
PLC2 Board
Communication Manual
CANopen Slave

02/2006

Series: PLC2
0899.5809 E/3

Contents

Contents

List of Tables 4

List of Figures 4

About the Manual 5
Abbreviations and Definitions . 5
Documents . 5

1 Introduction to the CANopen protocol 6
1.1 CAN . 6

1.1.1 Data frame . 6
1.1.2 Remote frame . 6
1.1.3 Network access . 6
1.1.4 Error control . 7
1.1.5 CAN and CANopen . 7

1.2 Features of the CANopen network . 7
1.3 Physical layer . 8
1.4 Address at CANopen network . 8
1.5 Data access . 8
1.6 Data transfer . 8
1.7 Communication objects - COBs . 8
1.8 COB-ID . 10
1.9 EDS File . 11

2 Installation 12
2.1 Connection to the network . 12
2.2 Power supply . 13
2.3 Cables and termination resistor . 14
2.4 Baud rate . 14

3 CANopen communication parameters 16
3.1 P770 - CAN protocol . 16
3.2 P771 - Address of the CAN network . 16
3.3 P772 - Baud rate . 16
3.4 P773 - Bus Off recovery . 17
3.5 P774 - Action for communication error . 17
3.6 P775 - CAN controller state . 18
3.7 P776 - Number of received telegrams . 18
3.8 P777 - Number of transmitted telegrams . 18
3.9 P778 - Number of recorded errors . 18
3.10 P779 - CANopen Operation Mode . 19
3.11 P780 - CANopen network state . 19
3.12 P781 - CANopen node state . 19

4 Object dictionary 21
4.1 Dictionary structure . 21
4.2 Data types . 22

4.2.1 Basic data types . 22
4.2.2 Compound data types . 22

2

Contents

4.2.3 Extended data types . 23
4.3 Communication profile objects . 23
4.4 Manufacturer specific objects . 24

5 Communication objects description 26
5.1 Identification objects . 26

5.1.1 Object 1000h - Device Type . 26
5.1.2 Object 1001h - Error Register . 26
5.1.3 Object 1003h - Pre-defined error field . 27
5.1.4 Object 1018h - Identity object . 28

5.2 Service Data Objects - SDOs . 29
5.2.1 Object 1200h - SDO Server . 29
5.2.2 SDOs Operation . 30

5.3 Process Data Objects - PDOs . 32
5.3.1 Mappable objects for the PDOs . 32
5.3.2 Receive PDOs . 33
5.3.3 Transmit PDOs . 37

5.4 Emergency Object - EMCY . 41
5.5 Synchronization Object - SYNC . 41
5.6 Network Management - NMT . 42

5.6.1 Slave state control . 42
5.6.2 Error control - Node Guarding . 44

5.7 Initialization procedure . 46

6 CANopen communication errors 48
6.1 E61 - Bus off . 48
6.2 E63 - No power supply . 48
6.3 E65 - Node Guarding error . 48

7 Application examples 50
7.1 Example 1 - Slave state controlling . 51
7.2 Example 2 - SDOs messages . 52
7.3 Example 3 - Error control enabling - Guarding 52
7.4 Example 4 - Configuring a Transmit PDO . 54
7.5 Example 5 - Configuring a Receive PDO . 56
7.6 Example 6 - Using the SYNC object for sending PDOs 57
7.7 Example 7 - Error detection by using EMCY . 59

3

List of Figures

List of Tables

1 Technical documents about CANopen . 5
2 Communication objects - COBs . 9
3 COB-ID for the different objects . 11
4 Connector pinout used by the PLC2 . 13
5 Module consumption . 13
6 Cable characteristics . 14
7 Supported transfer rate and installation size . 15
8 Groupings in the object dictionary . 21
9 Record for PDOs configuration . 22
10 Record for data mapping of a PDO . 23
11 Record for SDO configuration . 23
12 Record for device identification . 23
13 PLC2 object list - Communication Profile . 24
14 PLC2 Object List - Manufacturer specific . 25
15 Structure of the Error Register . 27
16 Error codes table . 28
17 Command codes for SDO client . 30
18 Command codes for SDO server . 31
19 Markers list that can be mapped to PDOs . 33
20 Description of PDO COB-ID entry . 34
21 Description of transmission type . 34
22 State transition description . 43
23 States and communication objects . 44
24 NMT Commands . 44

List of Figures

1 PLC2 operation model on the CANopen network 10
2 CAN connector location on the PLC2 board . 12
3 Connectors . 13
4 CANopen network . 14
5 Communication between SDO Client and Server 29
6 Communication by using PDOs . 32
7 EMCY . 41
8 SYNC . 42
9 State diagram of the CANopen Node . 43
10 Error control service - Guarding . 45
11 Network initialization process flow chart . 47
12 Network used in the application examples . 50

4

List of Figures

About the Manual

This manual describes the operation of the CANopen protocol for the PLC2 board. This
manual must be used along with the PLC2 Board Manual.

Abbreviations and Definitions

CAN Controller Area Network
CiA CAN in Automation
COB Communication Object
COB-ID Communication Object Identifier
SDO Service Data Object
PDO Process Data Object
RPDO Receive PDO
TPDO Transmit PDO
EMCY Emergency Object
SYNC Synchronization Object
NMT Network Management Object
ASCII American Standard Code for Information Interchange

Numerical representation
The decimal numbers are represented by digits without suffix. The hexadecimal
numbers are represented by the letter ’h’ after the number.

Documents

The PLC2 CANopen protocol development has been based on the following specifications
and documents:

Document Version Source

CAN Specification 2.0 CiA
CiA DS 301 4.02 CiA
CANopen Application Layer and Communication Profile
CiA DRP 303-1 1.1.1 CiA
Cabling and Connector Pin Assignment
CiA DSP 306 1.1 CiA
Electronic Data Sheet Specification for CANopen

Table 1: Technical documents about CANopen

Please contact CiA (CAN in Automation) for providing these documents. This company
owns, releases and updates all information relating to the CANopen network.

5

1 Introduction to the CANopen protocol

1 Introduction to the CANopen protocol

For proper PLC2 board operation on network you must know how this communication
is realized. Thus this section gives a general description of the CANopen protocol operation
by describing all functions used by the PLC2. For more details about the protocol, refer to
CANopen documents indicated in table 1.

1.1 CAN

The CANopen network is based on the CAN network, which means that it uses CAN
telegrams for the network data exchange.

The CAN protocol is a serial communication protocol that describes the services from
the layer 2 of the ISO / OSI model (layer of the data link)1. In this layer are defined the
different telegram types (frames), how this errors are detected and how the message validation
and arbitration are realized.

1.1.1 Data frame

The CAN network data are transmitted through a data frame (telegram). This frame
type comprises several fields, like start of frame, control field, CRC, etc. However the main
fields are an 11 bits identifier field2 (arbitration field) and a data field which may contain up
to 8 data bytes.

Identifier 8 data bytes
11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

1.1.2 Remote frame

In addition the data frame there is a remote frame (RTR frame). This frame type does
not have data field, but only the identifier. It requests the other network device for transmitting
the desired data frame.

1.1.3 Network access

Any network element on a CAN network can try to transmit at any time a frame to
the network. If two network devices try to access the network simultaneously, only the device
transmitting the top priority message will have success in transmitting the message to the
network. The message priority is defined by the CAN frame identifier. The lesser the value of
this identifier is, the higher the priority of the message. The telegram with identifier 0 (zero)
corresponds to the telegram with the top priority.

