
EN - 1WEG Automation Europe S.r.l.- Gerenzano (VA) Italy

Contents
Reinforced insulation... 2
Introduction... 2
Mounting.. 2
Connections.. 2
Leds.. 3
Optional card recognization.. 4
1.0 CANopen interface.. 5
1.1 CANopen functions..5
1.2 CANopen management...9
1.3 Process Data Channel Control..9
1.4 SDO management...11
1.5 Alarms..12
1.6 Configuration example...15
1.7 Connecting the master control panel to ADV200 nodes.................................22
2.0 Operation according to the DS402 profile........................ 23
3.0 DeviceNet Interface... 25
3.1 General description of DeviceNet..25
3.2 DeviceNet function..25
3.3 Object description..25
3.4 Data transfert via Explicit Messaging..27
3.5 Polling function..32
3.6 Devicenet Interface configuration..33
3.7 Alarms..33
3.8 Process Data Channel Control..34
3.9 Configuration example...35
References... 36

	 	Use only the supplied screws!

Caution

Instruction manual

EXP-CAN/DN-ADV
CANopen / DeviceNet
interface expansion card

1S5F23, Manual EXP-CAN/DN-ADV
-IT/EN (rev 0.8 - 5-12-2022)

EN - 2

Reinforced insulation
PELV (Protective Extra Low Voltage) EN 61800-5-1.

Introduction
This manual describes the EXP-CAN/DN-ADV option card aimed at connecting
the ADV200 series Drives to CANopen or DeviceNet networks. It is possible to
use only one field bus expansion card per Drive.
This manual is addressed to desing engineers and technicians responsible for the
maintenance and the commissioning of CANopen and DeviceNet systems.
A CANopen and DeviceNet basic knowledge is therefore required; for further
information see the following manuals:
- 	 CANopen CAL-Base COMMUNICATION PROFILE for Industrial Systems; CiA

Draft Standard 301 Version 4.2 Date 13 February 2002 by CAN in Automation e. V.
- 	 DeviceNet Specifications. Volume 1 - DeviceNet Communication Model and

Protocol (Issued by ODVA).
- 	 DeviceNet Specifications. Volume 2 - DeviceNet Device Profiles and Object

Library (Issued by ODVA).
Mounting

Refer to ADV200 Quick Start up manual, chapter “Installation of optional
cards”: the card must be inserted on slot 3.

Connections
2 3 4 51

Wire sizes: 0.2 ... 2.5 mm2 (AWG 24 ... 12)
For the Bus connection use a shielded loop, type as stated by the CANopen or
DeviceNet specification.
The Bus connection is provided via a shielded loop (type as stated by the
CANopen or DeviceNet specification) to be placed far from the power cables,
with a minimum distance of 20 cm. The cable shielding must be continuous and
grounded at a single point.
In addition, the unipotential connection of ADV200 CAN bus nodes must be en-
sured with card terminal 1 (V- / CAN_GND).

PIN DeviceNet CANopen Function Max

BUS terminal : allows to connect the card to the CANopen or DeviceNet network

2 3 4 51

INTERNAL SUPPLY
(Connection not insulated)

EXTERNAL SUPPLY
(Connection optocoupled)

External supplier
11...30Vdc (*) 2 3 4 51

From Regulation card
C3

(0V 24 OUT)
S3

(+ 24V OUT)

(*) The supplier size have to be according to the used bus specification (CANopen or DeviceNet). Card absorption is 30 mA@24V

1 V- CAN_GND Ground / 0V / V- 0V

2 CAN_L CAN_L CAN_L busline (dominant low) -

3 DRAIN CAN_SHLD CAN shield -

4 CAN_H CAN_H CAN_H busline (dominant high) -

5 V+ CAN_V+ CAN external positive supply (dedicated for supply of transceiver and optocouplers) 11 ... 30V

EN - 3

Important! 		 Note on terminating resistor :

		 The first and last node of the CAN line must have a 120 ohm resistance between pins 2 and 4.

		 Terminals 1-5 must be powered:
		 - if using an external power supply the mains is galvanically isolated,
		 - if derived from the regulation card (terminals C3/S3, +24Vout/0V24 out) the mains is

NOT galvanically isolated. The maximum available current value must not be exceeded
(total max = 150 mA @ 24V), including any other expansion cards.

	 	- on CANopen networks in general, the CAN_GND connection must apply to all participating nodes unless
the CANopen network is completely galvanically isolated. If a node (master or slave) does not have the
CAN_GND connection, or if the connection is not used, the user must ensure maximum rejection of line
noise for all network participants.

The connection among the single cards is performed with a shielded cable as
shown in the following figure.

MASTER

EXP-CAN/DN-ADV

ADV200

1 52 3 4

EXP-CAN/DN-ADV

ADV200

1 52 3 4

E
xt

er
na

l S
up

pl
ie

r
11

 ..
. 3

0
V

dc

120 ohm 120 ohm

C
A

N
-L

C
A

N
-H

CANopen ADV200-WA ADV200-WA

C
A

N
_G

N
D

+ -

Leds

+5VC

AL
OP
PWR

LEDs CANopen DeviceNet

AL (red) ON: the CANopen interface is in alarm condition DeviceNet connection status,
see next tableOP (green) ON: the CANopen interface is in Operational condition

PWR (green)
The led is ON when the expansion card is powered and

active

+5VC (green) The led is ON when the optoinsulated CAN node is correctly powered

Caution

EN - 4

OP AL Meaning

ON ON Card power-up

BLINK BLINK Self test and Duplicate MAC-ID check is running

BLINK OFF Master configuration and/or I/O Polling wait not active

ON OFF I/O Polling active, operative status

OFF BLINK Minor fault (DUP MAC-ID fail, bus-off, bus-loss)

OFF ON Major fault (configuration error, internal error)

OFF OFF DeviceNet not configurated

Optional card recognization

1

T+ T- EN LOC ILim n:0 AL

MESSAGE 0 1

Option detect slot 3

Code: 0004H-4

2

T+ T- EN LOC ILim n:0 AL

0 2 . 1 7 PA R : 5 3 4

Slot 3 card type

Can/Dnet
Value 4

T+ T- EN LOC ILim n:0 AL

01 MONITOR

02 DRIVE INFO

03 STARTUP WIZARD

04 DRIVE CONFIG

1 - At power-on, the drive recognizes the presence of optional card in the expan-
sion slot 3, this message is shown on the display.

2- On 02 DRIVE INFO menu, select the PAR 534 Slot 3 card type to read the
recognized card type.

Value Description Card type
0 None -
4 Can/Dnet EXP-CAN/DN-ADV

255 Unknown -

EN - 5

1.0 CANopen interface
CANopen is a communication profile for CAL-based industrial systems. The
reference document is the CANopen CAL-Base COMMUNICATION PROFILE for
Industrial Systems; CiA Draft Standard 301 Version 4.2 Date 13 February 2002 by
CAN in Automation e. V.
The drive also implements the DS402 profile according to the CANopen Device
Profile Drives and Motion Control v4.02 specification.
The CAN protocol (ISO 11898) is CAN2.0A with an 11-bit identifier.
The integrated CANopen interface is developed as a “Minimum Capabilty Device”.
The data exchange is cyclic; the Master unit reads the Slave input data and writes
the Slave output data.

