, causing
indefinite retransmission of the PDO, and avoiding that other less priority objects transmit their
data.

 The minimum time allowed for this Function in the programmable controller PLC300 is 1ms.
 It is important to observe the time between transmissions programmed in the sub-index 3,

especially when the PDO is programmed with the value 255 in the sub-index 2 (Change of State).

PDO_MAPPING

Index 1A00h up to 1A07h
Name Transmit PDO mapping
Object Record
Type PDO MAPPING

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range 0 = disable

1 ... 8 = number of mapped objects
Default value 0

Sub index 1 up to 8
Description 1 up to 8 object mapped in the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 0

The PDO MAPPING for the transmission works in similar way than for the reception, however in this case the
data to be transmitted by the PDO are defined. Each mapped object must be put in the list according to the
description showed next:

UNSIGNED32
Index

(16 bits)
Sub-index

(8 bits)
Size of the object

(8 bits)

For instance, analyzing the standard mapping of the fourth transmit PDO, we have:

 Sub-index 0 = 2: This PDO has two mapped objects.
 Sub-index 1 = 4000.0008h: the first mapped object has an index equal to 4000h, sub-index 0 (zero), and

a size of 8 bits. This object corresponds to the input marked %QB2000.
 Sub-index 2 = 4804.0020h: the second mapped object has an index equal to 22A9h, sub-index 0 (zero),

and a size of 16 bits. This object corresponds to the input marked %QD2004.

Therefore, every time this PDO transmits its data, it elaborates its telegram containing four data bytes, with the
values of the parameters P0680 and P0681. It is possible to modify this mapping by changing the quantity or
the number of mapped objects. Remember that a maximum of 8 objects or 8 bytes can be mapped.

NOTE!
In order to change the mapped objects in a PDO, it is first necessary to write the value 0 (zero) in the
sub-index 0 (zero). In that way the values of the sub-indexes 1 to 8 can be changed. After the desired
mapping has been done, one must write again in the sub-index 0 (zero) the number of objects that
have been mapped, enabling again the PDO.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 27

6.4 SYNCHRONIZATION OBJECT – SYNC

This object is transmitted with the purpose of allowing the synchronization of events among the CANopen
network devices. It is transmitted by a SYNC producer, and the devices that detect its transmission are named
SYNC consumers

The programmable controller PLC300 working in slave mode has the function of a SYNC consumer and,
therefore, it can program its PDOs to be synchronous. As described in table 6.5, synchronous PDOs are those
related to the synchronization object, thus they can be programmed to be transmitted or updated based in this
object.

Figure 6.3: SYNC

The SYNC message transmitted by the producer does not have any data in its data field, because its purpose is
to provide a time base for the other objects. There is an object in the PLC300 for the configuration of the COB-
ID of the SYNC consumer.

Index 1015h
Name COB-ID SYNC
Object VAR
Type UNSIGNED32

Access rw
PDO Mapping No
Range UNSIGNED32
Default value 80h

NOTE!
The period of the SYNC telegrams must be programmed in the producer according to the
transmission rate and the number of synchronous PDOs to be transmitted. There must be enough
time for the transmission of these objects, and it is also recommended that there is a tolerance to
make it possible the transmission of asynchronous messages, such as EMCY, asynchronous PDOs
and SDOs.

6.5 NETWORK MANAGEMENT – NMT

The network management object is responsible for a series of services that control the communication of the
device in a CANopen network. For the PLC300 the services of node control and error control are available
(using Node Guarding or Heartbeat).

6.5.1 Slave State Control

With respect to the communication, a CANopen network device can be described by the following state
machine:

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 28

Figure 6.4: CANopen node state diagram

Table 6.6: Transitions Description

Transition Description
1 The device is switched on and initiates the initialization (automatic).
2 Initialization concluded, it goes to the preoperational state (automatic).
3 It receives the Start Node command for entering the operational state.
4 It receives the Enter Pre-Operational command, and goes to the preoperational state.
5 It receives the Stop Node command for entering the stopped state.
6 It receives the Reset Node command, when it executes the device complete reset.
7 It receives the Reset Communication command, when it reinitializes the object values and the CANopen device

communication.

During the initialization the Node-ID is defined, the objects are created and the interface with the CAN network is
configured. Communication with the device is not possible during this stage, which is concluded automatically.
At the end of this stage the slave sends to the network a telegram of the Boot-up Object, used only to indicate
that the initialization has been concluded and that the slave has entered the preoperational state. This telegram
has the identifier 700h + Node-ID, and only one data byte with value equal to 0 (zero).

In the preoperational state it is already possible to communicate with the slave, but its PDOs are not yet
available for operation. In the operational state all the objects are available, whereas in the stopped state only
the NMT object can receive or transmit telegrams to the network. The next table shows the objects available for
each state.