1In the CAN protocol specification is referenced the standard ISO 11898 as the definition of the layer 1 of
this model (physical layer).

2The CAN 2.0 specification defines two data frame types: standard (11 bits) and extended (28 bits). For
the CANopen protocol of the PLC2 board only standard frames are accepted.

6

1 Introduction to the CANopen protocol

1.1.4 Error control

The CAN specification defines several error control mechanisms, ensuring high network
reliability and low transmission error index that are not detected. Each network device must
be able to identify this error occurrence, informing the other elements that an error has been
detected.

A CAN network device has internal counters which are incremented every time a transmis-
sion or reception error has been detected and decremented when a telegram has been received
with success. When a significant number of errors are detected, the device may enter into the
following states:

• Warning : the device enters into the warning state when the counter exceeds a determined
error limit, which means that a high error index has been detected.

• Error Passive: when this value exceeds the established limit, the device enters into the
error passive, and then stops acting on the network when it detects that another device
has sent a telegram with error.

• Bus Off : at least, we will have the bus off state, and the device will not send nor receive
telegrams more.

1.1.5 CAN and CANopen

The specification on how detecting errors, generating and transmitting a frame is not
sufficient for defining a meaning for the data that should be sent via network. A specifica-
tion is required that indicates how the identifier and the data should be mounted and how
the information should be exchanged and so enabling the network elements for interpreting
the transferred data correctly. So the CANopen specification defines how the data exchange
between equipments is realized and how each device should interpret these data.

There are also other CAN based protocols, as the DeviceNet, J1939, etc. that use CAN
frames for the communication. However these protocols can not operate jointly on the same
network.

1.2 Features of the CANopen network

As the telegram transfer is realized through a CAN bus, all CANopen network devices
have the same right for accessing the network, where the priority of the identifier is responsible
for solving the conflict problems when accesses occur simultaneously. This will be useful, since
it enables the communication between network slaves, in addition to the fact that the data
are available more optimized without requiring a master for controlling all communication,
realizing cyclic access to all network devices for data updating.

Other important feature of the CANopen network is the use of a producer / consumer
model for the data transmission. This means that the message that is transmitted via network
does not have a fixed destination address. The message has an identifier that identifies which
data that is being transported. Any network element that requires using this information for
its logic operation can consume it. Thus the same message can be used at the same time by
several elements.

7

1 Introduction to the CANopen protocol

1.3 Physical layer

The physical layer for signal transmitting on CANopen network is specified in the standard
ISO 11898. This standard defines a twisted pair of wire with differential electrical signal for
the transmission bus.

The PLC2 board also uses an interface circuit isolated against power line with external
power supply. The component responsible for the signal transmission and reception is desig-
nated transceiver and complies with the ISO 11898 specification.

1.4 Address at CANopen network

Every CANopen network must be fitted with a master, that is responsible for the network
managing and it can have up to 127 slaves. The network device may also be called node. Every
slave at a CANopen network is identified on the network by its address, or Node-ID, which
must be exclusive for each slave on the network and can be from 1 up to 127.

The PLC2 board does not have functions that implement the network managing services.
Thus it must be used along with any equipment that offers such service.

1.5 Data access

Every slave on the CANopen network has a list, designated as object dictionary, where
are indicated all data that can be accessed via network. Every object in this listing is identified
by an index and this index is used during the equipment configuration and message exchange
for identifying which object is being transmitted.

For more details on how this dictionary is structured, refer to section 4.

1.6 Data transfer

The transmission of numerical data through CANopen telegrams is realized by using the
hexadecimal number presentation and the least significant data byte is sent firstly.

Example: transmission through a CAN frame of a 32 bits signed integer (12345678h =
305419896 decimal) and a 16 bits signed integer (FF00h = -256 decimal).

Identifier 6 bytes data
Integer of 32 bits Integer of 16 bits

11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
78h 56h 34h 12h 00h FFh

1.7 Communication objects - COBs

There is a fixed set of objects which are responsible for the communication between the
network devices. The objects are divided according to the data types and the way they are sent
or received by the device. The PLC2 board supports following communication objects (COBs):

8

1 Introduction to the CANopen protocol

Object type Description

Service Data Object
(SDO)

The SDOs are the objects responsible for the direct access to the
object dictionary of a device. Through the messages that use
the SDOs, you can indicate explicitly (through the object index),
which data is being processed. There are two types of SDOs: SDO
Client responsible for read/write request from a network device,
and the SDO Server responsible for servicing this request.
As the SDOs are used in general for a network node configuration,
they have less priority than the other message types. Only one
SDO of server type is available for the PLC2.

Process Data Object
(PDO)

The PDOs are used for accessing the equipment data without indi-
cating explicitly which dictionary object is being accessed. Thus
previous configuration is required for indicating which data the
PDO is transmitting (data mapping). There are also two types of
PDOs: receive PDO and transmit PDO.
As the PDOs are used in general for data transmission and data
reception during the device operation, they have more priority
than Service Data Objects (SDO).

Emergency Object
(EMCY)

This object is responsible for the message sending to indicate the
error occurrence on the device. When an error is detected on some
device (EMCY Producer), it can send a message to the network.
If some network device is monitoring this message (EMCY Con-
sumer), you can program it for enabling an action (enable the
other network devices, error reset, etc.).
The PLC2 board has the EMCY producer function.

Synchronisation Object
(SYNC)

You can program a device (SYNC Producer) on the CANopen
network for sending periodically a synchronization message to all
network messages. So these devices (SYNC Consumer) can send,
for example, determined data which must be available from time
to time.
The PLC2 board has the SYNC consumer function.

Network Management
(NMT)

Every CANopen network requires a master for controlling the
other network devices (slaves). This master will be responsi-
ble for controlling the slave communication and its status on the
CANopen network. The slaves receive the commands sent by the
master and execute the requested actions.
The PLC2 operates as slave on the CANopen Network and pro-
vides two services that can be used by the master: device control-
ling services, where the master controls the status of each slave on
the network, and the error controlling services (node guarding),
where both the master and the slave exchange telegrams periodi-
cally for checking if there are no communication errors.

Table 2: Communication objects - COBs

The board communication to the network is realized through these objects and the ac-
cessible data are those existing in the device object dictionary. For more details about the
operation of each COB, refer to section 5. The PLC2 operation model, using these communi-
cation objects, is described by the following figure:

9

1 Introduction to the CANopen protocol

Network interface

SYNC consumer

EMCY producer

Transmit PDOs

rx

tx

Communication

Parameters

Object dictionary

SDO server

NMT slave

Receive PDOs

Error control

MASTER

CAN bus

rx

tx

Communication

Parameters

Network interface

SDO server

NMT slave

SYNC consumer

EMCY producer

Transmit PDOs

Receive PDOs

Error control

Object dictionary

PLC2
PLC2

Figure 1: PLC2 operation model on the CANopen network

1.8 COB-ID

The telegram of the CANopen network is always transmitted by a communication object
(COB). Each COB has an identifier indicating the data type which is being transmitted. This
identifier, called COD-ID, has a length of 11 bits and is transmitted in the identifier field of
the CAN telegram. It can be divided into two parts:

Function Code Node Address
bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

• Function Code: indicates the object type which is being transmitted.

• Node Address : indicates to which network device the telegram is linked.

Table below shows the standard values for the different communication objects available
on the PLC2 board. Please note that the standard object value depends on the slave address
for executing the COB-IDs to NMT and SYNC that are common to all network elements. Some
values can be changed during the device configuration process.

