Motores

Automação

Energia

Transmissão & Distribuição

Tintas

W22

Motor Elétrico Trifásico Catálogo Técnico Mercado Brasil

Carcaças 63 a 132

Carcaças 160 a 200

Carcaças 225 a 355

Eficiência e Confiabilidade para a Indústria

A linha W22 da WEG está disponível em três versões, W22 IR3 Premium, W22 Super Premium (motor elétrico de indução) e W22 Ultra Premium (motor elétrico de ímãs permanentes).

A linha W22 IR3 Premium atende aos níveis de rendimento especificados na Portaria Interministerial n.º 1, de 29 de junho de 2017, que determina o nível mínimo de rendimento em IR3 (faixa de potência de 0,16 a 500 cv, de 2 a 8 polos), válido para todos os motores comercializados. Também atendem a norma ABNT NBR 17094 e as legislações anteriores.

Já a linha W22 Super Premium e a linha W22 Ultra Premium superam os níveis definidos pela legislação brasileira. O nível de rendimento Ultra Premium é o maior rendimento em vigor no mercado mundial e os motores W22 Ultra Premium foram desenvolvidos com a tecnologia de ímãs permanentes, o que lhes confere ainda mais eficiência.

Neste catálogo técnico são apresentadas as versões de motores elétricos de indução IR3 Premium e Super Premium.

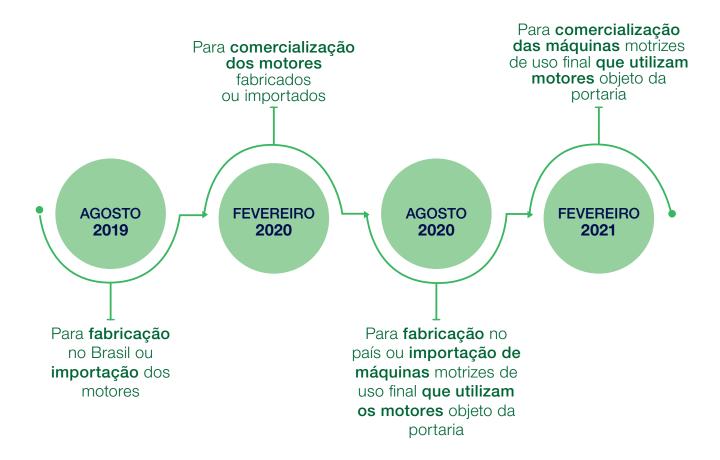
Estes motores têm perdas entre 10% e 40% menores que os anteriormente disponíveis no mercado. É uma maneira extremamente eficaz para reduzir seus custos com energia elétrica e suas emissões de carbono.

A WEG é a primeira empresa a disponibilizar tais níveis de rendimento no mercado brasileiro para motores de indução, e a empresa que possui a mais ampla gama de motores IE4 do mundo.

Linha W22, motores que proporcionam maior rendimento e economia do mercado.

Registro Portaria Nº 290, de 7 de julho de 2021						
N° de Polos	II	IV	VI	VIII		
Registro	005527/2013	005526/2013	005531/2013	004849/2019		

www.weg.net/w22


LEI DE EFICIÊNCIA ENERGÉTICA

Portaria Interministerial N° 1, de 29 de junho de 2017.

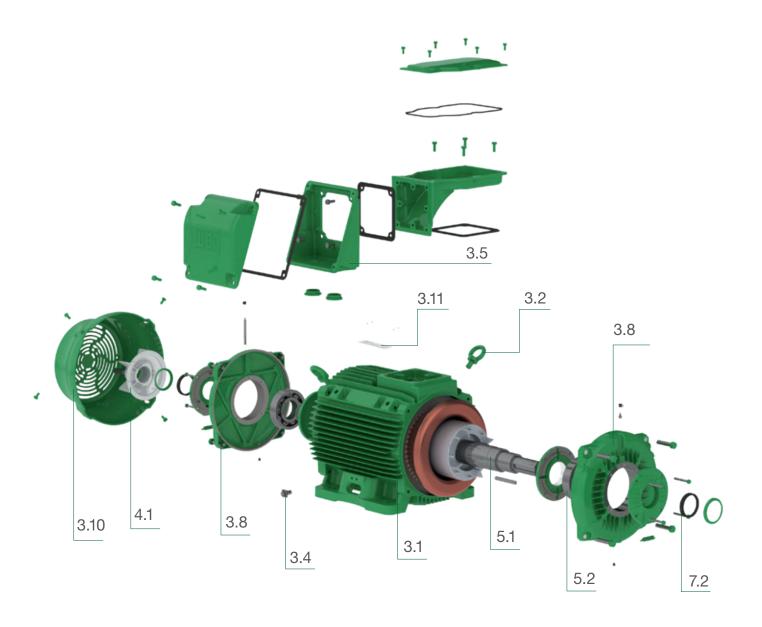
A Portaria Interministerial N° 1 estabelece os níveis mínimos de eficiência energética a serem atendidos pelos Motores Elétricos Trifásicos de Indução, Rotor Gaiola de Esquilo em IR3, válido para todos os motores comercializados, sejam novos ou usados.

Em agosto de 2019 entrou em vigor a nova lei, implicando na obrigatoriedade do atendimento dos novos níveis de rendimentos estabelecidos para motores elétricos trifásicos, incluindo a faixa de potência de 0,16 a 500 cv, de 2 a 8 polos. Além da mudança técnica no produto, é importante observar os desdobramentos de datas e prazos que foram definidos nesta nova legislação.

PRAZOS ESTABELECIDOS PELA PORTARIA INTERMINISTERIAL Nº 1

Acesse www.weg.net/eficienciaenergetica para saber mais sobre nossos produtos.

Para informações sobre a Portaria Interministerial n.º 1 de 29 de junho de 2017, acesse **www.inmetro.gov.br.**

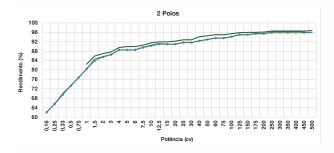


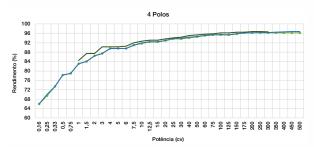
Rendimentos Nominais Mínimos - Portaria Nº 1

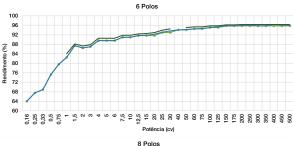
Potência	Nominal	Polos					
cv ou HP	kW	2	4	6	8		
0,16	0,12	62%	66%	64%	59,5%		
0,25	0,18	65,6%	69,5%	67,5%	64%		
0,33	0,25	69,5%	73,4%	69%	68%		
0,5	0,37	73,4%	78,2%	75,3%	72%		
0,75	0,55	76,8%	79%	79,5%	74%		
1	0,75	80,5%	83,5% a	82,5%	75,5%		
1,5	1,1	84%	86,5% ^b	87,5% ^c	78,5%		
2	1,5	85,5%	86,5%	88,5% ^d	84%		
3	2,2	86,5%	89,5% ^e	89,5% ^f	85,5%		
4	3	88,5%	89,5%	89,5%	86,5%		
5	3,7	88,5%	89,5%	89,5%	86,5%		
6	4,4	88,5%	89,5%	89,5%	86,5%		
7,5	5,5	89,5%	91,7% ^g	91%	86,5%		
10	7,5	90,2%	91,7%	91%	89,5%		
12,5	9,2	91%	92,4%	91,7%	89,5%		
15	11	91%	92,4%	91,7%	89,5%		
20	15	91%	93%	91,7%	90,2%		
25	18,5	91,7%	93,6%	93%	90,2%		
30	22	91,7%	93,6%	93%	91,7%		
40	30	92,4%	94,1%	94,1%	91,7%		
50	37	93%	94,5%	94,1%	92,4%		
60	45	93,6%	95%	94,5%	92,4%		
75	55	93,6%	95,4%	94,5%	93,6%		
100	75	94,1%	95,4%	95%	93,6%		
125	90	95%	95,4%	95%	94,1%		
150	110	95%	95,8%	95,8%	94,1%		
175	132	95,4%	96,2%	95,8%	94,5%		
200	150	95,4%	96,2%	95,8%	94,5%		
250	185	95,8%	96,2%	95,8%	95%		
300	220	95,8%	96,2%	95,8%	95%		
350	260	95,8%	96,2%	95,8%	95%		
400	300	95,8%	96,2%	95,8%	95%		
450	330	95,8%	96,2%	95,8%	95%		
500	370	95,8%	96,2%	95,8%	95%		

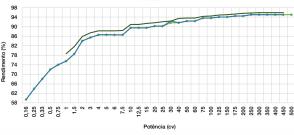
- a) Para motores na carcaça 80, o valor mínimo de rendimento é 83%.
- b) Para motores na carcaça 80, o valor mínimo de rendimento é 84%.
- c) Para motores na carcaça 90, o valor mínimo de rendimento é 85,5%.
- d) Para motores na carcaça 100, o valor mínimo de rendimento é 86,5%.
- e) Para motores na carcaça 90, o valor mínimo de rendimento é 87,5%.
- f) Para motores na carcaça 100, o valor mínimo de rendimento é 87%.
- g) Para motores na carcaça 112, o valor mínimo de rendimento é 91%.

Índice Visual


Índice

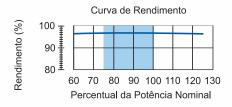

1. Versões Disponíveis	8
2. Normas	8
3. Detalhes Construtivos	9
3.1 Carcaça	9
3.2 Olhais	9
3.3 Pontos para Medição de Vibração	9
3.4 Terminais de Aterramento	10
3.5 Caixa de Ligação	10
3.6 Cabos de Ligação Principais	11
3.7 Cabos de Ligação dos Acessórios	
3.8 Tampas	
3.9 Drenos	
3.10 Tampa Defletora	
3.11 Placas de Identificação	
4. Ventilação/Ruído/Vibração/Impacto	13
4.1 Sistema de Ventilação	13
4,2 Nível de Ruído	
4.3 Níveis de Vibração	
4.4 Resistência ao Impacto	
5. Eixo / Rolamentos	
5.1 Eixo	
5.2 Rolamentos	
5.2.1 Esforços.	
6. Forma Construtiva	
7. Grau de proteção / Vedação / Pintura	
7.1 Grau de proteção	
7.2 Vedação	
7.3 Pintura	
7.3.1 Equivalências dos Planos de Pintura WEG X ISO 12944	
7.3.2 Pintura Tropicalizada	
8. Tensão / Frequência	
9. Valor da Sobrecorrente Ocasional	
10. Ambiente x Isolamento	
10.1 Resistências de Aquecimento	
11. Proteção Térmica do Motor	
11.1 Proteções Dependentes da Temperatura de Funcionamento	
12. Operação com Inversor de Frequência	
12.1 Considerações Relativas ao Sistema Isolante do Motor	
12.2 Influência do Inversor na Elevação de Temperatura do Motor	
12.3 Restrições quanto à Circulação de Correntes pelos Mancais	
12.4 Kit de Ventilação Forçada	
12.5 Encoders	
13. Tolerâncias para Dados Elétricos	
14. Características Construtivas	
15. Opcionais	
16. Dados Elétricos	
17. Dados Mecânicos	
18. Desenhos das Caixas de Ligação	
19. Dados do Motor com Chapéu	
20. Dados do Motor com Parafusos de Nivelamento e Pinos Guia	
20. Dados do Motor com Faratusos de Nivelamento e Finos Guia	
21. Embalagens	
حد، ۱ ۵۱ ان ۱۰ ۰ ا درم	02




1. Versões Disponíveis

A linha W22 está disponível nas versões IR3 Premium e Super Premium, atendendo e superando os níveis de rendimento definidos na Portaria Interministerial n.º 1, de 29 de junho de 2017. Na Figura 1, é possível comparar o rendimento da linha W22 com os valores mínimos estabelecidos pela lei.

- W22 Super Premium
- W22 IR3 Premium
- Portaria Interministerial N° 1


Figura 1 - Comparativos de rendimento

Sempre focada no desenvolvimento de produtos de maior eficiência e maior confiabilidade para a indústria, a WEG disponibiliza para o mercado a linha W22 que atende e supera os requisitos mínimos da Portaria sobre a Eficiência Energética.

O motor W22 Super Premium apresenta rendimentos superiores aos padrões do mercado e tem como principais benefícios o rápido retorno do investimento e o Plano de Troca WEG, que consiste em receber motores antigos como parte do pagamento dos motores novos.

O motor W22 Super Premium tem ainda, como diferencial, o fator de serviço 1,25 até a carcaça 315S/M, ou seja, uma reserva de 25% de potência.

Outra característica do projeto elétrico da linha W22 é que ele foi concebido para fornecer um rendimento praticamente constante na faixa de 75% a 100% da carga nominal. Dessa forma, mesmo que o motor não opere em carga nominal, seu rendimento não sofre alterações consideráveis (ver Figura 2), o que garante elevados níveis de eficiência energética e menores custos de operação.

Área de eficiência constante

Figura 2 - Curva de rendimento típica da linha W22 IR3 Premium e Super Premium

2.Normas

Norma	Descritivo	Norma correspondente
ABNT NBR 17094-1	Máquinas elétricas girantes - Motores de indução Parte 1: Trifásicos	IEC 60034-1
ABNT NBR 5383-1	Máquinas elétricas girantes - Parte 1: Motores de indução trifásicos	IEC 60034-1
ABNT NBR IEC 60034-6	Máquinas elétricas girantes - Classificação dos métodos de resfriamento	IEC 60034-6
ABNT NBR 60034-9	Máquinas elétricas girantes - Limites de ruído	IEC 60034-9
ABNT NBR 7844	Identificação dos terminais e das terminações de equipamentos elétricos - Disposições gerais para identificação por meio de notação alfanumérica	IEC 60034-8
ABNT NBR IEC 60034-5	Máquinas elétricas girantes - Parte 5: Graus de proteção proporcionados pelo projeto completo de máquinas elétricas girantes (Código IP)	IEC 60034-5
ABNT NBR IEC 60034-14	Máquinas elétricas girantes - Medição, avaliação e limites da severidade de vibração mecânica de máquinas de altura de eixo igual ou superior a 56 mm	IEC 60034-14
ABNT NBR 15623-1	Máquina elétrica girante - Dimensões e séries de potências para máquinas elétricas girantes - Padronização - Parte 1: Designação de carcaças entre 56 a 400 e flanges entre 55 a 1080	IEC 60072-1

3. Detalhes Construtivos

As informações aqui contidas referem-se às características construtivas padrões e às variantes mais comuns da linha W22 em baixa tensão para aplicação geral nas carcaças 63 até 355A/B.

Motores para aplicações especiais e/ou customizados também estão disponíveis sob consulta. Entre em contato com o escritório WEG mais próximo.

3.1 Carcaça

A carcaça dos motores W22 (Figura 3) é produzida em ferro fundido FC-200 e foi concebida de forma a otimizar a troca térmica e fornecer resistência mecânica suficiente para atender às aplicações mais críticas. Seu projeto evita o acúmulo de líquidos e detritos sobre o motor.

Figura 3 - Carcaça W22

Os pés inteiriços e maciços asseguram uma melhor rigidez mecânica (Figura 4) e facilitam o alinhamento e a instalação.

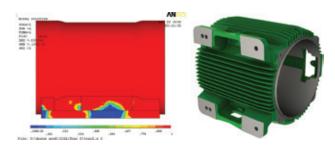


Figura 4 - Pés inteiriços e resistentes

3.2 Olhais

Olhais para içamento estão disponíveis a partir da carcaça 100L. A quantidade de olhais pode ser observada na Tabela 1, abaixo:

Número de olhais	Descrição
1	Carcaças 100L a 200L - Motores com pés e com caixa de ligação lateral
2	Carcaças 100L a 200L - Motores com pés e com caixa de ligação superior
2	Carcaças 100L a 200L - Motores sem pés e com flange C ou FF.
2	Carcaças 225S/M a 355A/B - Motores com pés e caixa de ligação lateral ou superior. Estes motores possuem quatro furos roscados na parte superior da carcaça para a fixação dos olhais (Figura 5).
2	Carcaças 225S/M a 355A/B - Motores sem pés e com flange C ou FF. Estes motores possuem quatro furos roscados na parte superior da carcaça para a fixação dos olhais e mais dois furos roscados na parte inferior.

Tabela 1 - Olhais

Figura 5 - Motor com quatro furos roscados para fixação dos olhais

3.3 Pontos para Medição de Vibração

Com o objetivo de facilitar as atividades de manutenção, especificamente as medições de vibração, os motores das carcaças 160 a 355 receberam áreas planas em suas extremidades, visando fornecer locais específicos para o posicionamento de acelerômetros (Figura 6). Essas áreas estão disponíveis tanto na direção vertical como na horizontal. Além dessas áreas na região da carcaça, a linha W22 também conta com superfícies planas na região das tampas, facilitando o posicionamento do acelerômetro.

Figura 6 - Superfícies planas para medição da vibração na parte dianteira e traseira da carcaça

www.weg.net

3.4 Terminais de Aterramento

Todas as carcaças da linha W22, da 63 até a 355A/B, são fornecidas com terminais de aterramento posicionados na caixa de ligação, conforme figura 7.

As carcaças 225S/M a 355A/B possuem, além do aterramento citado acima, outro aterramento na carcaça, localizado no mesmo lado da saída dos cabos da caixa de ligação (ver figura 7) que é responsável por equalizar o potencial elétrico e garantir maior segurança aos operadores. Suporta cabos de 25 a 185 mm².

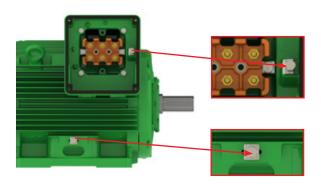


Figura 7 - Disposição do terminal de aterramento na caixa de ligação

Opcionalmente, os motores podem ser fornecidos com um aterramento adicional na carcaça (ver figura 8).

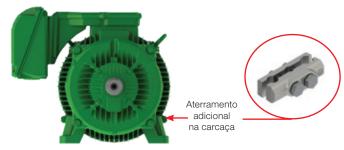


Figura 8 - Disposição do terminal de aterramento na carcaça

3.5 Caixa de Ligação

A caixa de ligação dos motores W22 é feita em ferro fundido FC-200, mesmo material da carcaça e tampas. Possui abertura em corte diagonal, expondo melhor os cabos e facilitando o acesso às conexões.

Nos modelos 225S/M a 355A/B, a caixa de ligação está deslocada para a parte da frente da carcaça. Essa característica melhora o fluxo de ar por sobre as aletas do motor e permite menores temperaturas de operação. Nesses modelos, a saída dos cabos da carcaça para a caixa de ligação se dá pela parte superior da carcaça e a montagem da caixa de ligação na lateral do motor é realizada com auxílio de um prolongador (ver figura 9).

Figura 9 - Caixa de ligação montada à esquerda atendendo a forma construtiva B3D

Através da rotação do prolongador é possível alterar a posição da caixa de ligação do lado esquerdo para o lado direito da carcaça e vice-versa. A caixa de ligação também pode ser montada na parte superior da carcaça (B3T), retirando-se para isso o prolongador e fazendo os devidos ajustes dos comprimentos dos cabos (ver figura 10). Isso permite modificar a posição da caixa de ligação sem precisar desmontar o motor, o que reduz significantemente o tempo requerido para alterar a forma construtiva.

Figura 10 - Opções de montagem da caixa de ligação nas carcaças 225S/M a 355A/B (versatilidade)

Motores fornecidos de fábrica com caixa de ligação no topo da carcaça podem ser modificados com a montagem da caixa de ligação no lado direito ou esquerdo da carcaça do motor. Para isso, entre em contato com um de nossos assistentes técnicos.

Nas carcaças 63 a 200, a caixa de ligação está centralizada e para alterar a forma construtiva (posição da caixa de ligação), o motor deverá ser desmontando.
Para fazer essa alteração, procure um de nossos assistentes técnicos.

Em todos os tamanhos de carcaça é possível girar a caixa de ligação em intervalos de 90°. Os motores das carcaças 315L, 355M/L e 355A/B são fornecidos com caixa de ligação com base removível de ferro fundido. Como característica opcional, a base removível pode ser fornecida sem furação.

Os motores são fornecidos com tampões roscados de plástico na entrada dos cabos para proteção contra entrada de objetos sólidos durante o transporte.

Para que o grau de proteção do motor seja mantido, o prensa-cabos utilizado para a instalação, terá que assegurar o mesmo grau de proteção descrito na placa. A não observação desse detalhe invalida a garantia. Em caso de dúvidas, contatar a Assistência Técnica da WEG.

3.6 Cabos de Ligação Principais

Os cabos dos motores são numerados de acordo com a norma ABNT NBR 7844 e, a partir da carcaça IEC 100L, são fornecidos com terminais tipo olhal.

Opcionalmente os motores também podem ser fornecidos com placa de bornes (figura 11).

Figura 11 - Placa de bornes com seis pinos (opcional)

Os motores na carcaça 355A/B são fornecidos, opcionalmente, com a mesma placa de bornes disponível para a linha HGF, conforme exibido na figura 12.

Figura 12 - Placa de bornes para carcaça 355A/B

3.7 Cabos de Ligação dos Acessórios

Sempre que o motor é fornecido com placa de bornes, os terminais dos acessórios são montados em conectores. Eles podem ser montados na caixa de ligação principal ou em uma caixa de ligação própria (de acessórios).

Figura 13 - Caixa de ligação de acessórios montada junto à caixa de ligação principal

Para as carcaças 132 a 355, existe ainda, a opção de fornecer uma caixa de ligação exclusiva para a conexão da resistência de aquecimento, conforme exibido na figura 14.

Figura 14 - Duas caixas de ligação de acessórios montadas junto à caixa de ligação principal.

3.8 Tampas

Para melhorar a dissipação térmica e permitir temperaturas mais baixas de operação no mancal e ainda prolongar os intervalos de lubrificação, a tampa dianteira está provida de aletas. Para as carcaças 225S/M a 355A/B, onde a ventilação é crítica para o desempenho térmico do motor, os parafusos de fixação das tampas na carcaça foram posicionados de tal forma que não bloqueiam o fluxo do ar em nenhuma aleta, o que também contribui para uma melhor troca térmica.

Figura 15 - Tampas dianteira e traseira

3.9 Drenos

As tampas possuem furos para drenagem da água condensada do interior da carcaça. Estes furos são fornecidos com bujões de dreno de borracha, conforme exibido na figura 16. Esses bujões saem de fábrica na posição fechado e devem ser abertos periodicamente para permitir saída da água condensada.

Figura 16 - Detalhe do furo do dreno na tampa dianteira

3.10 Tampa Defletora

Para as carcaças 63 a 132, a tampa defletora é construída em chapa de aço e para as carcaças 160 a 355, em ferro fundido FC-200. As tampas defletoras de ferro fundido possuem perfil aerodinâmico, o que contribui para a redução do nível de ruído aerodinâmico e melhora do desempenho do sistema de ventilação do motor, resultando no incremento do fluxo de ar por entre as aletas da carcaça. Na figura 17 é possível observar o perfil aerodinâmico da

tampa defletora de ferro fundido.

Figura 17 - Tampa defletora

3.11 Placas de Identificação

A placa de identificação contém as informações que descrevem as características construtivas e o desempenho dos motores (Norma ABNT NBR-17094).

Na placa estão descritos os organismos brasileiros que atestam os rendimentos mínimos exigidos - Procel e INMETRO. O nome da linha do motor aparece na parte superior da placa de identificação.

A figura 18 exibe a posição das placas de identificação nos motores W22.

Figura 18 - Posição das placas de identificação dos motores W22

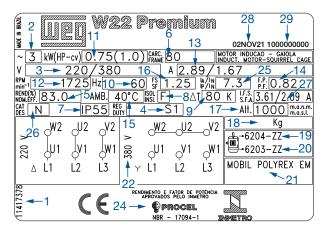


Figura 19 - Layout da placa de identificação para as carcaças 63 a 132

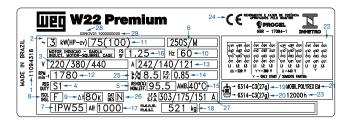


Figura 20 - Layout da placa de identificação para as carcaças 160 a 355

- 1. Código do motor
- 2. Número de fases
- 3. Tensão nominal de operação
- 4. Regime de serviço
- 5. Rendimento
- 6. Modelo da carcaça
- 7. Grau de proteção
- 8. Classe de isolamento
- 9. Temperatura da Classe de Isolamento
- 10. Frequência
- 11. Potência
- 12. Rotação nominal por minuto
- 13. Corrente nominal de operação
- 14. Fator de potência
- 15. Temperatura ambiente
- 16. Fator de serviço
- 17. Altitude
- 18. Massa
- 19. Especificação do rolamento dianteiro e quantidade de graxa
- 20. Especificação do rolamento traseiro e quantidade de graxa
- 21. Tipo de graxa utilizada nos rolamentos
- 22. Esquema de ligação
- 23. Tempo de relubrificação do motor (em horas)
- 24. Certificações
- 25. Relação da corrente de partida/corrente nominal
- 26. Categoria de conjugado
- 27. Corrente no fator de serviço
- 28. Data de fabricação
- 29. Número de série

4. Ventilação/Ruído/Vibração/Impacto

4.1 Sistema de Ventilação e Nível de Ruído

Os motores W22, em sua configuração padrão, são totalmente fechados com ventilação externa (TFVE) IC 411, de acordo com a norma ABNT NBR 5110 (figura 21). As versões não ventiladas (TENV), air over (TEAO) e com ventilação forçada (TEFV) IC 416 estão disponíveis sob consulta. Mais informações sobre a opção IC 416 podem ser encontradas na seção 12 - Operação com Inversor de Frequência.

Os ventiladores são bidirecionais e de polipropileno para todos os tamanhos de carcaça, de 2 a 12 polos, exceto para a carcaça 355A/B em 2 polos, que é fornecida em alumínio.

Figura 21 - Ventilador

O sistema de ventilação (ventilador e tampas traseira e defletora) foi concebido para minimizar o ruído e aumentar a eficiência térmica (figura 22).

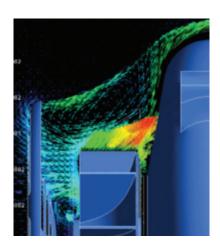


Figura 22 - Avaliação do sistema de ventilação

4.2 Níveis de Ruído

Os motores W22 atendem aos níveis de potência sonora da norma ABNT NBR 7565. As tabelas 2 e 3 exibem os níveis de pressão sonora na escala dB(A) obtidos experimentalmente para os motores W22, em 50 Hz e 60 Hz.

IEC 50 Hz						
Carago	Nível de pressão sonora - dB(A)					
Carcaça	2 Polos	4 Polos	6 Polos	8 Polos		
63	52	44	43	-		

71	56	43	43	41
80	59	44	43	42
90	62	49	45	44
100	67	53	44	50
112	62	56	49	46
132	63	56	53	48
160	67	61	57	51
180	67	61	56	52
200	72	63	60	56
225	74	63	63	56
250	74	64	64	56
280	77	69	65	59
315S/M	77	71	67	62
355M/L	80	76	73	70
355A/B	83	76	73	70

Tabela 2 - Nível de pressão sonora para motores 50 Hz

IEC 60 Hz							
Caragaa	Nível de pressão sonora - dB(A)						
Carcaça	2 Polos	4 Polos	6 Polos	8 Polos			
63	56	48	47	-			
71	60	47	47	45			
80	62	48	47	46			
90	68	51	50	48			
100	71	54	49	54			
112	66	56	52	50			
132	68	58	55	52			
160	72	64	59	54			
180	72	63	59	54			
200	76	66	62	56			
225	79	67	66	60			
250	79	68	68	60			
280	81	73	69	63			
315S/M	81	75	70	66			
355M/L	84	81	77	75			
355A/B	89	81	77	75			

Tabela 3 - Nível de pressão sonora para motores 60 Hz

Nota:

1 - Os valores de ruído exibidos nas tabelas acima se referem à operação em vazio. Sob carga, a norma IEC 60034-9 prevê um acréscimo nos valores de pressão sonora, conforme exibido na tabela 4.