Table 6.7: Objects accessible in each state

 Initialization Preoperational Operational Stopped
PDO •
SDO • •

SYNC • •
EMCY • •

Boot-up •
NMT • • •

This state machine is controlled by the network master, which sends to each slave the commands so that the
desired state change be executed. These telegrams do not have confirmation, what means that the slave does
only receive the telegram without returning an answer to the master. The received telegrams have the following
structure:

Identifier byte 1 byte 2
00h Command code Destination Node-ID

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 29

Table 6.8: Commands for the state transition

Command code Destination Node-ID
1 = START node (transition 3)
2 = STOP node (transition 4)
128 = Enter pre-operational (transition 5)
129 = Reset node (transition 6)
130 = Reset communication (transition 7)

0 = All the slaves
1 ... 127 = Specific slave

The transitions indicated in the command code correspond to the state transitions executed by the node after
receiving the command (according to the Figure 6.4). The Reset node command makes the PLC300 execute a
complete reset of the device, while the Reset communication command causes the device to reinitialize only the
objects pertinent to the CANopen communication.

6.5.2 Error Control – Node Guarding

This service is used to make it possible the monitoring of the communication with the CANopen network, both
by the master and the slave as well. In this type of service the master sends periodical telegrams to the slave,
which responds to the received telegram. If some error that interrupts the communication occurs, it will be
possible to identify this error, because the master as well as the slave will be notified by the Timeout in the
execution of this service. The error events are called Node Guarding for the master and Life Guarding for the
slave.

Figure 6.5: Error control service – Node Guarding

There are two objects of the dictionary for the configuration of the error detection times for the Node Guarding
service:

Index 100Ch
Name Guard Time
Object VAR
Type UNSIGNED16

Access rw
PDO Mapping No
Range UNSIGNED16
Default value 0

Index 100Dh
Name Life Time Factor
Object VAR
Type UNSIGNED8

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 30

Access rw
PDO Mapping No
Range UNSIGNED8
Default value 0

The 100Ch object allows programming the time necessary (in milliseconds) for a fault occurrence being
detected, in case the PLC300 does not receive any telegram from the master. The 100Dh object indicates how
many faults in sequence are necessary until it be considered that there was really a communication error.
Therefore, the multiplication of these two values will result in the total necessary time for the communication
error detection using this object. The value 0 (zero) disables this function.

Once configured, the PLC300 starts counting these times starting from the first Node Guarding telegram
received from the network master. The master telegram is of the remote type, not having data bytes. The
identifier is equal to 700h + Node-ID of the destination slave. However the slave response telegram has 1 data
byte with the following structure:

Identifier
byte 1

bit 7 bit 6 ... bit 0
700h + Node-ID Toggle Slave state

This telegram has one single data byte. This byte contains, in the seven least significant bits, a value to indicate
the slave state (4 = stopped, 5 = operational and 127 = preoperational), and in the eighth bit, a value that must
be changed at every telegram sent by the slave (toggle bit).

If the programmable controller PLC300 working in slave mode detects an error using this mechanism, it will turn
automatically to the preoperational state and indicate this state in the LED CAN.

NOTE!
 This object is active even in the stopped state (see table 6.7).
 The value 0 (zero) in any of these two objects will disable this function.
 If after the error detection the service is enabled again, then the error indication will be removed

from the HMI.
 The minimum value accepted by the PLC300 is 1ms., but considering the transmission rate and

the number of nodes in the network, the times programmed for this function must be consistent,
so that there is enough time for the transmission of the telegrams and also that the rest of the
communication be able to be processed.

 For any every slave only one of the two services - Heartbeat or Node Guarding – can be enabled.

6.5.3 Error Control – Heartbeat

The error detection through the Heartbeat mechanism is done using two types of objects: the Heartbeat
producer and the Heartbeat consumer. The producer is responsible for sending periodic telegrams to the
network, simulating a heartbeat, indicating that the communication is active and without errors. One or more
consumers can monitor these periodic telegrams, and if they cease occurring, it means that any communication
problem occurred.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 31

Figure 6.6: Error control service – Heartbeat

One device of the network can be both producer and consumer of heartbeat messages. For example, the
network master can consume messages sent by a slave, making it possible to detect communication problems
with the master, and simultaneously the slave can consume heartbeat messages sent by the master, also
making it possible to the slave detect communication fault with the master.

The PLC300 has the producer and consumer of heartbeat services. As a consumer, it is possible to program up
to 4 different producers to be monitored by the inverter.