1.1 CANopen functions
This chapter describes the controlled functions of the CANopen communication
profile.

Main features:
1)	 The “Minimum Boot-up” is managed; the “Extended Boot-up (CAL)” is not

managed.
2)	 The SYNC function is implemented.
3)	 The PDO asynchronous assignment and RTR are managed.
4)	 The Node Guarding and HearthBeat protocols are managed.
5)	 The emergency message is managed (“EMERGENCY”).
6)	 The Dynamic ID distribution function (DBT slave) is not managed.
7)	 A “Pre-Defined Master/Slave connection” is implemented to simplify the Master

tasks during the initialization phase. “Inhibit-Times” (in units of 100 uS) can be
modified up to a value of 1 min.

8)	 The high-resolution synchronization is not supported.
9)	 “TIME STAMP” is not managed.
10)	On the access of the structured parameters, the OFFhex option subindex (ac-

cess to the whole object) is not managed.
11)	 In order to obtain a higher efficiency level, only the “Expedited” data transfer

(max. 4 Bytes) of the SDO services is managed.

1.1.1 Pre-defined Master/Slave Connection
The “Pre-defined Master/Slave connection” allows a peer-to-peer communication
between one Master and 127 Slaves; the Broadcast address is zero.

1.1.2 NMT Services (Network Management)
The NMT “mandatory” services are:	
-	 Enter_Pre-Operational_State	 CS = 128
- 	 Reset_Node			 CS = 129
- 	 Reset_Communication		 CS = 130
Being that the “Minimum Boot-up” is used, also the following NMT services are
managed:
- 	 Start_Remote_Mode		 CS = 1
- 	 Stop_Remote_Mode		 CS = 2
The COB-ID * of an initialization NMT service is always at 0; CS is the Command
Specifier defining the NMT service.

EN - 6

1.1.3 Initialization
The ADV drive supports the Node Guarding and HeartBeat mechanism. The Node
Guarding configuration can be performed through the master via the standard
Object Dictionary elements (1006h, 100Ch, 100Dh) and the 1016h, 1017h objects
for HeartBeat.
The drive checks the master functioning conditions through the Life Guarding. If
the check fails, the drive enables the “Buss Loss” alarm. The Life Guarding thresh-
old can be calculated as follows:

Value Condition

60ms
SYNC_PERIOD (*)

Default. No parameterization of the Node Guarding.
	

LIFE_TIME_FACTOR Use of the synchronous mode. If not stated by the master,
the Life_Time_Factor default value is equal to 3.

NODE_GUARDING_PERIOD (*) set by the master

LIFE_TIME_FACTOR If not otherwise stated, the value is equal to 3

1.1.4 Communication objects
This chapter describes the communication objects of the CANopen protocol; they
are managed by the interface card.
The managed communication objects are:
1)	 1 SDO reception Server.
2)	 1 SDO transmission Server.
3)	 4 reception PDOs.
4)	 4 transmission PDOs.
5)	 1 Emergency Object.
6)	 1 Node Guarding - Life Guarding.
7)	 1 SYNC object.

The following table lists the used communication objects in ascending order down-
ward, and the Message Identifier; the “Resulting COB-ID” is obtained by adding
the Node-ID (card address) to the number.

OBJECT MESSAGE ID
NODE GUARDING & HB 1792 700h+NodeId
1st SDO rx 1536 600h+NodeId
1st SDO tx 1408 580h+NodeId
1st PDO tx 384 180h+NodeId
1st PDO rx 512 200h+NodeId
2nd PDO tx 640 280h+NodeId
2nd PDO rx 768 300h+NodeId
3st PDO tx 384 380h+NodeId
3st PDO rx 512 400h+NodeId
4th PDO tx 640 480h+NodeId
4th PDO rx 768 500h+NodeId
EMERGENCY 220 80h+NodeId
SYNC 128 80h
NMT Network Management

	 Table 1.4.1: Communication Objects

EN - 7

1.1.5 Object Dictionary Elements
The Object Dictionary is accessible from a master CANopen.
The following table shows the communication objects used and accessibility with
master CANopen.

Index (hex) Name
1000 Device Type
1001 Error Register
1002 Manufacturer status register
1005 COB-ID SYNC Message
1006 Communication cycle period
1008 Manufacterer Device Name
1010 Store parameter
1009 Manufacturer Hardware Version
100A Manufacturer Software Version
100C Guard Time
100D Life Time Factor
1014 COB-ID Emergency
1016 HeartBeat time consumer
1017 HeartBeat time producer
1018 Identity object
1400 1st Receive PDO
1401 2nd Receive PDO
1402 3rd Receive PDO
1403 4th Receive PDO
1600 Receive PDO1 mapping parameter
1601 Receive PDO2 mapping parameter
1602 Receive PDO3 mapping parameter
1603 Receive PDO4 mapping parameter
1A00 Transmit PDO1 mapping parameter
1A01 Transmit PDO2 mapping parameter
1A02 Transmit PDO3 mapping parameter
1A03 Transmit PDO4 mapping parameter
1800 1st Transmit PDO
1801 2nd Transmit PDO
1802 3rd Transmit PDO
1803 4th Transmit PDO

Table1.5.1: Objects used by the CANopen communication profile

The objects shown in bold in the table allow writing of the parameters as-
signed with the exchange of data in the PDO.
The allocation criterion is variable, and depends on the size (in bytes) of the
parameter exchanged.

1.1.6 RX PDO Entries
The structure of the PDO Communication Parameter (index 1400h, 1401h) is:
1)	 Subindex 0 (Number of supported entries) = 2

EN - 8

2)	 The structure of Subindex 1 (COB-ID used by the PDO) is:
-	 Bit 31 (valid/invalid PDO) can be set via SDO.
- 	 Bit 30 (RTR Remote Transmission Request) = 0 because this function is not

supported.
-	 Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A).
-	 Bits 11-28 are not used.
-	 Bit 0-10 COB-ID (see table 1.4.1).
3)	 Cyclic-synchronous Subindex 2 (Transmission Type), or synchronous accord-

ing to the master performed setting (1 if SYNC has been foreseen, 254...255 if
asynchronous). If not stated, the synchronous mode is active.

1.1.7 TX PDO Entries
The structure of the PDO Communication Parameter (index 1800h, 1801h) is:
1)	 Subindex 0 (Number of supported entries) = 3
2)	 The structure of Subindex 1 (COB-ID used by the PDO) is:
-	 Bit 31 (valid/invalid PDO) can be set via SDO.
- 	 Bit 30 (RTR Remote Transmission Request) = 0 because this function is not

supported.
-	 Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A).
-	 Bits 11-28 are not used.
-	 Bit 0-10 COB-ID (see table 1.4.1).
3)	 Cyclic-synchronous Subindex 2 (Transmission Type), or synchronous accord-

ing to the master performed setting (1 if SYNC has been foreseen, 254...255 if
asynchronous). If not stated, the synchronous mode is active.

4)	 Inhibit timee

1.1.8 SDO Entries
Only the “Expedited” data transfer mode (max. 4 Bytes) is used.
1)	 Subindex 0 (Number of supported entries) = 3 because the device is a Server

of the SDO service.
2)	 The structure of the Subindex 1 and 2 (COB-ID used by the SDO) is:
-	 Bit 31 (valid/invalid SDO); it is equal to 1 because just the Default SDOs are

used.
- 	 Bit 30 reserved = 0.
-	 Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A).
-	 Bits 11-28 are not used.
-	 Bit 0-10 COB-ID (see table 1.4.1).
The element “node ID of SDO’s client resp. server” is not supported because just
the Default SDOs are used.