Aumento máximo do nível da pressão sonora para motores sob carga (dBA)							
Altura de eixo H (mm)	2 polos	4 polos	6 polos	8 polos			
90 ≤ H ≤ 160	2	5	7	8			
180 ≤ H ≤ 200	2	4	6	7			
225 ≤ H ≤ 280	2	3	6	7			
H = 315	2	3	5	6			
355 ≤ H	2	2	4	5			

Tabela 4 - Aumento máximo do nível da pressão sonora para motores sob carga

- 2 Os valores se aplicam às frequências de operação de 50 Hz e 60 Hz.
- 3 Pode-se reduzir o nível de ruído global em até 2 dB(A) através da instalação de chapéu.

4.3 Níveis de Vibração

A vibração de uma máquina elétrica está intimamente relacionada com a sua montagem na aplicação. Por essa razão, geralmente é recomendável efetuar as medições das vibrações nas condições de instalação e funcionamento do motor. Contudo, para permitir a avaliação da vibração

gerada apenas pela máquina elétrica girante e assim permitir a reprodutividade dos ensaios e a obtenção de medidas comparáveis, é necessário efetuar tais medições com a máquina desacoplada, mediante condições controladas de ensaio. As condições de ensaio e limites de vibração aqui descritos são aqueles encontrados na ABNT NBR 11390. A severidade de vibração é o máximo valor de vibração encontrado dentre todos os pontos e direções de medição recomendados. A tabela 5 indica os valores admissíveis da severidade de vibração recomendados na norma IEC 60034-14 para as carcaças IEC 56 a 400 para os graus de vibração A e B.

Os motores W22 são balanceados dinamicamente com meia chaveta e, em sua configuração padrão, atendem aos níveis de vibração do grau A - balanceamento normal (sem requisitos especiais de vibração) descritos na norma IEC 60034-14. Opcionalmente, os motores também podem ser fornecidos com balanceamento reduzido (B). Os limites de velocidade de vibração RMS em mm/s, medidos em condição de suspensão livre (base elástica) para os graus A e B são exibidos na tabela 5.

Vibração	Altura de Eixo (mm)	56 ≤ H ≤ 132	132 < H ≤ 280	H > 280		
VIDLAÇÃO	Montagem	Velocidade de Vibração RMS (mm/s)				
Grau A	Suspensão Livre	1,6	2,2	2,8		
Grau B	Suspensão Livre	0,7	1,1	1,8		

Tabela 5 - Níveis de velocidade de vibração

4.4 Resistência ao Impacto

Os motores W22, em sua configuração padrão (defletora de ferro fundido), atendem ao índice de impacto IK08 - energia de impacto de 5J, de acordo com a EN 62262 - Degrees of protection provided by enclosures for electrical equipment against external mechanical impacts (IK code), o que garante elevada rigidez mecânica em aplicações mais severas.

5. Eixo / Rolamentos

5.1 Eixo

Como padrão, os eixos dos motores W22 nas carcaças 63 a 315S/M são fabricados em aço AISI 1040/45 e em aço AISI 4140 nas carcaças 355M/L e 355A/B.

Quando fornecido com rolamento de rolos, o material do eixo será obrigatoriamente o AISI 4140.

Como o motor da carcaça 355M/L é fornecido com eixo em aço AISI 4140, os motores W22 também podem ser

em aço AlSI 4140, os motores W22 também podem ser montados com rolamentos de rolos, o que permite que os mesmos possam operar com carga radial mais elevada, por exemplo, receber a montagem de polia e correia. Mais informações sobre as máximas cargas radiais e axiais admissíveis na ponta de eixo podem ser obtidas nas tabelas 7, 8 e 9.

Observação:

Para trocar os rolamentos de esferas por rolamentos de rolos, é necessário trocar os anéis de fixação (internos e externos) do rolamento traseiro, já que nesta condição, o rolamento traseiro passa a ser o fixo.

Os eixos são equipados com furo de centro e chaveta e possuem dimensões conforme exibido na seção 17.

Os motores W22 podem ser fornecidos com uma segunda ponta de eixo. As dimensões também são indicadas na seção 17. Para mais informações sobre as cargas radiais e axiais máximas permitidas sobre a segunda ponta de eixo, favor contatar a WEG.

Opcionalmente, os motores W22 também podem ser fornecidos com eixo em aço inoxidável AISI 304, AISI 316 e AISI 420 para aplicação em ambientes extremamente corrosivos.

Nota: Motores de 2 polos terão como opção somente eixo em aço inoxidável AISI 316.

5.2 Rolamentos

Os motores W22 são fornecidos como padrão com rolamentos de esferas. Opcionalmente, quando as cargas radiais são elevadas, os motores podem ser fornecidos com rolamentos de rolos da série NU a partir da carcaça 160.

Figura 23 - Detalhe do rolamento

Os rolamentos têm vida útil L_{10h} de 25.000 horas, desde que sejam respeitadas as cargas radiais ou axiais máximas descritas nas tabelas 7, 8 e 9. Quando acoplados diretamente à carga (ausência de esforços radiais e axiais), os rolamentos têm vida útil L_{10h} de, no mínimo, 40.000 horas. Na configuração padrão, com rolamentos de esferas, a partir da carcaça 160, o mancal dianteiro é travado axialmente. Para a compensação de deslocamentos axiais, os motores são equipados com arruelas onduladas nas carcaças 63 a 200 e com molas de pré-carga nas carcaças 225 a 355. Quando fornecido com rolamentos de rolos, o mancal traseiro é fixo e os deslocamentos axiais são compensados pela folga axial do rolamento de rolo dianteiro. As cargas radiais mínimas e máximas admissíveis para rolamentos de rolos são exibidas na tabela 8.

A vida útil do rolamento depende do tipo e do tamanho do rolamento, das cargas mecânicas radiais e axiais a que é submetido, das condições de operação (ambiente, temperatura), da rotação e da vida da graxa. Dessa forma, a vida útil do rolamento está estritamente relacionada com sua correta utilização, manutenção e lubrificação. Ao respeitar a quantidade de graxa e os intervalos de lubrificação permite-se que os rolamentos atinjam a vida útil descrita acima.

Os motores W22 são fornecidos como padrão com pino graxeiro nas tampas dianteira e traseira para lubrificação dos rolamentos das carcaças 225S/M e acima. A quantidade de graxa e o intervalo de lubrificação estão impressas na placa de identificação e são exibidas nas tabelas 10 e 11.

Devemos ressaltar que a lubrificação em excesso, ou seja, a aplicação de uma quantidade de graxa superior à

recomendada na placa de identificação do motor pode resultar em uma elevação adicional de temperatura no mancal. **Notas:**

- 1 Vida útil L10 significa que, no mínimo 90% dos rolamentos submetidos às cargas máximas indicadas irão alcançar o número de horas informado. Os valores de carga radial máxima consideram uma carga axial nula. Os valores de carga axial máxima consideram uma carga radial nula. Para a vida útil de rolamentos em aplicações com combinações de carga axial e radial, contate a WEG.
- 2 O valor da força radial Fr normalmente é obtido a partir de informações recomendadas em catálogos de fabricantes de correias/polias. Na falta de uma estimativa do fabricante de correias, a força Fr, na condição de operação, poderá ser calculada em função da potência transmitida, das características dimensionais do acoplamento por polias, das correias e do tipo de aplicação. Assim,

Fr =
$$\frac{19,1 \times 10^6 \times P_n}{n_n \times dp} \times ka (N)$$

onde:

Fr = a força radial gerada pelo acoplamento de polias e correias [N]; Pn = a potência nominal do motor [kW];

nn = a rotação nominal do motor em rotações por minuto [rpm]; dp = o diâmetro primitivo da polia motora [mm];

ka = um fator que depende da tensão da correia e do tipo de aplicação.

		Fator ka da	a Aplicação
	Grupos e Tipos Básicos de Aplicação	Correias (V) Trapezoidais	Correias Planas Lisas
1	(Ventiladores, Exaustores, Bombas Centrífugas, Bobinadeiras, Compressores Centrífugos, Máquinas Operatrizes) com potências até 30 cv (22 kW).	2,0	3,1
2	(Ventiladores, Exaustores, Bombas Centrífugas, Bobinadeiras, Compressores Centrífugos, Máquinas Operatrizes) com potências superiores a 30 cv (22 KW), Misturadores, Punções, Tesourões, Máquinas Gráficas.	2,4	3,3
3	Prensas, Peneiras Oscilantes, Compressores de Pistão e de Parafuso, Pulverizadores, Transportadores Helicoidais, Máquinas para Lavrar Madeira, Máquinas Têxteis, Elevadores de Caneca, Amassadores, Máquinas para Cerâmica, Moedores para Indústria de Papel.	2,7	3,4
4	Pontes Rolantes, Moinhos de Martelos, Laminadores para Metais, Transportador Contínuo, Britadores Giratórios, Britadores de Mandíbula, Britadores de Rolos e de Cones, Moinhos de Rolos e de Bolas, Moinhos de Pilão, Misturadores de Borracha, Máquinas para Mineração, Picadores de Sucata.		3,7

Tabela 6 - Fator ka para grupos e tipos básicos de aplicação

Notas:

1 - Aplicações especiais

Operação em condições diferentes das normais, tais como temperatura ambiente, altitude.

Cargas axial e/ou radial acima das indicadas nas tabelas deste catálogo implicam em intervalos de lubrificações específicos, diferentes dos aqui exibidos.

2 - Rolamentos de rolos

Rolamentos de rolos precisam de uma carga radial mínima para garantir um correto funcionamento. Eles não são recomendados para acoplamento direto e nem para uso em motores de 2 polos

3 - Motores acionados por inversor de frequência

A vida útil dos rolamentos poderá ser reduzida quando o motor for acionado por inversor de frequência em rotações acima da nominal. A rotação é um dos critérios utilizados na definição da vida útil do rolamento.

4 - Motores com formas construtivas modificadas

Motores na forma construtiva horizontal, mas que trabalharão na posição vertical, devem ter seu intervalo de lubrificação reduzido pela metade.

5 - Valores para esforços radiais

Os valores indicados nas tabelas 7 e 8 para os esforços radiais consideram os pontos de aplicação do esforço no meio do comprimento da ponta de eixo L/2 ou na extremidade da ponta de eixo L.

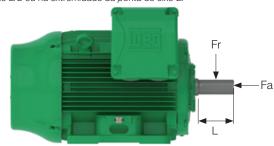


Figura 24 - Forca radial e axial sobre eixo do motor

5.2.1 Esforços

Carga Radial - Rolamentos de Esferas

	Carga radial máxima - 60 Hz - 25.000 horas - Fr em (kN)							
Caracas	2 p	2 polos 4 polos 6 polos		8 pc	8 polos			
Carcaça	L	L/2	L	L/2	L	L/2	L	L/2
63	0,3	0,3	0,3	0,4	0,3	0,4	0,3	0,4
71	0,4	0,4	0,5	0,5	0,6	0,6	0,5	0,7
80	0,5	0,6	0,6	0,7	0,7	0,8	0,8	0,9
90	0,6	0,6	0,6	0,7	0,8	0,8	0,9	1,0
100	0,8	0,9	0,9	1,0	1,0	1,1	1,2	1,3
112	1,1	1,2	1,2	1,3	1,4	1,5	2,5	1,8
132	1,6	1,8	1,9	2,1	2,1	2,4	2,4	2,6
160	2,1	2,3	2,4	2,6	2,6	2,9	2,5	3,5
180	3,3	3,7	3,3	3,7	3,9	4,3	2,5	4,6
200	3,4	3,7	3,8	4,2	4,3	4,7	2,5	5,3
225S/M	4,4	4,8	4,6	5,1	5,3	5,9	5,4	6,8
250S/M	4,3	4,7	4,8	5,3	5,6	6,1	6,0	6,9
280S/M	4,2	4,6	5,5	6,0	6,3	6,8	7,0	7,6
315S/M	3,8	4,1	5,9	6,5	6,3	6,8	7,0	7,6
355M/L	3,0	3,2	8,2	9,0	7,7	8,4	9,5	10,3
355A/B		iante sulta	5,2	5,6	5,4	5,9	7,6	8,1

Tabela 7 - Esforços radiais máximos para rolamentos de esferas (esforço axial zero)

Carga Radial - Rolamentos de Rolos

	Carga radial máxima - 60 Hz - 25.000 horas - Fr em (kN)									
Corocoo	4 pc	olos	6 pc	olos	8 polos					
Carcaça	L	L/2	L	L/2	L	L/2				
160M/L	3,7	6,0	3,6	5,9	3,7	6,0				
180M/L	5,8	10,5	5,7	10,4	5,6	10,4				
200M/L	7,9	12,7	7,8	13,4	8,0	13,5				
225S/M	6,7	14,5	7,0	15,1	7,0	15,2				
250S/M	8,5	14,3	8,3	14,2	8,1	14,1				
280S/M	12,7	21,0	13,2	21,0	13,7	21,5				
315S/M	12,6	26,9	11,9	25,4	12,8	27,4				
355M/L	16,8	35,4	15,5	32,7	15,8	33,4				
355A/B	8,9	18,8	9,8	20,7	13,4	28,2				

Tabela 8 - Esforços radiais máximos para rolamentos de rolos (esforco axial zero)

Nota: Os esforços indicados para rolamentos de rolos consideram o uso de um eixo de material AISI 4140.

Carga axial - Rolamentos de Esferas

	Ca	ırga axial máx	rima - 60	Hz - 25 000 l	noras - Fa	em (kN)	
		Horizor		Vertical pont			a p/ baixo
Carcaça	Polos	Compressão	Tração	Compressão		Compressão	Tração
	2	0,2	0,2	0,1	0,2	0,2	0,1
63	4	0,2	0,2	0,2	0,2	0,2	0,2
63	6	0,3	0,3	0,3	0,3	0,3	0,3
	8	0,3	0,3	0,3	0,3	0,3	0,3
71	2	0,2	0,2	0,1	0,2	0,2	0,2
	6	0,2	0,3	0,2	0,3	0,2	0,3
	8	0,3 0,4	0,4 0,5	0,3 0,4	0,5 0,5	0,3 0,4	0,4 0,5
	2	0,4	0,3	0,4	0,4	0,2	0,3
80	4	0,3	0,5	0,3	0,5	0,3	0,4
	6	0,4	0,6	0,4	0,6	0,4	0,6
	8	0,5	0,7	0,5	0,8	0,5	0,7
	2	0,3	0,3	0,3	0,4	0,3	0,3
90	4	0,4	0,5	0,4	0,5	0,4	0,4
00	6	0,5	0,6	0,5	0,7	0,5	0,6
	8	0,7	0,7	0,6	0,8	0,7	0,7
	2	0,3	0,5	0,2	0,6	0,3	0,4
100	4	0,4	0,6	0,3	0,8	0,4	0,6
	6 8	0,5 0,6	0,8 1,0	0,4	1,0 1,1	0,5 0,7	0,8
	2	0,6	0,6	0,6	0,7	0,7	0,9
	4	0,4	0,0	0,4	1,0	0,4	0,8
112	6	0,7	1,1	0,6	1,2	0,8	1,0
	8	0,9	1,3	0,9	1,5	1,0	1,3
	2	0,6	1,1	0,6	1,1	0,6	1,1
132	4	0,8	1,5	0,8	1,5	0,8	1,5
132	6	1,0	1,8	1,0	1,9	1,0	1,9
	8	1,2	2,1	1,2	2,2	1,2	2,2
160	2	2,1	1,4	1,9	1,8	2,5	1,2
	4	2,6	1,9	2,3	2,4	3,1	1,6
	6	3,0	2,3	2,6	2,9	3,6	1,9
	2	3,5 3,4	2,8 2,5	3,2	3,3 3,1	4,1 4,0	2,5 2,2
	4	3,4	2,5	3,1	3,1	4,0	2,2
180	6	4,1	3,2	3,7	4,0	4,9	2,8
	8	4,5	3,6	4,1	4,3	5,2	3,2
	2	3,2	2,2	2,7	2,9	3,9	1,7
200	4	3,9	2,9	3,3	3,7	4,7	2,3
200	6	4,5	3,5	3,9	4,5	5,5	2,9
	8	5,1	4,1	4,5	5,0	6,0	3,5
	2	3,9	3,1	3,2	4,2	5,0	2,4
225	4	4,7	3,9	3,9	5,3	6,0	3,1
	6	5,6	4,8	4,6	6,5	7,3	3,8
	2	6,5 3,9	5,7 3,1	5,6 3,1	7,1 4,2	7,9 5,0	4,8 2,3
	4	4,8	4,0	3,6	5,7	6,5	2,8
250	6	5,7	4,9	4,4	6,9	7,7	3,6
	8	6,5	5,7	5,3	7,5	8,3	4,5
	2	3,7	2,9	2,5	4,8	5,5	1,7
280	4	5,2	4,4	3,5	6,8	7,6	2,7
200	6	6,0	5,3	4,3	7,9	8,7	3,5
	8	6,9	6,1	5,0	9,0	9,8	4,2
	2	3,5	2,7	1,8	5,4	6,1	1,0
315	4	5,6	4,8	3,1	8,8	9,6	2,4
	6 8	6,4 7,2	5,6 6,4	3,5 4,3	10,2 11,2	11,0 12,0	2,7 3,5
				Mediante			Mediante
	2	3,1	2,4	consulta	6,9	10,6	consulta
355M/L	4	7,0	6,2	3,5	11,2	12,4	2,4
	6	7,3	6,6	3,4	12,9	14,1	2,0
	8	8,8	8,1	4,8	14,4	15,8	3,7
	2	2,8	2,1				
355A/B	4	5,4	4,7 5.4		Mediant	e consulta	
	8	6,1 7,6	5,4 6,9				
	0	7,0	0,9				

Tabela 9 - Esforços axiais máximos para rolamentos de esferas (esforço radial zero)

Intervalos de Lubrificação

	Intervalos de relubrificação (horas)								
Carcaça	Polos	Rolamento	50 Hz	60 Hz					
160	2 4 6 8	6309	25.000	25.000					
180	2 4 6 8	6311	25.000	25.000					
200	2 4 6 8	6312	25.000	25.000					
	2		5.000	4.000					
225	4	6314	14.000	12.000					
225	6	0014	20.000	17.000					
	8		24.000	20.000					
	2		5.000	4.000					
250	4	6314	14.000	12.000					
250	6	0314	20.000	17.000					
	8		24.000	20.000					
	2	6314	5.000	4.000					
280	4		13.000	10.000					
200	6	6316	18.000	16.000					
	8		20.000	20.000					
	2	6314	5.000	4.000					
315	4		11.000	8.000					
313	6	6319	16.000	13.000					
	8		20.000	17.000					
	2	6314	5.000	4.000					
055	4		9.000	6.000					
355	6	6322	13.000	11.000					
	8		19.000	14.000					

Tabela 10 - Intervalos de lubrificação para rolamentos de esferas

	Intervalos de relubrificação (horas)								
Carcaça	Polos	Rolamento	50 Hz	60 Hz					
160	4 6 8	NU309	25.000	25.000					
180	4 6 8	NU311	25.000	25.000					
	4			21.000					
200	6 8	NU312	25.000	25.000					
	4		11.000	9.000					
225	6	NU314	16.000	13.000					
	8		20.000	19.000					
	4		11.000	9.000					
250	6	NU314	16.000	13.000					
	8		20.000	19.000					
	4		9.000	7.000					
280	6	NU316	14.000	12.000					
	8		19.000	17.000					
	4		7.000	5.000					
315	6	NU319	12.000	9.000					
	8		17.000	15.000					
	4		5.000	4.000					
355	6	NU322	9.000	7.000					
	8		14.000	13.000					

Tabela 11 - Intervalos de lubrificação para rolamentos de rolos

5.2.2 Monitoramento dos Rolamentos

Opcionalmente, sensores de temperatura podem ser instalados para controlar as temperaturas de operação nos mancais. O mais comum é a instalação de um sensor Pt-100 no mancal, que permite o monitoramento contínuo de sua temperatura de operação. Este monitoramento é importante, pois a temperatura influencia diretamente a vida útil da graxa e do rolamento.

6. Forma Construtiva

Os motores são fornecidos, como padrão, na forma construtiva B3D (figura 25), com o lado acionado à direita, olhando para a caixa de ligação.

Figura 25 - Forma construtiva B3D

A denominação da forma construtiva para os motores W22 segue a norma ABNT NBR IEC 60034-7, Código I Tabelas 1 (motores montados na posição horizontal) e 2 (motores montados posição na vertical). Após o código acrescenta-se uma letra para definir a posição da caixa de ligação, conforme designação WEG (posição do lado acionado, olhando para a caixa de ligação).

construtiva	Configuração				- C		Ğ.							-	•
Forms	Referência	B3E	B3D	B3T	BSE	850	BST	B35E	B35D	B35T	B34E	B34D	B34T	VI	V3
12	Carcaça	Com pés	Com pés	Com pés	Sem pés	Sem pés	Sem pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Sem pés	Sem pés
Petallies	Ponta de eixo	A esquerda	A direita	A direita	A esquerda	A direita	A direita	À esquerda	A direita	A direita	Å esquerda	A direita	À direita	Para baixo	Para cima
-	Fixação	Base ou trilhos	Base ou trilhos	Base ou trilhos	Flange FF	Flange FF	Flange FF	Base ou flange FF	Base ou flange FF	Base ou flange FF	Base ou flange FC	Base ou flange FC	Base ou flange FC	Range FF	Range FF
Forms	Configuração						100			M a					
	Referència	V5	VSE	VST	V6	V6E	V6T	V15	V15E	V15T	V18	V19	V36	V36E	V36T
	Carcaça	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Sem pés	Sem pés	Com pés	Com pés	Com pés
Detalle	Ponta de eixo	Para baixo	Para baixo	Para baixo	Para cima	Para cima	Para cima	Para baixo	Para baixo	Para baixo	Para baixo	Para cima	Para cima	Para cima	Para cima
_	Fixação	Parede	Parede	Parede	Parede	Parede	Parede	Parede ou flange FF	Parede ou flange FF	Parede ou flange FF	Flange C	Flange C	Parede ou flange FF	Parede ou flange FF	Parede ou flange FF
constrativa	Configuração	- Ç		—	5			9	•		(0)0	0		4	
Forms	Referência	B14E	B14D	B14T	B6	388	B6T	87	B7E	B7T	88	В	8E	В	8T
	Carcaça	Sem pés	Sem pés	Sem pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com pés	Com	pés	Com	pés
Petalbe	Ponta de eixo	A esquerda	À direita	À direita	Para frente	Para frente	Para frente	Para frente	Para frente	Para frente	Para frente	Para	frente	Para	frente
	Fixação	Flange FC	Flange FC	Flange FC	Parede	Parede	Parede	Parede	Parede	Parede	Teto	To	eto	Te	nto

Tabela 12 - Formas construtivas

Notas:

- 1 As formas construtivas IM B34 e IM B14 podem ser fornecidas com o flange C-DIN, conforme norma DIN EN 50347, mas limitado até a carcaça 132, ou com o flange C conforme as dimensões da norma NEMA MG1 Parte 4 para as carcaças 63 a 355M/L.
- 2 Para motores verticais com ponta de eixo para baixo, recomenda-se o uso de chapéu para prevenir a entrada de pequenos objetos através da defletora/ventilador. O aumento do comprimento total do motor por causa da montagem do chapéu pode ser observado na seção de dimensões mecânicas.
- 3 Para motores verticais com ponta de eixo para cima e que operam em ambientes com a presença de líquidos, recomenda-se o uso de um slinger de borracha para prevenir a entrada de líquidos no interior do motor através do eixo.

7.Grau de proteção / Vedação / Pintura

7.1 Grau de proteção

Os motores W22 são fornecidos com grau de proteção conforme especificado na norma ABNT NBR IEC 60034-5. As carcaças 63 a 132M/L são fornecidas com o grau de proteção IP55 e as carcaças 160M a 355A/B com o grau de proteção IPW55, onde:

a) O primeiro numeral característico 5: informa que o invólucro fornece proteção contra o contato ou aproximação com partes vivas ou móveis dentro do invólucro. O ingresso de poeira não é totalmente evitado, mas a poeira não entra em quantidade suficiente para interferir na operação satisfatória da máquina.

b) O segundo numeral característico 5: informa que a máquina está protegida contra jatos de água. A água projetada de qualquer direção por um bico contra a máquina, de qualquer direção, não tem efeito prejudicial em sua operação.

c) A letra W significa que o motor está apto a operar sob intempéries.

7.2 Vedação

Nas carcaças 63 a 200L, a vedação utilizada no eixo dos motores é o V'Ring. Para as carcaças 225S/M a 355A/B, a vedação utilizada é a exclusiva WSeal®, que é composta por um anel V'Ring com duplo lábio e uma calota metálica montada sobre esse anel (ver figura 26). Esta configuração funciona como um labirinto, fazendo com que a poeira e a água presentes no ambiente não consigam penetrar na parte interna do mancal.

Figura 26 - Vedação WSeal®

Opcionalmente, os motores W22 podem ser fornecidos com outras vedações, como por exemplo: retentores com mola, labirinto taconite e a exclusiva vedação W3Seal®, entre outras.

7.3 Pintura

Figura 27 - Plano de pintura

Nas carcaças 63 a 132M/L, os motores W22 são fornecidos, como padrão, com o plano de pintura 207 A (código interno WEG). E, para as carcaças 160M a 355A/B, os motores W22 são fornecidos com o plano de pintura 203 A.

Os planos de pintura conferem proteção adicional em ambientes agressivos, abrigados ou desabrigados conforme quadro a seguir.

Plano	a seguir. Uso recomendado
1 Iulio	Para ambiente industrial e urbano, abrigado ou desabrigado, com
	contaminação moderada de agentes corrosivos (SO ₂ e CI-), podendo conter alta
202P	lumidade. Indicado para aplicações em indústrias de papel e celulose,
2021	mineração e química.
	Para ambiente rural, urbano e industrial, abrigado ou desabrigado, com baixa
203A*	contaminação de agentes corrosivos (SO ₂ e CI-), baixa umidade relativa e com
200A	variações normais de temperatura.
	Para ambiente industrial e urbano, abrigado, com contaminação moderada de
202E	agentes corrosivos (SO ₂ e CI-), podendo conter alta umidade.
	Para ambiente industrial e urbano, abrigado ou desabrigado, com
205P	contaminação moderada de agentes corrosivos (SO ₂ e CI-), podendo conter alta
2001	lumidade.
	Para ambiente industrial e urbano, abrigado, com contaminação moderada de
205E	agentes corrosivos (SO ₂ e CI-), podendo conter alta umidade.
	Para ambiente rural, urbano e industrial, abrigado, com baixa contaminação de
207N*	agentes corrosivos (SO ₂ e CI-), baixa umidade relativa e com variações normais
	de temperatura.
	Para ambiente rural, urbano e industrial, abrigado ou desabrigado, com baixa
207A*	contaminação de agentes corrosivos (SO ₂ e CI-), baixa umidade relativa e com
	variações normais de temperatura.
211E	Para ambiente industrial abrigado, com alta contaminação de agentes
2115	corrosivos (SO ₂ e CI-), podendo conter e alta umidade.
211P	Para ambiente industrial, abrigados ou desabrigado, com alta contaminação de
2111	agentes corrosivos (SO ₂ e CI-), podendo conter alta umidade.
	Para ambiente industrial e marítimo, abrigado, com alta contaminação de
212E	agentes corrosivos (SO ₂ e CI-) e salinidade, podendo conter vapores ácidos,
	álcalis e solventes contaminantes sólidos e alta umidade.
	Para ambiente industrial e marítimo, seco ou úmido, abrigado ou desabrigado,
212P	com salinidade elevada, contendo ou não gases derivados de
	enxofre.
214P	Para ambiente seco ou úmido, com salinidade moderada, contendo ou não
4171	gases derivados de enxofre.

*Nota: Não recomendado para exposição direta a vapores ácidos, álcalis e solventes.