Index 1016h
Name Consumer Heartbeat Time
Object ARRAY
Type UNSIGNED32

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range -
Default value 63

Sub index 1 – 63
Description Consumer Heartbeat Time 1 – 63
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 0

At sub-indexes 1 to 63, it is possible to program the consumer by writing a value with the following format:

UNSIGNED32
Reserved

(8 bits)
Node-ID
(8 bits)

Heartbeat time
(16 bits)

 Node-ID: it allows programming the Node_ID for the heartbeat producer to be monitored.
 Heartbeat time: it allows programming the time, in 1 millisecond multiples, until the error detection if no

message of the producer is received. The value 0 (zero) in this field disables the consumer.

Once configured, the heartbeat consumer initiates the monitoring after the reception of the first telegram sent by
the producer. In case that an error is detected because the consumer stopped receiving messages from the
heartbeat producer, the programmable controller will turn automatically to the preoperational state and indicate
this state in the LED CAN.

COMMUNICATION OBJECTS DESCRIPTION

PLC300 | 32

As a producer, the programmable controller PLC300 has an object for the configuration of that service:

Index 1017h
Name Producer Heartbeat Time
Object VAR
Type UNSIGNED16

Access rw
PDO Mapping No
Range UNSIGNED8
Default value 0

The 1017h object allows programming the time in milliseconds during which the producer has to send a
heartbeat telegram to the network. Once programmed, the inverter initiates the transmission of messages with
the following format:

Identifier
byte 1

bit 7 bit 6 ... bit 0
700h + Node-ID Always 0 Slave state

NOTE!
 This object is active even in the stopped state (see table 6.7).
 The value 0 (zero) in the object will disable this function.
 If after the error detection the service is enabled again, then the error indication will be removed

from the HMI.
 The time value programmed for the consumer must be higher than the programmed for the

respective producer. Actually, it is recommended to program the consumer with a multiple of the
value used for the producer.

 For any every slave only one of the two services - Heartbeat or Node Guarding – can be enabled.

6.6 INITIALIZATION PROCEDURE

Once the operation of the objects available for the programmable controller PLC300 is known, then it becomes
necessary to program the different objects to operate combined in the network. In a general manner, the
procedure for the initialization of the objects in a CANopen network follows the description of the next flowchart:

Figure 6.7: Initialization process flowchart

It is necessary to observe that the programmable controller PLC300 communication objects (1000h to 1FFFh)
are not stored in the nonvolatile memory. Therefore, every time the equipment is reset or switched off, it is
necessary to redo the communication objects parameter setting.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 33

7 OPERATION IN CANOPEN NETWORK – MASTER MODE

In addition to operating as a salve, the programmable controller PLC300 can also operate as master of the
CANopen network. Below are described the characteristics and functions of the PLC300 as master of the
CANopen network.

7.1 ENABLING OF THE MASTER CANOPEN FUNCTION

As default, the programmable controller PLC300 is programmed to operate as slave of the CANopen network.
The programming of the equipment as network master must be done by using the WPSCAN software, which
also allows the configuration of the entire CANopen network. The detailed description of the windows and
functions of the WPSCAN software is obtained in the “Help” menu of the software itself.

After the configuration of the master is ready, it is necessary to download6 the configurations via one of the
programming interfaces of the product – refer to the user’s manual for further information. Once set as network
master, if necessary to erase those configurations, the function to erase the user’s program – trough Setup
menu – also erases the configurations of the CANopen master.

NOTE!
The CANopen network is a flexible network that allows several forms of configurations and operation.
However, in order to use this flexibility, it is necessary that the user know well both the communication
functions and objects used to configure the network, and the WPSCAN programming software.

7.2 CHARACTERISTICS OF THE CANOPEN MASTER

The programmable controller PLC300 allows controlling a group of up to 63 slaves, using the following
communication services and resources:

 Network manager task (NMT)
 63 transmission PDOs
 63 reception PDOs
 63 Heartbeat Consumers
 Heartbeat Producer
 SDO Client
 SYNC producer/consumer
 512 bytes of network input markers
 512 bytes of network output markers

The physical characteristics – installation, connector, cable, etc. – are the same for the PLC300 operating as
both master and slave. The configurations of address and baud rate are also necessary to operate as master,
but these configurations are programmed by the WPSCAN software according to the properties defined for the
master in the software itself.

NOTE!
The network input markers are used to map data in RPDOs, while the network output markers are
used to map data in TPDOs. They can be accessed in Byte (IB% or% QB), Word (% IW or% QW) or
Double Word (% ID or% DR). Its function, however, is not pre-defined and depends on the ladder
application developed for the PLC300.

7.3 OPERATION OF THE MASTER

Once programmed to operate as master, the programmable controller PLC300 will execute the following steps
to initialize, in a sequence, each slave:

 1st: send the communication reset command to the entire network, so that the slaves initialize with known

values for the communication objects.