1.1.9 COB-ID SYNC Entries
The structure of the 32 bits contained in the COB-ID SYNC communication param-
eter is:
-	 Bit 31 = 1 because the CANopen interface card is a “consumer” of SYNC mes-

sages.
-	 Bit 30 = 0 because the interface card does not create SYNC messages.
-	 Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A).
-	 Bits 11-28 are not used.
-	 Bit 0-10 COB-ID (see table 1.4.1).

EN - 9

1.1.10 COB-ID Emergency
The structure of the 32 bits contained in the COB-ID Emergency Message com-
munication parameter is:
-	 Bit 31 = 0 because the CANopen interface card is not a “consumer” of Emer-

gency messages.
- 	 Bit 30 = 0 because the interface card creates Emergency messages.
-	 Bit 29 = 0 because the 11-bit ID is used (CAN 2.0A).
-	 Bits 11-28 are not used.
-	 Bit 0-10 COB-ID (see table 1.4.1).

1.2 CANopen management
The user interface of the CANopen protocol is performed via the drive parameters.
The parameters are controlled via hierarchical menus. All the writing parameters
referring to the field bus are active only after the drive reset. Here following is a list
of drive parameters useful to control the CANopen protocol.
To activate the EXP-CAN-ADV card, set parameter PAR 4000 Fieldbus type to
CANopen or DS402.
The following parameters are available in the COMMUNICATION->FIELDBUS
CONFIG menu:

PAR Nome Par Type Default value Attr

4004 Fieldbus baudrate Enum None Write

4006 Fieldbus address 2 byte unsigned 0 Write

4010 Fieldbus M->S enable Enum 0n Write

4012 Fieldbus alarm mode 2 byte unsigned 0 Write

4014 Fieldbus state Enum Stop Read only

•	 Fieldbus baudrate = Sets the network baud rate. Values available for CAN-
open: 125k, 250k, 500k, 1M

•	 Fieldbus address = address of this slave node in the network, accepted values
from 1 to 127

•	 Fieldbus M->S enable = if set to Off data in the RPDOs are not processed by
the drive

•	 Fieldbus alarm mode = if set to 1 the drive generates Opt Bus Fault errors
relating to the loss of communication (Bus Loss) even when the drive is not
enabled.

•	 Fieldbus state = state of the communication for this node on the CANopen
network: Stop, Pre-Operational, Operational.

1.3 Process Data Channel Control
This function allows to allocate the drive parameters or application variables to the
Process Data Channel data.
As for the CANopen protocol, the PDC is performed via the PDO messages
((Process data Object).
The CANopen protocol uses a number of words for the Process Data Channel
(abbr. PDC Process Data Channel), which can always be set.
The fieldbus Process Data Channel configuration is the following:

EN - 10

Data 0		 Data...		 Data n

The drive can both read and write the Process Data Channel data.
A datum can be made both of 2 and 4 bytes. The word “data” refers to any quan-
tity of bytes included between 0 and 16, if the byte total number required is not
higher than 32.

Example:
It is possible to have:	

-	 from 0 to 16 data with 2 bytes
-	 1 datum with 4 bytes + from 0 to 14 data with 2 bytes
-	 2 data with 4 bytes + from 0 to 12 data with 2 bytes
...
-	 8 data with 4 bytes

The data exchanged via the PDC can be of two types:
- 	 drive parameters
- 	 variables of an MDPlc application. The use of the MDPlc variables is described

in par. 1.3.1 and 1.3.2.
The master writes the data defined as PDC input and reads the data defined as
PDC output.

PDC
CANopen

interface

Drive

Input

Output

PDO Rx

PDO Tx

1.3.1 PDC Input Configuration (FB XXX MS Parameter)
Data exchanged in RPDOs are configured using the parameters in the COMMU-
NICATION->FIELDBUS M2S menu (refer to the drive manual).
Data mapping in PDOs is performed on the basis of the data format set in Field-
bus M->Sn sys according to the following rules:
–	 PDOs are filled starting from RPDO1
–	 When the PDO contains 4 words it is full and the next RPDO is filled with a

maximum of 4 PDOs.
–	 32-bit data (long or float) cannot be split among PDOs, they must be placed

inside the PDO (an alarm is generated).
–	 PDOs containing fewer than 4 words can be created, using Fieldbus M->Sn

ipa = 0 but assigned (Fieldbus M->Sn sys other than Not Assigned, Fill16 or
Fill32) after an assigned datum.

	 (N.B.: if assigned as Fill16 or Fill32, the datum is included in the PDO anyway)
–	 At the first Fieldbus M->Sn sys = Not Assigned parameter the PDOs are

complete. The size of the last PDO thus depends on the data that have been
assigned.

–	 Example: 2-word RPDO1 and 2-word RPDO2:
	 Fieldbus M->S1 ipa = 610 (Ramp ref 1 src)
	 Fieldbus M->S1 sys = Eu
	 Fieldbus M->S2 ipa = 4452 (Word decomp src)
	 Fieldbus M->S2 sys = Count 16
	 	Fieldbus M->S3 ipa = 0
	 Fieldbus M->S3 sys = Fill 32

EN - 11

	 Fieldbus M->S4 ipa = 3660 (Compare input 1 src)
	 Fieldbus M->S4 sys = Count32
	 Fieldbus M->S5 sys = Not Assigned

1.3.2 PDC Output Configuration (FB XXX SM Parameter)
Data exchanged in RPDOs are configured using the parameters in the COMMU-
NICATION->FIELDBUS S2M menu (refer to the drive manual).
Data mapping in PDOs is performed on the basis of the data format set in Field-
bus M->Sn sys according to the following rules:
–	 PDOs are filled starting from TPDO1
–	 When the PDO contains 4 words it is full and the next TPDO is filled with a

maximum of 4 PDOs.
–	 32-bit data (long or float) cannot be split among PDOs, they must be placed

inside the PDO (an alarm is generated).
–	 PDOs with fewer than 4 words can be created, using Fieldbus S->Mn ipa = 0

but assigned (Fieldbus M->Sn sys other than Not Assigned, Fill16 or Fill32)
after an assigned datum.

–	 At the first Fieldbus S->Mn sys = Not Assigned parameter the PDOs are
complete. The size of the last PDO thus depends on the data that have been
assigned.

1.3.3 Use of the PDC in MDPlc Applications
It is possible to configure both the PDC input and output data in order to allow the
data direct access via the MDPlc application code.
For read data simply set Fieldbus M->Sn sys to MDPLC16 or MDPLC32, leaving
Fieldbus M->Sn ipa = 0.
The MDPLC application can now read the incoming datum directly from the Field-
bus M->Sn mon parameter.
Write data are configured by setting Fieldbus S->Mn ipa = [4184 +(n-1)*10] (Dig
Fieldbus S->Mn, 1 ≤ n ≤ 16).
Fieldbus S->Mn sys is automatically set to MDPLC. The application writes the
datum in the Dig Fieldbus S->Mn parameter to send it to the bus.

1.4 SDO management
The SDO service is always available.
The drive parameters can be accessed via the “MSPA” Manufacturer Specific
Profile Area (2000hex< index <5FFFhex).
The index to be shown in the SDO command to access a drive parameter is
obtained via the following rules:
SDO index = PAR + 2000h
SDO subindex = 1

The Data field must contain the value of the drive parameter.