10

1 Introduction to the CANopen protocol

COB Function Code Resulting COB-IDs
(bits 10 - 7) (function + address)

NMT 0000 0
SYNC 0001 128 (80h)
EMCY 0001 129 - 255 (81h - FFh)
PDO1 (tx) 0011 385 - 511 (181h - 1FFh)
PDO1 (rx) 0100 513 - 639 (201h - 27Fh)
PDO2 (tx) 0101 641 - 767 (281h - 2FFh)
PDO2 (rx) 0110 769 - 895 (301h - 37Fh)
PDO3 (tx) 0111 897 - 1023 (381h - 3FFh)
PDO3 (rx) 1000 1025 - 1151 (401h - 47Fh)
PDO4 (tx) 1001 1153 - 1279 (481h - 4FFh)
PDO4 (rx) 1010 1281 - 1407 (501h - 57Fh)
SDO (tx) 1011 1409 - 1535 (581h - 5FFh)
SDO (rx) 1100 1537 - 1663 (601h - 67Fh)
Node guarding 1110 1793 - 1919 (701h - 77Fh)

Table 3: COB-ID for the different objects

1.9 EDS File

Each device in a CANopen network has an EDS configuration file, that contains infor-
mation about the device function on CANopen network, as well the description of all available
objects for communication. This file is most commonly used by the CANopen master or con-
figuration software to program the CANopen slaves in the network.

The EDS configuration file is supplied with the product. It is also possible to download it
from http://www.weg.com.br. It is important to pay attention to the PLC2 software version,
in order to use the EDS file compatible with this version.

11

2 Installation

2 Installation

Like most industrial communication networks, the CANopen network requires some spe-
cial cares for ensuring safe operation with low communication error incidence, when installed
in aggressive environments with high exposure to electromagnetic interferences. The installa-
tion should be carried out according to ISO 11898. Please find below some hints for correct
installation of the PLC2 board.

2.1 Connection to the network

The interface for the CAN bus connection is available at the connector X17. Please
find below an installation example, where a PLC2 board is connected to a CFW-09 frequency
inverter.

XC7

X
C

21

X
C

22

X
C

3

K1
K2
K3

XC11

X
C

1

D1

XC17

52 3 41

XC9 XC10

Figure 2: CAN connector location on the PLC2 board

Table 4 describes the function of each connector pin.

12

2 Installation

5

2
1

3
4

51 2 3 4

Female connector (bus) Male connector (PLC2)

Figure 3: Connectors

X17 connector
1 V-
2 CAN L
3 Shield
4 CAN H
5 V+

Table 4: Connector pinout used by the PLC2

The connection must be carried out by connecting every signal (V - connected to V-,
CAN L connected to CAN L, etc.) of the different equipments connected on network. If some
equipment does not require to be powered via network, do not connect the points V- and
V+. The cable shield must be connected to pin 3, which is internally connected to the ground
through a RC circuit.

2.2 Power supply

For the power supply of circuit, responsible for the communication on the PLC2 board,
you must provide a supply voltage between the pins 1 and 5 of the network connector.

To prevent supply voltage differences between the network devices, we recommend supply-
ing the network at only one point, and this supply voltage should be supplied through the same
cable to all devices. If more than one power supply is required, these power supplies should be
referenced to the same connection point. Table below shows the individual consumption and
the required input voltage.

Power Supply (VDC)
Minimum Maximum Recommended

11 30 24
Current (mA)

Minimum Maximum Average
20 50 30

Table 5: Module consumption

NOTE!
This power supply is used by the electrically isolated CAN components only. In
order to communicate with the CANopen network, the drive main power must be
on.

13

2 Installation

2.3 Cables and termination resistor

The use of a shielded cable with two twisted pair wires is recommended - one pair for the
pins 2 and 4 (CAN L and CAN H) and the other pair for the pins 1 and 5 (V- and V+).

2 3 4 51

Drop Line

CAN Bus

Termination

Ground

Power
supply

Figure 4: CANopen network

For linkage of several network nodes, we recommend connecting the equipment direct to
the main line without drop lines. To avoid electromagnetic interference and ensure trouble free
operation, provide physical separation between the power cables and the signal and control
cables. To avoid different potentials between the different circuits, ground all equipments to
the same grounding point.

The signal cable CAN L and CAN H must have a characteristic impedance around 120Ω
and a max. signal propagation delay of 5 ns/m. Other cable characteristics depend on its
length and must meet data indicated in table below.

Cable length Resistance per meter Conductor cross section
(m) (mΩ/m) (mm2)

0 ... 40 70 0.25 ... 0.34
40 ... 300 <60 0.34 ... 0.60
300 ... 600 <40 0.50 ... 0.60
600 ... 1000 <26 0.75 ... 0.80

Table 6: Cable characteristics

The CAN bus ends must be fitted with a 120Ω / 0.25W termination resistor connected
to the signals CAN H and CAN L. When the PLC2 board is the first or last device connected
to the bus, this resistor can be fitted directly to the CAN connector, between the pins 2 and 4.

The maximum number of devices connected to an only network segment is limited to 64
devices. If a more devices are required, additional repeaters must be installed.

2.4 Baud rate

The transfer rate that can be used by equipment installed on the CANopen network
depends on the cable length used in the installation. Table below shows the transfer rates
available for the PLC2 board and the max. allowed cable length as recommended by CiA.

14

2 Installation

Baud rate Cable length

1 Mbit/s 40 m
500 Kbit/s 100 m
250 Kbit/s 250 m
125 Kbit/s 500 m
100 Kbit/s 600 m
50 Kbit/s 1000 m
20 Kbit/s 1000 m
10 Kbit/s 1000 m

Table 7: Supported transfer rate and installation size

15

3 CANopen communication parameters

3 CANopen communication parameters

The PLC2 board has a set of parameters that allows the network device configuration,
the trouble shooting and CANopen communication monitoring.

All not mentioned parameters have not direct relationship with the communication, how-
ever they are important for the PLC2 board operation. Thus you must be acquainted with this
parameter operation since they may be required for you CANopen network operation.

3.1 P770 - CAN protocol

P770 allows the selection of the application layer protocol required for the CAN bus on
the PLC2 board. Select option ‘1’ for enabling the CANopen communication.

Range Default Access
0 = Disabled
1 = CANopen
2 = DeviceNet

0 = Disabled Read/
write

NOTE!
• This parameter changing will be valid only when the board is reset or switched
off and on.
• Different protocols can not operate on the same network.

3.2 P771 - Address of the CAN network

This parameter allows the PLC2 address selection (Node-ID) on the CANopen network.

Range Default Access
1 ... 127 63 Read/

write

Every network device needs a distinct Node-ID, thus up to 127 devices are permitted on
an only network (by using repeaters). This Node-ID is also used for defining the initial value
of some communication objects on the PLC2 board.

NOTE!
This Node-ID changing will be valid only when the board is reset or switched off
and on.

3.3 P772 - Baud rate

This parameter allows the selection of the communication baud rate used by the device.

16

3 CANopen communication parameters

Range Default Access
0 = 1 Mbit/s
1 = Not used
2 = 500 kbit/s
3 = 250 kbit/s
4 = 125 kbit/s
5 = 100 kbit/s
6 = 50 kbit/s
7 = 20 kbit/s
8 = 10 kbit/s

0 = 1 Mbit/s Read/
write

You must configure all devices to the same baud rate for enabling the network device
communication. Please note that there is a baud rate limitation, depending on the cable length
of the installation (see table 7).