6 During the download of the configurations, the CANopen communication will be disabled, and it will be enabled again at the end of the
operation.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 34

 2nd: Identification of the equipment in network, trough the reading via SDO of the object 1000h/00h – Object
Identification.

 3rd: Writing via SDO of all the objects programmed for the slave, which usually includes the configuration
and mapping of the TPDOs and RPDOs, node guarding, heartbeat, besides the specific objects of the
manufacturer, in case they are programmed.

 4th: Start the error control task – node guarding or heartbeat – if they are programmed.
 5th: send the slave to mode of operation.

If one of these steps fails, the error of communication with slave will occur. Depending of the configurations, the
slave initialization will be aborted, and the master will initialize the next slave, returning to the slave with error
after trying to initialize all the other network slaves.

Similarly, if, during the operation of a slave, an error is identified in the error control task, depending on the
configurations of the master, the slave will be automatically reset and the initialization procedure will be run
again.

NOTE!
The communication status and the status of each slave can be observed in system markers.

7.4 BLOCKS FOR THE CANOPEN MASTER

In addition to the communication objects and the configurations made on the WSCAN software, blocks for
monitoring and sending commands are also available. They can be used during the preparation of the ladder
application for the programmable controller PLC300. It is not necessary to use these blocks during the
equipment operation, but they provides more flexibility and simplify the communication troubleshooting during
the operation of the programmable controller PLC300.

7.4.1 CANopen SDO Read

Block for data reading via SDO of a remote slave. It allows the reading of objects in the network with a size of up
to 4 bytes.

It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's
successful performance. In the "Execute" positive transition, when the master's SDO client is free, a new
requisition is sent to the slave's SDO server. At the operation successful end – response received from the slave
– the "Done" output is activated, remaining active while the input is active. In case of error in the requisition
performance, the "Error" output is enabled, and the error code is put to "ErrorID".

<inst> - insert an instance (tag).

<arg0>: "NodeID#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Address of destination slave - 1 to 127

<arg1>: "Index#" - VAR_IN: insert a constant.
Types of data WORD
Description: Index of object accessed, among the objects available in the slave's dictionary of objects -
0 to 65535.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 35

<arg2>: "SubIndex#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Sub-index of the accessed object - 0 to 255.

<arg3>: "Size#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Size of the accessed data in bytes - 1 to 4.

<arg4>: "Timeout#" - VAR_IN: insert a constant.
Types of data WORD
Description: Waiting time for the arrival of the response by the slave, from its sending by the master - 5
to 5000 ms.

<arg5>: "Active" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: Active block, request for reading sent to the slave and awaiting response.
Note: The variable must have writing permission.

<arg6>: "Busy" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: Block enabled, though resource is not available (SDO client sending another requisition),
waiting for release so that the request is sent by the block. If the enabling input is removed while the
block makes that indication, the requisition is rejected.
Note: The variable must have writing permission.

<arg7>: "Error" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: error during requisition performance.
Note: The variable must have writing permission.

<arg8>: "ErrorID" - VAR_OUT: insert a variable (tag).
Types of data BYTE or USINT.
Description: In case of error during the requisition, it indicates the type of error occurred. Possible
results: 0= "Successfully performed"; 1= "Card cannot perform the function" (example: Master
disabled); 2= "Timeout in the response by the slave"; 3= "Slave returned error".
Note: The variable must have writing permission.

<arg9>: "Value" - VAR_OUT: insert a variable (tag).
Types of data BYTE[1 ... 4] or USINT[1 ... 4]
Description: Variable or array where the slave's read data will be saved
Note: The variable must have writing permission.

7.4.2 CANopen SDO Write

Block for data writing via SDO of a remote slave. It allows the writing of objects in the network with the size of
up to 4 bytes.

It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's
successful performance. In the "Execute" positive transition, when the master's SDO client is free, a new
requisition is sent to the slave's SDO server. At the operation successful end – response received from the slave

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 36

– the "Done" output is activated, remaining active while the input is active. In case of error in the requisition
performance, the "Error" output is enabled, and the error code is put to "ErrorID".

<inst> - insert an instance (tag).

<arg0>: "NodeID#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Address of destination slave - 1 to 127

<arg1>: "Index#" - VAR_IN: insert a constant.
Types of data WORD
Description: Index of the accessed object, among the objects available in the slave's dictionary of
objects - 0 to 65535.

<arg2>: "SubIndex#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Sub-index of the accessed object - 0 to 255.

<arg3>: "Size#" - VAR_IN: insert a constant.
Types of data BYTE
Description: Size of the accessed data in bytes - 1 to 4.