Example:
Writing the value 1000 in the PAR 600 Dig Ramp ref 1 parameter (258hex).

The following information is required:
1) 	 The SDO index resulting from the formula is:
	 2000hex + 258hex = 2258h
2)	 The value to be written is 1000, corresponding to 03E8 hex.

EN - 12

Index Subindex

22h 58h 01h E8h 03h 00h 00h

Dr
iv

e
pa

ra
m

et
er

 in
de

x

Su
bi

nd
ex

Dr
iv

e
pa

ra
m

et
er

 v
al

ue

to
 b

e
as

si
gn

ed
 to

 S
DO

In case an error occurs during the parameter reading or setting, the CANopen
interface sends an Abort domain transfer message; the value of Application-error-
codes has the following meanings:

Error class Error code Additional
code (hex)

Meaning

6 0 0 Parameter doesn’t exist
8 0 22 Acces failed because of present device state
6 1 2 Read/Write only error
8 0 0 Generic error
6 9 32 Minimum value
6 9 31 Maximum value
5 4 0 SDO time_out
5 4 1 Invalid command
3 9 30 Invalid value

			

1.5 Alarms
Fieldbus alarms
The bus failure is signaled via the “Opt Bus Fault” alarm. As for CANopen, the
possible failure causes are:
-	 “Bus-off” condition of the CAN line;
-	 th drive has not been enabled in the “Operational” mode;
- exceeding of monitoring limit (heartbeat, node guard, communication cycle

period).
-	 drive configuration error
This alarm becomes active only when the drive is enabled.
If ON, the PAR 4014 Fieldbus alarm mode parameter enables the generation of
the “Field bus failure” alarm also when the drive is disabled.

Code Cfg Description Actions
0 Bus Loss Check line for noise, terminations ,

problems with cabling
FF01 * Fieldbus type does not match

expansion card
Verify if EXP-CAN-ADV card is properly
installed

FF02 * Wrong baudrate selected Check “Fieldbus baudrate” is one of
125k, 250k, 500k, 1M

FF03 * Invalid address for node Check “Fieldbus address”
FF04 * Error initializing CAN interface Internal error, contact manufacturer
FF14..FF23 * Wrong object selected for mapping in

channel M2S n
Check “Fieldbus M->Sn Dest

EN - 13

Code Cfg Description Actions
FF24..FF33 * More than 1 Src pointing to M2S

Channel n
Check for multiple destinations on
“Fieldbus M->Sn Dest”

FF34..FF43 * M2S Channel n , data size is wrong
(16 bits on 32 bits or 32 bits on 16
bits parameter)

Check “Fieldbus M->Sn sys”

FF44..FF53 * Invalid parameter in channel S2M n Check “Fieldbus S->Mn src”
FF54..FF63 * S2M Channel n , data size is wrong

(16 bits on 32 bits or 32 bits on 16
bits parameter)

Check “Fieldbus S->Mn sys”

FF64..FF73 * Wrong object selected for mapping in
channel S2M n

Check “Fieldbus S->Mn src”

FF74..FF83 * M2S Channel n : too many words
in PDC

“Fieldbus M-Sn dest” & “Fieldubs
M->Sn sys” address more than 16
words in PDC

FF84..FF93 * S2M Channel n : too many words
in PDC

“Fieldbus S->Mn src” & “Fieldubs
S->Mn sys” address more than 16
words in PDC

FFB4..FFC3 * Internal database error on channel n Internal error, contact manufacturer
8110 CAN msg overflow Too many packets for selected

baudrate
8130 LifeGuard/HeartBeat error Software timeout from master
FFC5 Wrong NMT message length Check NMT packets
FFC6 Invalid NMT command Check NMT packets
FFC7 CAN bus off Check line state for problems

8100 CAN bus off Check line state for hardware
problems

Drive alarm messages
Drive alarms are managed by means of an Emergency message containing the
error code relating to the alarm that is generated, according to the table below:

Selection Code
No alarm 0x0000

Overvoltage 0x3210
Undervoltage 0x3220
Ground fault 0x2110
Overcurrent 0x2310
Desaturation 0x2130

MultiUndervolt 0xFF06
MultiOvercurr 0xFF07

MultiDesat 0xFF08
Heatsink OT 0x4210

HeatsinkS OTUT 0x4310
Intakeair OT 0x4130
Motor OT 0xFF0C

Drive overload 0x8311

EN - 14

Selection Code
Motor overload 0x7121
Bres overload 0x7112

Phaseloss 0xFF10
Opt Bus fault 0xFF11
Opt 1 IO fault 0xFF12
Opt Enc fault 0x3130
External fault 0x9000

Speed fbk loss 0x7310
Overspeed 0x8400
Plc1 fault 23
Plc2 fault 24
Plc3 fault 25
Plc4 fault 26
Plc5 fault 27
Plc6 fault 28
Plc7 fault 29
Plc8 fault 30

Emg stop alarm 31
Watchdog 32
Trap error 33

System error 34
User error 35

Power down 36
Speed ref loss 37

Not Used1 38
Opt 2 IO fault 39
Not Used2 40
Not Used3 41
Not Used4 42
Not Used5 43
Not Used6 44
Param error 45

EN - 15

1.6 Configuration example
This chapter provides an example of how to configure the parameters of ADV200
drives so that they can be read and written by a CANopen master via the process-
ing channels (PDO). See the chapter 1.4 for the configuration channels (SDO).
The paragraph 1.6.1 provides the information required on a CANopen master con-
trolling a machine. The paragraph 1.6.2 contains basic information for program-
ming the ADV200 drive starting from the factory settings.

1.6.1 CANopen Master
This section contains an example of data exchange seen from the master side.
This is the data normally contained in the machine specifications in the case of
applications controlled by a CANopen master.

1.6.1.1 Description of Master -> Slave PDO Communication
There are two parameters to be written via the processing channels. The first is a
control word, in which the single bits contain certain commands (e.g. enable, start,
etc.). The second processing channel contains the ramp reference 1 (RampRef1)
in rpm.

CANopen PDO: Master -> Drive (max 16 word)

Position Description Format Unit of Measure
Word1 M -> S Control word 16 bit Word ...
Word2 M -> S Ramp Ref 1 Int 16 bit rpm
Word3 M -> S
Word4 M -> S
Word5 M -> S
Word6 M -> S
Word7 M -> S

...

...
Word16 M > S

CONTROL WORD

Bit Description Remarks
0 EnableCmd Enable command from CANopen master
1 StartCmd Start command from CANopen master
2 Free
3 Free
4 Free
5 Free
6 Free
7 Free
8 Digital Out3 Digital output 3 command from CANopen master
9 Digital Out4 Digital output 4 command from CANopen master
10 Free
11 Free
12 Free
13 Free
14 Free
15 Free

EN - 16

1.6.1.2 Description of Slave -> Master PDO Communication
The CAN master reads three parameters from the drive. The first contains a status
word in which the single bits carry information about the status of the drive (e.g.
DriveOk). The second parameter is the actual speed in rpm. The third parameter
contains the value of analog input 2.

CANopen PDO Slave > Master (max 16 Word)

Position Description Format Unit of Measure
Word1 S -> M Status Word 16 bit Word BitWide
Word2 S -> M Actual Speed Int 16 bit rpm
Word3 S -> M Analog Input 2 Int 16 bit
Word4 S -> M
Word5 S -> M
Word6 S -> M
Word7 S -> M

...