NOTE!
The baud rate changing will be valid only when the board is reset or switched off
and on.

3.4 P773 - Bus Off recovery

The device may enter into the bus off status (see section 1.1.4) when the number of errors
on the CAN network is too high, thus interrupting the network accessing. If this error occurs,
the parameter P773 allows programming if the PLC2 remains in the bus off state, requiring
manual reset, or it resets automatically and restarts the communication.

Range Default Access
0 = Manual
1 = Automatic

0 Read/
write

3.5 P774 - Action for communication error

If the device, which is controlled by the board, is enabled and a communication error is
detected (broken cable, line voltage drop, etc.), you can not send disabling commands to it via
network. To avoid this condition, you can program an action at P774, which the PLC2 will
execute automatically in case of a network fault.

Range Default Access
0 = No action
1 = Drive disable

1 Read/
write

The PLC2 board detects as CANopen communication errors the bus power failure (E63),
bus off (E61) and the timeout conditions during the node guarding service (E65). In case of
bus off event, the board only consider it as an error if the bus off recovery is programmed to
manual (P773 = 0).

17

3 CANopen communication parameters

3.6 P775 - CAN controller state

This parameter gives information about the device state relating to the CAN bus. It
indicates if the device is operating correctly or it informs which communication error type has
been detected on the PLC2 board.

Range Default Access
0 = Communication disabled
1 = Not used
2 = No fault
3 = Warning
4 = Error Passive
5 = Bus Off
6 = Bus not powered

- Read
only

These errors are function of the number of invalid telegrams received or transmitted
to the network, as described in section 1.1.4. For instance, the passive error status occurs
when only one equipment is connected to the network sending telegrams in sequence, and no
other equipment recognizes these telegrams. The bus off state can occur, for instance, when
devices with different communication baud rates are connected to the same network, or due to
installation problems, as the lack of termination resistors.

3.7 P776 - Number of received telegrams

This parameter operates as a cyclic counter. It is incremented every time a CAN telegram
is received. It informs the operator if the device is communicating with the network correctly.

Range Default Access
0 ... 65535 - Read

only

3.8 P777 - Number of transmitted telegrams

Like the parameter P776, this parameter operates as a cyclic counter. It is incremented
every time a CAN telegram is transmitted. It informs the operator if the PLC2 is communi-
cating with the network correctly.

Range Default Access
0 ... 65535 - Read

only

3.9 P778 - Number of recorded errors

Cyclic counter that informs how many times the PLC2 board enters into the bus off state
on the CAN network.

18

3 CANopen communication parameters

Range Default Access
0 ... 65535 - Read

only

Always the device is switched off, these counters (P776, P777 and P778) are reset to 0
(zero) and start counting again. When the value 65535 is exceeded, the counters are reset and
start counting again.

3.10 P779 - CANopen Operation Mode

This parameter indicates what is the operation mode for the PLC2 board CANopen
interface.

Range Default Access
0 = Slave
1 = Master

- Read
only

The operation mode is defined using the WSCAN software, integrated to the PLC2 pro-
gramming software WLP. The PLC2 board is initially configured as slave for the CANopen
network. But using the WSCAN, it is possible to configure it as a CANopen master, or return
to slave configuration (disabling the option ”master”).

For the description of how to operate the PLC2 as a network master, please see the
WSCAN user’s guide.

3.11 P780 - CANopen network state

This parameter indicates the board status relating to the CANopen network, informing
if the protocol has been enabled and if the error control service is enabled (Node Guarding).

Range Default Access
0 = Protocol disabled
1 = Not used
2 = CANopen enabled
3 = Node guarding enabled
4 = Node guarding error

- Read
only

To enable the protocol, it is necessary to program P770 = 1 and supply 24 VDC through
CAN interface. Once the protocol is enabled, the device is ready for the network communication.
One important function of the device for detecting errors both at the slaves and at the master
is the node guarding service. For enabling this function, refer to section 5.6.2.

3.12 P781 - CANopen node state

The PLC2 board operates as slave on the CANopen network, having a state machine that
controls its communication behavior. This parameter indicates the current state of the device.

19

3 CANopen communication parameters

Range Default Access
0 = Initialization
4 = Stopped
5 = Operational
127 = Pre-operational

- Read
only

The value 0 (zero) also indicates the protocol is not enable or the interface is not powered.

20

4 Object dictionary

4 Object dictionary

The object dictionary is a listing containing several equipment data which can be accessed
via CANopen network. An object of this listing is identified by a 16 bits index, and the data
exchange between the devices is performed based on these objects.

The document CiA DS 301 defines a minimum number of objects that each CANopen
network slave must have. The objects available in this listing are grouped according to the type
of function they execute. The objects are arranged in the dictionary as follows:

Index Objects Description

0001h - 035Fh Data types definition Used as reference for the data type supported
by the system.

1000h - 1FFFh Communication objects Objects common to all CANopen devices.
It contains general information about the
equipment and also the data for the commu-
nication configuration.

2000h - 5FFFh Manufacturer specific
objects

In this range, every CANopen equipment
manufacturer can define freely which data
these objects will represent.

6000h - 9FFFh Standardized device objects This range is reserved for the objects describ-
ing the behavior of similar equipment, irre-
spective the manufacturers. The PLC2 does
not use this object range.

Table 8: Groupings in the object dictionary

Not referenced indexes in this listing are reserved for further use.

4.1 Dictionary structure

The general structure of the object dictionary has following format:

Index Object Name Type Access

• Index : indicates the object index in the dictionary directly.

• Object : describes which information the index stores (simple variable, array, record, etc.).

• Name: contains the object name in order to facilitate its identification.

• Type: indicates the stored data type directly. For simple variables, this data type may be
an Integer, a float, etc. For arrays, it indicates the data type contained in the array. For
records, it indicates the record format according to the data type described in the first
part of the object dictionary (indexes 0001h - 035Fh).

• Access : informs if the related object is accessible only for read (ro), for read and write
(rw), only for write (wo), or if it is a constant (const).

For objects of array or record types, a sub-index is still required, buts this is not described
in the dictionary structure.

21

4 Object dictionary

4.2 Data types

The first part of the object dictionary (index 0001h - 035Fh) describes the data type that
can be accessed in a CANopen network device. These data may basic, Integer and float types
or compound types, formed by an input set as records and arrays. Please find below the object
types used by the PLC2 board.

4.2.1 Basic data types

The basic supported data types are following:

• Signed integers : there are three types of signed integers supported by the PLC2: INTE-
GER8, INTERGER16 and INTEGER32 representing integers formed by data with 8, 16
and 32 bits, respectively. Integers with signal are calculated by using a 2’s complement,
and during the transmission, always the least significant byte is transmitted firstly with
the CAN telegram.

• Unsigned integers : there are three types of unsigned integers supported by the PLC2:
UNSIGNED8, UNSIGNED16 and UNSIGNED32 representing integers formed by data
with 8, 16 and 32 bits, respectively. Also during the transmission, always the least
significant byte is transmitted firstly.

4.2.2 Compound data types

New data types can be formed through groupings of basic types into listings (arrays -
formed by only one type of data) and structures (records - formed by different types of data).
In this case, each item of this type is identified by a sub-index. Please find below a listing of
the compound types used by the PLC2 board.

• PDO COMM PARAMETER: this record defines the information required for the PDO
configuration for the CANopen communication. Section 5.3 shows the content and how
each field is used.