7.3.1 Equivalências dos Planos de Pintura WEG X ISO 12944

Características dos Planos de pintura da WEG	Correspondência com as normas ISO 12944					
Planos de pintura	Durabilidade estimada (anos)	Classificação da corrosividade do ambiente ISO 12944-2				
202P	7 a 15	C4				
203A	< 7	C3				
202E	7 a 15	C4				
205P	< 7	C4				
205E	< 7	C4				
207N	15 a 25	C2				
207A	< 7	C3				
211E	7 a 15	C5				
211P	7 a 15	C5				
212E	> 25	C5				
212P	> 25	CX / C5				
214P	7 a 15	C4				

7.3.2 Pintura Tropicalizada

Altos índices de umidade podem levar a um desgaste prematuro do sistema de isolação, que é o principal responsável pela vida útil do motor. Ambientes com até 95% de umidade relativa não requerem proteções adicionais além da resistência de aquecimento para evitar a condensação de água no interior do motor. No entanto, para ambientes com níveis de umidade superiores a 95%, recomenda-se aplicar nas partes internas do motor uma pintura epóxi, conhecida como pintura tropicalizada.

8. Tensão / Frequência

Conforme norma ABNT NBR 17904, as combinações das variações de tensão e frequência são classificadas como Zona A ou Zona B, conforme figura 28.

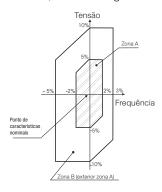


Figura 28 - Limites de tensão e frequência para motores

Conforme a norma ABNT NBR 17094, o motor deve ser capaz de desempenhar sua função principal (fornecer torque) continuamente na Zona A, mas pode não atender completamente às suas características de desempenho devido à variação da tensão e frequência de alimentação, podendo inclusive apresentar elevação de temperatura superior à nominal.

O motor também deve ser capaz de desempenhar sua função principal (fornecer torque) na zona B, mas pode apresentar desvios superiores àqueles da zona A, no que se refere às características de desempenho, quando operado na tensão e frequência nominais. Suas elevações de temperatura podem ser superiores às verificadas com tensão e frequência nominais e muito provavelmente superiores àquelas da Zona A. Não é recomendada a operação prolongada na periferia da Zona B.

9. Valor da Sobrecorrente Ocasional

Conforme norma ABNT NBR 17094, os motores com potência nominal até 315 kW e tensão nominal inferior ou igual a 1 kV devem ser capazes de suportar uma corrente igual a 1,5 vez a corrente nominal durante 2 minutos, no mínimo.

10. Ambiente x Isolamento

Deve-se observar a potência nominal indicada nas tabelas elétricas, exceto quando especificado de maneira diferente à operação em regime contínuo S1, conforme ABNT 17094 em ambientes:

- ■Com temperatura variando entre -30 °C a +40 °C.
- Em altitudes de até 1000 metros acima do nível do mar.

Para temperaturas e altitudes diferentes das indicadas anteriormente, deve-se utilizar a tabela 15 para encontrar o fator de correção que deverá ser utilizado para definir a potência útil disponível (Pmax).

Pmax = Pnom x Fator de correção

T (00)				-	Altitude (m)			
T (°C)	1000	1500	2000	2500	3000	3500	4000	4500	5000
10							0,97	0,92	0,88
15						0,98	0,94	0,90	0,86
20					1,00	0,95	0,91	0,87	0,83
25				1,00	0,95	0,93	0,89	0,85	0,81
30			1,00	0,96	0,92	0,90	0,86	0,82	0,78
35		1,00	0,95	0,93	0,90	0,88	0,84	0,80	0,75
40	1,00	0,97	0,94	0,90	0,86	0,82	0,80	0,76	0,71
45	0,95	0,92	0,90	0,88	0,85	0,81	0,78	0,74	0,69
50	0,92	0,90	0,87	0,85	0,82	0,80	0,77	0,72	0,67
55	0,88	0,85	0,83	0,81	0,78	0,76	0,73	0,70	0,65
60	0,83	0,82	0,80	0,77	0,75	0,73	0,70	0,67	0,62
65	0,79	0,76	0,74	0,72	0,70	0,68	0,66	0,62	0,58
70	0,74	0,71	0,69	0,67	0,66	0,64	0,62	0,58	0,53
75	0,70	0,68	0,66	0,64	0,62	0,60	0,58	0,53	0,49
80	0,65	0,64	0,62	0,60	0,58	0,56	0,55	0,48	0,44

Tabela 13 - Fatores de correção considerando a altitude e a temperatura ambiente

Os motores W22 são fornecidos com classe de isolamento F e possuem elevação de temperatura da classe B (80 K) em condições nominais de operação (salvo quando indicado diferente).

A diferença entre a elevação de temperatura da classe de isolamento F (105 K) e a elevação da temperatura de projeto (80 K) significa que, em termos práticos, os motores W22 podem fornecer potências acima dos valores nominais até um limite, onde a elevação de temperatura atinge o valor da elevação de temperatura da classe de isolamento.

A relação entre a elevação de temperatura e o fator de serviço é dada pela equação abaixo:

$$\Delta T_{FINAL} \cong (F.S.)^2 \times \Delta T_{INICIAL}$$

Calculando-se o fator de serviço, temos aproximadamente um FS de 1,15. Essa reserva de temperatura também permite que os motores W22 com elevação de temperatura da classe B (80 K) possam operar continuamente:

- Até 15% acima da sua potência nominal, considerando-se uma temperatura ambiente de 40 °C e uma altitude de instalação de até 1000 m.a.n.m (metros acima do nível do mar).
- Até 55 °C de temperatura ambiente, mantendo-se a potência nominal.
- Até 3000 m.a.n.m, mantendo-se a potência nominal.

Os intervalos de lubrificação sofrerão alterações em condições de operação diferentes de 40 °C de temperatura ambiente máxima e altitudes de instalação acima de 1.000 metros do nível do mar. Para mais informações, contate a WEG.

Todos os motores W22 são fornecidos com o exclusivo sistema de isolamento WISE®, composto por fios esmaltados, atendendo à classe de temperatura de 200 °C e impregnados com resina isenta de solventes. O sistema de isolamento WISE® permite que o motor possa ser acionado por inversor de frequência (ver seção 12).

10.1 Resistências de Aquecimento

A utilização da resistência de aquecimento é recomendada em duas situações:

Motores instalados em ambientes com umidade relativa do ar até 95%, nos quais o motor poderá ficar desligado por períodos superiores a 24 horas;

■ Motores instalados em ambientes com umidade relativa do ar superior a 95%, independente do regime de funcionamento. Ressaltamos que nessa situação também se aplica nas partes internas do motor uma pintura epóxi conhecida como pintura tropicalizada. Mais informações sobre a pintura tropicalizada podem ser encontradas no tópico Pintura (seção 7.3).

A tensão de alimentação das resistências de aquecimento deverá ser especificada pelo cliente, que pode ser fornecida para as tensões de 110-127 V, 220-240 V, 380-480 V e 110-127/220-240 V (dupla tensão) para todos os tamanhos de carcaça. A potência e quantidade de resistências de aquecimento dependem do tamanho do motor e deverão estar em acordo com a tabela abaixo.

Carcaça	Quantidade	Potência (W)
63 a 80	1	7,5
90 a 100	1	11
112	2	11
132 a 160	2	15
180 a 200	2	19
225 a 250	2	28
280 a 315	2	70
355	2	87

Tabela 14 - Potência e quantidade de resistência de aquecimento (Valores considerando tensão nominal da resistência em 220V).

11. Proteção Térmica do Motor

As proteções disponíveis para o motor podem ser classificadas em:

- Dependência da temperatura de funcionamento.
- Dependência da corrente de funcionamento.

11.1 Proteções Dependentes da Temperatura de Funcionamento

Os motores utilizados em regime contínuo devem ser protegidos contra sobrecargas por um dispositivo integrado no motor, ou por meio de um dispositivo de proteção independente, geralmente um relé térmico com corrente nominal ou de ajuste igual ou inferior ao valor obtido através da equação abaixo, conforme tabela 15.

Fator de serviço	Ajuste da corrente do relé
1,0 até 1,15	In x F.S.
≥ 1,15	(In x F.S.) - 5%

Tabela 15 - Ajuste da corrente do relé em relação ao fator de serviço

Essa proteção adicional interna pode ser obtida por meio de uma resistência calibrada (Pt-100), termistores (PTC) ou protetores térmicos tipo bimetálico.

Pt-100

Os Pt-100 (figura 29) são sensores de temperatura com princípio de funcionamento baseado na propriedade de alguns materiais que variam sua resistência elétrica linearmente com a variação da temperatura.

Figura 29 - Pt-100

O Pt-100 é uma resistência calibrada de platina que aumenta sua resistência linearmente com aumento da temperatura, possibilitando assim um acompanhamento contínuo do processo de aquecimento do motor através do display do controlador, assegurando um alto grau de precisão e sensibilidade de resposta. Um mesmo sensor pode servir tanto para ativação de alarme (operação acima da temperatura normal de trabalho) como para desligamento (geralmente ajustado para a temperatura máxima da classe de isolamento).

PTC

O PTC é um termistor, cuja resistência aumenta bruscamente em um valor bem definido de temperatura. Essa variação brusca da resistência interrompe a corrente no PTC, acionando um relé de saída, que desliga o circuito principal.

Figura 30 - Termistor (PTC)

Embora não permitam um acompanhamento contínuo do processo de aquecimento do motor, os termistores possuem tamanhos reduzidos, não sofrem desgastes mecânicos e têm uma resposta mais rápida, se comparados com outros protetores térmicos. Os termistores, com seus respectivos circuitos eletrônicos de controle, oferecem proteção completa contra o sobreaquecimento produzido por falta de fase devido à sobrecarga, sub ou sobretensão ou frequentes operações de reversão. Os termistores podem ser usados tanto para alarme como para desligamento. Nesse caso, são necessários dois conjuntos de termistores conectados em série por fase.

Termostato

Os protetores térmicos do tipo bimetálico são protetores térmicos com contatos de prata, tipo NF (normalmente fechados), que abrem quando ocorre determinada elevação de temperatura. Quando a temperatura de atuação do bimetálico baixar, este volta a sua forma original, permitindo o fechamento dos contatos novamente e o consequente religamento do motor.

Os protetores térmicos do tipo bimetálico são ligados em série com a bobina do motor, servindo assim para desligamento do motor. Um segundo conjunto pode ser utilizado para o alarme, mas neste caso o mesmo deverá ser conectado a um circuito específico de alarme. Existem ainda outros tipos de protetores térmicos, tais como o Pt-1000, KTY e os termopares. Para mais informações, contate o escritório WEG mais próximo.

A WEG Automação oferece um produto chamado RPW-PTC que é um relé eletrônico com a função específica de ler o sinal do PTC e atuar seu relé de saída. Para mais informações, visite o site www.weg.net.

12. Operação com Inversor de Frequência

12.1 Considerações Relativas ao Sistema Isolante do Motor

O estator dos motores W22 é fornecido com isolação térmica da classe F e está apto tanto para ligação direta à rede quanto para acionamento por inversor de frequência. Opcionalmente, os motores podem ser fornecidos com isolação térmica da classe H.

Os motores são fornecidos com a tecnologia exclusiva de isolamento WISE® (WEG Insulation System Evolution), que assegura características superiores de isolamento elétrico.

Os motores são fabricados de acordo com a tensão padrão para cada mercado, conforme exibido a seguir, e estão aptos para serem acionados por inversor de frequência, considerando os critérios indicados na Tabela 16.

Tamanho de carcaça	Tensão nominal (60 Hz)
63 a 200L	220/380 V
225S/M a 355M/L	220/380/440 V
355A/B	440 V

Tensão nominal do motor	Diferença de potencial* nos terminais do motor (fase-fase)	dV/dt** nos terminais do motor (fase-fase)	Rise time**	Tempo entre pulsos
V _{nom} < 460 V	≤ 1600 V	≤ 5200 V/µs		
$460 \text{ V} \le \text{V}_{\text{nom}} < 575 \text{ V}$	≤ 2000 V	≤ 6500 V/ µs	≥ 0,1 µs	≥ 6 µs
$575 \text{ V} \le \text{V}_{\text{nom}} \le 1000 \text{ V}$	≤ 2400 V	≤ 7800 V/ µs		

*Definição conforme a norma NEMA MG1 - Part 30.

**Tensão de pico no caso de pulsos unipolares. Tensão pico-a-pico no caso de pulsos bipolares.

Tabela 16 - Critérios de suportabilidade do sistema isolante de motores de baixa tensão.

Notas:

1 - Se alguma das condições apresentadas na Tabela 16 não for satisfeita, um filtro (p. ex., reatância de saída, ou filtro dV/dt) deve ser instalado na saída do inversor.

- 2 O comprimento do cabo alimentador entre inversor e motor, para as condições apresentadas na Tabela 16, deve ser menor ou igual a 100 metros. Caso seja necessário cabo de alimentação com comprimento maior que 300 metros, a WEG deverá ser previamente consultada.
- 3 Motores de aplicação geral com tensão nominal maior do que 460 V, que no momento da compra não tiveram indicação da operação com inversor de frequência, são aptos a suportar os esforços elétricos definidos na tabela acima para tensão nominal até 575 V. Caso tais condições não sejam integralmente atendidas, filtros devem ser instalados na saída do inversor.
- 4 Motores de aplicação geral do tipo dupla tensão (p. ex., 380/660 V e 400/690 V), que no momento da compra não tiveram indicação da operação com inversor de frequência, estão aptos à operação com inversor na tensão mais alta apenas se os limites definidos na tabela acima para tensão nominal até 460 V forem plenamente satisfeitos na aplicação. Caso contrário, filtros de saída devem ser usados.

12.2 Influência do Inversor na Elevação de Temperatura

O motor de indução pode apresentar uma elevação de temperatura maior, quando alimentado por inversor de frequência, do que quando alimentado com tensão senoidal. Essa sobrelevação de temperatura é decorrente da combinação de dois fatores: o aumento de perdas ocorrido no motor, em função das componentes harmônicas da tensão PWM fornecida pelo inversor, e a redução da eficácia do sistema de resfriamento, quando da operação do motor autoventilado em baixas frequências. Basicamente existem as seguintes soluções para evitar o sobreaquecimento do motor:

- Redução do torque nominal (sobredimensionamento do motor autoventilado).
- Utilização de um sistema de resfriamento independente (ventilação forçada).
- Utilização do "fluxo ótimo" (solução exclusiva WEG).

Critérios de Redução de Torque (Torque Derating)

Para manter a temperatura dos motores de indução WEG dentro de níveis aceitáveis, quando da operação com inversores de frequência, devem ser obedecidos os limites de carga apresentados nas figuras 31 (para operação na condição de fluxo constante) ou 32 (para operação na condição de fluxo ótimo).

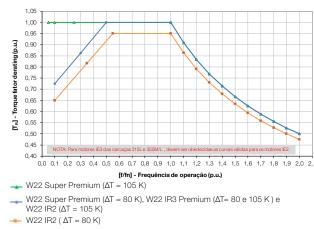
Notas:

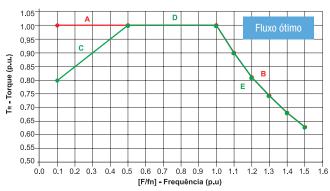
- 1 Motores para aplicações em áreas explosivas devem ser avaliados caso a caso e a WEG deve ser consultada.
- 2 As curvas de derating apresentadas a seguir estão relacionadas com a elevação de temperatura no enrolamento dos motores e não com a sua classe térmica. Estas curvas apenas definem limitações de torque para motores acionados por inversores de frequência, mas não estabelecem fatores de folga térmica.
- 3 A regulação/precisão de velocidade dependerá do tipo de controle do inversor e seu correto ajuste.
- 4 A redução de torque é uma solução requerida quando o motor aciona carga de torque constante. Para cargas de torque quadrático normalmente não é necessário aplicar qualquer fator de derating.
- 5 Sob solicitação, a partir da carcaça 90, motores podem ser fornecidos com sistema de ventilação independente. Nesse caso, o motor estará apto a fornecer torque nominal constante da

- frequência-base de operação até 0 Hz com qualquer tipo de carga, sem exceder os limites da classe térmica do seu sistema isolante.
- 6 Para aplicações que exijam operação acima da rotação-base, questões mecânicas (limites de velocidade para operação segura) devem ser também observadas. Verificar Tabela 19.

Operação com Fluxo Constante

Aplicável quando o motor é alimentado por qualquer inversor de frequência comercial operando com qualquer tipo de controle que não seja a Solução Fluxo Ótimo disponível nos inversores WEG.




Figura 31 - Curvas de derating para condição de fluxo constante

Operação com Fluxo Ótimo

O estudo da composição das perdas nos motores elétricos e da sua relação com a frequência, o fluxo, a corrente e a variação de velocidade permitiu a determinação de um valor ótimo de fluxo magnético para cada rotação. A incorporação dessa solução nos inversores CFW700, CFW701 e CFW11 permite que haja uma contínua minimização das perdas no motor ao longo de toda a faixa de operação, a qual é realizada automaticamente pelo inversor.

A Solução Fluxo Ótimo foi especialmente desenvolvida para operações em baixas frequências e com cargas de torque constante, não devendo ser utilizada com cargas de torque variável, ou acima da frequência base, e só é aplicável quando:

- O motor é WEG e atende no mínimo classe de rendimento maior ou igual a IR2;
- O inversor de frequência é CFW11, CFW700 ou CFW701 versão 2.40 ou posterior;
- É utilizado controle vetorial sensorless.

→Para elevação de temperatura 105 K → Para elevação de temperatura 85 K Figura 32 - Curvas de derating para condição de fluxo ótimo

R de moto	otação máxima (RPM) res padrão acionados	para operação segur	a quência			
		otores Fechados (TEF				
Potência [cv]	2 polos	4 polos	6 polos			
0,25						
0,33						
0,50						
0,75						
1	7.200					
1,5						
2		3.600				
3						
5						
7,5			2.400			
10						
15	5.400					
20	0.400					
25						
30						
40	4.500					
50	4.000					
60		2.700				
75						
100						
125						
150						
200	3.600		1.800			
250	0.000	2.250				
300						
350						
400		1.800				
450			-			
500						

Tabela 17 - Rotação máxima (RPM) para operação segura de motores padrão acionados por inversores de frequência

Notas:

- 1 Os valores estabelecidos na tabela anterior estão relacionados com limitações mecânicas. Para operações acima da velocidade de placa do motor, as limitações elétricas (capacidade de desenvolvimento de torque eletromagnético pelo motor) devem ser também observadas.
- 2 Os limites estabelecidos na tabela anterior estão de acordo com as recomendações da norma NEMA MG 1 - Parte 30.
- 3 O valor de sobrevelocidade permitido é de 10% acima dos valores da Tabela 17 (não excedendo 2 minutos de duração), exceto quando o máximo valor de velocidade segura de operação é o mesmo da velocidade síncrona em 60 Hz. Nesses casos, favor consultar a WEG.
- 4 Para operação acima da velocidade de placa pode ser necessário balanceamento especial.
- 5 A vida dos rolamentos será afetada pelo tempo de operação em velocidades variadas.
- 6 Para velocidades e potências nominais não cobertos pela Tabela 17, consulte a WEG.

12.3 Restrições quanto à Circulação de Correntes pelos Mancais

A partir da carcaça 315S/M medidas devem tomadas para impedir a passagem de corrente pelos mancais, porém tais proteções também estão disponíveis à algumas carcaças menores. A proteção pode ser feita por meio do uso combinado de um rolamento especial isolado ou uma tampa com o cubo do rolamento isolado no lado traseiro (não acionante) e uma escova de aterramento/curtocircuitamento do eixo com a carcaça instalada no lado dianteiro (ponta acionante). Os motores W22 são normalmente fornecidos com mancais protegidos conforme tais recomendações, quando o acionamento por inversor de frequência é mencionado no momento da compra.

Para motores que tenham mancais originalmente desprotegidos (p. ex., motores antigos, ou motores não especificados para uso com inversor quando da sua aquisição) a WEG disponibiliza kits para a sua adequada modificação.

12.4 Kit de Ventilação Forçada

Para os casos onde se faz necessário o uso de ventilação independente, os motores W22 podem ser fornecidos com um kit de ventilação forçada, conforme exibido na figura 33.

Figura 33 - Kit de ventilação forçada utilizado na linha W22

Com a inclusão do kit de ventilação forçada, o comprimento total do motor é alterado conforme exibido na tabela 18.

0	Delee	Comprimento total do motor L (mm)						
Carcaça	Polos	Sem ventilação forçada	Com ventilação forçada					
90S		305	548					
L90S		334,5	579					
90L		329	573					
L90L		360	604					
100L		376	646					
L100L		414	690					
112M		394	660					
L112M		429	690					
132S		452	715					
L132S		476	740					
132M	Todos	489	753					
L132M	10005	515	779					
132M/L		515	778					
L132M/L		538,5	803					
160M		598	855					
160L		642	899					
L160L		676	933					
180M		664	908					
L180M		706	950					
180L		702	946					
200M		729	976					
200L		767	1014					
225S/M	2	856	1140					
2233/W	4/8	886	1170					
250S/M	2	965	1217					
2303/W	4/8	965	1217					
280S/M	2	1071	1348					
2003/WI	4/8	1071	1348					
315S/M	2	1244	1459					
3 1 3 3 / IVI	4/8	1274	1489					
355M/L	2	1412	1786					
333IVI/L	4/8	1482	1856					
355A/B	2	1607	1981					
333A/D	4/8	1677	2051					

12.5 Encoders

Os motores da linha W22 podem ser fornecidos com encoders para um controle de velocidade em malha fechada. Os encoders podem ser fornecidos em motores com ventilação forçada ou em motores autoventilados. Quando fornecidos em motores autoventilados, os motores não podem ter dupla ponta de eixo e nem chapéu. Os seguintes modelos de encoder estão disponíveis para

- fornecimento nas carcaças 90 a 355:

 Dynapar série B58N 1024ppr (hollow shaft) Carcaças 90 a 355
- Line & Linde XH861 1024ppr (hollow shaft) Carcaças 160 a 355
- Hengstler RI58 1024ppr (hollow shaft) *
- Hubner Berlin HOG 10 1024ppr (hollow shaft) * *Sob consulta.

Nota: Os encoders acima indicados são do tipo 1024 pulsos. Opcionalmente podem ser fornecidos modelos de encoders com 2048 pulsos.

SAIBA MAIS!!

Informações mais detalhadas sobre aplicações de motores de indução alimentados por inversores de frequência podem ser encontradas no Guia Técnico - Motores de Indução Alimentados por Inversores de Frequência PWM, disponível para download em www.weg.net.

13. Tolerâncias para Dados Elétricos

Segundo a norma ABNT NBR 17094, são permitidas as seguintes tolerâncias elétricas:

	$-0.2 (1-\eta)$ para $\eta >= 0.851$				
Rendimento (η)	-0.15 (1- η) para $\eta < 0.851$				
	Sendo η um número decimal				
Fator de potência	1/6 x (1 - cos φ)				
i atoi de potencia	No mínimo 0,02 e no máximo 0,07				
Escorregamento	± 20% para Pnom ≥ 1 kW				
Escorregamento	± 30 % para Pnom < 1 kW				
Corrente de partida	20% (sem limite inferior)				
Torque de partida	- 15% e + 25%				
Torque máximo	- 10 %				
Momento de inércia	± 10 %				

14. Características Construtivas

	Carcaça	ı	63	71	80	90	100	112	132	160	180
				Caract	erísticas Mecâ	nicas					
Marcações na	placa de identif	icação				CE / Ir	metro / Procel				
Forma constru	ıtiva						B3D				
Material da ca	rcaça					Ferro F	undido FC-200				
Grau de prote	ção					IP55		,		IPW	55
Aterramento						Único (interio	r da caixa de li	gação)			
Método de Re	frigeração				Totalm	ente fechado d	om ventilação	externa (IC411)		
Material do Ve	ntilador	2 Polos 4-12 Polos					Plástico				
Material da ta	mpa defletora	2				Chapa				Ferro Fundid	do FC-200
Material das t							undido FC-200				
Dreno							ha Automático				
	Blindagem / Fo	Iga Dianteiro/Traseiro				ZZ				ZZ-C3	
Rolamentos	Travamento			Sem travamento e com arruela ondulada na traseira anel com					Travado na dia anel de fixaçã com arruela o mancal tr	ão interno e ondulada no	
	Lado dianteiro	2 Polos 4-12 Polos		6204		6205	6206	6207	6308	6309	6311
	Lado traseiro	2 Polos 4-12 Polos	6201	6202	6203	6204	6205	6206	6207	6209	6211
Vedação do m	ancal	4 12 1 0100					V'Ring				
Vedação das juntas Sem											
	Tipo de graxa Mobil Polyrex EM										
Lubrificação	Graxeira						pino graxeiro	,			
Placa de born	es						laca de Bornes				
Material da ca	ixa de ligação					Ferro F	undido FC-200)			
Caixa de ligaç											
Entrada dos	Principal	Tamanho	RWG 1/2"					RWG 1"	RWG 1 1/2"	RWG 1 1/2"	
Cabos	-	L			Tampão n	 ástico roscado	para transpor	le e armazena:	nem		
		Material			татірао р		E 1040/45	io o armazona,	JOIII		
Eixo		2 Polos									
	Furo roscado	4-12 Polos	A3.15	A3.15	A3.15	A4	A4	A4	A4	A4	A4
Chaveta						Fornecido c	om chaveta do	tipo A			
Vibração							Grau A				
		2 Polos	Sem	balanceament	to			Com 1/2	chaveta		
Balanceament	to	4-12 Polos	Sem				Com 1/2 c	haveta			
Material da ni	aca de identifica	ıcão	balanceamento			Aco	inox AISI 304				
waterial da pi	uod do identino	Plano				207A				203	A
Pintura		Cor				Motores IR3	Premium: RAL er Premium: RA				· ·
				Carac	terísticas Elétr	icas					
Categoria							N				
Tensão					220/38	0 V com 6 term	inais			220/380/44 12 term	
	Imp	pregnação					Imersão				
Enrolamento		de Isolamento					(DT 80K)				
Fator de serviç	ÇO				oara motores IF	3 Premium e S	ahlander e car Super Premium Super Premiun	nas carcaças			
Rotor						Alun	nínio injetado				
Proteção térm	ica					Sem Pi	oteção Térmica	1			