...
Word16 S -> M

			
STATUS WORD

Bit Description Remarks
0 EnableState Drive enabled
1 Drive Ok Drive Ok
2 Speed is zero Zero speed threshold
3 Free
4 Free
5 Free
6 Free
7 Free
8 Digital Input 4 ADV200 digital input 4 status
9 Digital Input 5 ADV200 digital input 5 status
10 Free
11 Free
12 Free
13 Free
14 Free
15 Free

	
1.6.2 ADV200 Configuration
The example given in this section is based on the assumption that the parameters
of the ADV200 drive are the factory settings (Default parameter command).

1.6.2.1 FIELDBUS CONFIG
The example assumes that the drive is node 12 and the CANopen communication
baudrate is 500k.

Note: 		 The drive must be reset to make all fieldbus settings and configurations effective.

EN - 17

Configure the fieldbus menu parameters as shown below:

The pre-operational status of the CANopen expansion card LEDs is shown in the
relative column:

Led Status = Pre-operational Status = Operational

AL (Red) ON alarm condition OFF

OP (Green) OFF Pre-Operational condition ON

PWR (Green) ON expansion card powered and active ON

+5VC (Green) ON CAN opto-isolated power ON

Processing channel communication is not active in these conditions.
When drive configuration is complete (see following sections) use the NMT “start
node” command to activate communication by the master.

Upon receiving this command the FieldBus State parameter moves to
Operational and the green OP LED is set to “ON”. Only at this point are the
processing channels active.

1.6.2.2 MASTER -> SLAVE channel configuration
Wdecomp is used to configure the control word. The Wdecomp configuration on
the first M -> S word (“Export” mode) is shown below:

EN - 18

Now simply connect the single Wdecomp bits. For Commands the drive must be
set to “Remote” and “Digital” mode, as explained in the ADV200 manual.
Configure the first two bits in the commands menu as shown below:

Configure bits 8 and 9 of the “Command word” as shown below (Digital Outputs
menu):

The second word is configured in the “References” menu:

EN - 19

After sending a save command and re-starting the drive, check that the M -> S
channels have been configured correctly as shown (Html page):

The same information is also available in the Fieldbus M2S menu:

EN - 20

1.6.2.3 SLAVE -> MASTER channel configuration
These channels are configured in the Fieldbus S2M menu. Use Wcomp to config-
ure the first channel.
S2M configuration is shown below:

Wcomp configuration is shown below:

EN - 21

Save and then re-start the drive to check the correct configuration of the Slave ->
Master channels in the same way:

1.6.2.4 Communication check
Some notes/suggestions for checking communication.
-	 PDO communication is only active in “Operational”. Check the status using

Easydrive or the expansion card LED.
-	 For Master -> Slave communication in the FIELDBUS M2S menu you can

check the value received by the communication channel (e.g. for the first chan-
nel it is the Fieldbus M->S1 Mon parameter).

-	 For EU (engineering unit) communication, remember that the value read on
the Mon parameters of FIELDBUS MS2 is in internal units (see conversion
tables on chapter 5.0 SYSTEM INTERNAL VARIABLES, “ADV200, Write the
applications with the MDPlc” manual available on www.weg.net).

EN - 22

1.6.2.5 Configuration Errors
In the event of a channel configuration error an “Option bus fault” alarm condition
occurs when the drive is switched on
with an error code indicating the channel that generated the alarm. The expansion
card manual contains a table listing all the error codes.
With WEG_eXpress software configuration simply log-on to the relative HTML
page as shown below:

1.7 Connecting the master control panel to ADV200 nodes
The following example shows a connection between the Control panel CANopen
Master and ADV200 slave nodes.

1 5

6 9

MASTER

EXP-CAN/DN-ADV

ADV200

1 52 3 4

EXP-CAN/DN-ADV

ADV200

1 52 3 4

E
xt

er
na

l S
up

pl
ie

r
11

 ..
. 3

0
V

dc

120 ohm

120 ohm

2 = CAN-L
7 = CAN-H

CANopen ADV200-WA ADV200-WA

3 = CAN_GND

+ -

This is a 3-wire connection: CAN line and unipotential cable on terminals 1 (V- /
CAN_GND) of the EXP-CAN/DN-ADV cards, 0 V power supply and pin 3 (CAN_
GND) CAN connector on Vedo terminal.
The shielding must be continuous along the entire CAN line.
The shielding is grounded at a single point, in proximity of the CAN line power
supply. This supply can also be used to power the Vedo terminal. It is NOT advis-
able to use this power supply for other purposes, especially auxiliary circuits with
relays.
The CAN line shielding may also be grounded at two or more points, for example
if the CAN line nodes are distributed in separate electrical panels, provided the
ground connections are made correctly.

EN - 23

2.0 Operation according to the DS402 profile
If the Fieldbus type parameter is set to DS402 the drive works with the standard
profile for Drives & Motion Control Ver 2.0 and contains Device Identity 192H
(402) in object 1000h.
The ADV200 drive supports Velocity Mode.
In the default configuration the drive is automatically set to use PDOs No. 6
(DS402 section 7.2.1 & 7.2.2), mapped onto RPDO1 and TPDO1 with COB-ID
200h & 180h +NodeId

PDO Object Number Object Name Description
6 6040h Controlword controls the state machine and the nominal

speed (vl)
6042h Target velocity (vl)

6 6041h Statusword shows status and the current speed (vl)
6044h vl control effort

The remaining PDOs can be set by the user.

The following DS402 objects are implemented:

Object no. Description Type Access Mandatory
6040h VAR Controlword UNSIGNED16 rw M
6041 VAR Statusword UNSIGNED16 ro M
6042h VAR vl target velocity (1) INTEGER16 rw M
6043h VAR vl velocity demand (1) INTEGER16 ro M
6044h VAR vl control effort(1) INTEGER16 ro M
6046h ARRAY vl velocity min max

amount
UNSIGNED32 rw M

6048h RECORD vl velocity acceleration vl velocity
acceleration

rw M

6049 RECORD vl velocity deceleration vl velocity
deceleration

rw M

6060h VAR Modes of operation (2) INTEGER8 rw M
6061h VAR Modes of operation

display
INTEGER8 ro M

(1)	 The unit of measure for objects 6042h, 6043h, 6044h is expressed in rpm
(2)	 Object 6060h is only available in that it is mandatory. As the drive only supports Velocity

Mode, the value of this object is not modifiable.

The device operates as a DS402 state machine (refer to CiA DSP 402 V 2.0, sec-
tion 10.1.1):

EN - 24

Start

Not Ready to

Switch On

Switch On

Disabled

Ready to

Switch On

Switched On

Operation

Enable

Quick Stop

Activ

Fault

Reaction Active

Fault

FaultPower
Disabled

Power
Enabled

0

1

2 7

3 6

4 5

9 8

10 12

11

16

13

14

15

EN - 25

3.0 DeviceNet Interface
This chapter describes the connecting of ADV200 drives to DeviceNet networks.
It is intended for design engineeres and technicians responsible for the mainte-
nance, commissioning and operation of DeviceNet systems.
A basic knowledge of DeviceNet is assumed and may be found in the following
manuals:
- 	 DeviceNet Specifications. Volume 1 - DeviceNet Communication Model and

Protocol (Issued by ODVA).
-	 DeviceNet Specifications. Volume 2 - DeviceNet Device Profiles and Object

Library (Issued by ODVA)

3.1 General description of DeviceNet
DeviceNet is a profile of communication for industrial systems based on CAN.
As protocol CAN (ISO 11898) is used CAN2.0A with the 11 bit identifier.
The ADV200 driver is developed as “Slave UCMM Capable Device” for operating
only in “Predefined Master/Slave Connection Set”.
The data transfer is carried out cyclically; the Master unit reads the data supplied
by the Slaves and writes the Slave reference data; the Baud Rate supported by
the SBI card are: 125 kbit, 250 kbit, 500 kbit .