Sub-index Entry description Type
00h Number of supported entries in this record UNSIGNED8
01h COB-ID UNSIGNED32
02h Transmission type UNSIGNED8
03h Inhibit time UNSIGNED16
04h Reserved UNSIGNED8
05h Event timer UNSIGNED16

Table 9: Record for PDOs configuration

• PDO MAPPING : this record defines how to map the data which should be transmitted
by a PDO during the CANopen communication. For more details about the content and
the form how each field is used, refer to section 5.3.

22

4 Object dictionary

Sub-index Entry description Type
00h Number of mapped objects in PDO UNSIGNED8
01h 1st mapped object UNSIGNED32
02h 2nd mapped object UNSIGNED32
...

...
...

40h 64th mapped object UNSIGNED32

Table 10: Record for data mapping of a PDO

• SDO PARAMETER: this record defines the information for configuring a SDO for the
CANopen communication. For more details on how each field is used, refer to section 5.2.

Sub-index Entry description Type
00h Number of supported entries in this record UNSIGNED8
01h COB-ID client → server UNSIGNED32
02h COB-ID server → client UNSIGNED32
03h Node-ID for client/server UNSIGNED8

Table 11: Record for SDO configuration

• IDENTITY : this record is used for describing the device type that is present on the
network.

Sub-index Entry description Type
00h Number of supported entries in this record UNSIGNED8
01h Vendor-ID UNSIGNED32
02h Product Code UNSIGNED32
03h Revision Number UNSIGNED32
04h Serial Number UNSIGNED32

Table 12: Record for device identification

4.2.3 Extended data types

The PLC2 board does not support extended data types.

4.3 Communication profile objects

In the object dictionary, the indexes 1000h to 1FFFh correspond to the part which re-
sponsible for the configurations of the CANopen network communication. These objects are
common to all devices, however only some are mandatory. Please find below an object listing
in the range supported by the PLC2.

Index Object Name Type Access

1000h VAR device type UNSIGNED32 ro
1001h VAR error register UNSIGNED8 ro

23

4 Object dictionary

Index Object Name Type Access

1003h ARRAY pre-defined error field UNSIGNED32 ro
1005h VAR COB-ID SYNC UNSIGNED32 rw
100Ch VAR guard time UNSIGNED16 rw
100Dh VAR life time factor UNSIGNED8 rw
1014h VAR COB-ID EMCY UNSIGNED32 ro
1018h RECORD Identity Object Identity ro

Server SDO Parameter
1200h RECORD 1st Server SDO parameter SDO Parameter ro

Receive PDO Communication Parameter
1400h RECORD 1st receive PDO Parameter PDO CommPar rw
1401h RECORD 2nd receive PDO Parameter PDO CommPar rw
1402h RECORD 3rd receive PDO Parameter PDO CommPar rw
1403h RECORD 4th receive PDO Parameter PDO CommPar rw

Receive PDO Mapping Parameter
1600h RECORD 1st receive PDO mapping PDO Mapping rw
1601h RECORD 2nd receive PDO mapping PDO Mapping rw
1602h RECORD 3rd receive PDO mapping PDO Mapping rw
1603h RECORD 4th receive PDO mapping PDO Mapping rw

Transmit PDO Communication Parameter
1800h RECORD 1st transmit PDO Parameter PDO CommPar rw
1801h RECORD 2nd transmit PDO Parameter PDO CommPar rw
1802h RECORD 3rd transmit PDO Parameter PDO CommPar rw
1803h RECORD 4th transmit PDO Parameter PDO CommPar rw

Transmit PDO Mapping Parameter
1A00h RECORD 1st transmit PDO mapping PDO Mapping rw
1A01h RECORD 2nd transmit PDO mapping PDO Mapping rw
1A02h RECORD 3rd transmit PDO mapping PDO Mapping rw
1A03h RECORD 4th transmit PDO mapping PDO Mapping rw

Table 13: PLC2 object list - Communication Profile

The other objects which are not shown in this listing are not used by the PLC2, or they
are arranged in reserved ranges.

4.4 Manufacturer specific objects

The manufacturer can define freely in the indexes 2000h to 5FFFh which objects will be
present, as well as establishing the type and the function of each object. In the case of the
PLC2, in this object range has been arranged the parameter list and communication markers.
Through these parameters and markers you can operate the PLC2 board by executing any
function that has bee programmed for the device.

These parameters are available in the index 2000h on, and by adding the number of the
parameter to this index you will obtain its location in the dictionary. The communication
markers initiate from objet 3CE2h, and the following markers are available:

24

4 Object dictionary

• %RW Read Word : Read marker (network → PLC2), 16 bits long.

• %RB Read Byte: Read marker (network → PLC2), 8 bits long.

• %WW Write Word : Write marker (PLC2 → network), 16 bits long.

• %WB Write Byte: Write marker (PLC2 → network), 8 bits long.

Table below shows how these parameters and markers are arranged in this object dictio-
nary.

Index Object Name Type Access

22EEh VAR P750 - Firmware Version UNSIGNED16 ro
22EFh VAR P751 - Scan cycle (× 100µs) UNSIGNED16 ro
22F0h VAR P752 - Clears the retentive markers UNSIGNED16 rw
22F1h VAR P753 - Loads factory default UNSIGNED16 rw
22F2h VAR P754 - Position reference UNSIGNED16 ro

...
...

...
...

...
2320h VAR P800 - User Parameter UNSIGNED16 rw
2321h VAR P801 - User Parameter UNSIGNED16 rw
2322h VAR P802 - User Parameter UNSIGNED16 rw

...
...

...
...

...
2383h VAR P899 - User Parameter UNSIGNED16 rw
3CE2h VAR %RW0 - Read Word UNSIGNED16 ro

...
...

...
...

...
3D01h VAR %RW31 - Read Word UNSIGNED16 ro
3D02h VAR %RB0 - Read Byte UNSIGNED8 ro

...
...

...
...

...
3D21h VAR %RW31 - Read Byte UNSIGNED8 ro
3D22h VAR %WW0 - Write Word UNSIGNED16 rw

...
...

...
...

...
3D41h VAR %WW31 - Write Word UNSIGNED16 rw
3D42h VAR %WB0 - Write Byte UNSIGNED8 rw

...
...

...
...

...
3D61h VAR %WW31 - Write Byte UNSIGNED8 rw

Table 14: PLC2 Object List - Manufacturer specific

For complete listing and detailed parameter description, refer to PLC2 board manual.
Please consider that the inverter parameters to which the PLC2 is connected, can not be
accessed directly through the CANopen network.

25

5 Communication objects description

5 Communication objects description

This section describes with details the object indicated in table 13. It also describes
the communication objects (COBs) operation referenced in section 1.7. For proper use of the
available functions for the PLC2 board communication, you must be acquainted with the object
operation.

5.1 Identification objects

There is a set of objects in the dictionary which are used for the equipment identification,
but they do not influence its behavior on the CANopen network.

5.1.1 Object 1000h - Device Type

This object provides a 32 bits code, describing the device and its functionality.

Index 1000h
Name Device type
Object VAR
Type UNSIGNED32

Access ro
PDO Mapping No
Range UNSIGNED32
Default value 0000.0000h

The code can be divided into two parts: 16 low-order bits describing the Profile type which
is used by the device, and 16 high-order bits, indicating a specific function according to the
specified Profile. The PLC2 board does not follow a Profile defined by the CAN specification,
therefore this object shows 0 (zero).