Caracteristicas Mecânicas	Alumínio traseira 6314 6322 6314 6319							
Material da	traseira 6314 6322 6314							
Material de zerzes Ferro Fundido FC-200	traseira 6314 6322 6314							
Alternament	traseira 6314 6322 6314							
Alteramento duplo (Icaixa + 1 carcaça) Método de Refrigeração Totalmente fechado com ventilação externa (IC411) Método de Refrigeração 2 Polos Plástico Material do Ventilador 2 Polos Ferro Fundido FC-200 Material da tampa defletara Borracha Automático Toreno CZ-C3 CS3 Travado na dianteira Carca a na arruela motulada no mancial traseiro o mancial de fixação interno e externo e com molas de pré-carga na arruela motulada no mancial traseiro o mancial de fixação interno e externo e com molas de pré-carga na arruela motulada no mancial traseiro o mancial de fixação interno e externo e com molas de pré-carga na arruela motulada no mancial traseiro o mancial de fixação interno e externo e com molas de pré-carga na arruela motulada no mancial traseiro o mancial de fixação interno e externo e com molas de pré-carga na arruela motulada no mancial traseiro o mancial traseiro o mancial traseiro o mancial traseiro o mancial de fixação interno e externo e com molas de fixação máteria o mancial de fixação interno e externo e com molas de fixação interno e externo e com molas de fixação máteria o mancial de fixação máteria de fixação m	traseira 6314 6322 6314							
Método de Refrigeração Método de Refrigeração 2 Polos Plástico Plástico Material do tampa delletora Material do tampa delletora Material da	traseira 6314 6322 6314							
Material do Vertilaldor 2 Polos Plástico Material da tampa defletora Material da tampas Dreno Borracha Automático Travamento Travado na dianteira com anel de fixação interno e com arruela ordulada no marcuel aordulada no marcuel a	traseira 6314 6322 6314							
Material da tampa defletora Material das tampas Material da	traseira 6314 6322 6314							
Material data	6314 6322 6314							
Material das t	6314 6322 6314							
Direct Dir	6314 6322 6314							
Rolamentos Travamento Travamento Travamento Travado na dianteira com anel de fixação interno e com arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Travado na dianteira com anelis de fixação interno e externo e com molas de pré-carga na arruela ondulada no mancal traseiro Estapa (5314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6314 6316 6316 6316 6319	6314 6322 6314							
Travamento	6314 6322 6314							
Travamento Travamento Travamento Com anel de fixação interno e com aniel de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na dianteira com anéis de fixação interno e externo e com molas de pré-carga na artivado na fixa de ligação discide and a cartiva de ligação discide and a cartivada do specificado artivada de ligação adicional artivada de ligaç	6314 6322 6314							
Lado dianteiro Lado traseiro Lado trase	6322 6314							
Material do caixa de ligação adicional Material do caixa de ligação Material Material do caixa de ligação Material Material Material do caixa de ligação Material Mat	6314							
Lado traseiro Lado trasei								
Vedação do mancal V'Ring Wseal Vedação das juntas Sem Lubrificação Tipo de graxa Graxeira Sem pino graxeiro Sem Placa de Bornes Placa de bornes Material da caixa de ligação Sem pino graxeiro Sem Placa de Bornes Material de caixa de ligação adicional Sem caixa de ligação adicional Entrada dos Cabos Principal Tamanho RWG 2" 2 x RWG 2"	6319							
Vedação das juntas Sem Sem Com pino graxeiro Sem pino gr								
Tipo de graxa Sem pino graxeiro Sem pino								
Compined graxeiro Compined graxeiro Compined graxeiro								
Placa de bornes Sem pino graxeiro Sem caixa de ligação Sem caixa de li								
Material da caixa de ligação Caixa de ligação adicional Sem caixa de ligação adicional Entrada dos Cabos Principal Tamanho RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 3" 2 x RWG 3" (base removível) 3" (base removível) 3" (base removível) 3" (base removível) 4 lSI 4140 AISI 4140 <td></td>								
Caixa de ligação adicional Entrada dos Cabos Principal Tamanho RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 3" 2 x RWG 3" (base removível) 3" (base removível) Eixo Material SAE 1040/45 AISI 4140 Eixo Puro roscado 2 Polos A4 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20 M20 M24								
Principal Tamanho RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 3" 3" (base removivel)								
Entrada dos Cabos Principal Tamanho RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 2" 2 x RWG 3" 3" (base removivel) Eixo Furo roscado Material SAE 1040/45 AISI 4140 Eixo Furo roscado 2 Polos A4 M20 M20 <td< td=""><td></td></td<>								
Eixo Material SAE 1040/45 AISI 4140 Furo roscado 2 Polos A4 M20 M20 <t< td=""><td>2 x RWG 4" (base removível)</td></t<>	2 x RWG 4" (base removível)							
Eixo 2 Polos A4 M20								
Furo roscado 4-12 Polos A4 M20 M20 M20 M20 M20 M20 M24								
4-12 Polos M20 M20 M20 M20 M20 M24 Fornecido com	M20							
Fornecido com	M24							
Chaveta Chiaveta do tipo A Fornecido com chaveta do tipo B								
Vibração Grau A								
Balanceamento Com 1/2 chaveta								
Material da placa de identificação Aço inox AISI 304								
Plano 203A								
Pintura Motores IR3 Premium: RAL 5009 Motores Super Premium: RAL 6002								
Características Elétricas								
Categoria N								
Tensão 220/380/440 V com 12 terminais	440 V com							
Enrolamento Impregnação Imersão Fluxo contínuo	6 terminais							
Classe de Isolamento F (DT 80K) 1,00 para motores Dahlander e carcaças 355A/B 1,15 para motores IR3 Premium e Super Premium nas carcaças 315L, 355M/L 1,25 para motores IR3 Premium e Super Premium nas carcaças 63 a 315S/M	6 terminais							
Rotor Alumínio injetado	6 terminais							
Proteção térmica Sem Proteção Térmica	6 terminais							

15. Opcionais

Carcaça	63	71	80	90	100	112	132	160	
Gurouşu	- 00	Caixa de lig		- 50	100		102	100	
Caixa de ligação principal + caixa de ligação de acessórios	0	0	0	0	0	0	0	0	
Caixa de ligação principal + caixa de ligação de acessórios + caixa de ligação									
de resistência	Е	E	E	Е	Е	E	0	0	
Caixa de ligação principal + caixa de ligação de resistência	Е	E	Е	Е	Е	Е	0	0	
Base da caixa de ligação	0	0	0	0	0	0	0	0	
Caixa de ligação principal superior	0	0	0	0	0	0	0	ND	
Caixa de ligação principal com placa removível	ND	ND	ND	ND	ND	ND	ND	ND	
		Conecto	or						
WAGO (caixa principal)	Е	E	Е	Е	Е	Е	Е	Е	
WAGO (caixa adicional)	E	E	E	Е	Е	E	Е	Р	
Sindal (caixa principal)	P	P	P	P	P	P	P	P	
Sindal (caixa adicional)	Р	P	Р	Р	Р	Р	Р	E	
		Prensa ca							
Plástico	0	0	0	0	0	0	0	0	
Latão Aos insuidável	0	0	0	0	0	0	0	0	
Aço inoxidável	ND	ND	ND	0	0	0	0	0	
Flange FF	0	Flange 0	0	0	0	0	0	0	
Flange FF Superior	0	0	0	0	0	0	0	0	
Flange FF Inferior	ND	0	0	0	0	0	0	0	
Flange C-DIN	0	0	0	0	0	0	0	ND	
Flange C-DIN Superior	0	0	0	0	0	0	ND	ND	
Flange C-DIN Inferior	ND	0	0	0	0	ND	0	0	
Flange C	0	0	0	0	0	0	0	0	
Flange C Superior	0	0	0	0	0	ND	0	ND	
Flange C Inferior	ND	ND	ND	0	0	0	0	ND	
- Chapéu	0	0	0	0	0	0	0	0	
Placa de Bornes									
Sem	Р	Р	Р	Р	Р	Р	Р	Р	
BMC 6 pinos	0	0	0	0	0	0	0	0	
BMC 12 pinos	ND	ND	0	0	0	0	0	0	
Parafuso de ligação HGF	ND	ND	ND	ND	ND	ND	ND	ND	
		Grau de Pro	teção						
IP56	0	0	0	0	0	0	0	0	
IP65	0	0	0	0	0	0	0	0	
IP66	0	0	0	0	0	0	0	0	
IPW55	0	0	0	0	0	0	0	Р	
IPW56	0	0	0	0	0	0	0	0	
IPW65	0	0	0	0	0	0	0	0	
IPW66	0	0	0	0	0	0	0	0	
Worl		/edação do r		ND	ND	ND	ND	ND	
WSeal	ND	ND	ND	ND	ND	ND D	ND	ND D	
V'RING	P	P 0	P 0	P 0	P 0	P 0	P 0	P	
Retentor de borracha nitrílica	0		0	0	0	0	0	0	
Retentor de borracha nitrílica com mola Retentor de viton	0	0	0	0	0	0	0	0	
Retentor de viton com mola	0	0	0	0	0	0	0	0	
Labirinto Taconite	ND	ND	ND	0	0	0	0	0	
W3 Seal	ND	ND	ND ND	0	0	0	0	0	
Slinger de borracha (traseiro)	ND	ND	ND	0	0	0	0	0	
Plano de Pintura									
207A	Р	P	Р	Р	Р	Р	Р	ND	
203A	0	0	0	0	0	0	0	P	
202E	0	0	0	0	0	0	0	0	
202P	0	0	0	0	0	0	0	0	
211E	0	0	0	0	0	0	0	0	
211P	0	0	0	0	0	0	0	0	
212E	0	0	0	0	0	0	0	0	
212P	0	0	0	0	0	0	0	0	

180	200	225	250	280	315	355M/L	355A/B				
			Caixa de	e ligação							
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
ND	ND	0	0	0	0	0	ND				
ND	ND	0	0	0	0	ND	ND				
			Con	ector							
E	E	Р	Р	Р	Р	Р	Р				
Р	Р	Р	Р	Р	Р	Р	Р				
Р	Р	E	E	Е	E	E	E				
E	E	E	E	E	E	E	E				
•				a cabos							
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
U	0	U			0	0	0				
Flange 0											
0	0	ND	ND	0	ND	ND	ND				
0	0	0	0	ND	0	ND	ND				
ND	ND	ND	ND	ND	ND	ND	ND				
ND	ND	ND	ND	ND	ND	ND	ND				
ND	ND	ND	ND	ND	ND	ND	ND				
0	0	0	0	0	0	0	ND				
0	0	ND	ND	0	ND	ND	ND				
ND	ND	ND	0	ND	0	ND	ND				
0	0	0	0	0	0	0	0				
Placa de Bornes											
Р	Р	Р	Р	Р	Р	Р	ND				
0	0	0	0	0	0	0	ND				
0	0	0	0	0	0	0	ND				
ND	ND	ND	ND	ND	ND	ND	0				
	I			Proteção	1						
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
P	P	P 0	P	P	P 0	P	P 0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
U	U	U		do mancal	U	U	U				
ND	ND	P	P	P	P	P	P				
P	P	ND	ND .	ND	ND	ND	ND ND				
0	0	0	0	0	ND	ND	ND				
0	0	0	0	0	ND	ND	ND				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
				e Pintura							
ND -	ND	ND	ND	ND -	ND	ND	ND				
P	P	Р	Р	P	P	P	P				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
U	U	U	U	U	U	U	U				

Carcaça	63	71	80	90	100	112	132	160		
		Aterrame	nto							
Aterramento único	Р	Р	Р	Р	Р	Р	Р	Р		
Duplo aterramento (1 no interior da caixa de ligação + 1 na carcaça)	0	0	0	0	0	0	0	0		
Duplo aterramento + Adicional (1 no interior da caixa de ligação +	ND	ND	0	0	0	0	0	0		
2 na carcaça)	ND	ND		0	0	0	0	0		
Aterramento superior	0	0	0	0	0	0	0	0		
	1 -	Ventilad						_		
Plástico condutivo (2 polos)	0	0	0	0	0	0	0	0		
Plástico condutivo (4 polos e acima)	0	0	0	0	0	0	0	0		
Alumínio (2 polos)	0	0	0	0	0	0	0	0		
Alumínio (4 polos e acima)	0	0	0	0	0	0	0	0		
Ferro	0 E	0 E	0	0	0	0	0	0		
Bronze Furo de Centro roscado	0	0	0	0	0	0	0	0		
i uio de Gentro roscado	0	Lubrifica		0	0	0	0	0		
Aeroshell 22	0	0	0	0	0	0	0	0		
Isoflex NBU 15	0	0	0	0	0	0	0	0		
Polyrea Ester Oil (WT/ENS)	0	0	0	0	0	0	0	0		
Oil Mist	ND	ND	ND	E	E	E	E	E		
		Graxeir		_	_	_	_	_		
Pino graxeiro em aço carbono	ND	ND	ND	0	0	0	0	0		
Pino graxeiro em aço inoxidável	ND	ND	ND	0	0	0	0	0		
Pino graxeiro em aço carbono com prolongador	ND	ND	ND	ND	ND	ND	ND	ND		
Pino graxeiro em aço inoxidável com prolongador	ND	ND	ND	ND	ND	ND	ND	ND		
Mancal dianteiro isolado	ND	ND	ND	ND	ND	ND	ND	ND		
Mancal traseiro isolado	ND	ND	ND	ND	ND	ND	ND	ND		
Blindagem / Folga do rolamento - Sem graxeira										
2RS (dianteiro/traseiro)	0	0	0	0	0	0	0	ND		
2RS-C3 (dianteiro/traseiro)	0	0	0	0	0	0	0	0		
2RS-C4 (dianteiro/traseiro)	Е	E	E	Е	Е	E	Е	0		
ZZ (dianteiro/traseiro)	Р	Р	P	P	Р	Р	P	ND		
ZZ-C3 (dianteiro)	0	0	0	0	0	0	0	Р		
ZZ-C3 (traseiro)	0	0	0	0	0	0	0	Р		
ZZ-C4 (dianteiro/traseiro)	Е	E	Е	Е	Е	Е	Е	0		
Z (dianteiro)	0	0	0	0	0	0	0	ND		
Z (traseiro)	0	0	0	0	0	0	0	E		
Z-C3 (dianteiro/traseiro)	0	0	0	0	0	0	0	0		
Z-C4 (dianteiro/traseiro)	E	E	E	E	E	E	E	0		
C3 (dianteiro)	ND	ND	ND	ND	ND	ND	ND	0		
2RS (dianteiro/traseiro)	ND ND	ND	nento - Com grax	E E	E	E	E	ND		
2RS-C3(dianteiro/traseiro)	ND	ND	ND ND	E	E	E	E	E		
2RS-C4(dianteiro/traseiro)	ND	ND	ND ND	E	E	E	E	E		
ZZ(dianteiro/traseiro)	ND	ND	ND	E	E	E	E	ND		
ZZ-C3(dianteiro/traseiro)	ND	ND	ND	E	E	E	E	E		
ZZ-C4(dianteiro/traseiro)	ND	ND	ND	E	E	E	E	E		
C3(dianteiro/traseiro)	ND	ND	ND	P	P	P	P	P		
C4(dianteiro/traseiro)	ND	ND	ND	Е	E	E	E	0		
Isolado M/C3(dianteiro/traseiro)	ND	ND	ND	ND	ND	ND	ND	ND		
Isolado M/C4(dianteiro/traseiro)	ND	ND	ND	ND	ND	ND	ND	ND		
Isolado C3(dianteiro/traseiro)	ND	ND	ND	ND	ND	ND	ND	ND		
	Tip	o de Balanc	eamento							
Balanceamento normal /especial/reduzido sem chaveta	0	0	0	0	0	0	0	0		
Balanceamento normal /especial/reduzido com chaveta inteira	0	0	0	0	0	0	0	0		
Balanceamento especial/reduzido com meia chaveta	0	0	0	0	0	0	0	0		
		Material do	Eixo							
AISI 1040/45	Р	Р	Р	Р	Р	Р	Р	Р		
AISI 4140	0	0	0	0	0	0	0	0		
AISI 304 (aço inoxidável)	0	0	0	0	0	0	0	0		
AISI 316 (aço inoxidável)	0	0	0	0	0	0	0	0		
AISI 420 (aço inoxidável)	0	0	0	0	0	0	0	0		

	180	200	225	250	280	315	355M/L	355A/B	
P	100	200				0.0	000/2	300.112	
0	Р	Р	ND		1	ND	ND	ND	
	0	0	Р	Р	Р	Р	Р	Р	
	0	0	0	0	0	0	0	0	
	0	0	ND	ND	ND	ND	ND	ND	
O									
	0	0	0	0	0	0	0	ND	
0	0	0	0	0	0	0	ND	ND	
	0	0	0	0	0	0	0	Р	
0	0			0					
Lubrificação									
0	0	0	Р	l .		Р	Р	Р	
0									
C									
Formal F									
P				l					
NO	0	0	Р			Р	Р	Р	
NO	0	0	0	0	0	0	0	0	
NO	ND	ND	0	0	0	0	0	0	
ND									
ND									
NO	ND	ND	0	J	L	Р	Р	Р	
O O E	ND	ND	ND			ND	ND.	ND	
O									
ND									
P									
P P E D ND									
ND									
E E ND ND <td>0</td> <td>0</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td>	0	0	E	E	E	E	E	E	
0 0 ND ND </td <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	ND	ND	ND	ND	ND	ND	ND	ND	
O O ND ND </td <td>Е</td> <td>E</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>	Е	E	ND	ND	ND	ND	ND	ND	
O ND ND<	0	0	ND	ND	ND	ND	ND	ND	
ND									
ND	0	0	ND	L		ND	ND	ND	
E D D D D D D D D D	ND.	NID.	ND.			NID.		ND.	
E E E E E E ND ND ND ND ND ND E E E E E E E E E </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
ND									
E D D O									
E P P									
P P									
ND ND 0 0 0 0 0 ND ND 0 0 0 0 0 Tipo de Balanceamento Tipo de Balanceamento 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Material do Eixo P P P P P ND ND 0 0 0 0 0 P P 0 0 0 0 0 P P 0 0 0 0 0 P P P 0 0 0 0 0 P			Р	P		Р	Р	P	
ND ND 0 0 0 0 0 0 Tipo de Balanceamento Tipo de Balanceamento O 0 ND ND ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	0	0	0	
ND ND 0 0 0 0 0 0 Tipo de Balanceamento O 0 ND ND ND ND 0 0 0 P									
Tipo de Balanceamento									
0 ND ND ND ND ND ND 0 0 P </td <td>ND</td> <td>ND</td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td>	ND	ND	0			0	0	0	
0 ND ND ND ND ND ND 0 0 P </td <td>0</td> <td></td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	0		0	1					
O ND ND ND ND ND ND O O P </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Material do Eixo P P P P P P ND ND 0 0 0 0 0 P P 0 0 E E E E E E 0 0 E E E E E E E									
P P P P P P ND ND O O O O O P P P O O E E E E E E E O O E E E E E E E	0	0	0			J	0	J	
0 0 0 0 0 P P 0 0 E E E E E E E 0 0 E E E E E E E	Р	P	P	1		Р	ND	ND	
O O E E E E E E E E O O E E E E E E E									
0 0 0 0 0 0 0	0	0	E	E	Е	Е	E	E	
	0	0	0	0	0	0	0	0	

Carcaça	63	71	80	90	100	112	132	160		
Garcaça		veta (NBR 6		30	100	112	102	100		
Sem chaveta	0	0	0	0	0	0	0	0		
Sem canal	0	0	0	0	0	0	0	0		
Chaveta A	P	P	P	P	P	P	P	P		
Chaveta B	E	E	E	E	E	E	E	E		
Chaveta C	E	E	E	E	E	E	E	E		
Dispositivo de travamento de eixo	ND	ND	ND	ND	ND	ND ND	0	0		
Dupla ponta de eixo	0	0	0	0	0	0	0	0		
Dapia polita de cino		Tipo de rolai								
Esferas	Р	Р	Р	P	Р	P	Р	Р		
Rolos (dianteiro)	ND	ND	ND	ND	ND	ND	E	0		
		de fixação i				l				
Sem anel	Р	P	Р	Р	Р	Р	Р	ND		
Anel de fixação	ND	0	0	0	0	0	0	Р		
Anel de retenção	Е	Е	Е	Е	Е	Е	E	ND		
		Vedaçã	0							
Loctite 5923 (Permatex) nas juntas	0	0	0	0	0	0	0	0		
Loctite 5923 (Permatex) nos parafusos	0	0	0	0	0	0	0	0		
		Tampão)							
Plástico roscado	Р	Р	Р	Р	Р	Р	P	Р		
Plástico liso	0	0	0	0	0	0	0	0		
Sem tampão (quando for com prensa cabos)	0	0	0	0	0	0	0	0		
Espuma autoextinguível na passagem dos cabos	Р	Р	Р	Р	Р	Р	Р	Р		
Massa epóxi na passagem dos cabos	0	0	0	0	0	0	0	0		
Pintura interna da Caixa de ligação (Munssel 2.5 YR 6/14)	0	0	0	0	0	0	0	0		
Resfriamento										
TFVF (ventilação forçada)	ND	ND	ND	0	0	0	0	0		
TEAO (air over)	Е	Е	Е	Е	Е	Е	E	Е		
TFSV (sem ventilação)	Е	Е	Е	Е	Е	Е	E	Е		
Pintura Interna Tropicalizada (Epóxi)										
Completa (200h)	0	0	0	0	0	0	0	0		
Conforme IEEE 841 (96h)	0	0	0	0	0	0	0	0		
Somente rotor	0	0	0	0	0	0	0	0		
		Dreno								
Dreno roscado de aço inoxidável (Fechado)	0	0	0	0	0	0	0	0		
Dreno roscado do tipo T automático	0	0	0	0	0	0	0	0		
Sem dreno	Е	Е	E	Е	Е	Е	E	Е		
	М	aterial do Pa	arafuso							
Parafuso Inoxidável	0	0	0	0	0	0	0	0		
		Saída de g	raxa							
Saída de graxa por gaveta de plástico	ND	ND	ND	ND	ND	ND	ND	ND		
Saída de graxa por gaveta de borracha	ND	ND	ND	ND	ND	ND	ND	ND		
Saída de graxa por tampão de plástico	ND	ND	ND	E	E	E	E	0		
Saída de graxa por tampão de metal	ND	ND	ND	E	Е	Е	E	E		
Saída de graxa pela tampa	ND	ND	ND	E	Е	E	E	E		
		it ventilção 1	orçada							
Kit de ventilação forçada apto a encoder	ND	ND	ND	0	0	0	0	0		
Kit de ventilação forçada não apto a encoder	ND	ND	ND	0	0	0	0	0		
		Tensão do								
220/380-440 V	ND	ND	ND	0	0	0	0	0		
220/380/440 V	ND	ND	ND	ND	ND	ND	ND	ND		
230/460 V	ND	ND	ND	0	0	0	0	0		
380/660 V	ND	ND	ND	0	0	0	0	0		
400/690 V	ND	ND	ND	0	0	0	0	0		
480 V	ND	ND	ND	0	0	0	0	0		
575 V	ND	ND	ND	0	0	0	0	0		
Encoder	ND	ND	ND	0	0	0	0	0		
Kit porta escova dianteira	ND	ND	ND	ND	ND	ND	ND	ND		
Kit porta escova traseira	ND	ND	ND	ND	ND	ND	ND	ND		
Placa adicional para inversor de frequência	0	0	0	0	0	0	0	0		

180	200	225	250	280	315	355M/L	355A/B				
	1	<u> </u>		R 6375:1985)		<u> </u>					
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
P	P	E	E	Е	Е	E	E				
E	E	Р	Р	Р	Р	Р	Р				
E	E	E	E	Е	E	E	E				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
	I .	l	-	olamento	l .						
P	P	P	P	P	P	P	P				
0	0	0	0	0	0	0	0				
ND	ND	ND		ão rolamento	ND	ND	ND				
ND P	ND P	ND P	ND P	ND P	ND P	ND P	ND P				
ND	ND	ND	ND	ND ND	ND	ND	ND				
ND	ND	ND		ação	ND	ND	ND				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
				 1pão							
P	Р	Р	Р	Р	Р	Р	Р				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
Р	Р	Р	Р	Р	Р	Р	Р				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
Resfriamento											
0	0	0	0	0	0	0	0				
E	E	E	E	E	Е	E	E				
Е	E	E	E	Е	E	E	Е				
				opicalizada (Epóxi)							
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
_	T -	_		eno	T -		_				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0 E				
E	Е	Е	E Motorial d	E o Parafuso	Е	E	E				
0	0	0	0	0 Paraiuso	0	0	0				
0	0	0		le graxa	0	0	0				
ND	E	P	P	Р	Р	P	P				
ND	E	E	E	E	E	E	E				
0	0	ND	ND	ND	ND	ND	ND				
E	E	ND	ND	ND ND	ND	ND	ND				
E	E	0	0	0	0	0	0				
			Kit ventilç	ão forçada							
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
			Tensão	o do kit							
0	0	ND	ND	ND	ND	ND	ND				
ND	ND	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
ND ND	ND	E	E	E	0	0	0				
ND	ND	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				

Carcaça	63	71	80	90	100	112	132	160		
οιιοαγα		aterial da D		30	100	112	102	100		
Chapa de Aço	P	P	P	Р	Р	Р	Р	0		
Ferro fundido	ND ND	ND	ND	0	0	0	0	P		
Sem defletora	E	E	E	E	E	E	E	E		
- Com denotora		po de Impre				_		_		
Por Imersão Epoxi	0	0	0	0	0	0	0	0		
Por Imersão Poliester	P	P	P	P	P	P	P	P		
Dupla Impregnação Epoxi	0	0	0	0	0	0	0	0		
Dupla Impregnação Poliester	0	0	0	0	0	0	0	0		
Gotejamento	ND	ND	ND	ND	ND	ND	ND	ND		
200,		Grau de Vib								
Grau B	0	0	0	0	0	0	0	0		
GIAU D		Sensor de Vil								
Apto a sensor SPM	ND	ND	ND	Е	E	E	Е	0		
,)pcionais ele								
Classe de Isolamento										
F DT 105K	0	0	0	0	0	0	0	0		
H DT 80K	0	0	0	0	0	0	0	0		
H DT 105K	0	0	0	0	0	0	0	0		
H DT 125K	0	0	0	0	0	0	0	0		
F DT 70K	E	E	E	E	E	E	E	E		
Resistência de Aquecimento										
110-127 V	0	0	0	0	0	0	0	0		
220-240 V	0	0	0	0	0	0	0	0		
110-127 / 220-240 V	0	0	0	0	0	0	0	0		
380-480 V	0	0	0	0	0	0	0	0		
Proteção térmica no enrolamento										
Protetor térmico bimetálico (130°C / 155°C) - Alarme	0	0	0	0	0	0	0	0		
Protetor térmico bimetálico (130°C / 155 °C / 180 °C) - Desligamento	0	0	0	0	0	0	0	0		
PT100 (2 fios/ 3 fios) (1 ou 2 por fase) - Alarme / Desligamento	0	0	0	0	0	0	0	0		
Termistor PTC (130°C / 155°C) - Alarme	0	0	0	0	0	0	0	0		
Termistor PTC (130°C / 155 °C / 180 °C) - Desligamento	0	0	0	0	0	0	0	0		
KTY 84-130 - Desligamento	0	0	0	0	0	0	0	0		
·	P	roteção do i	nancal							
Protetor Térmico Bimetálico (termostato) Dianteiro	ND	ND	ND	Е	E	E	Е	0		
Termistor Dianteiro	ND	ND	ND	Е	E	E	Е	0		
PT100 2 fios - Dianteiro	ND	ND	ND	Е	E	E	Е	0		
PT100 3 fios - Dianteiro	ND	ND	ND	Е	E	E	Е	0		
PT100 3 fios Calibrado - Dianteiro	ND	ND	ND	Е	E	E	Е	0		
Protetor Térmico Bimetálico (termostato) - Dianteiro/Traseiro	ND	ND	ND	Е	E	E	Е	0		
Termistor - Dianteiro/Traseiro	ND	ND	ND	Е	E	E	Е	0		
PT100 2 fios - Dianteiro/Traseiro	ND	ND	ND	Е	E	E	Е	0		
PT100 3 fios - Dianteiro/Traseiro	ND	ND	ND	Е	E	E	Е	0		
PT100 3 fios Calibrado - Dianteiro/Traseiro	ND	ND	ND	Е	E	E	Е	0		
		Sentido de ro	otação							
Ambos	Р	Р	Р	Р	Р	Р	Р	Р		
Horário	0	0	0	0	0	0	0	0		
Anti-horário Anti-horário	0	0	0	0	0	0	0	0		
Placa indicando sentido de rotação	0	0	0	0	0	0	0	0		

¹⁾ Outros opcionais sob consulta;

²⁾ Algumas combinações de opcionais não são possíveis - consulte a WEG.