<arg4>: "Timeout#" - VAR_IN: insert a constant.
Types of data WORD
Description: Waiting time for the arrival of the response by the slave, from the sending by the master - 5
to 5000 ms.

<arg5>: "Value" - VAR_IN: insert a variable (tag).
Types of data BYTE[1 ... 4] or USINT[1 ... 4]
Description: Variable or array with data to send to the slave

<arg6>: "Active" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: Active block, requisition for reading sent to the slave and awaiting response.
Note: The variable must have writing permission.

<arg7>: "Busy" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: Block enabled, though resource is not available (SDO client sending another requisition),
waiting for release so that the request is sent by the block. If the enabling input is removed while the
block makes that indication, the requisition is rejected.
Note: The variable must have writing permission.

<arg8>: "Error" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: error during requisition performance.
Note: The variable must have writing permission.

<arg9>: "ErrorID" - VAR_OUT: insert a variable (tag).
Types of data BYTE or USINT.
Description: In case of requisition error, the type of error occurred will be indicated. Possible results: 0=
"Successfully performed"; 1= "Card cannot perform the function" (example: Master disabled); 2=
"Timeout in the response by the slave"; 3= "Slave returned error".
Note: The variable must have writing permission.

NOTE!
 It is important that the quantity of read or written data programmed in the blocks is compatible

with the size of the variable, or the array with the value,
 In case of error returned by the slave, it is possible to obtain the code of the last error received

through the reading system markers. Refer to item 8 for a list of available markers.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 37

7.4.3 CANopen Master Control/Status

Block to control and monitor the master in the CANopen network. It shows the state of the network master for
diagnosis and identification of communication problems, as well as allows the sending of commands to the
network management task – NMT.

It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function
performance. If the "Execute" input is active, it updates the values of inputs and outputs and enables the "Done"
output. If the "Execute" input is not active, the other input values are ignored and all outputs are zeroed.

<inst> - insert an instance (tag).

<arg0>: "DisableComm" - VAR_IN: insert a constant or a variable (tag).
Types of data BOOL
Description: Disables the CANopen communication. When disabling the master, the CANopen master's
status counters and markers are also zeroed - 0 or 1.

<arg1>: "SendNMT" - VAR_IN: insert a constant or a variable (tag).
Types of data BOOL
Description: During the transition of this signal, the CANopen master triggers the sending of a
management command - NMT - according to the command and the address programmed in this block
- 0 or 1.

<arg2>: "NMTCommand" - VAR_IN: insert a constant or a variable (tag).
Types of data BYTE
Description: It indicates which command must be sent to the slave: 1= "Start node"; 2= "Stop node";
128= "Enter pre-operational"; 129= "Reset node"; 130= "Reset communication".

<arg3>: "NodeID" - VAR_IN: insert a constant or a variable (tag).
Types of data BYTE or USINT.
Description: Slave's address for the sending of the NMT command - 0= Broadcast (message to all
slaves); 1 to 127= Slave's specific address.

<arg4>: "CommDisabled" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master and the communication in the CAN interface were disabled. It is
indicated whenever the user command to disable the interface is received, but it is also indicated in
those situations of lack of power supply in the CAN interface or bus off: 0= "Communication Enabled";
1= "Communication Disabled".
Note: The variable must have writing permission.

<arg5>: "BusPowerOff" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that failure in the CAN interface power supply was detected: 0= "Interface CAN
supplied"; 1= "Interface CAN without power supply".
Note: The variable must have writing permission.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 38

<arg6>: "BusOff" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that bus off error was detected in the CAN interface: 0= "Without bus off error";
1= "With bus off error".
Note: The variable must have writing permission.

<arg7>: "NMTCmdFeedback" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the management command was sent by the master: 0= "Without
command or command not sent"; 1= "NMT command sent".
Note: The variable must have writing permission.

<arg8>: "ErrorCtrlFailure" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has detected error in the error control task (node guarding or
heartbeat) in at least one slave in the network: 0= "Without detected error"; 1= "Master detected error in
the node guarding or heartbeat in at least one slave in the network".
Note: The variable must have writing permission.

<arg9>: "InitFailure" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has detected error during the initialization of at least one slave in
the network: 0= "Without detected error"; 1= "Master detected error in the initialization in at least one
slave in the network".
Note: The variable must have writing permission.

<arg10>: "InitFinished" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has tried to initialize all slaves in the network. The initialization
was not necessarily performed successfully; there might have been errors during initialization: 0=
"Master has not yet performed the initialization procedure of all slaves"; 1= "Master carried out the
initialization (successfully or unsuccessfully) of all slaves".
Note: The variable must have writing permission.