5.1.2 Object 1001h - Error Register

This object indicates if an error is present on the device or not. The error type recorded
for the PLC2 is as shown in table 15.

Index 1001h
Name Error register
Object VAR
Type UNSIGNED8

Access ro
PDO Mapping Yes
Range UNSIGNED8
Default value 0

26

5 Communication objects description

Bit Meaning

0 Generic error
1 Current
2 Voltage
3 Temperature
4 Communication error
5 Reserved (always 0)
6 Reserved (always 0)
7 Manufacturer specific

Table 15: Structure of the Error Register

When the device shows some error, the equivalent bit must be activated. The first bit
(generic error) must be activated with any error condition.

5.1.3 Object 1003h - Pre-defined error field

This objects stores the error list existing in the device and which have been reported via
EMCY. The sub-index 0 (zero) indicates the number of occurred errors and the other sub-
indexes inform the codes of the occurred errors. Once the error has been corrected, the code of
the error is removed from the list. This list can be cleared by writing 0 (zero) into the sub-index
0 (zero). The PLC2 supports only one error code, thus the list has only one position.

Index 1003h
Name Pre-defined error field
Object Array
Type UNSIGNED32

Sub-index 0
Description Number of errors
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 0

Sub-index 1
Description Error code
Access ro
PDO Mapping No
Range UNSIGNED32
Default value 0

The 32 bits error code is formed by two basic information: the number of the error
according to the error table specified by the CiA and the number of the error occurred on the
board, which are grouped as follows:

PLC2 error code CiA error code
UNSIGNED16 UNSIGNED16

27

5 Communication objects description

The specific PLC2 error codes are as indicated in table below. Also the CFW-09 errors,
to which the PLC2 board is connected, are sent via network.

PLC2 CiA Description
error code error code

50 8611h Lag error
51 6300h Fault during program saving
52 6200h Two or more movements enabled simultane-

ously
53 6200h Invalid movement data
54 6200h Drive disabled
55 6200h Incompatible program or out of memory lim-

its
56 6300h Wrong CRC
57 6200h Shaft not referenced for the absolute posi-

tioning
59 8100h Optional Fieldbus board is offline
60 8100h Access error to the optional Fieldbus
65 8130h Guarding error

Table 16: Error codes table

5.1.4 Object 1018h - Identity object

This section gives general information about the device.

Index 1018h
Name Identity objetct
Object Record
Type Identity

Sub-index 0
Description Number of entries
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 3

Sub-index 1
Description Vendor ID
Access ro
PDO Mapping No
Range UNSIGNED32
Default value 0000.0123h

Sub-index 2
Description Product code
Access ro
PDO Mapping No
Range UNSIGNED32
Default value PLC2: 0000.0201h

28

5 Communication objects description

Sub-index 3
Description Revision number
Access ro
PDO Mapping No
Range UNSIGNED32
Default value According to the firmware version of the

equipment

Sub-index 4
Description Serial number
Access ro
PDO Mapping No
Range UNSIGNED32
Default value -

The Vendor ID is a number that identifies the manufacturer at CiA. In this case, WEG
Indústrias S.A. - Divisão Automação is represented by the number 0000.00123h. The product
code is defined by the manufacture and it changes according to the board model. The revision
number represents the firmware version installed in the equipment. The sub-index 4 represents
a unique serial number for any WEG drive on CANopen network.

5.2 Service Data Objects - SDOs

The SDOs are responsible for the direct access to the object dictionary of a determined
network device. They are used for configuration purpose and thus they have low priority, since
they should not be used for the data communication required for the device operation.

There are two types of SDOs: client and server. Basically, the communication starts with
the client (usually the network master), making a read (upload) or write (download) request
to the server. The server answers the request.

SDO server

PLC2

Response

RequestMASTER
(PC, PLC, CNC, etc.)

SDO client

Figure 5: Communication between SDO Client and Server

5.2.1 Object 1200h - SDO Server

The PLC2 has an only SDO of server type that enables the access to the whole object
dictionary. Through this dictionary, the SDO client can configure the device communication
and parameters. Each SDO server has an object, of SDO PARAMETER type (see section
4.2.2) for its configuration with the following structure:

29

5 Communication objects description

Index 1200h
Name Server SDO Parameter
Object Record
Type SDO Parameter

Sub-index 0
Description Number of entries
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 2

Sub-index 1
Description COB-ID Client - Server (rx)
Access ro
PDO Mapping No
Range UNSIGNED32
Default value 600h + Node-ID

Sub-index 2
Description COB-ID Server - Client (tx)
Access ro
PDO Mapping No
Range UNSIGNED32
Default value 580h + Node-ID

5.2.2 SDOs Operation

Every telegram sent by a SDO has an 8 bytes length and following format:

Identifier 8 data bytes
Command Index Sub-index Object data

11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

The identifier depends on the direction of the transmission (rx or tx) and on the address
(or Node-ID) of the destination server. For instance, a client making a request to a server which
Node-ID is 1, must send a message with the identifier equal to 601h. The server receives this
message and answers with a telegram which COB-ID is equal to 581h.

The command code depends on the used function type. Following commands can be used
for the transmissions from the client to the server:

Command Function Description Object data

22h Download Write object Not defined
23h Download Write object 4 bytes
2Bh Download Write object 2 bytes
2Fh Download Write object 1 byte
40h Upload Read object Not used
60h ou 70h Upload segment Segmented read Not used

Table 17: Command codes for SDO client

30

5 Communication objects description

Through the COB-ID the client must indicate in the request to which slave address the
request is destined. Only a slave (using the respective SDO server) can answer the telegram to
the client.

For readings that involve up to four data bytes, only one message can be transmitted by
the server; for message readings with more bytes, the server must sent several telegrams. The
response telegram has the same structure of the request telegram; however the commands will
be different:

Command Function Description Object data

60h Download Response to object write Not used
43h Upload Response to object read 4 bytes
4Bh Upload Response to object read 2 bytes
4Fh Upload Response to object read 1 byte
41h Upload segment Begin of the segmented response

for read
4 bytes

00h ou 10h Upload segment Data segment for read 4 bytes
06h ou 16h Upload segment Data segment for read 2 bytes
0Eh ou 1Eh Upload segment Data segment for read 1 bytes

Table 18: Command codes for SDO server

A telegram will be only completed after server has confirmed the client request. If during
the telegram exchange any fault is detected (for instance, there is no server response), the client
can abort the process by a message with command code equal to 80h.

NOTE!
When SDO is used for object write, representing the PLC2 parameters (object
from index 2000h on), this value will be saved on the non-volatile board memory.
Thus when equipment will be switched off or reset, the configured values will not
be lost. These values will not be saved automatically for the other objects, thus
the desired values must be re-written, or a command must be given for saving the
values in the flash-memory by using the object 1010h.

Example: A SDO client requests the PLC2 board at address 1 to read the object identified
by the index 22EEh, sub-index 0 (zero) which represents a 16 bits unsigned integer as equipment
firmware version (P750). The master telegram has following format:

Identifier Command Index Sub-index Data
601h 40h EEh 22h 00h 00h 00h 00h 00h

The PLC2 answers the request, indicating that the value of the respective object is equal
to 00A0h3 (version 1.10).

Identifier Command Index Sub-index Data
581h 4Bh EEh 22h 00h 6Eh 00h 00h 00h

3Please remember that with any integer data type, the transference order will be executed from the least
significant bytes to the most significant bytes.