P - Padrão da linha O - Opcional da linha E - Especial (característica pode ser fornecida mediante consulta à WEG) ND - Não disponível

180	200	225	250	280	315	355M/L	355A/B						
	1			a Defletora		I .							
0	0	0	0	0	0	0	0						
P	Р	Р	Р	Р	Р	Р	Р						
E	Е	E	E	Е	Е	Е	E						
				pregnação	T	l	l						
0	0	ND	ND	ND	ND	ND	ND						
P	Р	ND	ND	ND	ND	ND	ND						
0	0	ND	ND	ND	ND	ND	ND						
0	0	ND	ND	ND	ND	ND	ND						
ND	ND	Р	Р	Р	Р	Р	Р						
	T T			Vibração 	T	I	I						
0	0	0	0	0	0	0	0						
				e Vibração									
0	0	0	0	0	0	0	0						
Opcionais elétricos													
				Isolamento									
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
E	Е	E	E	E	Е	E	E						
	<u> </u>			e Aquecimento	T	I	l						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
	I		Proteção térmica	1	Ť	Ī	I						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
^			Proteção	T									
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0							
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0	0	0	0	0	0						
0	0	0				0	0						
0	0	0	0	0	0	0	0						
U	U	U		le rotação	U	U	U						
n	Р	P	P Sentido d	e rotação P	Р	Р	P						
P 0	0	Р 0	0	0	0		0						
0	0	0	0	0	0	0	0						
		0			0								
0	0	U	0	0	U	0	0						

16. Dados Elétricos

W22 Super Premium

5 10			Canimada	Corrente	Conjuga-	Caniumada	Mamanta		máximo		Nível			% de Carga				Comento			
Potê	ncia	Carcaça	Nominal	com Rotor Bloqueado	do de Partida	Conjugado Máximo	Momento de Inércia	com bloque		Massa (kg)	médio de pressão	Fator de Serviço	RPM	Rendimento		nto	Fato	r de Poté	ència	Tensão (V)	Nominal
kW	HP		(kgfm)	lp/In	Cp/Cn	Cmáx/Cn	J (kgm²)	Quente	Frio		sonora dB(A)			50	75	100	50	75	100		In (A)
II Polos				_																	
0,75 1,1	1,5	71 80	0,213 0,308	7 9,5	3,4 5,9	3,6 5,1	0,00051	17 25	37 55	9 17	60 62	1,25 1,25	3425 3475	79 81,5	81,5 84,8	82,5 86	0,65	0,77	0,84	220	2,84 4,25
1,5	2	L80	0,424	8,9	5,4	4,5	0,001	22	48	18	62	1,25	3445	84,2	85,6	87	0,63	0,76	0,81	220	5,59
2,2	3	90L	0,611	9,7	5	5,4	0,003	11	24	24	68	1,25	3505	84,9	87,6	87,7	0,55	0,69	0,79	220	8,33
3,7	<u>4</u> 5	100L 100L	0,831 1,03	9,5 9,9	3,6 3,8	4,5 4,7	0,006 0,007	16 13	35 29	33	71 71	1,25 1,25	3515 3515	86 88	88,2 89,3	89,5 90	0,66	0,77	0,85	440 440	5,17 6,35
4,5	6	112M	1,25	8,5	2,9	4,1	0,007	25	55	44	66	1,25	3500	87,8	89,4	90	0,74	0,73	0,85	440	7,72
5,5	7,5	112M	1,53	9,2	3,5	4,7	0,009	19	42	45	66	1,25	3510	88,1	90,1	90,5	0,66	0,78	0,81	440	9,85
7,5 9,2	10 12,5	132S 132M	2,08 2,54	7,6 8,5	2,5 2,9	3,2 3,6	0,025	28 19	62 42	72 80	68 68	1,25 1,25	3520 3525	90,7	90,9	91,6	0,8	0,87	0,9	440 440	11,9 14,9
11	15	L132M	3,03	9,5	3,3	3,9	0,032	9	20	82	68	1,25	3540	88,6	91,1	92	0,76	0,83	0,81	440	19,4
15	20	160M	4,13	7,4	2,7	3	0,05526	14	31	115	72	1,25	3540	91,3	92,2	92,2	0,74	0,83	0,87	440	24,5
18,5	25	160L	5,09	7,8	2,6	3	0,06263	11	24	119	72	1,25	3540	92	92,8	92,8	0,74	0,83	0,87	440	30,1
30	30 40	160L 200M	6,04 8,18	8,5 7,5	3,4	3,5 3,3	0,06631	9 27	20 59	131 248	72 76	1,25 1,25	3545 3570	92 92,4	92,5 94,1	92,8 94,1	0,72	0,82	0,87	440 440	35,8 48,6
37	50	200L	10,1	8,2	3,6	3,2	0,22885	25	55	275	76	1,25	3570	93	94,5	94,5	0,74	0,83	0,86	440	59,7
45	60	225S/M	12,3	9,5	2,4	3,2	0,36268	25	55	420	79	1,25	3570	93	94,5	95	0,79	0,86	0,89	440	69,8
55 75	75 100	225S/M 250S/M	15 20,5	9,5	3,1 2,9	3,6 3,2	0,36268 0,60454	14 20	31 44	425 535	79 79	1,25 1,25	3570 3565	93,6 94,5	95 95,4	95 95,4	0,77	0,85	0,88	440 440	86,3 116
90	125	280S/M	24,5	8,2	2,1	2,8	1,31768	44	97	762	81	1,25	3577	94,1	95,4	95,8	0,76	0,84	0,87	440	142
110	150	280S/M	29,9	7,9	2,6	3,2	1,62042	30	66	845	81	1,25	3580	94,5	95,8	96	0,77	0,85	0,88	440	171
132	175	315S/M	35,9	7,2	2,2	2,8	2,09499	30	66	1020	81	1,25	3577	93,9	95,2	96	0,79	0,86	0,89	440	203
150 185	200 250	315S/M 315S/M	40,8 50,4	8,3 7,5	2,4 2,4	3 2,6	2,3314 2,8289	30 20	66 44	1040	81 81	1,25 1,25	3580 3577	94,4 95,1	95,6 96	96,2 96,5	0,79	0,86	0,89	440 440	230 280
200	270	355M/L	54,3	8,9	2,9	3,2	3,861	51	112	1455	84	1,15	3586	93,8	95,6	96,5	0,82	0,88	0,9	440	302
220	300	355M/L	59,8	8	1,8	2,9	3,86039	20	44	1475	84	1,15	3585	95,3	95,9	96,5	0,83	0,88	0,9	440	332
300	350 400	355M/L 355M/L	70,6 81,7	7,8 8,4	2,2	2,7 2,5	4,50378 5,36165	26 24	57 53	1605 1743	84	1,15 1,15	3585 3576	95,2 95,8	96 96,2	96,5 96,5	0,86	0,9	0,91	440	389 448
330	450	355M/L	89,7	8,4	2,5	2,5	6,00505	18	40	1860	84	1,15	3583	95,3	95,8	96,5	0,87	0,91	0,91	440	488
370	500	355M/L	101	8,4	2,7	2,7	6,00505	15	33	1853	84	1,15	3582	95,6	96,1	96,7	0,87	0,91	0,92	440	546
Opciona 3,7	is 5	L100L	1.02	9,9	3,8	4,7	0,007	13	29	33	71	1,25	2515	88	00.2	00	0.67	0.70	0.05	440	6.25
IV Polos	0	LIUUL	1,03	9,9	3,0	4,7	0,007	13	29	33	/ / /	1,20	3515	00	89,3	90	0,67	0,79	0,85	440	6,35
0,75	1	L80	0,421	8,2	3,8	3,9	0,004	19	42	17	48	1,25	1735	80,5	83,4	84,5	0,54	0,68	0,74	220	3,15
1,1	1,5	L90S	0,609	8,8	3,1	3,8	0,006	16	35	25	51	1,25	1760	83,8	86,6	87,5	0,51	0,65	0,73	220	4,52
1,5 2,2	3	L90S 100L	0,832 1,22	8,3 8,6	3,1 3,8	3,7 3,7	0,007 0,01042	13 23	29 51	24 35	51 54	1,25 1,25	1755 1750	85 87	86,9 88,7	87,5 90,3	0,55	0,68	0,73	220 440	6,16 4,21
3	4	L100L	1,67	9	4,6	4,5	0,012	17	37	37	54	1,25	1750	87,9	89,4	90,3	0,55	0,68	0,75	220	11,6
3,7	5	112M	2,05	7,5	2,6	3,5	0,018	23	51	45	56	1,25	1755	88,3	89,6	90,3	0,55	0,68	0,75	220	14,3
4,5 5,5	6 7,5	L112M 132S	2,51 3,03	6,7 10	2,2	2,9 4,3	0,021	28 18	62 40	49 70	56 58	1,25 1,25	1745 1770	88,9 90,2	89,4 91,9	90,5	0,62	0,74	0,8	220 440	16,3 11
7,5	10	L132S	4,11	11,5	3,7	5,3	0,064	12	26	77	58	1,25	1776	89,6	91,8	92,7	0,53	0,73	0,77	440	13,8
9,2	12,5	132M/L	5,06	11	3,4	4,8	0,071	10	22	82	58	1,25	1770	90,5	92,2	93,1	0,58	0,72	0,79	440	16,4
11	15 20	L132M/L	6,05	10,8	3,3	4,6	0,079	9	20 33	87 138	58 64	1,25	1770	91	92,3	93,1	0,6	0,74	0,8	440	19,4
15 18,5	25	160M L160L	8,23 10,1	8,3 9,1	3,5 3,9	3,8 4,3	0,146 0,188	15	33	165	64	1,25 1,25	1775 1777	92 92,2	92,9	93,6	0,62	0,74	0,8	440	26,3 31,8
22	30	L180M	12,1	8,7	4	4	0,2	20	44	184	63	1,25	1775	92,6	93,7	94,3	0,61	0,74	0,82	440	37,3
30	40	200M	16,4	8,4	3,2	3,5	0,37207	22	48	242	66	1,25	1780	93,6	94,5	95	0,64	0,75	0,81	440	51,2
37 45	50 60	200L 225S/M	20,2 24,6	7,4 8,5	3,1 3,1	3,3 3,5	0,39631	20	53	271 407	65 70	1,25 1,25	1780 1783	94,1 94,5	95 95,4	95,4 95,6	0,62	0,73	0,81	440	62,8 73,5
55	75	225S/M	30	8,3	2,8	3,2	0,71013	16	35	417	67	1,25	1783	94,5	95,4	95,8	0,65	0,78	0,83	440	90,8
75	100	250S/M	40,9	9,3	3,8	3,9	1,21013	12	26	539	68	1,25	1785	95,4	95,8	96,2	0,65	0,76	0,82	440	125
90	125	280S/M	49,1	7,6	2,6	2,8	2,45579	38	84	781	73	1,25	1787	95	95,8	96,2	0,68	0,79	0,84	440	146
110	150 175	280S/M 315S/M	60 71,8	8,9 7,7	2,5 2,7	2,8	3,30831 3,54455	30	66 66	885 1040	72 75	1,25 1,25	1787 1790	95,4 94,6	96,2 95,7	96,5 96,5	0,68	0,79	0,84	440	178 211
150	200	315S/M	81,6	7,7	2,9	2,6	4,20935	25	55	1080	75	1,25	1790	95,4	96,2	96,8	0,75	0,83	0,87	440	234
185	250	315S/M	101	7	2,5	2,5	4,63101	22	48	1110	75	1,25	1790	95,7	96,3	96,8	0,75	0,83	0,86	440	292
200	270	355M/L	109	6,5	2,2	2,6	5,751	38	84	1335	78	1,15	1791	95,2	96,3	96,6	0,73	0,81	0,85	440	320
220 260	300 350	355M/L 355M/L	120 141	7,3 7,3	2,5 2,3	2,4	6,3028 7,2032	22	48	1438 1519	78 78	1,15 1,15	1790 1790	95,6 95,8	96,2 96,4	96,6	0,77	0,84	0,87	440	343 406
300	400	355M/L	163	7,8	2,5	2,4	8,08705	12	26	1615	78	1,15	1790	95,9	96,4	96,7	0,76	0,84	0,87	440	468
330	450	355M/L	180	7,8	2,6	2,6	9,5053	14	31	1751	78	1,15	1790	96	96,5	96,7	0,73	0,82	0,86	440	521
370	500	355M/L	201	7,6	2,7	2,4	11,09668	18	40	1916	78	1,15	1790	96,3	96,6	96,7	0,74	0,83	0,86	440	584

Acesse o nosso catálogo eletrônico em **www.weg.net**. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: $\ln_{(380 \text{ V})} = \ln_{(440 \text{ V})} x$ 1,158 In em 440 V para In em 220 V usar a expressão: $\ln_{(220 \text{ V})} = \ln_{(440 \text{ V})} x$ 2 In em 220 V para In em 380 V usar a expressão: $\ln_{(380 \text{ V})} = \ln_{(220 \text{ V})} x$ 0,579 In em 220 V para In em 440 V usar a expressão: $\ln_{(440 \text{ V})} = \ln_{(220 \text{ V})} x$ 0,5

W22 Super Premium

Potê	incia		Conjugado	Corrente	Conjuga-	Conjugado	Momento	Tempo			Nível médio de			% de Carga				Corrente			
Pole	ilicia	Carcaça	Nominal	com Rotor Bloqueado	do de Partida	Máximo Cmáx/Cn	de Inércia	com bloque		Massa (kg)	pressão sonora	Fator de Serviço	RPM	Re	endimen	to	Fato	r de Poti	ència	Tensão (V)	Nominal
kW	HP		(kgfm)	lp/ln	Cp/Cn	GIIIax/GII	J (kgm²)	Quente	Frio		dB(A)			50	75	100	50	75	100		In (A)
VI Polos																					
0,75	1	L90S	0,632	5,9	2,6	2,8	0,006	42 82	92	23	50	1,25	1155	81,7	82,8	84	0,5	0,63	0,69	220	3,4
1,1	1,5	L100L	0,924 1,26	6,3 6,1	2,5	2,3 2,7	0,015 0,015	55	180 121	34 35	49 49	1,25 1,25	1160 1155	84,1 84,5	86,6 86,1	88,2 87,3	0,48	0,61	0,69	440 440	2,37 3,22
2,2	3	L100L	1,85	7,1	3,5	3,4	0,018	30	66	37	49	1,25	1160	83,6	86,2	87,8	0,46	0,58	0,7	440	4,7
3	4	L132S	2,48	8,1	2,6	3,5	0,061	82	180	75	55	1,25	1178	87,5	89,4	90,6	0,48	0,6	0,7	440	6,21
3,7	5	L132S	3,06	8,9	3,2	4	0,064	56	123	77	55	1,25	1179	87,1	89,3	90,6	0,45	0,57	0,7	440	7,66
4,5 5,5	6 7,5	132M 160M	3,73 4,52	8,4 8,9	3	3,6 4,6	0,068	47 27	103 59	79 119	55 59	1,25 1,25	1176 1186	87,8 87,7	89,3 90,5	90,6	0,48	0,61	0,71	440 440	9,18 10,8
7,5	10	160M	6,17	8,5	3,8	4,2	0,158	23	51	126	59	1,25	1184	88,9	91,2	91,8	0,5	0,64	0,74	440	14,5
9,2	12,5	160M	7,58	8,1	3,5	3,8	0,184	24	53	136	59	1,25	1182	90,1	91,9	92,4	0,54	0,67	0,75	440	17,4
11	15	160M	9,07	8,2	3,5	3,8	0,202	20	44	142	59	1,25	1181	90,1	91,9	92,5	0,53	0,67	0,77	440	20,3
15 18,5	20 25	160L 180L	12,4 15,2	7,4 10,2	3,2 3,9	3,4 4,3	0,237 0,378	17 13	37 29	156 201	59 59	1,25 1,25	1178 1185	91 91,8	91,9	92,9 94	0,58	0,71	0,78	440 440	27,2 32,3
22	30	200L	18,1	7,9	3,1	3,4	0,576	33	73	274	62	1,25	1187	92,3	93,8	94,1	0,58	0,73	0,8	440	38,3
30	40	225S/M	24,6	8,6	3	3,3	1,021	34	75	403	66	1,25	1187	93,5	94,6	95	0,64	0,76	0,8	440	51,8
37	50	225S/M	30,3	8,5	3,5	3,5	1,05507	12	26	406	66	1,25	1189	93,6	94,5	95	0,63	0,75	0,81	440	63,1
45 55	60 75	250S/M 250S/M	36,9 45	7,9 8	2,8	3,2	1,64655	22 15	48 33	504 510	64 68	1,25 1,25	1188 1190	94,1	95 95	95,4 95,4	0,65	0,77	0,82	440 440	75,5 93,4
75	100	280S/M	61,4	7,6	3	3,2	4,47171	27	59	860	69	1,25	1190	94,1	95,4	95,4	0,64	0,73	0,79	440	130
90	125	280S/M	73,7	7,0	2,8	2,9	4,79603	25	55	882	69	1,25	1190	95	95,8	95,8	0,62	0,74	0,73	440	154
110	150	315S/M	89,8	7,2	2,5	2,6	6,88507	35	77	1080	70	1,25	1193	95,1	95,8	96,2	0,67	0,77	0,82	440	183
132	175	315S/M	108	6,8	2,3	2,4	7,59467	32	70	1110	70	1,25	1190	95,5	96	96,2	0,69	0,79	0,83	440	217
150 185	200 250	315S/M 355M/L	123 151	6,7	2,3 1,8	2,4 2,1	8,13715 10,8832	28 50	62 110	1130 1650	70 77	1,25 1,15	1190 1193	95,6 95,4	96 96,1	96,3 96,3	0,7	0,79	0,83	440 440	246 311
200	270	355M/L	163	6,5	2	2,1	9,97563	34	75	1594	77	1,15	1194	95,4	96	96,3	0,68	0,77	0,81	440	332
220	300	355M/L	179	6,5	1,9	2,1	10,6716	30	66	1642	77	1,15	1195	95,6	96,1	96,3	0,69	0,79	0,82	440	366
260	350	355M/L	212	6,8	2	2,2	12,99151	30	66	1824	77	1,15	1193	95,5	96,2	96,3	0,69	0,78	0,82	440	432
300	400	355M/L	245	7	2,2	2,3	15,05054	26	57	1982	77	1,15	1193	95,7	96,2	96,4	0,66	0,77	0,8	440	510
330 370	450 500	355M/L 355M/L	270 302	6,3 6,3	2,2	2,1 2,3	15,02169 15,02169	26 25	57 55	1989 1989	77 77	1,15 1,15	1192 1192	95,7 95,7	96,2 96,2	96,4 96,4	0,67	0,77	0,8	440 440	561 638
VIII Polo		333WI/ L	302	0,5	2,2	2,0	13,02103	23	33	1303		1,15	1132	33,1	30,2	30,4	0,03	0,14	0,73	440	030
0,75	1	100L	0,845	4,4	1,6	2	0,00881	59	130	27	54	1,25	865	74,4	77,7	78,7	0,41	0,54	0,62	440	2,02
1,1	1,5	100L	1,24	4,7	2	2,4	0,01431	43	95	33	54	1,25	865	75,5	79	81,6	0,4	0,52	0,61	440	2,9
1,5	2	112M	1,69	5,4	2,8	3,2	0,02567	53	117	45	50	1,25	865	79,9	83,1	85,9	0,41	0,53	0,63	440	3,64
3	3	132M 160M	2,45 3,32	7,3 5	2,1 2,3	3,1 2,6	0,08876	63 61	139 134	79 98	52 54	1,25 1,25	875 881	84 85,5	85,6 87,6	87,4 88,3	0,47	0,6	0,7	440 440	4,72 6,37
3,7	5	160M	4,09	5,2	2,4	2,6	0,10533	46	101	105	54	1,25	881	85,6	87,8	88,3	0,46	0,59	0,69	440	7,97
4,5	6	160M	4,98	5,1	2	2,4	0,13166	37	81	117	54	1,25	880	86,5	88,3	88,3	0,48	0,61	0,69	440	9,69
5,5	7,5	160M	6,09	5	2,2	2,5	0,17555	36	79	134	54	1,25	880	85	87,5	88,4	0,51	0,63	0,71	440	11,5
7,5 9,2	10 12,5	160L 180M	8,28 10,2	5,6 6,8	2,7	2,8 2,6	0,22821	44 15	97	152 169	54 54	1,25 1,25	882 875	88,4 90,5	90	90,9	0,46	0,59	0,7	440 440	15,5 17
11	15	180L	12,2	7,1	2,4	2,8	0,28456	14	31	185	54	1,25	880	90,5	91,3	91,3	0,6	0,72	0,78	440	20,3
15	20	180L	16,6	7,3	2,3	3	0,32458	10	22	196	54	1,25	880	90,8	91,6	91,6	0,6	0,72	0,79	440	27,2
18,5	25	200L	20,5	4,8	1,8	2	0,43956	25	55	231	56	1,25	880	91	92	92,1	0,57	0,69	0,75	440	35,1
30	30 40	225S/M 225S/M	24,2 33	6,5 7,8	1,8 2,4	2,5	0,72028	22 14	48 31	367 400	60 60	1,25	885 885	92	92,4	92,4 93,5	0,65	0,76	0,81	440 440	38,6
37	50	250S/M	40,7	7,8	2,4	3,2 2,9	0,96037 1,19604	12	26	463	60	1,25 1,25	885	93,2	93,5 93,6	93,5	0,64	0,74	0,8	440	52,6 64
45	60	250S/M	49,6	7,4	2,3	3,2	1,33404	11	24	485	60	1,25	883	93,3	93,6	93,6	0,65	0,76	0,81	440	77,9
55	75	280S/M	60,2	6	1,6	2	2,82064	23	51	682	63	1,25	890	94,1	94,3	94,3	0,65	0,76	0,8	440	95,7
75		280S/M	82,1	6	1,7	2	3,38476	20	44	741	63	1,25	890	94,3	94,5	94,5	0,65	0,74	0,79	440	132
90	125	315S/M	98,5	6	1,8	2	5,66274	26	57	1008	66	1,25	890	94,6	94,9	94,9	0,67	0,76	0,8	440	156
110	150 175	315S/M 355M/L	120 144	6	1,3	2,1 2,2	6,75875 12,25072	26 60	57 132	1085 1492	66 75	1,25 1,15	890 895	94,9 95,2	95 95,2	95 95,3	0,67	0,76	0,8	440 440	190 227
150	200	355M/L	163	6	1,4	2,2	13,16953	56	123	1561	75	1,15	894	95,3	95,6	95,6	0,64	0,75	0,79	440	261
185	250	355M/L	201	6	1,4	2,3	15,92594	52	114	1721	75	1,15	895	95,3	95,6	95,7	0,64	0,75	0,8	440	317
220	300	355M/L	240	6,2	1,5	2,2	18,34323	50	110	1859	75	1,15	893	95,4	95,8	95,9	0,65	0,75	0,8	440	376
260	350	355M/L	283	6,4	1,6	2,3	19,87183	36	79	1955	75	1,15	895	95,4	95,8	95,9	0,65	0,75	0,8	440	445
300	400 450	355M/L 355A/B	326 359	6,3 6,5	1,8 1,6	2,4	19,90742 25,98624	33 46	73 101	1955 2395	75 75	1	895 895	95 95,2	95,5 95,7	95,9 95,9	0,62	0,73	0,78	440	526 564
300	.50	300/1/10	030	2,0	.,0	_,0	120,00027	.0	.51			' '	000	00,2	55,1	00,0	0,00	0,71	0,0	. 10	551

Acesse o nosso catálogo eletrônico em **www.weg.net**. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: $\ln_{(220 \ V)} = \ln_{(440 \ V)} x$ 1,158 In em 440 V para In em 220 V usar a expressão: $\ln_{(220 \ V)} = \ln_{(440 \ V)} x$ 2 In em 220 V para In em 380 V usar a expressão: $\ln_{(380 \ V)} = \ln_{(220 \ V)} x$ 0,579 In em 220 V para In em 440 V usar a expressão: $\ln_{(440 \ V)} = \ln_{(220 \ V)} x$ 0,5