7.4.4 CANopen Slave Status

Block to monitor the slave of the CANopen network. It shows the state of a slave in the network for diagnosis
and identification of communication problems.

It has an "Execute" block enabling input, and a "Done" output which is activated after the end of the function's
successful performance. If the "Execute" input is active, it updates the values of inputs and outputs and enables
the "Done" output. If the "Execute" input is not active, the other input values are ignored and all outputs are
cleared.

<inst> - insert an instance (tag).

<arg0>: "NodeID" - VAR_IN: insert a constant or a variable (tag).
Types of data BYTE or USINT.
Description: Slave's address to identify the state of the communication with the master - 1 to 127.

OPERATION IN CANOPEN NETWORK – MASTER MODE

PLC300 | 39

<arg1>: "ErrorCtrlFailure" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has detected error in the error control task (node guarding or
heartbeat) in the indicated slave: 0= "Without detected error"; 1= "Master detected error in the node
guarding or heartbeat in the slave".
Note: The variable must have writing permission.

<arg2>: "InitFailure" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has detected error during the initialization of the indicated slave:
0= "Without detected error"; 1= "Master detected error in the slave initialization".
Note: The variable must have writing permission.

<arg3>: "InitFinished" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master performed the complete and successful initialization of the
indicated slave: 0= "Master did not conclude the slave initialization procedure"; 1= "Master successfully
performed the slave initialization".
Note: The variable must have writing permission.

<arg4>: "ErrprCtrlStarted" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master has started the error control task (node guarding or heartbeat)
with the indicated slave: If this task is not enabled for the slave, this bit will be activated after performing
the configuration: 0= "Error control with the slave not started"; 1= "Error control with the slave started".
Note: The variable must have writing permission.

<arg5>: "ConfigDownloaded" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master successfully finished downloading the configurations via SDO to
the indicated slave: 0= "Master did not finish downloading the configurations to the slave"; 1=
"Download of configurations to the slave successfully finished".
Note: The variable must have writing permission.

<arg6>: "SlaveDetected" - VAR_OUT: insert a variable (tag).
Types of data BOOL
Description: It indicates that the master was able to read the identification via the indicated slave SDO:
0= "Slave has not been contacted"; 1= "Slave successfully contacted".
Note: The variable must have writing permission.

NOTE!
The data accessed through the use of this block is also available through reading and writing system
markers, as described in item 8.

CAN/CANOPEN SYSTEM MARKERS

PLC300 | 40

8 CAN/CANOPEN SYSTEM MARKERS

For CAN interfaces, the following reading system markers (%S) and writing system markers (%C) were provided
for control and monitoring:

8.1 READING SYSTEM MARKERS

CAN Interface Status: group of reading markers to indicate information about the CAN interface status.
Marker Description

%SB3150 CAN interface status:
0 = initializing
1 = Reserved
2 = CAN Enabled
3 = Warning
4 = Error Passive
5 = Bus Off
6 = No bus power

%SB3151 CAN bus power.
0 = No bus power
1 = Bus power detected

%SW3152 Number of received telegrams. It resets every time it reaches the maximum or when the interface is disabled.
%SW3154 Number of transmitted telegrams. It resets every time it reaches the maximum or when the interface is disabled.
%SW3156 Bus Off error counter.
%SW3158 CAN lost messages counter (overrun).

CANopen Communication Status: read markers to indicate information about the state of the CANopen communication.

Marker Description
%SB3180 CANopen protocol state. Indicates whether the interface is operating correctly and, in the case of the network

operation as a slave, if any error was detected in the error detection mechanisms of the CANopen protocol:
0 = Disabled
1 = Reserved
2 = CANopen enabled
3 = Controle de erros enabled
4 = Node guarding error
5 = Heartbeat error

%SB3181 CANopen node state, according to the slave state machine of CANopen network:
0 = Initializing
1 = Stopped
2 = Operational
3 = Pre-operational

State of CANopen Master and Slaves: group of reading markers to indicate information about the general state of the CANopen master
and the communication state between the master and each slave.

Marker Description
%SW3200 CANopen master state:

Bit 0: all slaves have been contacted.
Bit 1: download of slaves configuration done.
Bit 2: error control mechanism for slaves initiated.
Bit 3: slaves initialization finished.
Bit 4: error detected during initialization of at least one slave.
Bit 5: error detected ate error control mechanism of at least one slave.
Bits 6 e 7: reserved
Bit 8: assumes the value of the toogle bit (see %CD3120) after the master sending a NMT command.
Bits 9 ... 12: reserved
Bit 13: bus off.
Bit 14: no bus power supply.
Bit 15: communication disabled.