The physical support is given by the RS485 serial line; a maximum of 64 Slaves
can be connected to the Bus.

3.2 DeviceNet function
In this chapter are described the functions of DeviceNet managed by the driver.
The main characteristics of the card are:
1. 	 The drive operates only as Slave in “Predifined Master/Slave Connection Set”.
2. 	 Within the “Predefined Master/Slave Connection Set” the driver is a “UCMM

Capable Device”.
3. 	 The “Explicit Messaging” is managed.
4. 	 The “Polling” for the fast cyclical data exchange Master/Slave is managed.
5. 	 The detection mechanism of the “Duplicate MAC ID” is implemented.

Regarding the “Explicit Messaging” the fragmentation of the data frame, with a
total of max. 32 byte, is managed.

Connection sizes
CONNECTION INSTANCE PRODUCED CONSUMED
Polled I/O Depending on frame setting
Explicit messaging 32 32

		

3.3 Object description
Hereafter you find the description of the objects managed by the ADV200 drive.

3.3.1 Object Model
The following figure shows the ADV200 “Object Model”.

EN - 26

Application Objects

Drive memory

access

Drive par

Message
Router

DeviceNet

IDENTITY

ExplicitI/O

Connection

The following table shows:
1.	 The object classes of EXP-CAN-ADV card.
2. If the class is mandatory.
3.	 The number of instances included in every class.
See “DeviceNet Specifications” for the Standard classes.

Object Optional/Required # of Instances
Identity Required 1
Message Router Required 1
DeviceNet Required 1
Connection Required 1 I/O, 3 Explicit
Parameter Optional many
Drive Parameter Access Optional many
Drive memory Access Optional many

		

3.3.2 How Objects Affect Behavior
The “Affect Behaviour” of the objects is reported in the following table:

Object Effect on Behavior
Identity Supports Reset Service
Message Router No effect
DeviceNet Port attributes configuration
Connection Contains the number of logical ports
Parameter Drive parameters read/write
Drive Parameter Access Drive parameters read/write
Drive Memory Access Drive parameters read/write

		

EN - 27

3.3.3 Defining Object Interface
The object interface of the ADV200 drive is the following:
Object Interface
Identity Message router
Message Router Explicit Messaging Connection Instance
DeviceNet Message router
Connection Message router
Parameter Message router
Drive Parameter Access Message router
Drive memory Access Message router

	
	
3.4 Data transfert via Explicit Messaging
The data transfer via Explicit Messaging is made through two new objects: one for
accessing the Drive parameters, the other to direct access the drive memory.

3.4.1 Parameter Access
For read/write of Drive parameters, the Drive Parameter Access object is defined
with the following properties:
- Class ID: Fh.
- Class Attribute:		 Revision
- Instance Attribute:		 This instance does not have attributes.

3.4.1.1 Class Code
Class code: F hex

3.4.1.2 Class attributes
Number Need in

implementation

Access

Rule

Name DeviceNet

Data Type

Description of

Attribute

Semantics

of values

1 Optional Get Revision UINT Revision of this object

3.4.1.3 Instance Attributes
Number Need in

implementation

Access

Rule

Name DeviceNet

Data Type

Description of

Attribute

Semantics

of values

This instance provide attributes and correspond to the PAR

3.4.1.4 Common Services
This object has no common services.

3.4.1.5 Object Specific Services
Service Code Need in implementation Service Name Description of Service

Class Instance

0hex n/a Required Get_Attribute_Single Read drive parameter value

10hex n/a Required Set_Attribute_Single Writes drive parameter value

EN - 28

3.4.1.6 Behavior
This object is the interface between the DeviceNet and all drive parameters.
The Drive parameter is accessed via the parameter index itself.
For example, reading a parameter (PAR 600 Dig Ramp ref 1):
- 	 Run a Get_Attribute_Single from class Fh
- 	 instance =600 (258 hex)
- 	 class 1 attribute
- 	 the drive responds with 4 bytes (Dword format).

For example, writing a parameter (PAR 600 Dig Ramp ref 1):
- 	 Run a Set_Attribute_Single from class Fh
- 	 instance = 600 (258 hex)
- 	 class 1 attribute
- 	 to set value 1000, select “Word 2 byte” (parameter format is INT, 16 bit)
- the drive does not respond if there is an error (timeout).

byte VALUE XX

Low byte - Low word drive parameter drive

High byte - Low word drive parameter drive

Low byte - High word drive parameter drive

High byte - High word drive parameter drive

The number of bytes in the “Value” field depends on the length of drive parameter.

Example:
if the type of drive parameter is “Integer” the length of VALUE is 2 bytes.

3.4.2 Drive Parameter Access
For read/write of Drive parameters, the Drive Parameter Access object is defined
with the following properties:
- Class ID: 66h.
- Class Attribute:	 Revision
- Instance Attribute:	 This instance does not have attributes.

3.4.2.1 Class Code
Class code: 66 hex

3.4.2.2 Class attributes
Number Need in

implementation

Access

Rule

Name DeviceNet

Data Type

Description of

Attribute

Semantics

of values

1 Optional Get Revision UINT Revision of this object

3.4.2.3 Instance Attributes
Number Need in

implementation

Access

Rule

Name DeviceNet

Data Type

Description of

Attribute

Semantics

of values

This instance does not provide attributes

3.4.2.4 Common Services
This object has no common services.

EN - 29

3.4.2.5 Object Specific Services
Service Code Need in implementation Service Name Description of Service

Class Instance

32hex n/a Required Get_Drive_Value Get parameter from Drive

33hex n/a Required Set_Drive_Value Set parameter into Drive

34hex n/a Required Get_Typed_Drive_

Value

Read drive parameter value

indicating the data type

35hex n/a Required Set_Typed_Drive_

Value

Writes drive parameter value

indicating the data type

3.4.2.6 Behavior
This object is the interface between the DeviceNet network and all Drive param-
eters. The access to the Drive parameter is carried out by the parameter index; if
the parameter does not exist or may not be accessed for any reason (for example:
try to write a read only parameter) an error code will be returned.
Drive parameters in text format cannot be accessed.
In the following are repeted patterns of how the data frame of data has to be com-
posed for reading/writing Drive parameters.

A) Write Drive Parameter
	 In this example the writing of a Drive parameter is shown; the cases of positive

or wrong writing are distinguished.

A-1) Write Drive Parameter Request
	 The data frame for writing a drive parameter is composed as follows:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 33hex Set Drive Parameter - Object Specific Service

See Note 1)
Class ID 66hex Drive Parameter Access Class Object

Instance ID XXXX Drive Parameter Index in format Low byte-High byte

Byte 2) VALUE XX

Low byte-Low word drive parameter value

High byte-Low word drive parameter value

Low byte-High word drive parameter value

High byte-High word drive parameter value

1) 	 Byte or Word depending on the type of allocation executed by the Master.
2) 	The number of bytes of the “Value”-field depends on the length of the Drive parameter;

i.e.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes.