W22 IR3 Premium

Detê			Conjugado	Corrente	Conjuga-	Conjugado	Momento		máximo		Nível médio de			% de Carga				Corrente			
Potê	incia	Carcaça		com Rotor Bloqueado	do de	Conjugado Máximo	de Inércia	bloque	rotor ado (s)	Massa (kg)	pressão	Fator de Serviço	RPM	Re	endimen	ito	Fato	r de Poti	ência	Tensão (V)	Nominal
kW	НР		(kgfm)	lp/ln	Cp/Cn	Cmáx/Cn	J (kgm²)	Quente	Frio	(1.9)	sonora dB(A)			50	75	100	50	75	100	(-,	In (A)
II Polos																					
0,12	0,16	63 63	0,034	6,6	3,5 2,8	3	0,00012	12	26 22	5,7 6,2	56 56	1,25 1,25	3460 3425	50 55	58 62	62 65,6	0,48	0,6	0,68	220	0,747 0,96
0,10	0,23	63	0,031	5,9	3,1	3,2	0,00014	20	44	6,7	56	1,25	3410	64	69	69,5	0,58	0,71	0,73	220	1,18
0,37	0,5	63	0,107	5,8	2,5	2,5	0,0002	17	37	8,2	56	1,25	3360	69	73	73,4	0,62	0,75	0,83	220	1,59
0,55	0,75	71	0,156	6,3	2,4	2,8	0,0004	8	18	10,9	60	1,25	3440	72,5	75,5	76,8	0,63	0,76	0,83	220	2,26
0,75 1,1	1,5	71 L80	0,213 0,311	6,6 8,4	3,8	3,3 3,6	0,00051	10 19	22 42	11,7 15,5	60 62	1,25 1,25	3435 3450	77 81	80 84	80,5 84	0,64	0,76	0,84	220	2,91 4,14
1,5	2	L80	0,311	7,8	3,8	3,6	0,00103	16	35	16	62	1,25	3425	84	85	85,5	0,68	0,70	0,85	220	5,42
2,2	3	L90S	0,618	7,8	3,4	3,1	0,00233	13	29	23,5	68	1,25	3470	86	86,5	86,5	0,69	0,8	0,85	220	7,82
3	4	L90L	0,843	8,2	4,2	4,1	0,00277	11	24	23	68	1,25	3465	87	88	88,5	0,62	0,75	0,82	220	10,8
3,7 4,5	5 6	100L 112M	1,03 1,25	8,2 7,6	2,7	3,9	0,00638	8 12	18 26	32,7 42,4	71 66	1,25 1,25	3510 3500	86,4 87	88,3 88	88,5 88,5	0,69	0,8	0,86	440 440	6,38 7,67
5,5	7,5	112M	1,52	8,2	2,8	3,5	0,00003	9	20	45,7	66	1,25	3515	87,9	89,4	89,5	0,64	0,76	0,83	440	9,72
7,5	10	132S	2,07	8,1	2,5	3,4	0,02159	12	26	66,6	68	1,25	3530	88,2	89,9	90,2	0,74	0,83	0,87	440	12,5
9,2	12,5	132M	2,54	8,1	2,5	3,4	0,02689	10	22	74	68	1,25	3530	89,6	90,8	91	0,76	0,85	0,89	440	14,9
11	15 20	132M/L	3,03	8,4	3,4	3,9	0,03048	13	29 26	88	68	1,25	3535	89,6	90,5	91	0,71	0,81	0,86	440	18,4
15 18,5	25	160M 160M	4,13 5,08	7,6 8,3	2,7	3,2 3,5	0,04259	12 9	20	115 119	72 72	1,25 1,25	3540 3545	90	90,8	91,7	0,74	0,83	0,87	440 440	24,9 30,4
22	30	160L	6,04	9	3,4	4	0,00203	8	18	131	72	1,25	3550	91	91,5	91,7	0,72	0,82	0,86	440	36,6
30	40	200M	8,21	6,7	2,8	2,9	0,17027	18	40	219	76	1,25	3560	91,5	91,7	92,4	0,74	0,83	0,86	440	49,5
37	50	200L	10,1	7,6	3,2	2,9	0,21283	14	31	265	76	1,25	3560	92	92,4	93	0,75	0,83	0,86	440	60,7
45 55	60 75	225S/M 225S/M	12,3 15	7,8 7,9	2,2	2,9 3,5	0,29909	12 12	26 26	393 423	79 79	1,25 1,25	3560 3565	91,8 92,3	93 93,5	93,6 93,6	0,76	0,83	0,86	440 440	73,4 86,6
75	100	250S/M	20,5	8,9	3,2	3,8	0,3251	12	26	500	79	1,25	3570	92,5	93,6	93,6	0,76	0,84	0,89	440	120
90	125	280S/M	24,5	7,7	1,8	2,7	1,06645	20	44	747	81	1,25	3575	92,8	94,3	95	0,78	0,85	0,88	440	141
110	150	280S/M	30	7,5	2	2,7	1,15532	15	33	753	81	1,25	3575	93,5	94,5	95	0,8	0,86	0,89	440	171
132	175	315S/M	36	7,4	2	2,8	1,73847	22	48	906	81	1,25	3575	93,6	95,2	95,4	0,8	0,86	0,89	440	204
150 185	200 250	315S/M 315S/M	40,8 50,3	7,7 7,7	2,1 2,5	2,9	2,10568 2,4691	15 22	33 48	975 1053	81 81	1,25 1,25	3580 3580	93,5 95,3	94,8 95,7	95,4 95,8	0,77	0,85	0,88	440 440	234 285
200	270	355M/L	54,3	8	1,6	2,8	3,53869	24	53	1429	84	1,15	3585	94,5	95,6	95,8	0,8	0,87	0,03	440	304
220	300	355M/L	59,8	8,2	2	2,7	3,86039	18	40	1475	84	1,15	3581	94,8	95,6	95,8	0,81	0,88	0,9	440	335
260	350	355M/L	70,6	8	2,2	2,7	4,50378	26	57	1605	84	1,15	3585	95,2	95,6	95,8	0,84	0,89	0,9	440	396
300	400	355M/L	81,5	8,4	2	2,5	5,36165	24	53	1743	84	1,15	3586	95,7	95,7	95,8	0,87	0,9	0,91	440	452
330 370	450 500	355M/L 355M/L	89,7 100	8,4 9,5	2,5 3,3	2,5 3,6	6,00505	18 24	40 53	1860 1825	84 84	1,15 1,15	3583 3588	95,3 95,6	95,7 95,8	95,8 95,8	0,87	0,91	0,92	440 440	491 576
Opciona		OOOM/L	100	0,0	0,0	0,0	0,000			1020	01	1,10	0000	1 00,0	00,0	00,0	0,01	0,00	0,00	110	010
0,25	0,33	71	0,071	6,2	2,9	3,1	0,00029	24	53	6	60	1,25	3420	61	68	70	0,65	0,76	0,83	220	1,13
0,37	0,5	71	0,105	6,2	2,7	3,2	0,00033	21	46	6,5	60	1,25	3440	70	73	73,4	0,6	0,73	0,82	220	1,61
0,55	0,75	80	0,156 0,211	6,8	2,7 3,7	2,9 3,9	0,0006	25 25	55 55	11 12,5	62 62	1,25 1,25	3430 3470	74 79	74,5 81,5	76,8 82,5	0,6	0,73	0,81	220	2,32 2,91
1,1	1,5	80	0,314	8,4	3,9	3,7	0,00087	19	42	14	62	1,25	3415	81	84	84	0,64	0,76	0,82	220	4,14
1,1	1,5	908	0,31	7,8	2,6	3	0,00176	24	53	18	68	1,25	3455	83	84,5	84,5	0,72	0,82	0,86	220	3,98
1,5	2	908	0,42	8	3,5	3,5	0,00199	17	37	19	68	1,25	3475	84,5	85,5	85,5	0,69	0,79	0,85	220	5,42
3	4	100L	0,829	8,9	3	4,1	0,00638	19	42 57	32	71	1,25	3525	85	88	88,5	0,68	0,8	0,86	440	5,17
3,7 4,5	5 6	112M 132S	1,03 1,24	7,5 8,3	2,5	3,2 3,9	0,00696	26 18	57 40	38 60	66 68	1,25 1,25	3495 3540	86,3 85	88 87,8	88,6 89,6	0,73	0,83	0,87	440 440	6,3 7,75
5,5	7,5	132M	1,51	7,9	2,6	3,6	0,01709	15	33	60	68	1,25	3540	87,5	89,5	89,7	0,69	0,73	0,85	440	9,47
5,5	7,5	132S	1,51	7,9	2,6	3,6	0,01709	15	33	60	68	1,25	3540	87,5	89,5	89,7	0,69	0,8	0,85	440	9,47
7,5	10	132M	2,07	8,1	2,5	3,4	0,02159	12	26	67	68	1,25	3530	88,2	89,9	90,2	0,74	0,83	0,87	440	12,5
11	15 15	132M 160M	3,04	8,4 7,4	3,4 2,6	3,9	0,03048	12 14	26 31	78 104	68 72	1,25 1,25	3530 3540	89,6 89,5	90,5	91,5	0,71	0,81	0,86	440 440	18,4 18,3
15	20	160L	4,13	7,4	2,0	3,4	0,04455	12	26	115	72	1,25	3540	90	90,8	91,5	0,72	0,83	0,87	440	24,9
18,5	25	160L	5,08	8,3	3	3,5	0,06263	9	20	119	72	1,25	3545	91	91,5	91,7	0,72	0,82	0,87	440	30,4
22	30	180L	6,04	7,2	2,8	2,9	0,09145	12	26	160	72	1,25	3545	91,5	91,7	92,4	0,75	0,83	0,87	440	35,9
22	30	180M	6,04	7,2	2,8	2,9	0,09145	12	26	160	72	1,25	3545	91,5	91,7	92,4	0,75	0,83	0,87	440	35,9
30 45	40 60	200L 200L	8,21 12,3	6,7 6,6	2,8	2,9 2,9	0,17027 0,21144	18 18	40	219 265	76 76	1,25 1,25	3560 3560	91,5 93,5	91,7 94	92,4 94	0,74	0,83	0,86	440 440	49,5 72,2
45	60	250S/M	12,3	8,5	2,8	3,2	0,21144	15	33	432	79	1,25	3565	92,3	93,7	94	0,77	0,85	0,87	440	71,4
55	75	250S/M	15	8,5	3,1	3,8	0,3891	11	24	452	79	1,25	3565	93,1	93,8	94,2	0,76	0,84	0,88	440	87,1
75	100	280S/M	20,4	7,7	2,1	3	0,97758	30	66	678	81	1,25	3580	93	94,3	94,5	0,77	0,85	0,88	440	118
90	125	315S/M	24,5	7,6	1,8	2,9	1,44343	36	79	856	81	1,25	3580	93	94,6	95,3	0,77	0,85	0,88	440	141
110	150 175	315S/M 280S/M	29,9 35,9	7,3 7,8	1,8	2,9 2,8	1,5873 1,33307	28 14	62 31	880 767	81 81	1,25 1,25	3580 3580	93	94,5 95,2	95,3 95,6	0,78	0,85	0,88	440 440	172 201
150	200	280S/M	40,8	8,3	2,1	3	1,55525	15	33	831	81	1,25	3580	94,8	95,2	95,7	0,82	0,87	0,89	440	231
			,-	- ,-	, ,.		,					,		,-	,-		- ,-	.,	.,		

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: $ln_{(380 \ V)} = ln_{(440 \ V)} x$ 1,158 In em 440 V para In em 220 V usar a expressão: $ln_{(220 \ V)} = ln_{(440 \ V)} x$ 2 In em 220 V para In em 380 V usar a expressão: $ln_{(380 \ V)} = ln_{(220 \ V)} x$ 0,579 In em 220 V para In em 440 V usar a expressão: $ln_{(440 \ V)} = ln_{(220 \ V)} x$ 0,5

W22 IR3 Premium

D-45	t.		Conjugado	Corrente	Conjuga-	Conjugado	Momento	Tempo			Nível					% de	Carga				Correnta
Pote	ència	Carcaça	Conjugado Nominal	com Rotor Bloqueado	do de	Conjugado Máximo	de Inércia	com bloque		Massa (kg)	médio de pressão	Fator de Serviço	RPM	Re	endimen	to	Fato	r de Poté	ència	Tensão (V)	Corrente Nominal
kW	НР		(kgfm)	lp/ln	Cp/Cn	Cmáx/Cn	J (kgm²)	Quente	Frio	(**5)	sonora dB(A)	,		50	75	100	50	75	100	(-)	In (A)
IV Polos	0,16	63	0,068	4,8	2,8	2,9	0.00049	28	62	8,3	48	1,25	1710	58	64	66	0,46	0,59	0,68	220	0,702
0,18	0,25	63	0,103	5	2,8	2,9	0,0006	39	86	8,5	48	1,25	1700	62	67	69,5	0,49	0,61	0,7	220	0,971
0,25	0,33	63 71	0,143 0,212	5,5 5,1	3,3 2,4	3,2 2,7	0,00066	30 44	66 97	8,8 11,2	48	1,25 1,25	1705 1700	66 75	71 77,5	73,4 78,2	0,44	0,56	0,66	220	1,35 1,77
0,57	0,75	71	0,319	5,3	3	3	0,00071	14	31	12,4	47	1,25	1680	73	78	79	0,43	0,56	0,66	220	2,77
0,75	1,5	80 L80	0,426 0,621	7,3 7,4	3 3,4	3 3,4	0,00289	16 11	35 24	15,5 19	48 48	1,25 1,25	1715 1725	82,3 79,5	83 82,5	83 84	0,63 0,58	0,74	0,82	220 220	2,89 4,3
1,5	2	L90S	0,835	7,7	2,7	3,3	0,00655	14	31	23,1	51	1,25	1750	84	86	86,5	0,59	0,71	0,8	220	5,69
2,2	3	L90L	1,23 1,67	7,4 9,1	2,8	3,1 4	0,00765 0,00964	11	24 33	26,7 39	51 54	1,25 1,25	1745 1745	86 87,4	86,5 88,5	87,5	0,6	0,73	0,8	220 440	8,25 5,71
3,7	5	L100L L100L	2,07	8,3	4,2	4,2	0,00904	15 14	31	39,7	54	1,25	1740	87,5	88,5	89,5 89,5	0,57	0,69	0,77	440	7,04
4,5 5,5	6 7,5	112M L112M	2,51 3,06	7,3	2,4 2,5	3,2	0,01798 0,02055	16 15	35 33	45,4	56 56	1,25 1,25	1745 1750	88,7 89,7	89,5 90,3	89,5 91	0,61	0,74	0,8	440 440	8,25 10,2
7,5	10	132S	4,14	8,2	2,3	3,5	0,02033	13	29	51,1 71,8	58	1,25	1765	90,8	91,6	91,7	0,58	0,7	0,78	440	12,8
9,2	12,5	132M	5,08	8,5	2,4	3,5	0,06382	10	22	80,4	58	1,25	1765	91,8	92,4	92,4	0,66	0,78	0,84	440	15,6
11	15 20	132M/L 160M	6,09 8,23	8,3 9	2,5 3,2	3,5 3,4	0,06721 0,14707	13	18 29	85,5 138	58 64	1,25 1,25	1760 1775	90,6	91,5 93	92,4	0,63	0,76	0,83	440 440	18,8 26,1
18,5	25	160L	10,2	7,3	3	3,2	0,18125	12	26	158	64	1,25	1772	92,4	93,6	93,6	0,64	0,75	0,81	440	32
30	30 40	180M 200M	12,1 16,4	7	3,4 2,8	3,2 2,8	0,19185 0,32017	20	44	178 241	63 66	1,25 1,25	1770 1778	93 93,6	93,5 94	93,6 94,1	0,66	0,76	0,81	440 440	38,1 49,8
37	50	200L	20,3	6,4	2,5	2,7	0,3728	20	44	266	66	1,25	1775	94	94,4	94,5	0,7	0,8	0,84	440	61,2
45 55	60 75	225S/M 225S/M	24,6 30,1	7,5 7,5	2,7	3	0,63667 0,73462	14 12	31 26	424 451	67 67	1,25 1,25	1780 1780	93 94,5	94,7 95	95 95,4	0,71	0,8	0,85	440 440	73,1 88
75	100	250S/M	41	8,5	3,4	3,6	1,01472	12	26	551	68	1,25	1780	94,6	95,2	95,4	0,68	0,78	0,85	440	121
90	125 150	280S/M 280S/M	49,1 60	7,6 7,9	2,1 2,4	2,7	1,86523 2,33154	24	53 44	724 803	73 73	1,25 1,25	1785 1785	94,7	95,3 95,5	95,4 95,8	0,75	0,83	0,86	440 440	144 175
132	175	315S/M	71,8	7,4	2,6	2,6	3,00453	24	53	1001	75	1,25	1790	94,5	95,5	96,2	0,74	0,82	0,86	440	209
150 185	200	315S/M 315S/M	81,6 101	7,8 7,6	2,7 2,8	2,7 2,8	3,55273 3,8858	20	44	1107	75 75	1,25 1,25	1790 1790	94,9 95,3	95,9 96	96,2 96,2	0,73	0,82	0,86	440 440	238 290
220	300	355M/L	120	7,3	2,5	2,4	6,3028	22	48	1438	78	1,15	1790	95,6	96,1	96,2	0,77	0,84	0,87	440	345
260 300	350 400	355M/L 355M/L	141 163	7,3 7,8	2,3 2,5	2,3 2,4	7,2032 8,08705	20 12	44 26	1624 1615	78 78	1,15 1,15	1790 1790	95,8 95,9	96,1 96,1	96,2 96,2	0,78	0,85	0,87	440 440	408 470
330	450	355M/L	179	7,0	2,5	2,5	9,5053	14	31	1751	78	1,15	1791	96	96,1	96,2	0,70	0,82	0,86	440	523
370 400	500 550	355M/L 355M/L	201 218	7,6 7,4	2,7 2,4	2,4 2,4	11,09668 11,60984	18 15	40 33	1916 1966	78 78	1,15 1,15	1790 1790	96 96,3	96,1 96,6	96,2 96,6	0,74 0,74	0,83	0,86	440 440	587 632
Opciona		333IVI/L	210	7,4	2,4	2,4	11,00904	13	33	1900	10	1,10	1790	90,3	90,0	90,0	0,74	0,03	0,00	440	032
0,12 0,18	0,16	71 71	0,068	4,6 4,7	2,3	2,9 2,7	0,00044	30 55	66 121	6	47 47	1,25	1730 1720	56 61	63 67	66 69,5	0,45	0,56	0,65	220 220	0,734
0,16	0,25	71	0,102 0,143	4,7	2,3	2,7	0,00049	50	110	6,5 7	47	1,25 1,25	1720	68	72	73,4	0,47	0,58	0,67	220	1,01 1,28
0,37	0,5	80 80	0,208	6,4	2,8	2,4	0,00204 0,00238	29	64	10	48 48	1,25	1730	74,5 78	77,5 79	78,2	0,65	0,77	0,85	220 220	1,46
0,55	0,75	90L	0,31 0,416	7,1 7,6	2,6	3,2	0,00238	19 23	42 51	11,5	51	1,25 1,25	1730 1755	80	84	81,1 85,5	0,58	0,7	0,78	220	2,28
0,75	1	908	0,416	7,6	2,6	3,2	0,00492	23	51	18,5	51	1,25	1755	80	84	85,5	0,6	0,72	0,79	220	2,9
1,1	1,5	L90S L90L	0,61 0,835	7,6 7,7	2,2	2,9 3,3	0,00601	18 14	40 31	22	51 51	1,25 1,25	1755 1750	82,5 84	85,5 86	86,5 86,5	0,6	0,73	0,8	220	4,17 5,69
2,2	3	100L	1,23	8,4	3,8	3,7	0,00968	23	51	33	54	1,25	1740	86,6	88,2	89,5	0,59	0,72	0,79	440	4,08
3,7	5	112M 112M	1,66 2,05	7,8 7,6	2,6 2,4	3,6	0,01557 0,01811	25 23	55 51	42	56 56	1,25 1,25	1760 1755	87,2 88,1	89 89,3	89,5 89,5	0,58	0,7	0,79	440	5,57 6,78
3,7	5	L112M	2,05	7,6	2,4	3,3	0,01811	23	51	44	56	1,25	1755	88,1	89,3	89,5	0,61	0,74	0,8	440	6,78
5,5 5,5	7,5 7,5	132M 132S	3,03	9	2,4	3,6 3,6	0,0488	16 16	35 35	67 67	58 58	1,25 1,25	1770 1770	89,9 89,9	91,2 91,2	91,7 91,7	0,63	0,76	0,82	440	9,6 9,6
7,5	10	132M	4,14	8,2	2,3	3,5	0,05631	13	29	72	58	1,25	1765	90,8	91,6	91,7	0,66	0,78	0,84	440	12,8
7,5 7,5	10	160L 160M	4,13 4,13	7	2,5 2,5	3,1 3,1	0,08404	19 19	42 42	90	64 64	1,25 1,25	1770 1770	90,1	91,5 91,5	92 92	0,65	0,76	0,82	440 440	13 13
9,2	12,5	132M/L	5,08	8,5	2,4	3,5	0,06382	10	22	78	58	1,25	1765	91,8	92,4	92,4	0,66	0,78	0,84	440	15,6
9,2	12,5 12,5	160L 160M	5,05 5,05	7,3 7,3	3	3,6 3,6	0,09104	14 14	31	99	64 64	1,25 1,25	1775 1775	91,8 91,8	92,4 92,4	92,4 92,4	0,63	0,74	0,81	440 440	16,1 16,1
11	15	160L	6,04	7,6	2,9	3,4	0,09104	15	33	112	64	1,25	1775	90,6	92,4	92,4	0,63	0,74	0,81	440	19,2
11 15	15 20	160M 160L	6,04 8,23	7,6 9	2,9 3,2	3,4 3,4	0,11878 0,14707	15 13	33 29	112 133	64 64	1,25 1,25	1775 1775	90,6 91,6	92,4 93	92,7 93	0,63	0,75 0,75	0,81	440 440	19,2 26,1
18,5	25	180L	10,2	7,7	3,2	3,4	0,14707	20	44	164	63	1,25	1770	92,4	93,6	93,8	0,64	0,75	0,83	440	31,2
18,5	25	180M	10,2	7,7 8	3,2 3,4	3,4	0,17441	20	44	164	63	1,25	1770	92,4	93,6	93,8	0,67	0,77	0,83	440	31,2
30	30 40	180L 200L	12,1 16,4	7	2,8	3,2 2,8	0,19185 0,32017	20	44	176 215	63 66	1,25 1,25	1770 1778	93 93,6	93,5 94	93,6 94,1	0,66	0,76	0,81	440 440	38,1 49,8
45	60	250S/M	24,6	7,5	2,6	2,9	0,74182	18	40	454	68	1,25	1780	94	94,7	95,1	0,73	0,82	0,86	440	72,2
55 75	75 100	250S/M 280S/M	30,1 40,9	7,9 7,9	2,7 2,3	3 2,7	0,84298 1,71411	14 28	31 62	476 660	68 73	1,25 1,25	1780 1785	94,2	95 95,1	95,4 95,5	0,72	0,82	0,86	440 440	88 121
90	125	315S/M	49	7,2	2	2,4	2,4425	40	88	892	75	1,25	1790	93,8	95	95,6	0,73	0,82	0,85	440	145
110 132	150 175	315S/M 280S/M	59,9 72	7 8,5	2,4	2,8 2,9	2,66455 2,55824	32 15	70 33	920 781	75 73	1,25 1,25	1790 1786	94,2 94,8	95,3 96,2	95,8 96,2	0,75	0,83	0,86	440 440	175 212
150	200	280S/M	81,8	8,5	3,2	3,3	2,85389	15	33	828	73	1,25	1787	95,2	95,7	96,2	0,72	0,81	0,85	440	241

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor. Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: In_(380 V) = In_(440 V) x 1,158 In em 440 V para In em 220 V usar a expressão: In_(220 V) = In_(440 V) x 2 In em 220 V para In em 380 V usar a expressão: In_(380 V) = In_(220 V) x 0,579 In em 220 V para In em 440 V usar a expressão: In_(440 V) = In_(220 V) x 0,5

W22 IR3 Premium

			0	Corrente	Conjuga-	0 1 1 -	Manager	Tempo			Nível					% de	Carga				0
Potê	ncia	Carcaça	Conjugado Nominal	com Rotor Bloqueado	do de Partida	Conjugado Máximo	de Inércia	com bloque		Massa (kg)	médio de pressão	Fator de Serviço	RPM	Re	endimen	ito	Fato	r de Pot	ência	Tensão (V)	Corrente Nominal
kW	НР		(kgfm)	lp/In	Cp/Cn	Cmáx/Cn	J (kgm²)	Quente	Frio	(Ng)	sonora dB(A)	OUI VIÇO		50	75	100	50	75	100	(*)	In (A)
VI Polos											45(7.)										
0,12	0,16	63	0,104	3,4	1,9	2	0,00066	43	95	8,2	47	1,25	1120	48	54	64	0,41	0,5	0,59	220	0,834
0,18	0,25	71	0,155	3,2	1,8	2	0,00066	61	134	8	47	1,25	1130	54	58	67,5	0,4	0,5	0,59	220	1,19
0,25	0,33	71 80	0,22	3,3 4,3	1,9	2,2	0,00083	56 27	123 59	11,5 12,5	47 47	1,25	1105	57 62	61	69	0,41	0,5	0,59	220	1,61
0,37	0,5 0,75	L80	0,32 0,472	4,3	2,4	2,2	0,00252	22	48	14,5	47	1,25 1,25	1125 1135	68	67 72	75,3 79,5	0,51	0,65	0,75	220	1,72 2,45
0,75	1	908	0,635	5,6	2,3	2,4	0,00603	25	55	21,2	50	1,25	1150	78,5	82	82,5	0,48	0,63	0,7	220	3,41
1,1	1,5	100L	0,92	6,6	2,4	2,6	0,01755	61	134	38	48	1,25	1165	82,5	85,5	87,5	0,46	0,59	0,68	440	2,43
1,5	2	100L	1,26	6,1	2,4	2,8	0,01426	35	77	33,4	49	1,25	1155	85	86	86,5	0,5	0,63	0,71	440	3,2
2,2	3	L100L	1,86	6,3	2,7	3	0,01645	22	48	37,8	49	1,25	1155	85	86,5	87	0,49	0,62	0,71	440	4,67
3,7	<u>4</u> 5	132S 132S	2,5 3,08	7,2 7,5	2,2 2,4	2,8	0,05298	52 40	114 88	62	55 55	1,25 1,25	1170 1170	87,5 87,5	89 89	89,5 89,5	0,52	0,64	0,72	440 440	6,11 7,64
4,5	6	1328	3,76	6,7	2,4	2,7	0,05661	33	73	71,7 71,7	55	1,25	1165	87,5	89	89,5	0,51	0,63	0,71	440	9,16
5,5	7,5	132M	4,56	7,5	2,4	3,2	0,06794	31	68	82,9	55	1,25	1174	88	89,5	91	0,52	0,65	0,73	440	10,9
7,5	10	132M/L	6,27	7,3	2,4	2,8	0,07549	19	42	90	55	1,25	1165	88	89,5	91	0,52	0,65	0,73	440	14,8
9,2	12,5	160M	7,66	6,3	2,5	2,9	0,14889	17	37	121	59	1,25	1170	90,7	91,2	91,7	0,59	0,72	0,78	440	16,9
11	15	160M	9,12	7	2,7	2,9	0,18433	20	44	134	59	1,15	1175	90,7	91,6	91,7	0,62	0,74	0,8	440	19,7
15 18,5	20 25	160L 180L	12,4 15,3	6,8 8,5	2,9 2,8	3,3	0,22772	11	24 18	150 190	59 59	1,25 1,25	1175 1175	91 92,5	91,6 92,9	91,7	0,6	0,72	0,8	440 440	26,8 31,1
22	30	200L	18,2	6,5	2,3	2,8	0,32331	19	42	243	62	1,25	1180	92,8	92,9	93	0,63	0,79	0,84	440	38,3
30	40	200L	24,8	6,7	2,5	2,8	0,49051	15	33	251	62	1,25	1180	93	93,6	94,1	0,61	0,73	0,79	440	53
37	50	225S/M	30,4	7,4	2,4	2,7	0,88764	13	29	417	66	1,25	1185	93,5	94	94,1	0,7	0,8	0,84	440	61,4
45	60	250S/M	37	7,6	2,9	2,9	1,19604	12	26	483	68	1,25	1186	94	94,5	94,5	0,7	0,8	0,84	440	74,4
55	75	250S/M	45,2	7,6	2,8	2,8	1,37806	11	24	519	68	1,25	1185	94,1	94,4	94,5	0,7	0,8	0,85	440	89,8
75 90	100 125	280S/M 280S/M	61,6 74	6	2,2	2,3 2,3	2,91331 3,35378	23 16	51 35	737 800	69 69	1,25 1,25	1185 1185	94,7 94,8	95 94,9	95 95	0,7	0,8	0,83	440 440	125 150
110	150	315S/M	89,9	6,6	2,2	2,4	5,99135	28	62	1028	70	1,25	1192	94,9	95,6	95,8	0,69	0,79	0,83	440	182
132	175	315S/M	108	7	2,4	2,4	6,53601	22	48	1142	70	1,25	1192	95	95,7	95,8	0,69	0,79	0,83	440	218
150	200	315S/M	123	6,5	2,1	2,2	7,05185	24	53	1112	70	1,25	1190	95,2	95,7	95,8	0,7	0,8	0,83	440	248
185	250	355M/L	151	6	1,8	2,1	9,26187	36	79	1528	77	1,15	1192	95,3	95,7	95,8	0,69	0,78	0,81	440	313
200	270 300	355M/L	163 180	6,4	1,9	2,1	9,97563	30	53 66	1594	77 77	1,15	1193	95	95,5	95,8	0,7	0,79	0,81	440 440	338 372
260	350	355M/L 355M/L	212	6,3 6,4	1,8 1,9	2,1 2,1	10,6716 12,99151	28	62	1642 1824	77	1,15 1,15	1192 1192	95,2 95,3	95,5 95,5	95,8 95,8	0,68	0,78	0,81	440	440
300	400	355M/L	245	7	2,2	2,3	15,05054	26	57	1982	77	1,15	1193	95,6	95,7	95,8	0,66	0,77	0,8	440	514
330	450	355M/L	270	6,3	2	2,1	15,02169	26	57	1989	77	1,15	1192	95,5	95,7	95,8	0,67	0,77	0,8	440	565
370	500	355M/L	302	6,3	2,2	2,3	15,02169	25	55	1989	77	1,15	1192	95,5	95,7	95,8	0,63	0,74	0,79	440	641
Opciona																					
0,12	0,16	71 80	0,103 0,214	3,2 5	2,2	2,2 2,5	0,0006 0,00235	87 24	191 53	7,5 12	47 47	1,25 1,25	1135 1140	46 59	52 64	64 69	0,4	0,49	0,58	220 220	0,848 1,38
1,5	2	112M	1,25	7,2	2,2	3,2	0,00235	30	66	42	52	1,25	1170	85	88	88,5	0,47	0,59	0,65	440	3,42
2,2	3	L112M	1,83	7,5	3,2	3,5	0,02567	22	48	47	52	1,25	1170	88	89	89,5	0,49	0,61	0,68	440	4,74
3,7	5	132M	3,08	7,5	2,4	3	0,05677	40	88	63	55	1,25	1170	87,5	89	89,5	0,5	0,63	0,71	440	7,64
4,5	6	132M	3,76	6,7	2,2	2,7	0,05661	33	73	63	55	1,25	1165	87,5	89	89,5	0,51	0,64	0,72	440	9,16
5,5	7,5	160L	4,55	6,7	2,5	3	0,11661	22	48	109	59	1,25	1177	88,5	90,5	91	0,59	0,72	0,79	440	10
5,5 7,5	7,5 10	160M 160L	4,55 6,22	6,7 6,3	2,5 2,3	2,8	0,11661 0,13166	22	48 46	109 116	59 59	1,25 1,25	1177 1175	88,5 89,5	90,5	91	0,59	0,72	0,79	440 440	13,7
7,5	10	160M	6,22	6,3	2,3	2,8	0,13166	21	46	116	59	1,25	1175	89,5	91	91	0,62	0,74	0,79	440	13,7
9,2	12,5	160L	7,66	6,3	2,5	2,9	0,14889	17	37	122	59	1,25	1170	90,7	91,2	91,7	0,59	0,72	0,78	440	16,9
11	15	160L	9,12	7	2,7	2,9	0,18433	20	44	140	59	1,15	1175	90,7	91,6	91,7	0,62	0,74	0,8	440	19,7
15	20	180L	12,4	8	2,4	3	0,25596	9	20	174	59	1,25	1175	91,5	92	92,2	0,68	0,79	0,85	440	25,1
15	20	180M 200L	12,4	6,7	2,4	3	0,25596	9	20	174	59	1,25	1175	91,5	92	92,2	0,68	0,79	0,85	440 440	25,1
18,5 18,5	25 25	200L 200M	15,3 15,3	6,7	2,3	2,8	0,36856	18	40	211	62 62	1,25 1,25	1180 1180	92,5 92,5	93	93,1	0,64	0,75	0,81	440	32,2 32,2
22	30	200M	18,2	6,5	2,3	2,8	0,42044	19	42	232	62	1,25	1180	92,8	92,9	93	0,63	0,75	0,81	440	38,3
37	50	250S/M	30,4	7,6	2,4	2,7	1,00768	12	26	434	68	1,25	1185	93,5	94	94,2	0,67	0,78	0,83	440	62,1
55	75	280S/M	45,2	6,3	2	2,4	2,57716	22	48	661	69	1,25	1185	94,1	94,5	94,7	0,7	0,79	0,83	440	91,8
75	100	315S/M	61,2	7,5	2,2	2,7	4,18431	32	70	891	70	1,25	1193	93,6	94,6	95	0,67	0,77	0,81	440	128
90	125	315S/M	73,5	6,8	2,1	2,4	5,08357	28	62	957	70	1,25	1193	94,3	95	95,3	0,68	0,79	0,83	440	149
110	150	280S/M	90,4	6,6	2,2	2,4	4,01528	15	33	813	69	1,25	1185	94,7	95,3	95,8	0,68	0,79	0,82	440	184