%SW3202 ...
%SW3454

CANopen slaves state. There are 127 markers, each marker is associated with an address in the CANopen network,
and indicates the status of the slave at address:
Bit 0: slave successful contacted.
Bit 1: slave configuration downloaded successfully.
Bit 2: error control initiated.
Bit 3: slave initialization finished.
Bit 4: error during slave initialization.
Bit 5: error control mechanism detected communication failure.
Bits 6 ... 15: reserved

CAN/CANOPEN SYSTEM MARKERS

PLC300 | 41

Last Error at SDO Client: group of reading markers to report data errors detected by the SDO client. If SDO client makes any request
and the slave does not respond, or respond with an error, the data for the last error detected by the SDO client are saved in these markers.

Marker Description
%SW3460 Slave address destination for which the SDO request was sent.
%SW3462 Index of accessed object via SDO.
%SW3464 Sub-index of accessed object.
%SW3466 Type of access: 1 = read, 2 = write.
%SD3468 For writing access, indicates the written value.
%SD3472 Indicates the received error code, according to communication errors via SDO of the CANopen protocol specification.

Last detected EMCY: group of reading markers to inform about errors reported by EMCY producers. The CANopen master controller
does not have EMCY consumer. EMCY telegrams sent by the network slaves, however, are captured by the master, and the information of
the last EMCY detected is saved in these markers.

Marcador Description
%SB3480 EMCY slave address.
%SB3481 Reserved.

%SB3482 ...
%SB3489

Eight data bytes of EMCY telegram, with information about the error code reported by the slave.

8.2 WRITING SYSTEM MARKERS

CAN Interface Configuration: group of writing markers to program the settings of the CAN interface. They are also accessible via the
Setup menu.

Marker Description
%CB3052 CANopen address (Node ID). Valid range 1 to 127.
%CB3053 Reserved.
%CB3054 Reserved.
%CB3055 CAN baud rate:

0 = 1 Mbit/s
1 = reserved
2 = 500 Kbit/s
3 = 250 Kbit/s
4 = 125 Kbit/s
5 = 100 Kbit/s
6 = 50 Kbit/s
7 = 20 Kbit/s

CANopen Master Control: group of writing markers to control the CANopen master.

Marker Description
%CD3120 Command to control the CANopen master and to send NMT telegram.

Bits 0 ... 7: NMT command code:
1 = START
2 = STOP
128 = ENTER PRE-OPERATIONAL
129 = RESET NODE
130 = RESET COMMUNICATION
Bit 8: toggle bit; master sends the programmed command whenever the value of this bit changes.
Bits 9 ... 14: reserved
Bit 15: disables the CANopen communication
Bits 16 ... 23: destination slave address for sending NMT command.
Bits 24 ... 31: reserved

FAULTS AND ALARMS RELATED TO THE CANOPEN COMMUNICATION

PLC300 | 42

9 FAULTS AND ALARMS RELATED TO THE CANOPEN
COMMUNICATION

CAN INTERFACE WITHOUT POWER SUPPLY

Description:
It indicates that the CAN interface does not have power supply between the pins 1 and 5 of the connector.

Actuation:
In order that it be possible to send and receive telegrams through the CAN interface, it is necessary to supply
external power to the interface circuit.

If the CAN interface is connected to the power supply and the absence of power is detected, this will be
indicated at CAN LED and CAN markers. If the circuit power supply is reestablished, the CAN communication
will be reinitiated.

Possible Causes/Correction:
 Measure the voltage between the pins 1 and 5 of the CAN interface connector.
 Verify if the power supply cables have not been changed or inverted.
 Make sure there is no contact problem in the cable or in the CAN interface connector.

BUS OFF

Description:
The bus off error in the CAN interface has been detected.

Actuation:
If the number of reception or transmission errors detected by the CAN interface is too high7, the CAN controller
can be taken to the bus off state, where it interrupts the communication and disables the CAN interface.

In this case this will be indicated at CAN LED and CAN markers. In order that the communication be
reestablished, it will be necessary to cycle the power of the product, or remove the power supply from the CAN
interface and apply it again, so that the communication be reinitiated.

Possible Causes/Correction:
 Verify if there is any short-circuit between the CAN circuit transmission cables.
 Verify if the cables have not been changed or inverted.
 Verify if all the network devices use the same baud rate.
 Verify if termination resistors with the correct values were installed only at the extremes of the main bus.
 Verify if the CAN network installation was carried out in proper manner.

NODE GUARDING/HEARTBEAT

Description:
The CANopen communication error control detected a communication error by using the guarding mechanism.

Operation:
By using the error control mechanisms – Node Guarding or Heartbeat – the master and the slave can exchange
periodic telegrams, with a predetermined period. If the communication is interrupted by some reason, the
master, as well as the slave, will be able to detect communication error through the timeout in the exchange of
those messages.