A-2) Write drive parameter - Reply OK
	 If the Drive parameter is written correctly, the response is:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 33hex OR

80hex

Set Drive Parameter Reply code- Object Specific Service.

Word Result 0000 Result field equal to zero means writing correctly executed.

A-3) Write drive parameter - Reply Error
	 If the writing of the drive parameter has been rejected, the response is the fol-

lowing:

EN - 30

DATA TYPE FIELD VALUE MEANING

Byte Service Code 33hex OR

80hex

Set Drive Parameter Reply code- Object Specific Service.

Word Result XXXX 1 Drive specific error code.

1) 	For error codes see table 3.4.1.

B) 	Read Drive Parameter
	 In this example is shown the reading of a Drive parameter; the cases of posi-

tive or wrong reading are distinguished.

B-1) Read Drive Parameter Request
	 The data frame for the Drive parameter reading is composed as follows:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 32hex Get Drive Parameter - Object Specific Service.

See Note 1) Class ID 66hex Drive Parameter Access Class Object.

See Note 1) Instance ID XXXX Drive Parameter Index in format Lowbyte-High byte.

1) Byte or Word depending on the type of allocation executed by the Master.

B-2) Read drive parameter - Reply OK
	 If the Drive parameter is read correctly, the response is:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service.

Word Result 0 Result field equal to zero means reading correctly executed.

Byte 1) VALUE XX

Low byte-Low word drive parameter value.

High byte-Low word drive parameter value.

Low byte-High word drive parameter value.

High byte-High word drive parameter value.

1) 	The number of bytes of the Value-field depends on the length of the Drive parameter; i.e.
if the Drive parameter type is “Integer” the length of VALUE is 2 bytes.

B-3) Read drive parameter - Reply Error
	 If Drive parameter reading is rejected, the response is the following:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service.

Word Result XXXX 1 Drive specific error code.

1) 	For error codes see table 3.4.1.

C) Write Typed Drive Parameter
	 In this example the writing of a Drive parameter is shown; the cases of positive

or wrong writing are distinguished.
	 In this case, it is shown the parameter IPA number, the value and the data type

used in the data transmission.
	 The optional data type conversion is automatically executed by the firmware.

EN - 31

C-1) Write Drive Parameter Request
	 The data frame for writing a drive parameter is composed as follows:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 35hex Set Drive Parameter - Object Specific Service

See Note 1)
Class ID 66hex Drive Parameter Access Class Object

Instance ID XXXX Drive Parameter Index in format Low byte-High byte

Byte 2) DATA TYPE XX Value data type

Byte 3) VALUE XX

Low byte-Low word drive parameter value

High byte-Low word drive parameter value

Low byte-High word drive parameter value

High byte-High word drive parameter value

1) 	 Byte or Word depending on the type of allocation executed by the Master.
2)	 The coding of the possible data type is listed in table 3.4.2.
3) 	The number of bytes of the “Value”-field depends on the length of the Drive parameter;

i.e.: if the Drive parameter type is “Integer” the length of VALUE is 2 bytes.

C-2) Write drive parameter - Reply OK
	 If the Drive parameter is written correctly, the response is:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 33hex Set Drive Parameter Reply code- Object Specific Service.

Word Result 0000 Result field equal to zero means writing correctly executed.

C-3) Write drive parameter - Reply Error
	 If the writing of the drive parameter has been rejected, the response is the fol-

lowing:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 33hex Set Drive Parameter Reply code- Object Specific Service.

Word Result XXXX 1) Drive specific error code.

1) 	For error codes see table 3.4.1.

D) Read Drive Parameter
	 In this example is shown the reading of a Drive parameter; the cases of posi-

tive or wrong reading are distinguished.
	 In this case, it is shown the parameter IPA number, the value and the data type

used in the data transmission.
	 The optional data type conversion is automatically executed by the firmware.

D-1) Read Drive Parameter Request
	 The data frame for the Drive parameter reading is composed as follows:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 36hex Get Drive Parameter - Object Specific Service.

See Note 1)
Class ID 66hex Drive Parameter Access Class Object.

Instance ID XXXX Drive Parameter Index in format Lowbyte-High byte.

Byte 2) DATA TYPE XX Value data type

1) 	 Byte or Word depending on the type of allocation executed by the Master.
2)	 The coding of the possible data type is listed in table 3.4.2.

D-2) Read drive parameter - Reply OK

EN - 32

	 If the Drive parameter is read correctly, the response is:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service.

Word Result 0 Result field equal to zero means reading correctly executed.

Byte 1) VALUE XX

Low byte-Low word drive parameter value.

High byte-Low word drive parameter value.

Low byte-High word drive parameter value.

High byte-High word drive parameter value.

1)	 The number of bytes of the Value-field depends on the length of the Drive parameter; i.e.
if the Drive parameter type is “Integer” the length of VALUE is 2 bytes.

D-3) Read drive parameter - Reply Error
	 If Drive parameter reading is rejected, the response is the following:

DATA TYPE FIELD VALUE MEANING

Byte Service Code 32hex Get Drive Parameter Reply code- Object Specific Service.

Word Result XXXX 1 Drive specific error code.

1) For error codes see table 3.4.1.

Table 3.4.1: Error codes for the parameter access

Code Descrption
1 Incorrect parameter number
9 Maximum value exceeded
10 Minimum value exceeded
11 Value not allowed for the parameter
12,13 Read-only parameter
16,31 Parameter cannot be written with drive enabled
20 Parameter loading error
21 Error saving parameter
23 Parameter timeout
Other Generic error, request technical assistance

Table 3.4.2: Parameter format

FORMAT VALUE MEANING
DB_T_VOID 0 Ritorno al valore nel formato originale

DB_T_INT 3 16 bit con segno

DB_T_WORD 6 16 bit senza segno

DB_T_LONG 4 32 bit con segno

DB_T_DWORD 7 32 bit senza segno

DB_T_FLOAT 8 Formato Float IEEE 754
			

3.5 Polling function
This type of DeviceNet-function is used for a fast cyclic exchange of Drive-param-
eters between Master and ADV200 drive.
The characteristics of the Polling-function are:
1.	 The data frame length is configurable through specific drive parameter (see

EN - 33

COMMUNICATION menu) and can vary from 1 to 16 word for both directions
(Slave->Master and Master->Slave).

2.	 The card, as it is a Slave, during the Polling consumes Output data and pro-
duces Input data as response.

The configuration of the Drive parameters transferred via Polling is set by using
configuration parameter allocated in the drive (see COMMUNICATIONS menu).

3.6 Devicenet Interface configuration
The DeviceNet interface configuration is performed via the drive parameters. The
parameters are controlled via hierarchical menus. All the writing parameters refer-
ring to the DeviceNet interface are active only after the drive reset. Here following
is a list of drive parameters useful to control the DeviceNet interface

To activate the EXP-CAN-ADV card, set parameter PAR 4000 Fieldbus type to
“DeviceNet”.
The following parameters are available in the COMMUNICATION->FIELDBUS
CONFIG menu:

PAR Parameter Description Type Default value Attr

4004 Fieldbus baudrate Enum None Write

4006 Fieldbus address 2 byte unsigned 0 Write

4010 Fieldbus M->S enable Enum 0n Write

4012 Fieldbus alarm mode 2 byte unsigned 0 Write

4014 Fieldbus state Enum Stop Read only

•	 Fieldbus baudrate = Sets the network baud rate. Values available for Device-
Net: 125k, 250k, 500k

•	 Fieldbus address = address of this slave node in the network, accepted values
from 1 to 63

•	 Fieldbus M->S enable = if set to Off, master to slave Polling data are not managed
•	 Fieldbus alarm mode = if set to 1 the drive generates Opt Bus Fault errors

relating to the loss of communication (Bus Loss) even when the drive is not
enabled.