Acesse o nosso catálogo eletrônico em **www.weg.net**. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: $\ln_{(380 \ V)} = \ln_{(440 \ V)} x$ 1,158 In em 440 V para In em 220 V usar a expressão: $\ln_{(220 \ V)} = \ln_{(440 \ V)} x$ 2 In em 220 V para In em 380 V usar a expressão: $\ln_{(380 \ V)} = \ln_{(220 \ V)} x$ 0,579 In em 220 V para In em 440 V usar a expressão: $\ln_{(440 \ V)} = \ln_{(220 \ V)} x$ 0,5

W22 IR3 Premium

Detâ			Conjugado	Corrente	Conjuga-	Conjugado	Momento		máximo		Nível médio de					% de	Carga				Corrente
Potê	ncia	Carcaça	Nominal	com Rotor Bloqueado	do de	Máximo	de Inércia	bloque	rotor ado (s)	Massa (kg)	pressão	Fator de Serviço	RPM	Re	endimen	to	Fato	r de Poti	ência	Tensão (V)	Nominal
kW	НР		(kgfm)	lp/ln	Cp/Cn	Cmáx/Cn	J (kgm²)	Quente	Frio	(**5)	sonora dB(A)	,		50	75	100	50	75	100	()	In (A)
VIII Polo	S																				
0,12	0,16	71	0,145	2,8	1,7	1,9	0,00088	122	268	9,5	45	1,25	805	48	54	59,5	0,33	0,41	0,49	220	1,08
0,18	0,25	80	0,207	3,4	2	2	0,0027	41	90	14,1	46	1,25	845	51	57	64	0,43	0,53	0,62	220	1,19
0,25	0,33	80	0,29	3,7	1,8	1,9	0,00321	39	86	14,5	46	1,25	840	56	60	68	0,42	0,53	0,63	220	1,53
0,37	0,5	908	0,421	4,2	1,6	2,1	0,00546	40	88	19,5	48	1,25	855	58	63	72	0,4	0,51	0,6	220	2,25
0,55	0,75	90L	0,623	4,4	2,3	2,3	0,00655	35	77	23	48	1,25	860	62	65	74	0,4	0,52	0,6	220	3,25
0,75	1	L90L	0,864	4,1	2	2,3	0,00768	25	55	25	48	1,25	845	70	75	75,5	0,4	0,51	0,6	440	2,17
1,1	1,5 2	100L 112M	1,25 1,71	4,6 5,3	1,7 2,4	2,1 2,5	0,01431	30 30	66 66	33,2 45,6	54 54	1,25 1,25	860 855	73 80	78 83	78,5 84	0,4	0,52	0,61	440 440	3,01 3,35
2,2	3	132M	2,48	6,5	2,4	2,5	0,02567	30	66	45,6 79	52	1,25	865	82,5	84,5	85,5	0,48	0,62	0,7	440	4,63
3	4	132M	3,38	6,8	2,6	2,9	0,08876	33	73	86	52	1,25	865	84,5	86	86,5	0,51	0,62	0,73	440	6,32
3,7	5	132M/L	4,17	6,5	2,5	2,6	0,1033	28	62	90	52	1,25	865	85	86,4	86,5	0,51	0,64	0,72	440	7,8
4,5	6	160M	5,01	5,1	1,9	2,2	0,13166	30	66	117	54	1,25	875	85,5	86,5	86,5	0,48	0,61	0,69	440	9,89
5,5	7,5	160M	6,09	5	1,8	2,3	0,17555	25	55	134	54	1,25	880	86	86,5	86,5	0,51	0,63	0,71	440	11,8
7,5	10	160L	8,35	5	1,9	2,3	0,20188	25	55	148	54	1,25	875	88	89,5	89,5	0,51	0,64	0,71	440	15,5
9,2	12,5	180M	10,2	6,8	2	2,6	0,24343	11	24	169	54	1,25	875	89,4	89,5	89,5	0,6	0,72	0,78	440	17,3
11	15	180L	12,2	7	2,1	2,7	0,28456	9	20	185	54	1,25	875	89,4	89,5	89,5	0,6	0,72	0,78	440	20,7
15	20	180L	16,6	7,3	2,3	3	0,32458	10	22	196	54	1,25	880	90	90,1	90,2	0,6	0,72	0,79	440	27,6
18,5	25	200L	20,5	4,5	2	2,1	0,43956	23	51	247	56	1,25	880	90	90,1	90,2	0,54	0,66	0,73	440	36,9
22	30	225S/M	24,2	6,7	1,9	2,5	0,72028	12	26	367	60	1,25	885	91,5	91,7	91,7	0,65	0,76	0,81	440	38,9
30	40	225S/M	33	6,8	2,3	2,9	0,96037	11	24	400	60	1,25	885	91,5	91,6	91,7	0,63	0,74	0,79	440	54,3
37	50	250S/M	41	7,3	2,2	3,1	1,19604	10	22	463	60	1,25	880	92	92,3	92,4	0,63	0,74	0,8	440	65,7
45	60	250S/M	49,5	7,8	2,4	3,3	1,33404	10	22	485	60	1,25	885	92	92,3	92,4	0,61	0,73	0,8	440	79,9
55	75	280S/M	60,2	6	1,7	2,1	2,82064	17	37	682	63	1,25	890	93,2	93,9	93,6	0,63	0,74	0,78	440	98,9
75	100	280S/M	82,1	6	1,8	2,1	3,38476	13	29	741	63	1,25	890	93,4	93,5	93,6	0,63	0,73	0,78	440	135
90	125	315S/M	98,5	5,8	1,8	2	5,66274	25	55	1008	66	1,25	890	93,9	94	94,1	0,67	0,77	0,79	440	159
110	150	315S/M	120	5,8	1,8	2	6,75875	26	57	1085	66	1,25	892	93,9	94	94,1	0,64	0,74	0,79	440 440	194
132 150	175 200	355M/L 355M/L	144 163	6	1,3 1,4	2,1 2,1	12,25072 13,16953	30	66 66	1492 1561	75 75	1,15 1,15	893 894	94,3	94,4 94,4	94,5 94,5	0,63	0,74	0,79	440	232 264
185	250	355M/L	202	6,2	1,4	2,1	15,92594	30	66	1721	75	1,15	894	94,5	94,4	94,5	0,63	0,74	0,79	440	319
220	300	355M/L	240	6	1,5	2,2	18,34323	30	66	1918	75	1,15	893	94,8	94,9	95	0,66	0,75	0,8	440	380
260	350	355M/L	284	6,3	1,5	2,1	19,87183	30	66	1955	75	1,15	893	94,8	94,9	95	0,66	0,76	0,8	440	449
300	400	355A/B	327	7,4	2,1	2,8	22,665	26	57	2260	75	1	894	94,8	95	95	0,62	0,73	0,79	440	525
330	450	355A/B	360	6,8	1,7	2,5	25,987	34	75	2460	75	1	894	94,8	95	95	0,65	0,75	0,8	440	570
Opciona				, ,,,	1 -,-	_,-								,-			-,	1 -,	-,-		
0,12	0,16	80	0,138	3,5	2	2,4	0,00203	68	150	10	46	1,25	850	46	53	59,5	0,42	0,52	0,61	220	0,868
0,75	1	100L	0,845	4,7	2	2,5	0,01211	62	136	30	54	1,25	865	74	77	78,6	0,39	0,5	0,59	440	2,13
1,1	1,5	112M	1,25	5,1	2,1	2,4	0,02017	56	123	39	50	1,25	855	78	81,5	81,7	0,47	0,6	0,67	440	2,64
1,5	2	1328	1,68	6	1,8	2,6	0,05918	56	123	62	52	1,25	870	82	84	84,5	0,52	0,64	0,72	440	3,24
3,7	5	160M	4,1	5	1,8	2,4	0,10533	33	73	107	54	1,25	880	85	87	87,5	0,48	0,61	0,69	440	8,04
4,5	6	160L	5,01	5,1	1,9	2,2	0,13166	30	66	117	54	1,25	875	85,5	86,5	86,5	0,48	0,61	0,69	440	9,89
5,5	7,5	160L	6,09	5	1,8	2,3	0,17555	25	55	134	54	1,25	880	86	86,5	86,5	0,51	0,63	0,71	440	11,8
7,5	10	180L	8,3	6,8	1,9	2,7	0,21639	17	37	160	54	1,25	880	89	90,5	90,6	0,6	0,71	0,78	440	13,9
7,5	10	180M	8,3	6,8	1,9	2,7	0,21639	17	37 24	160	54 54	1,25	880	89	90,5	90,6	0,6	0,71	0,78	440 440	13,9
9,2	12,5 15	180L 180M	10,2 12,2	6,8	2,1	2,6 2,7	0,24343	11 9	24	169 185	54	1,25	875 875	89,4 89,4	89,5 89,5	89,5 89,5	0,6	0,72	0,78	440	17,3 20,7
15	20	200L	16,5	5	1,9	2,7	0,28456	30	66	217	56	1,25 1,25	884	91	91,6	91,6	0,6	0,72	0,78	440	20,7
15	20	200L 200M	16,5	5	1,9	2,2	0,38752	30	66	217	56	1,25	884	91	91,6	91,6	0,55	0,67	0,74	440	29
30	40	250S/M	33,1	7,5	1,9	2,2	1,01203	14	31	435	60	1,25	883	92	92,5	92,5	0,63	0,07	0,74	440	53,2
37	50	280S/M	40,5	6	1,7	2,9	2,03086	25	55	600	63	1,25	890	93,2	93,5	93,4	0,64	0,73	0,79	440	65,8
45	60	280S/M	49,2	6	1,7	2,1	2,25651	20	44	623	63	1,25	890	93,5	93,7	93,5	0,64	0,74	0,79	440	79,9
55	75	315S/M	60,2	6	1,7	2	3,83605	35	77	871	66	1,25	890	94,2	94,5	94,3	0,65	0,76	0,8	440	95,7
75	100	315S/M	82,1	6	1,7	2	4,56672	28	62	925	66	1,25	890	94,4	94,7	94,5	0,67	0,76	0,8	440	130
			,-		.,,,		,					.,		, /	,-	, .	-,		-,-		

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

Para obter os valores da corrente nominal (In) em outras tensões, utilizar os seguintes fatores de multiplicação:

- In em 440 V para In em 380 V usar a expressão: In_(380 V) = In_(440 V) x 1,158 In em 440 V para In em 220 V usar a expressão: In_(220 V) = In_(440 V) x 2 In em 220 V para In em 380 V usar a expressão: In_(380 V) = In_(220 V) x 0,579 In em 220 V para In em 440 V usar a expressão: In_(440 V) = In_(220 V) x 0,5

W22 Dahlander

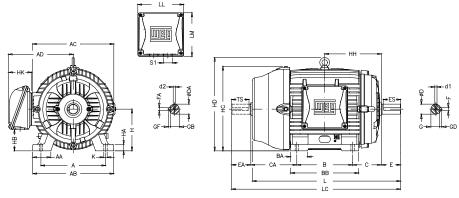
				Corrente				_			Nível					22	0 V			
Pot	ência	Carcaça	Conjugado Nominal	com Rotor	do Dortido	Conjugado Máximo	Momento de Inércia	Tempo má rotor bloo		Massa	médio de pressão	Fator de				% de	Carga			Corrente
		Garcaça	(kgfm)	Bloqueado lp/ln	Cp/Cn	Cmáx/Cn	J (kgm²)			(kg)	sonora	Serviço	RPM		Rendiment			or de Potê		Nominal
kW	HP			ip/iii				Quente	Frio		dB(A)			50	75	100	50	75	100	In (A)
	600 RP	M	0.404			0.5	0.000			10	1 47	100	1700	45.0	T 50.0	57.0	0.04	0.40	0.55	1.50
0,18	0,25	71	0,101 0,085	3,9 6,0	3,0 2,7	3,5 2,7	0,000 0.000	9	20 13	10 10	47 60	1,00 1,00	1730 3450	45,0 65,0	52,0 70.0	57,0 71.0	0,34 0.62	0,46 0,75	0,55 0,82	1,50 1,35
0,30	0,40		0,083	4,3	3,3	3,8	0,000	9	20	11	47	1,00	1730	49,4	56,8	60,6	0,82	0,73	0,62	1,83
0,37	0,50	71	0,104	6,5	3,2	3,0	0,001	6	13	11	60	1,00	3450	63,6	68,6	70,8	0,65	0,74	0,80	1,71
0,30	0,40	74	0,172	4,4	2,3	2,7	0,001	8	18	11	47	1,00	1700	56,0	63,0	66,0	0,40	0,52	0,62	1,92
0,46	0,63	71	0,131	6,5	2,3	2,9	0,001	6	13	11	60	1,00	3430	70,0	73,5	74,0	0,71	0,81	0,88	1,85
0,37	0,50	80	0,211	5,0	2,8	2,9	0,001	8	18	15,5	48	1,00	1705	54,9	62,1	65,6	0,40	0,50	0,59	2,51
0,60	0,80		0,171	6,5	2,4	2,6	0,001	6	13	15,5	62	1,00	3415	64,3	69,5	71,7	0,69	0,79	0,85	2,58
0,46	0,63	80	0,264	5,0 6,6	3,0 2,8	3,2	0,001	8 6	18 13	15,5	48 62	1,00	1700	57,7 67,7	64,4 72,2	67,5 74,0	0,39	0,50	0,59 0,85	3,03
0,75	0,80		0,214	5,2	2,8	3,5 2,7	0,001	7	15	15,5 15,5	48	1,00	3410 1665	63,8	68,1	74,0	0,70	0,80	0,66	3,13 3,40
0,92	1,25	80	0,266	6,5	2,3	2,8	0,001	6	13	15,5	62	1,00	3365	70,8	74,0	75,0	0,73	0,83	0,87	3,70
0,75	1		0,417	5,5	2,4	2,9	0,002	8	18	19,5	51	1,00	1750	69,0	73,0	74,0	0,48	0,61	0,70	3,80
1,2	1,6	908	0,345	5,5	2,4	2,4	0,002	7	15	19,5	68	1,00	3390	69,0	71,0	72,0	0,76	0,86	0,90	4,86
0,92	1,25	90L	0,506	6,5	2,1	3,2	0,003	9	20	23	51	1,00	1770	73,0	76,0	77,0	0,48	0,62	0,71	4,42
1,5	2	301	0,416	6,5	1,7	2,6	0,003	8	18	23	68	1,00	3510	73,0	74,0	74,5	0,77	0,85	0,90	5,87
1,2	1,6	90L	0,664	7,0	2,1	2,9	0,003	7	15	23	51	1,00	1760	75,0	77,0	78,0	0,52	0,65	0,75	5,38
1,84	2,5		0,515 0,837	7,0 5,7	2,0	2,5 3,0	0,003	6 7	13 15	23 31	68 54	1,00	3480 1745	71,0 68,0	74,0 73,7	75,0 75,4	0,81 0,45	0,88	0,91	7,08 7,68
2,2	3	100L	0,637	6,2	2,2	2,9	0,006	6	13	31	71	1,00	3490	72,2	76,6	76,7	0,45	0,85	0,89	8,46
1,84	2,5	100L	1,03	6,5	2,1	3,1	0,007	7	15	33	54	1,00	1745	71,3	76,7	78,0	0,46	0,59	0,69	8,97
3	4	100L	0,840	8,0	2,0	2,7	0,007	6	13	33	71	1,00	3480	75,3	77,7	79,5	0,80	0,87	0,90	11,0
2,2	3	112M	1,23	5,6	2,2	2,8	0,008	10	22	41	58	1,00	1740	71,7	76,2	78,1	0,47	0,59	0,68	10,9
3,7	5	112101	1,05	6,7	2,0	2,5	0,008	7	15	41	69	1,00	3440	73,5	76,7	78,0	0,84	0,88	0,90	13,8
3	4	112M	1,68	5,6	2,0	2,7	0,011	8	18	48,5	58	1,00	1735	74,2	77,0	79,0	0,45	0,59	0,68	14,4
4,6	6,3		1,30	7,3	2,0	2,6	0,011	6	13	48,5	69	1,00	3450	75,7	78,0	80,0	0,83	0,87	0,89	16,8
3,7 6	5 8	1328	2,05 1,67	5,6 7,2	2,4 2,2	2,8 2,8	0,021 0,021	6	13 13	59 59	61 72	1,00 1,00	1760 3505	76,5 80,0	80,7 82,6	82,2 83,4	0,43 0,80	0,56 0,87	0,65 0,90	18,2 21,0
4,6	6,3		2,55	5,9	2,2	2,5	0,021	6	13	72	61	1,00	1760	80.8	85,0	85.7	0,50	0,67	0,90	19,6
7,5	10	132M	2,08	7,6	2,1	2,6	0,028	6	13	72	72	1,00	3505	84,0	84,7	85,1	0,85	0,90	0,91	25,4
6	8	10014	3,29	7,7	2,8	3,1	0,090	13	29	113	64	1,00	1775	84,0	86,4	87,0	0,58	0,71	0,78	23,2
9,2	12,5	160M	2,53	8,5	2,8	3,2	0,090	8	18	113	72	1,00	3535	83,0	85,4	86,2	0,81	0,88	0,91	30,8
7,5	10	160L	4,13	7,7	3,0	3,3	0,100	16	35	121	64	1,00	1770	85,2	87,4	87,7	0,61	0,73	0,80	28,1
12	16	1002	3,31	8,5	2,8	3,0	0,100	8	18	121	72	1,00	3535	83,6	85,6	86,7	0,82	0,88	0,91	39,9
9,2 15	12,5 20	180M	5,06 4,13	5,9 7,4	2,3 2,1	2,6 2,5	0,144 0,144	13 7	29 15	175 175	64 72	1,00 1,00	1770 3535	85,7 83,4	87,6 85,5	87,9 86,2	0,54 0,85	0,65 0,89	0,72 0,91	38,1 50,2
12	16		6,57	6,0	2,1	2,5	0,144	20	44	245	69	1,00	1780	84,0	86,5	86,2	0,85	0,89	0,91	50,2
18,5	25	200M	5,05	8,4	2,7	3,1	0,206	12	26	245	76	1,00	3565	83,5	86,0	87,2	0,40	0,83	0,86	64,7
15	20	2021	8,21	6,0	2,5	2,1	0,224	20	44	260	69	1,00	1780	84,5	87,0	88,0	0,52	0,64	0,70	63,9
22	30	200L	6,02	7,5	3,1	2,8	0,224	14	31	260	76	1,00	3560	84,8	86,7	87,6	0,84	0,88	0,89	74,1
18,5	25	225S/M	10,1	6,4	2,2	2,5	0,341	15	33	355	70	1,00	1780	87,8	89,0	89,5	0,54	0,67	0,73	74,3
30	40	ZZGG/ IVI	8,23	7,5	2,3	2,6	0,341	7	15	355	80	1,00	3550	86,4	87,9	88,6	0,86	0,90	0,91	97,6
22	30	225S/M	12,0	6,8	2,5	2,6	0,395	16	35	384	70	1,00	1780	88,0	89,0	89,6	0,54	0,66	0,74	87,1
37	50 40		10,1 16,4	7,7 6,0	2,3	2,7	0,395 0,520	8 16	18 35	384 465	80 70	1,00	3555 1785	87,1 89,7	88,4 90,0	89,0 90,0	0,86	0,90	0,91	120 114
46	63	250S/M	12.6	7.2	2,2	2,3	0,520	7	15	465	80	1,00	3555	88.5	89.2	89.5	0.87	0,89	0.91	148
37	50	0000/11	20,1	6,1	2,0	2,0	1,85	12	26	643	73	1,00	1790	89,8	91,1	91,6	0,51	0,64	0,71	149
60	80	280S/M	16,4	7,1	1,8	2,2	1,85	7	15	643	81	1,00	3570	87,0	89,2	89,7	0,85	0,89	0,90	195
46	63	280S/M	25,1	6,1	2,2	2,1	2,17	15	33	697	73	1,00	1785	89,8	91,5	92,0	0,53	0,65	0,72	182
75	100	2003/10	20,5	7,5	2,0	2,4	2,17	10	22	697	81	1,00	3570	88,0	90,0	90,5	0,84	0,88	0,89	244
60	80	315S/M	32,7	5,8	2,0	2,1	2,57	19	42	810	75	1,00	1785	90,2	91,9	92,4	0,57	0,67	0,73	233
90	125		24,6	7,5	2,0	2,5	2,57	15	33	810	81	1,00	3570	89,1	90,9	91,9	0,86	0,89	0,90	286

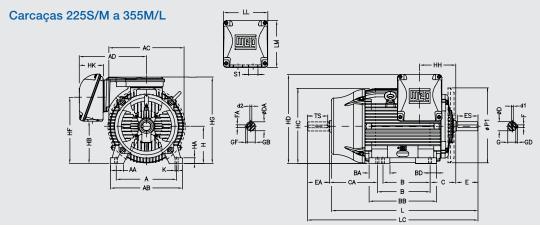
Acesse o nosso catálogo eletrônico em **www.weg.net**. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.

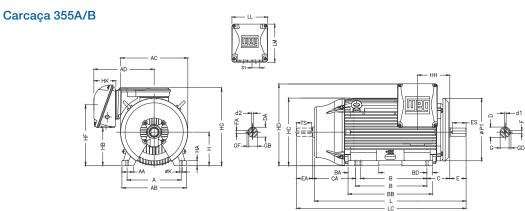
W22 Dahlander

				Corrente							Nível					22	0 V			
Poté	incia	Caraaaa	Conjugado	com Rotor		Conjugado		Tempo má rotor bloc	iximo com	Massa	médio de	Fator de				% de	Carga			Corrente
		Carcaça	Nominal (kgfm)	Bloqueado	de Partida Cp/Cn	Máximo Cmáx/Cn	de Inércia J (kgm²)	TOTOL DIOC	jucauo (s)	(kg)	pressão sonora	Serviço	RPM	F	tendiment	to	Fato	r de Potê	ncia	Nominal
kW	HP		(3)	lp/ln			, ,	Quente	Frio		dB(A)			50	75	100	50	75	100	In (A)
900/18	_																			
0,18	0,25	80	0,206	3,2	2,2	2,5	0,003	7 6	15	16	46	1,00	850	32,0	42,0	47,0	0,46	0,54	0,61	1,65
0,30	0,40		0,169 0,246	4,6 3,8	1,8 2,0	2,3 3,2	0,003	22	13 48	16 22,5	48	1,00	1730 870	54,6 47,0	62,0 55,0	65,0 59,0	0,62	0,72	0,80	1,51 2,04
0,22	0,50	908	0,240	6,7	2.0	3,0	0,005	12	26	22,5	51	1,00	1745	64,0	69,0	71,5	0,65	0,41	0,40	1,66
0,30	0,40	000	0,338	3,8	2,2	2,8	0,005	23	51	22,5	48	1,00	865	43,5	52,5	57,0	0,41	0,49	0,56	2,47
0,46	0,63	908	0,258	6,8	2,2	2,9	0,005	11	24	22,5	51	1,00	1735	66,0	71,0	73,5	0,62	0,71	0,80	2,05
0,37	0,50	90L	0,417	4,1	2,5	3,1	0,007	17	37	24	48	1,00	865	44,8	53,5	58,0	0,35	0,43	0,50	3,35
0,60	0,80	302	0,334	7,4	2,5	3,1	0,007	10	22	24	51	1,00	1750	67,0	72,0	75,0	0,58	0,65	0,74	2,84
0,46	0,63	90L	0,521	4,0	3,0	3,1	0,007	10	22	24	48	1,00	860	55,0	62,0	64,0	0,34	0,42	0,50	3,77
0,75	0,8		0,420 0,684	7,6 3,2	2,6 1,9	3,1 2,2	0,007	7	15 29	24 30	51 54	1,00	1740 855	75,0 58,0	79,0 64,5	80,0 65,6	0,62	0,73 0,48	0,81 0,56	3,04 4,29
0,00	1,25	100L	0,512	6,0	2,0	2,2	0,008	6	13	30	54	1,00	1750	76,4	76,5	77,6	0,55	0,40	0,30	3,99
0,75	1		0,854	3,9	2,1	2,3	0,008	20	44	30	54	1,00	855	45,4	53,8	58,1	0,40	0,49	0,57	5,94
1,2	1,6	100L	0,670	7,6	2,3	2,8	0,008	11	24	30	54	1,00	1745	63,2	70,2	72,7	0,59	0,70	0,78	5,55
0,92	1,25	100L	1,05	4,2	2,1	2,2	0,009	10	22	36	54	1,00	855	65,5	69,5	70,0	0,39	0,49	0,56	6,16
1,5	2	TOOL	0,835	7,7	2,7	2,8	0,009	8	18	36	54	1,00	1750	80,0	80,5	81,0	0,63	0,76	0,83	5,86
1,2	1,6	112M	1,36	5,0	2,6	2,8	0,013	20	44	35	50	1,00	860	68,8	73,5	75,0	0,42	0,55	0,64	6,56
1,84	2,5		1,04	7,5	2,5 2,5	2,8	0,013	10 18	22 40	35 49	58 50	1,00	1725 860	77,5 71,8	80,1 75,6	81,4 76,6	0,71	0,81	0,85	6,98 8,03
1,5 2,2	3	112M	1,70 1,23	4,5 7,7	2,5	3,2	0.019	10	22	49	58	1.00	1740	71,6	81,1	82,4	0,43	0,52	0,85	8,24
1,84	2,5		2,11	5,5	2,2	2,5	0,019	22	48	49	50	1,00	850	72,7	75,8	76,4	0,47	0,59	0,68	9,29
3	4	112M	1,70	7,0	2,0	2,5	0,019	10	22	49	58	1,00	1720	80,7	81,5	82,0	0,75	0,85	0,89	10,8
2,2	3	132S	2,44	5,2	1,9	2,7	0,047	21	46	62	52	1,00	880	74,0	79,0	80,0	0,38	0,49	0,58	12,4
3,7	5	1328	2,05	8,2	2,0	3,0	0,047	7	15	62	61	1,00	1755	86,0	86,5	87,0	0,74	0,84	0,88	12,7
3	4	132S	3,32	5,5	2,1	3,0	0,058	10	22	75	52	1,00	880	73,0	78,0	80,0	0,36	0,47	0,56	17,6
4,6	6,3		2,54	8,8	2,3	3,6	0,058	6	13	75	61	1,00	1765	87,0	87,5	88,0	0,71	0,82	0,87	15,8
3,7 6	5 8	132M/L	4,10 3,31	5,8 9,4	2,3 2,4	3,1 3,9	0,074 0,074	12 8	26 18	95 95	52 61	1,00 1,00	880 1765	76,0 88,0	81,0 88,5	82,0 89,0	0,36 0,72	0,47 0,82	0,56 0,87	21,1 20,3
4,6	6,3		5,09	5,5	2,4	2,8	0,074	15	33	115	54	1,00	880	84,7	86,0	86,0	0,72	0,62	0,68	20,3
7,5	10	160M	4,14	7,0	2,1	3,0	0,100	8	18	115	64	1,00	1765	87,0	87,5	87,5	0,81	0,88	0,90	25,0
6	8	1001	6,64	5,6	2,2	2,8	0,115	16	35	140	54	1,00	880	78,3	82,0	83,0	0,41	0,54	0,68	27,9
9,2	12,5	160L	5,06	9,1	2,0	2,9	0,115	8	18	140	64	1,00	1770	83,2	85,5	86,0	0,76	0,85	0,89	31,5
7,5	10	180M	8,25	5,4	2,5	2,4	0,197	28	62	182	54	1,00	885	79,3	83,2	84,6	0,41	0,51	0,58	40,1
12	16	100	6,60	8,3	2,6	3,0	0,197	10	22	182	64	1,00	1770	88,0	89,0	89,4	0,70	0,79	0,84	41,9
9,2	12,5	180L	10,2	4,5	2,0	2,0	0,215	8 8	18	200	54	1,00	875	83,8	85,1	85,1	0,46	0,58	0,64	44,3
15 12	20 16		8,23 13,3	7,2 4,7	2,8	3,0 1,9	0,215 0,431	28	18 62	200	64 56	1,00	1775 880	87,7 85,2	88,2 87,2	89,2 87,8	0,72 0,57	0,82	0,86	51,3 47,5
18,5	25	200L	10,2	6,0	1,0	2,2	0,431	25	55	230	69	1,00	1760	85,3	87,2	88,3	0,84	0,88	0,73	61,0
15	20	0001	16,6	5,5	2,0	2,0	0,502	36	79	264	56	1,00	880	87,6	88,0	88,7	0,50	0,63	0,70	63,4
22	30	200L	12,1	7,5	2,0	2,7	0,502	20	44	264	69	1,00	1765	87,8	88,4	89,0	0,80	0,85	0,88	73,7
18,5	25	225S/M	20,4	4,9	2,1	2,1	0,525	22	48	330	60	1,00	885	83,0	86,2	87,0	0,43	0,56	0,65	85,9
30	40		16,5	6,5	1,9	2,3	0,525	7	15	330	70	1,00	1770	87,0	88,0	88,3	0,80	0,87	0,89	98,0
22	30	225S/M	24,2	5,0	2,0	2,1	0,770	34	75	380	60	1,00	885	86,4	88,6	89,0	0,48	0,61	0,68	95,4
37	50 40		20,4 33,0	6,2 5,0	1,9 2,1	2,2	0,770 0.980	12 31	26 68	380 460	70 60	1,00	1770 885	88,1 87,1	89,0 89,0	89,1 89,1	0,83	0,88	0,89	122
46	63	250S/M	33,0 25,3	7,0	2,1	2,1	0,980	12	26	460	70	1,00	885 1770	88,8	89,0	90,0	0,65	0,75	0,80	149
37	50		40,5	6,5	2,0	2,2	1,85	30	66	638	63	1,00	890	87,3	89,3	90,0	0,49	0,60	0,64	169
60	80	280S/M	32,8	7,5	1,9	2,2	1,85	20	44	638	73	1,00	1780	88,8	89,6	90,5	0,83	0,86	0,87	200
46	63	280S/M	50,3	4,7	2,0	1,9	0,329	30	66	731	63	1,00	890	89,0	90,5	91,0	0,50	0,61	0,65	204
75	100	2003/IVI	41,0	6,5	1,9	2,2	0,329	18	40	731	73	1,00	1780	89,1	90,7	91,0	0,83	0,85	0,87	249
60	80	315S/M	66,0	4,1	1,7	1,7	1,73	38	84	862	66	1,00	885	90,1	91,8	92,0	0,48	0,59	0,63	272
90	125		49,2	6,4	2,1	2,3	1,73	17	37	862	75	1,00	1780	91,2	92,0	92,6	0,80	0,85	0,86	297
75 120	100 160	315S/M	82,1 65.5	4,8	2,4	2,1	2,33	38	84	1010	66	1,00	890 1785	89,0	91,0	92,0	0,45	0,56	0,62	345
120	160		65,5	7,7	2,3	2,0	2,33	14	31	1010	75	1,00	1785	90,7	92,0	92,3	0,80	0,86	0,88	388

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações dos dados elétricos do motor.