31

5 Communication objects description

5.3 Process Data Objects - PDOs

The PDOs are used for data transmission and data reception during the device operation,
thus requiring safe and quick transmission and reception. Therefore the PDOs have higher
priority than the SDOs.

In the PDOs, only the data are transmitted in the telegrams (indexes and sub-indexes
are omitted), which enables a more efficient transmission with higher data volume in an only
telegram. But for this purpose, you must configure previously what should be transmitted
through the PDO so that even when the index and the sub-index are not indicated, the telegram
content can be known.

There are two types of PDOs: the receive PDOs and the transmit PDOs. The transmit
PDOs send the data to the network, whilst the receive PDOs read and process these data.
This enables the communication between slaves of the CANopen network, requiring only the
configuration of a slave for transmitting this information and the configuration of one or more
slaves for receiving this information.

PLC2 PLC2

(PC, PLC, CNC, etc.)
MASTER

Transmit PDO Receive PDO Receive PDO

Figure 6: Communication by using PDOs

NOTE!
PDOs can only be transmitted or received when the device has been set to opera-
tional state. Fig. 9 shows the available states for a CANopen network node.

5.3.1 Mappable objects for the PDOs

To enable the transmission of an object through a PDO, it must be mappable to the
PDO content. In the description of the communication objects (1000h - 1FFFh), the field
PDO Mapping informs if the object is mappable or not. In general, the information required
for the device operation is mappable, such as enable commands, devices status, reference, etc.
Information about the device configuration can not be accessed through the PDOs. But when
their access is required via network, you must use the SDOs.

For the specific PLC2 objects (2000h - 5FFFh), only the communication markers can
be mapped in the PDOs. The markers %RW e %RB can be mapped to the RPDOs (objects
1600h to 1603h) whilst the markers %WW e %WB can be mapped to TPDOs (objects 1A00h
to 1A03h). The content of these markers can be programmed via WLP software and thus the
PLC2 board programming must be performed by considering which information will be used

32

5 Communication objects description

via CANopen network and at which parameters this information will be available.

Index Object Name Type Access PDO Mapping

3CE2h VAR %RW0 - Read Word UNSIGNED16 ro RPDO
...

...
...

...
...

3D01h VAR %RW31 - Read Word UNSIGNED16 ro RPDO
3D02h VAR %RB0 - Read Byte UNSIGNED8 ro RPDO

...
...

...
...

...
3D21h VAR %RW31 - Read Byte UNSIGNED8 ro RPDO
3D22h VAR %WW0 - Write Word UNSIGNED16 rw TPDO

...
...

...
...

...
3D41h VAR %WW31 - Write Word UNSIGNED16 rw TPDO
3D42h VAR %WB0 - Write Byte UNSIGNED8 rw TPDO

...
...

...
...

...
3D61h VAR %WW31 - Write Byte UNSIGNED8 rw TPDO

Table 19: Markers list that can be mapped to PDOs

5.3.2 Receive PDOs

The Receive PDOs (RPDO) receive the data sent by other devices to the CANopen
network. The PLC2 board has 4 Receive PDOs. One RPDO is able to receive up to 8 data
bytes, and each RPDO has two configuration parameters: one PDO COMM PARAMETER
and one PDO MAPPING, as described below:

PDO COMM PARAMETER

Index 1400h - 1403h
Name Receive PDO communication parameter
Object Record
Type PDO COMM PARAMETER

Sub-index 0
Description Largest sub-index supported
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 2

Sub-index 1
Description COB-ID used by PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1400h: 200h + Node-ID

1401h: 300h + Node-ID
1402h: 400h + Node-ID
1403h: 500h + Node-ID

33

5 Communication objects description

Sub-index 2
Description Transmittion type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

The sub-index 1 has the COB-ID of the RPDO. Always a message is sent to the network,
this object will read which is the COB-ID of this message and if it is equal to the value of this
field, the message will be received by the device. This field is formed by an UNSIGNED32 with
following structure:

Bit Value Description

31 (MSB) 0 PDO is enabled
1 PDO is disabled

30 0 RTR allowed
29 0 Length of the identifier = 11 bits

28 - 11 0 Not used by the PLC2, always 0
10 - 0 (LSB) X COB-ID of 11 bits

Table 20: Description of PDO COB-ID entry

The bit 31 allows PDO enable or disable. The bits 30 and 29, which must be set to 0
(zero), indicate that the PDO accepts the remote frames (RTR frames) and that it uses an 11
bits identifier. As the PLC2 board does not use 29 bits identifiers, the bits 28 - 11 must be set
to 0 (zero), whilst the bits 10 to 0 (zero) are used to configure the COB-ID to PDO.

The sub-index 2 indicates the type of transmission of these objects, as shown in table
below.

Transmission type PDO transmission
Cyclic Acyclic Synchronous Asynchronous RTR only

0 • •
1 - 240 • •

241 - 251 Not used
252 • •
253 • •
254 •
255 •

Table 21: Description of transmission type

• Values 0 - 240 : any RPDO programmed to this range operates in similar way. When a
message is detected, it will receive these data, but the received values will not be updated
before the next SYNC telegram has been detected.

• Values 252 e 253 : these values are not allowed for Receive PDOs.

• Values 254 e 255 : they indicated that there is no relationship with the synchronization
object. When a message is received, they values are updated immediately.

34

5 Communication objects description

PDO MAPPING

Index 1600h - 1603h
Name Receive PDO mapping
Object Record
Type PDO MAPPING

Sub-index 0
Description Number of mapped objects
Access ro
PDO Mapping No
Range 0 = disabled

1 ... 4 = number of mapped objects
Default value 1600h: 4

1601h: 4
1602h: 4
1603h: 4

Sub-index 1
Description 1st mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1600h: 3CE2.0010h

1601h: 3CE6.0010h
1602h: 3CEA.0010h
1603h: 3CEE.0010h

Sub-index 2
Description 2nd mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1600h: 3CE3.0010h

1601h: 3CE7.0010h
1602h: 3CEB.0010h
1603h: 3CEF.0010h

Sub-index 3
Description 3rd mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1600h: 3CE4.0010h

1601h: 3CE8.0010h
1602h: 3CEC.0010h
1603h: 3CF0.0010h

35

5 Communication objects description

Sub-index 4
Description 4th mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1600h: 3CE5.0010h

1601h: 3CE9.0010h
1602h: 3CED.0010h
1603h: 3CF1.0010h

This object indicates the objects which have been mapped for each one of the four available
receive PDOs. For each PDO can be mapped up to four different objects, provided the total
length does not exceed eight bytes. The object mapping is executed by indicating it index,
sub-index (If the object is VAR type and does not have sub-index, you must indicate 0 (zero)
for the sub-index) and length (in bits) in the field UNSIGNED32 having following format:

UNSIGNED32

Index Sub-index Object length
(16 bits) (8 bits) (8 bits)

As example, we will analyze the first RPDO, where:

• Sub-index 0 = 4 : RPDO has four mapped objects.

• Sub-index 1 = 3CE2.0010h: the first mapped object has an index equal to 3CE2h (cor-
responding to the marker %RW0), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 2 = 3CE3.0010h: the second mapped object has an index equal to 3CE3h
(corresponding to the marker %RW1), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 3 = 3CE4.0010h: the third mapped object has an index equal to 3CE4h
(corresponding to the marker %RW2), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 4 = 3CE5.0010h: the fourth mapped object has an index equal to 3CE5h
(corresponding to the marker %RW3), sub-index 0 (zero) and a length of 16 bits.