In this case this will be indicated at CAN LED and CAN markers.

7 For more information on the error detection, refer to the CAN specification.

FAULTS AND ALARMS RELATED TO THE CANOPEN COMMUNICATION

PLC300 | 43

Possible Causes/Correction:
 Verify the times programmed in both master and slave, for the message exchanging. In order to avoid

problems due to transmission delays and differences in the time counting, it is recommended that the
values programmed for message exchanging in the master be a little bit shorter than the times programmed
for the error detection by the slave.

 Verify if the master is sending the guarding telegrams in the programmed time.
 Verify communication problems that can cause telegram losses or transmission delays.

WEG Equipamentos Elétricos S.A.
Jaraguá do Sul – SC – Brasil
Fone 55 (47) 3276-4000 – Fax 55 (47) 3276-4020
São Paulo – SP – Brasil
Fone 55 (11) 5053-2300 – Fax 55 (11) 5052-4212
automacao@weg.net
www.weg.net

http://www.weg.net/

	CONTENTS
	ABOUT THE MANUAL
	ABBREVIATIONS AND DEFINITIONS
	NUMERICAL REPRESENTATION
	DOCUMENTS

	1 INTRODUCTION TO THE CANOPEN COMMUNICATION
	1.1 CAN
	1.1.1 Data Frame
	1.1.2 Remote Frame
	1.1.3 Access to the Network
	1.1.4 Error Control
	1.1.5 CAN and CANopen

	1.2 NETWORK CHARACTERISTICS
	1.3 PHYSICAL LAYER
	1.4 ADDRESS IN THE CANOPEN NETWORK
	1.5 ACCESS TO THE DATA
	1.6 DATA TRANSMISSION
	1.7 COMMUNICATION OBJECTS - COB
	1.8 COB-ID
	1.9 EDS FILE

	2 CAN COMMUNICATION INTERFACE
	2.1 CAN INTERFACE CHARACTERÍSTICS
	2.2 CONNECTOR PINOUT
	2.3 POWER SUPPLY
	2.4 INDICATIONS
	2.4.1 Indication Patterns
	2.4.2 Error LED (red)
	2.4.3 Run LED (green)

	3 CANOPEN NETWORK INSTALLATION
	3.1 BAUD RATE
	3.2 ADDRESS IN THE CANOPEN NETWORK
	3.3 TERMINATION RESISTOR
	3.4 CABLE
	3.5 CONNECTION IN THE NETWORK

	4 CAN INTERFACE CONFIGURATION
	Baud rate
	ADDRESS

	5 OBJECT DICTIONARY
	5.1 DICTIONARY STRUCTURE
	5.2 DATA TYPE
	5.3 COMMUNICATION PROFILE – COMMUNICATION OBJECTS
	5.4 MANUFACTURER SPECIFIC OBJECTS

	6 COMMUNICATION OBJECTS DESCRIPTION
	6.1 IDENTIFICATION OBJECTS
	6.1.1 Object 1000h – Device Type
	6.1.2 Object 1001h – Error Register
	6.1.3 Object 1018h – Identity Object

	6.2 SERVICE DATA OBJECTS – SDOS
	6.2.1 Object 1200h – SDO Server
	6.2.2 SDOs Operation

	6.3 PROCESS DATA OBJECTS – PDOS
	6.3.1 PDO Mapping Objects
	6.3.2 Receive PDOs
	6.3.3 Transmit PDOs

	6.4 SYNCHRONIZATION OBJECT – SYNC
	6.5 NETWORK MANAGEMENT – NMT
	6.5.1 Slave State Control
	6.5.2 Error Control – Node Guarding
	6.5.3 Error Control – Heartbeat

	6.6 INITIALIZATION PROCEDURE

	7 OPERATION IN CANOPEN NETWORK – MASTER MODE
	7.1 ENABLING OF THE MASTER CANOPEN FUNCTION
	7.2 CHARACTERISTICS OF THE CANOPEN MASTER
	7.3 OPERATION OF THE MASTER
	7.4 BLOCKS FOR THE CANOPEN MASTER
	7.4.1 CANopen SDO Read
	7.4.2 CANopen SDO Write
	7.4.3 CANopen Master Control/Status
	7.4.4 CANopen Slave Status

	8 CAN/CANOPEN SYSTEM MARKERS
	8.1 READING SYSTEM MARKERS
	8.2 WRITING SYSTEM MARKERS

	9 FAULTS AND ALARMS RELATED TO THE CANOPEN COMMUNICATION
	CAN INTERFACE WITHOUT POWER SUPPLY
	BUS OFF
	NODE GUARDING/HEARTBEAT