17. Dados Mecânicos


Motores nas carcaças 63 a 90 não possuem olhal de içamento.

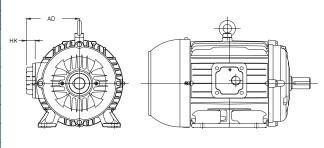
Carcaças 160M a 200L

Motores na carcaça 355M/L, 2, 4 e 6 polos (500 cv ou acima) e 8 polos (350 cv ou acima) são equipados com defletor de ar para o mancal dianteiro. Nestes casos, a dimensão P1 é de 705 mm.

Motores nas carcaças 355A/B são equipados com defletor de ar para o mancal dianteiro. Nestes casos, a dimensão P1 é de 705 mm.

A AA AB AC AD H HA HB HF HG K HK D D1 E G ES F GD DA D2 EA GB T	FA GF 3 3 3 4 4 5 5 6 6 7
71 112 28,5 132 141 131 71 7 33 76 80 L80 125 30,5 149 159 140 80 8 43,5 87 80 L90S 90L 140 37 164 179 149 90 9 47 90 10 59 24j6 A3.15 50 20 36 6 6 14j6 A3.15 A40 13 2 A41 132M A42 110 37 80 12 42k6 A42 110 37	5 5
71	5 5
125 30,5 149 159 140 80 8 43,5 87 10 59 24j6 A3.15 50 20 36 16j6 A3.15 40 13 2 22j6 A3.15 A3.15 A0 13 2 22j6 A3.15 A0 13 2 22j6 A3.15 A0 A3 A4 A4 A4 A4 A4 A4 A4	6 6
90S 140 37 164 179 149 90 9 47 90 100L 100L 110M 1112M 1112M 1112M 1112M 1132	6 6
L90K 90L 140 37 164 179 149 90 9 47 90 47 40 40 40 40 40 40 4	6 6
Second S	6 6
Solid Soli	
100L 160 40 188 206 159 100 10 10 65 106,4	
L100L 160 40 188 206 159 100 10 65 106,4 28j6 60 24 45 22j6 50 24j6 50 24j6 50 24j6 50 24j6 24j6 50 24j6	
112M	8 7
L112M 190 40,5 220 226 192 112 54,5 112 12 80 38k6 80 33 63 10 28j6 60 24 4 132M 132ML 132ML 132ML 132ML 160M 160L 254 44 292 329 266 160 17 79 168 42k6 110 37 80 12 42k6 110 37	8 7
1328 L1328 132M L132M 132ML L132ML 132ML 132ML L132ML L132	8 7
L132M L132M L132ML	8 7
132M	8 7
132M/L L132M/L L132M/L 160M 160L 254 44 292 329 266 160 17 79 168 42k6 110 37 80 12 42k6 110 37	
L132M/L	
160M 160L 254 44 292 329 266 160 17 79 168 42k6 110 37 80 12 42k6 110 37	
160M 160L 254 44 292 329 266 160 17 79 168 42k6 110 37 80 12 42k6 110 37	
1160	
L160L	12 8
14,5 101	
180M 279 57 329 360 281 180 19 92 180 48k6 42.5 80 14 9	
L180M 279 57 329 360 281 180 19 92 180 48k6 42,5 80 14 9 48k6 42,5 80 14 49 48k6 42,5	14 9
200M	14 3
318 82 385 402 319 200 30 119 218 119,5 55m6 40 40 80 16 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
225S/M 1) 18,5 100 55m6 49 1	16 10
2255/M 356 80 436 455 225 34 254 421 534 153 60m6 53	
250S/M 1) 406 506 486 250 43 297 463 577 153 60m6 53 18 11 60m6 53	
250S/M 400 300 400 230 43 297 403 377 24 65m6 140 58 125	
280S/M ⁻¹ 457 557 599 445 280 42 572 686 152 M20	18 11
280S/M 75m6 67,5 20 12 65m6 M20 58	
315S/M 1 508 120 620 657 525 215 48 502 751 176 65m6 58 18 11 60m6 53	
315S/M 80m6 170 71 160 22 14 65m6 58	
355M/L 1 610 140 750 736 609 355 50 461 700 885 220 65m6 140 58 125 18 11 60m6 53	
355A/B 10 140 730 730 333 30 700 863 328 100m6 M24 210 90 200 28 16 80m6 170 71 1	22 14

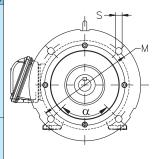
6201 ZZ 6202 ZZ 6203 ZZ 6204 ZZ
6202 ZZ 6203 ZZ
6203 ZZ
6204.77
6204.77
0204 22
0005 77
6205 ZZ
2000 77
6206 ZZ
6207 ZZ
3 6209 ZZ-C3
3 6211 ZZ-C3
3 6212 ZZ-C3
6314 C3
6316 C3
6319 C3
ZZ ZZ ZZ ZZ ZZ ZZ CG3

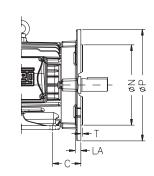

¹⁾ Dimensão para 2 polos.

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações do dimensional mecânico do motor.

²⁾ Todas as dimensões estão em mm. 3) Dimensão HD para motores com caixa no topo.

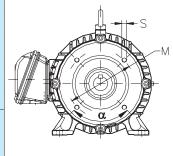
Dimensões para motores com base da caixa de ligação

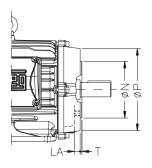

Carcaça		la rosca) ou 1/2"	Bitola d > M20	a rosca ou 1/2"
ourouşu	НК	AD	НК	AD
63	40	106	40	106
71	40	114	40	114
80		103		113
90	20	113	30	123
100		123		133
112	25	140	45	160
132	2 5	168	45	188



O opcional base da caixa de ligação não está disponível para motores nas formas construtivas B30D, B30E e B30T.

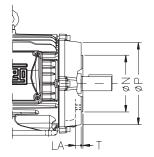
Flange "FF"


Carcaça	Flange	LA	M	N	P	S	T	α	Nº de furos
63	FF-115	5,5	115	95	140	10	3		
71	FF-130	9	130	110	160	10			
80	FF-165	9	165	130	200	12	3,5		
90	FF-100	10	100	130	200	12			
100	FF 045	10.5	045	100	050			450	_
112	FF-215	12,5	215	180	250	15	4	45°	4
132	FF-265	12	265	230	300	1			
160	FF 000	18	000	050	050				
180	FF-300	16	300	250	350				
200	FF-350	10	350	300	400	19	5		
225	FF-400	18	400	350	450	19) 5		
250	FF 500	20	500	450	550	1			
280S/M	FF-500	18	500	450	550			22°30'	8
280S/M ²⁾	FF 000		coo	FFO	cco			22.30	°
315	FF-600	22	600	550	660	24	6		
355	FF-740		740	680	800				



Flange "C"

Carcaça	Flange	LA	M	N	Р	S	T	α	Nº de furos
63		4,5							
71	FC-95	10	95,2	76,2	143	UNC 1/4"x20			
80		10					4		
90	FC-149	15	149,2	114,3	165	UNC 3/8"x16			
100	10-143	12	143,2	114,5	100	0140 3/0 210		45°	4
112		13,5						15	7
132	FC-184	15,5	184,2	215,9	225				
160		26				UNC 1/2"x13			
180	FC-228	20	228,6	266,7	280				
200	10 220	20	220,0	200,7	200				
225	FC-279		279,4	317,5	350		6,3		
250	FC-355	25	355,6	406,4					
280	10 000	20	000,0	100,4		UNC 5/8"x11		22°30'	8
315					455	0140 0/0 X11		22 30	3
355M/L	FC-368	40	368,3	419,1					
355A/B		33,5							



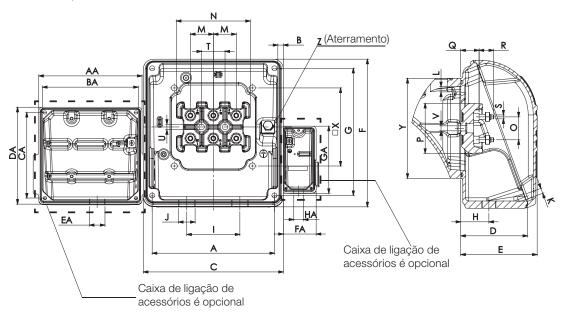
Flange "C-DIN"

Carcaça	Flange	LA	M	N	Р	S	T	α	Nº de furos
63	C-90	9,5	75	60	90	M5	0.5		
71	C-105	8	85	70	105	M6	2,5		
80	C-120	10,5	100	80	120	IVIO	3		
90	C-140	10,5	115	95	140		١	45°	4
100	C-160	12	130	110	160	M8			
112	U-100	13,5	130	110	100		3,5		
132	C-200	15,5	165	130	200	M10			

¹⁾ Todas as dimensões estão em mm.

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações do dimensional mecânico do motor.

¹⁾ Todas as dimensões estão em mm.


¹⁾ Todas as dimensões estão em mm.

²⁾ Flange Superior.

¹⁾ Todas as dimensões estão em mm.

18. Desenhos das Caixas de Ligação

(Dimensões em mm)

Carcaça	Α	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	Р	Q	R	S	Т	U
63																					
71	90	3,5		51,5	59		85	27		RWG 1/2"											
80			108			98			42		M5x0,8	M5x0,8	16	53	16	35	13,5	12	M4x0,7	20	5,8
90	98	3		59,5	67		91	31		RWG 3/4"											
100	30	3		33,3	01		31	31		1100 3/4											
112	117	2,5	140	71	80	133	117	36,5	54	RWG 1"	M6x1,0	M6x1,0	23	75	23	52	17	16	M5x0,8	23	6,5
132	117	2,0	140	7 1	00	100	117	30,3	J4	nwai	IVIOX 1,0	IVIOX 1,0	20	75	20	32	17	10	WIOAU,U	23	0,5
160	175	4	198,5	90	101	190	175	46	84	RWG 1.1/2"			28	90	28	60	21,5	20,5	M6x1	28	6,6
180	173	-	130,3	30	101	130	173	40	04	1100 1.1/2	M8x1,25	M8x1,25	20	30	20	00	21,0	20,5	IVIOXI	20	0,0
200	204	4,5	230	107	119,5	220	204	59	94	RWG 2"			35	112	35	74	24	24	M8x1,25	35	9,5
225S/M	235	12,5	269		153	285	260		110		M10x1,5	M10x1,5	44	140	44	94	28	28	M10x1,5		
250S/M	233	12,5	209	133	100	200	200	71	110	2xRWG 2"	WITUX1,5	WITUX1,5	44	140	44	94	20	20	WITUX1,5	45	
280S/M	275	13,5	314		151	312	275		126			M12x1,75	45	153	45	108	34	40	M12x1,75	45	10,5
315S/M	340	14,5	379	162	176	382	345	78	160	2xRWG 3"	M12x1,75	W112X1,73	40	133	40	100	34	40	WI12X1,73		
355M/L	365	14,5	404	202	220	436	390	97	200	ZAITWUJ		M14x2,0	65	210	65	146	48	48	M16x2,0	65	
355A/B	415	-	460	267	290	544	678	187	140	2xRWG 4"	M10x1,5	M12x1,75	80	-	105	-	-	-	M20x2,5	-	-

													Núm	ero máximo de cone	ctores
Carcaça	V	V X Y Z AA BA CA DA EA FA GA HA	НА	Principal	Acessórios	Resistência de aquecimento									
63			77						RWG 1/2"						-
71			78										4		
80		56	81	0,5-6 mm ²											
90	M5x0,8	В 7	77		109	109 90	85	98						16	
100			81							101,	101.7				
112		70	107	2-10 mm ²							101,7		6		
132		70	103	2-10 111111-											
160	M6x1,0	110	140	5,2-25 mm ²						68		DIMO 0 (4"			
180	IVIOX 1,U	110	110 140									RWG 3/4"	12		
200	M8x1,25	120	155	5,2-35 mm ²											
225S/M		_	192	25-50 mm ²								1			_
250S/M			197	23-30 111111-	139	117	117	133						26	4
280S/M			204	35-70 mm ²							404		40		
315S/M		200	260	33-70 IIIII1 ²							131		16		
355M/L			35-120 mm ²												
355A/B		290	300	25-185 mm ²											

¹⁾ Todas as dimensões estão em mm.

Acesse o nosso catálogo eletrônico em www.weg.net. Nele é possível encontrar as últimas atualizações do dimensional mecânico do motor.

19. Dados do Motor com Chapéu

A utilização do motor com chapéu influencia no aumento do comprimento total do motor (L). Na tabela 19 é possível verificar essa dimensão.

Figura 34 - Motor com chapéu

Carcaça	Dimensão CH [aumento no comprimento do motor (mm)]				
63					
71	18				
80	16				
90					
100	29				
112	34				
132	34				
160	53,5				
180	57				
200	67				
225S/M	81				
250S/M	81				
280S/M					
315S/M	91				
355M/L	91				
355A/B					

Tabela 19 - Dimensão CH

20. Dados do Motor com Parafusos de Nivelamento e Pinos Guia

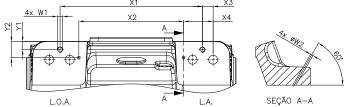


Figura 35 - Dimensões para motores com pinos guia e parafusos de nivelamento

Carcaça	Furo Roscado W1	Ø W2	X1	X2	Х3	X4	Y1	Y2
160M	M10 x 1,5	5	160	126	25	42	10	25
160L	M10 x 1,5	5	204	170	25	42	10	25
180M	M10 x 1,5	5	201	171	20	35	15	30
180L	M10 x 1,5	5	239	209	20	35	15	30
200M	M10 x 1,5	5	227	197	20	35	15	30
200L	M10 x 1,5	5	265	235	20	35	15	30
225S/M	M12 x 1,75	5	311	201	25	65	20	35
250S/M	M12 x 1,75	5	349	219	25	65	20	35
280S/M	M16 x 2,0	5	369	259	25	85	20	35
315S/M	M16 x 2,0	5	457	281	50	100	30	50
315L	M16 x 2,0	5	508	361	50	115	30	50
355M/L	M16 x 2,0	5	530	350	50	140	30	50
355A/B	M16 x 2,0	5	710	545	50	140	30	50

1) Todas as dimensões estão em mm.

Tabela 20 - Dimensões para motores com pinos guia e parafusos de

21.Embalagens

20.1 Carcaças 63 a 132

Os motores W22, na faixa de carcaça 63 a 132, são embalados em caixas de papelão com dimensões, peso e volume conforme tabelas 21 e 22.

Figura 36 - Caixa de papelão

Para a faixa de carcaça 160 a 355A/B, os motores são embalados em engradados de madeira com dimensões, peso e volume conforme tabelas 23 e 24.

Figura 37 - Engradado de madeira

Carcaça	Altura externa (m)	Largura externa (m)	Comprimento externo (m)	Peso (kg)	Volume (m³)	
63	0,26	0.21	0,30	0,2		
71	0,20	0,21	0,30	0,2	0,02	
80	0,27	0,26	0,36	0,7		
L80	0,32		0,43	0,9		
90	0,32	0,27	0,43	0,9	0,04	
100	0,33		0.46	1,4		
112M	0,36	0,30	0,46	1 5	0,05	
L112M	0,42	0,33	0.60	1,5		
132	0,42		0,60	1,7		

Tabela 21 - Dimensões, peso e volume da caixa de papelão para motores com caixa de ligação no topo

Carcaça	Altura externa (m)	Largura externa (m)	Comprimento externo (m)	Peso (kg)	Volume (m³)
63	0,20	0,24	0,28	0,2	0,01
71	0,20	0.00	0,30	0,2	0,02
80	0,21	0,28	0,36	0,7	
L80	0,24	0,32	0,40	0,8	0,03
90	0,24				
L90L	0,26	0,34	0,43	1,0	0.04
100L	0,27	0,35	0,46	1,6	0,04
L100L	0,32	0,37	0,50	1,4	0,06
112M	0,31	0.00	0,46	1,7	0,05
L112M	0,31	0,38	0,53	1,5	0,06
132	0,35	0,48	0,60	2,1	0,10

Tabela 22 - Dimensões, peso e volume da caixa de papelão para motores com caixa de ligação na lateral

Carcaça	Altura externa (m)	Largura externa (m)	Comprimento externo (m)	Peso (kg)	Volume (m³)
160	0,50	0,40	0,74	9,2	0,15
180	0,53	0,43	0,82	12,3	0,19
200	0,59	0,51	0,88	13,5	0,27
225S/M	0.90	0,85	1,15	51,9	0,88
250S/M	0,90		1,25	54,6	0,96
280S/M	1.10		1,40	67,9	1,34
315S/M	1,13		1,55	69,9	1,49
355M/L	1 22	1.05	1,73	127	2,40
355A/B	1,32	1,05	1,90	141	2,63

Tabela 23 - Dimensões, peso e volume do engradado de madeira para motores com caixa de ligação no topo

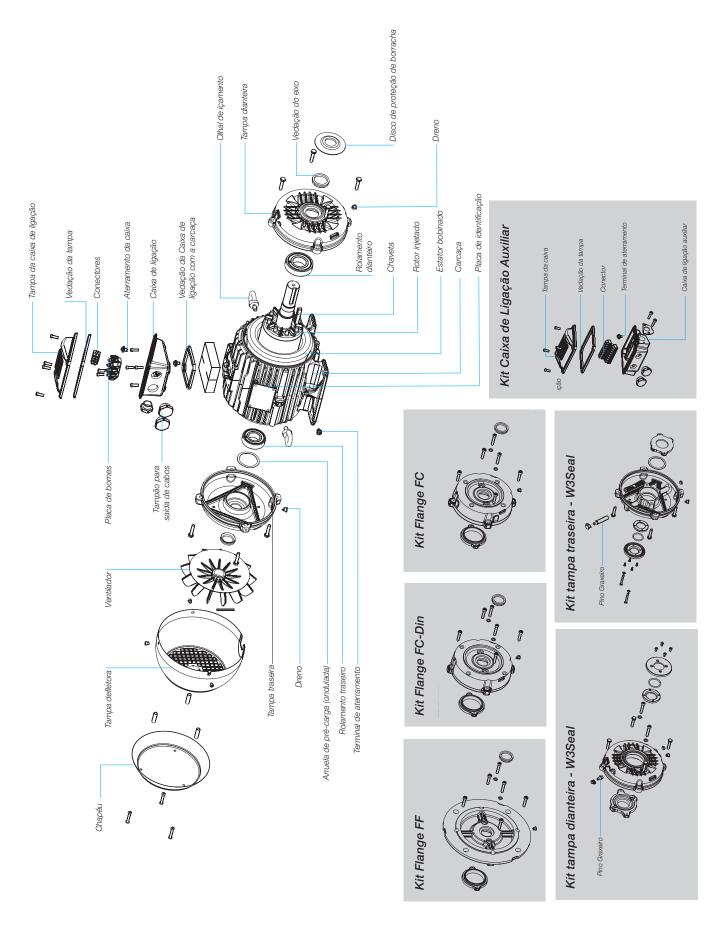
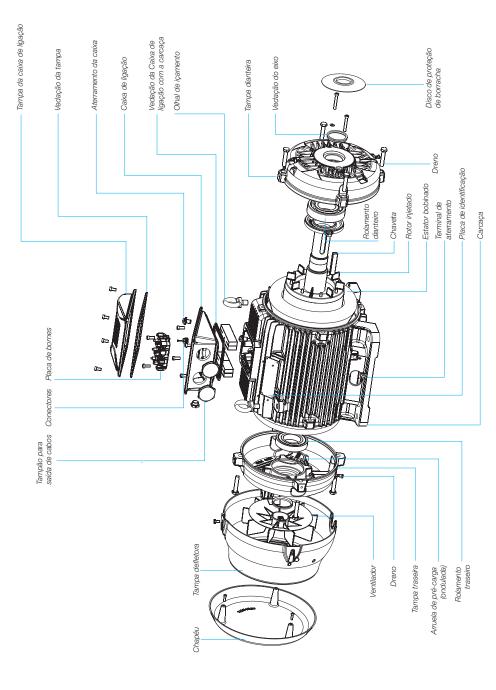
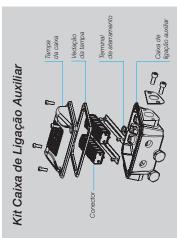
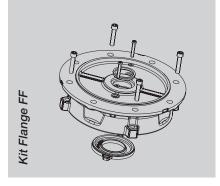

Carcaça	Altura externa (m)	Largura externa (m)	Comprimento externo (m)	Peso (kg)	Volume (m³)	
160M	0,40	0.54	0,74	9,8	0,15	
160L	0,40	0,51	0,74	9,0		
180M	0.45	0.57	0.00	13,4	0.01	
180L	0,40	0,57	0,82		0,21	
200M	0.40	0,63	0,88	14,6	0,27	
200L	0,49					
225S/M	0,78	0.05	1,15	47,7	0,76	
250S/M	0,90	0,85	1,25	52,2	0,96	
280S/M	0,95	0,95	1,40	71,6	1,26	
315S/M	1,13	1,10	1,75	88,4	2,18	
355M/L	1.00	1,19	1,72	146	2,46	
355A/B	1,20		1,90	163	2,71	

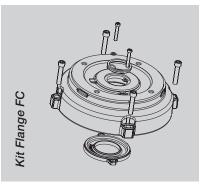
Tabela 24 - Dimensões, peso e volume do engradado de madeira para motores com caixa de ligação na lateral

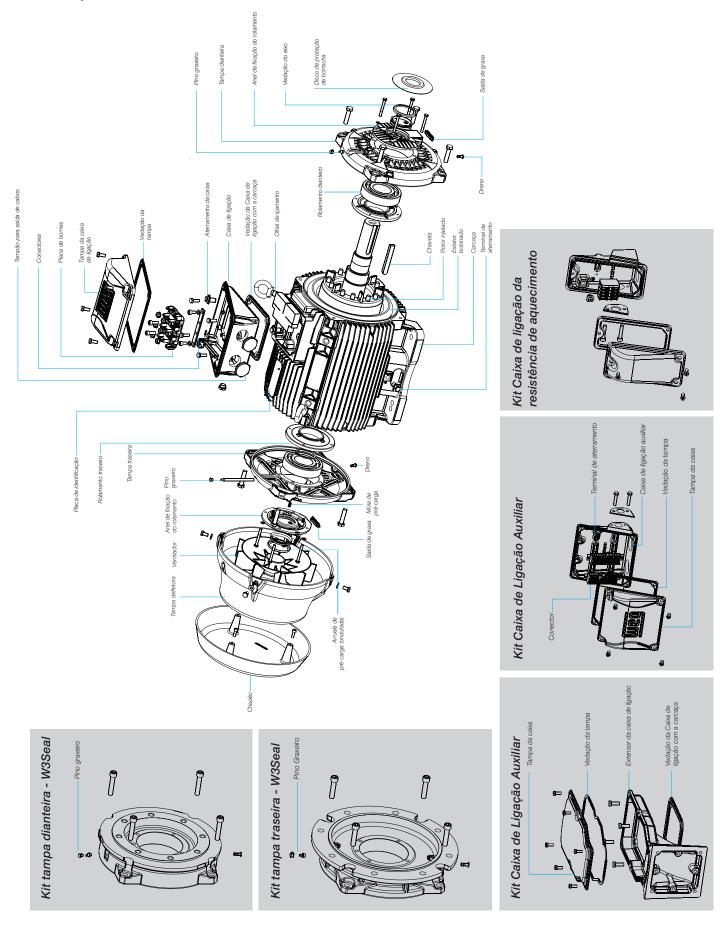



22.Índice Visual de Peças - Motores W22

22.1 Carcaças 63-132


22.2 Carcaças 160-200





Kit Caixa de ligação da

Carcaças 225-355

NOSSA EFICIÊNCIA GARANTE A SUA ECONOMIA.

Motores de rendimento
IR3 PREMIUM
SUPER PREMIUM
ULTRA PREMIUM

O motor elétrico é o que faz a indústria crescer e, a partir de 2019, ele ganhou ainda mais eficiência.

O Brasil passou a adotar o **IR3** como o novo índice de rendimento padrão. Faça a migração com quem é referência em alta performance e garanta muito mais economia em energia. A WEG possui o portfólio mais completo do mercado, do nível padrão a rendimentos superiores, e serviços que fazem toda a diferença para o seu negócio.

O escopo de soluções do Grupo WEG não se limita aos produtos e soluções apresentados nesse catálogo. Para conhecer nosso portfólio, consulte-nos.

www.weg.net

+55 47 3276.4000

motores@weg.net

Jaraguá do Sul - SC - Brasil