• 	 Fieldbus state = state of the communication for this node on the DeviceNet
network

	 - Stop: No communication with the master
	 - Pre-Operational: Recognition by master in progress
	 - Operational: I/O Polling active

3.7 Alarms
3.7.1 DeviceNet Alarms
The Opt Bus Fault alarm indicates a bus malfunction. In case of DeviceNet, pos-
sible reasons for faults are:
-	 CAN line in Bus-off state;
-	 drive enabled in a state other than I/O Polling
-	 connection timeout limit exceeded.
This alarm is only activated when the drive is enabled.
If parameter PAR 4014 Fieldbus alarm mode is set to ON, the Opt Bus Fault
alarm can be generated even with the drive disabled.

EN - 34

Code Cfg Description Action
0 Bus Loss Check line for noise, terminations,

problems with cabling
FF01 * Fieldbus type does not match

expansion card
Verify if EXP-CAN-ADV card is properly
installed

FF04 * Error initializing CAN interface Internal error, contact manufacturer
FF24..FF33 * More than 1 Src pointing to M2S

Channel n
Check for multiple destinations on
“Fieldbus M->Sn Dest”

FF34..FF43 * M2S Channel n , data size is wrong
(16 bits on 32 bits or 32 bits on 16
bits parameter)

Check “Fieldbus M->Sn sys”

FF44..FF53 * Invalid parameter in channel S2M n Check “Fieldbus S->Mn src”
FF54..FF63 * S2M Channel n, data size is wrong

(16 bits on 32 bits or 32 bits on 16
bits parameter)

Check “Fieldbus S->Mn sys”

FF74..FF83 * M2S Channel n : too many words
in PDC

“Fieldbus M-Sn dest” & “Fieldubs
M->Sn sys” address more than 16
words in PDC

FF84..FF93 * S2M Channel n : too many words
in PDC

“Fieldbus S->Mn src” & “Fieldubs
S->Mn sys” address more than 16
words in PDC

FFB4..FFC3 * Internal database error on channel n Internal error, contact manufacturer
8110 CAN msg overflow Too many packets for selected

baudrate
FFC5 Wrong baudrate Wrong baudrate
FFC6 Wrong MacID Check “Fieldbus address” is 1 to 63
FFC7 CAN bus off Check line state for problems
FFC8 System error on connection Check master for proper connection
FFC9 Duplicate MacID Check failed Check “Fieldbus address” is unique

in the network

3.7.2 Drive alarm handling
The “drive alarm status” is not foreseen.
The “drive alarm status” is not therefore given any special treatment.
The ADV200 firmware, provides a series of parameters capable of detecting the
drive status. Refer to drive manual for more information.

3.8 Process Data Channel Control
This function allows to allocate the drive parameters or application variables to the
Process Data Channel data.
The ADV200 DeviceNet interface uses a number of words for the Process Data
Channel (abbr. PDC Process Data Channel), which can always be set.
The Process Data Channel configuration for the ADV200 interface is the following:
	
DATA 0		 DATA...		 DATAn

The Slave can both read and write the Process Data Channel data.
The DeviceNet data read by the Slave are defined as input data; the data written
in DeviceNet by the Slave are defined as output data.

EN - 35

A datum can be made both of 2 and 4 bytes. The word “data” refers to any quan-
tity of bytes included between 0 and 16, if the byte total number required is not
higher than 32.

Example:
It is possible to have:	
	- from 0 to 16 data items of 2 byte
	- 1 datum of 4 bytes + from 0 to 14 data items of 2 bytes
	- 2 data items of 4 bytes + from 0 to 12 data items of 2 bytes
...
	- 8 data items of 4 bytes

The data exchanged via the PDC can be of two types:
	-drive parameters
	-variables of an MDPlc application

The composition of the PDC input and output data is defined via suitable param-
eters as described in the paragraphs 3.8.1 and 3.8.2.
The master cyclically writes the data defined as PDC input and cyclically reads the
data defined as PDC output.

3.8.1 PDC Input Configuration (SYS_FB_XXX_MS parameter)
See section 1.3.1.

3.8.2 PDC Output Configuration (SYS_FB_XXX_SM Parameter)
See section 1.3.2.

3.8.3 Configuration of the Virtual Digital I/Os
The ADV200 firmware, provides the Word Comp and Word Decomp functions,
which allows to exchange discrete signals between the master and the slave and
vice versa.
Commands can be sent to the drive using the functions of PAR 4452 Word
decomp. The meaning of the single bits is programmable. It can be set on a
Fieldbus M->Sn channel as Count 16.
The drive state is read in PAR 4432 Word Comp, programmable on any Fieldbus
S->Mn channel as Count 16. The meaning of each single bit can be selected by
the user using PAR 4400 Word Bit 0 src ... PAR 4430 Word Bit 15 src.

For a detailed description of these parameters see the drive manual.

3.8.4 Use of the PDC in MDPlc Applications
Refer to section 1.3.3 Using the PDC in MDPLC applications.

3.9 Configuration example
See chapter 1.6.

On paragraph 1.6.2.2 : P4000 Fieldbus Type = DeviceNet.

“Polling I/O” input / output area dimensions: with the examples reported on para-
graphs 1.6.1.1 and 1.6.1.2 there are 4 bytes for writing and 6 bytes for reading.

EN - 36

WEG Automation Europe S.r.l.
Via Carducci, 24 - 21040 Gerenzano [VA] ITALY

Ph. +39 02 967601 - Fax +39 02 9682653 - info.motion@weg.net - www.weg.net

References
CiA : 	 CAN in Automation, user international group.
CAN : 	 Controller Area Network.
PDO: 	 Process Data Object, service messages without confirmation used for

the real time data transfer from/to the device.
DBT: 	 Distributor. It is a service element of the CAN Application Layer in the

CAN Reference Model; the DBT has the task to assign COB-ID to the
COBs used by the CMS.

SDO: 	 Service Data Object, service messages with confirmation used for the
acyclic data transfer from/to the device.

NMT: 	 Network Management.
	 It is a service element of the CAN Application Layer in the CAN Refer-

ence Model; it initializes, configures and controls the errors of a CAN
network.

CS: 	 Command Specifier; it defines the NMT service.
COB-ID 	 COB-Identifier. It identifies a COB inside the network. It also states the

COB priority.

	Reinforced insulation
	Introduction
	Mounting
	Connections
	Leds
	Optional card recognization
	1.0 CANopen interface
	1.1 CANopen functions
	1.2 CANopen management
	1.3 Process Data Channel Control
	1.4 SDO management
	1.5 Alarms
	1.6 Configuration example
	1.7 Connecting the master control panel to ADV200 nodes

	2.0 Operation according to the DS402 profile
	3.0 DeviceNet Interface
	3.1 General description of DeviceNet
	3.2 DeviceNet function
	3.3 Object description
	3.4 Data transfert via Explicit Messaging
	3.5 Polling function
	3.6 Devicenet Interface configuration
	3.7 Alarms
	3.8 Process Data Channel Control
	3.9 Configuration example

	References