Therefore always this PDO receives a telegram, the PDO knows that this telegram must
have 8 bytes of data, with the content of the markers %RW0 to %RW3 - these markers may be
used by the user for the PLC2 board programming. These values are standard for the PLC2.
You can change this mapping by changing the number of mapped parameters. Please consider
that up to 4 objects or 8 bytes max. can be changed and that for the RPDOs you can map the
markers shown in table 19).

NOTE!
• For changing the objects mapped in PDO, you must write firstly the value 0
(zero) in the sub-index 0 (zero). Now you can change the values of the sub-indexes
1 to 4. After ending the desired mapping, you must enter again in the sub-index 0
(zero) the number of the objects that have been mapped for enabling PDO again.
• For speeding up the data updating via PDO, the values received through these
objects are not saved on the PLC2 non-volatile memory. So when the equipment
is switched off or reset, the changed values will not be restored.

36

5 Communication objects description

5.3.3 Transmit PDOs

The Transmit PDOs (TPDO) are responsible for the data transmission to the CANopen
network. The PLC2 has 4 Transmit PDOs, each one containing up to 8 data bytes. Similar to
the RPDOs, each TPDO has also two configuration parameters: one PDO COMM PARAME-
TER and one PDO MAPPING, as described below:

PDO COMM PARAMETER

Index 1800h - 1803h
Name Transmit PDO Parameter
Object Record
Type PDO COMM PARAMETER

Sub-index 0
Description Largest sub-index supported
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 5

Sub-index 1
Description COB-ID used by PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1800h: 180h + Node-ID

1801h: 280h + Node-ID
1802h: 380h + Node-ID
1803h: 480h + Node-ID

Sub-index 2
Description Transmission type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

Sub-index 3
Description Inhibit time
Access rw
PDO Mapping No
Range UNSIGNED16
Default value -

Sub-index 4
Description Reserved
Access rw
PDO Mapping No
Range UNSIGNED8
Default value -

37

5 Communication objects description

Sub-index 5
Description Event timer
Access rw
PDO Mapping No
Range 0 = desabilitado

UNSIGNED16
Default value 0

The sub-index 1 contains the COB-ID of the Transmit PDO. Always the TPDO sends a
message to the network, the COB-ID will identify this message. Table 20 describes the structure
of this field.

The sub-index 2 indicates the type of transmission of this object which is as indicated in
table 21. However its operation is different for the transmission PDOs:

• Value 0 : indicates that the transmission must be made immediately after a SYNC tele-
gram has been received, however the transmission will not be periodically. Not used by
PLC2.

• Values 1 - 240 : the PDO must be transmitted periodically always when a telegram
is detected (or in the multiple occurrences of SYNC, according to the number chosen
between 1 and 240).

• Value 252 : indicates that the message content must be updated (but not sent) after
SYNC telegram has been received. The message transmission should be executed after
the remote frame reception (RTR frame).

• Value 253 : the PDO shall send a message as soon as a remote frame is received.

• Values 254 e 255 : the object must be transmitted according to the timer programmed
at the sub-index 5.

In the sub-index 3 you can program the minimum time (multiples of 100µs) that must
elapse after a telegram transmission and before a new telegram can be sent to this PDO. The
setting of 0 (zero) disables this function.

The sub-index 5 contains a value for a timer for sending a PDO automatically. Always a
PDO is configured to asynchronous type, you can program this timer (multiples of 1ms) so the
PDO will be sent periodically within the programmed time. The max. allowed value for this
timer is 3276ms.

NOTE!
• Please ensure that the time programmed for this timer meets the used baud rate.
Too short time (near the telegram transmission time) monopolizes the bus, causing
undefined PDO transmission and prevents that other objects with less priority can
be transmitted.
• Please consider that the PDOs can be transmitted or received only in operational
state.

PDO MAPPING

38

5 Communication objects description

Index 1A00h - 1A03h
Name Transmit PDO mapping
Object Record
Type PDO MAPPING

Sub-index 0
Description Number of mapped objects
Access ro
PDO Mapping No
Range 0 = disabled

1 ... 4 = number of mapped objects
Default value 1A00h: 4

1A01h: 4
1A02h: 4
1A03h: 4

Sub-index 1
Description 1st mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1A00h: 3D22.0010h

1A01h: 3D26.0010h
1A02h: 3D2A.0010h
1A03h: 3D2E.0010h

Sub-index 2
Description 2nd mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1A00h: 3D23.0010h

1A01h: 3D27.0010h
1A02h: 3D2B.0010h
1A03h: 3D2F.0010h

Sub-index 3
Description 3rd mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1A00h: 3D24.0010h

1A01h: 3D28.0010h
1A02h: 3D2C.0010h
1A03h: 3D30.0010h

39

5 Communication objects description

Sub-index 4
Description 4th mapped object in PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1A00h: 3D25.0010h

1A01h: 3D29.0010h
1A02h: 3D2D.0010h
1A03h: 3D31.0010h

The PDO Mapping for transmission operates in similar way as required for the reception,
however in this case are defined the data that should transmitted by the PDO. Each mapped
object should be indicated in the list as shown below:

UNSIGNED32

Index Sub-index Object length
(16 bits) (8 bits) (8 bits)

As example we will analyze the first TPDO, where:

• Sub-index 0 = 4 : PDO has four mapped objects.

• Sub-index 1 = 3D22.0010h: the first mapped object has an index equal to 3D22h (corre-
sponding to the marker %WW0), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 2 = 3D23.0010h: the second mapped object has an index equal to 3D23h
(corresponding to the marker %WW1), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 3 = 3D24.0010h: the third mapped object has an index equal to 3D24h (cor-
responding to the marker %WW2), sub-index 0 (zero) and a length of 16 bits.

• Sub-index 4 = 3D25.0010h: the fourth mapped object has an index equal to 3D25h
(corresponding to the marker %WW3), sub-index 0 (zero) and a length of 16 bits.

Therefore always this PDO transmits its data, it prepares its telegram in length of 8 bytes
of data by considering the values of the markers %WW0 to %WW3. These values are standard
for the PLC2. You can change this mapping by changing the number of the mapped markers.
Please consider that up to 4 objects or 8 bytes max. can be mapped and that for the TPDOs
you can map the markers shown in table 19).

NOTE!
To change the objects mapped in a PDO, you must write firstly the value 0 (zero)
in the sub-index 0 (zero). Now you can change the values of the sub-indexes 1 to
4. For enabling PDO again you must write in the sub-index 0 (zero) the number
of the objects that have been mapped after completing the desired mapping.

40

5 Communication objects description

5.4 Emergency Object - EMCY

The Emergency Object (EMCY) is used for displaying when an error is detected in the
device. Always an error is detected on the PLC2 board, this object sends an emergency message
to the network. This message can be interpreted by an EMCY consumer (usually the network
master), that can adopt an action, as programmed for the application, for instance, disabling
the other network devices and displaying the error.

EMCY consumer

MASTER

PLC2

(PC, PLC, CNC, etc.)

EMCY producer

Emergency message

Drive error!

Figure 7: EMCY

When a message is transmitted, three fields are sent in the eight bytes of data: the CiA
error code, the object 1001h (error register) and the PLC2 error code. These codes are described
in table 16. The telegram has following structure:

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
CiA Objeto 1001h PLC2 Not used (00h)

error code Error Register error code

There is only one parameter that can read the COB-ID of the object, i. e., which is the
telegram identifier for the sent error messages.

Index 1014h
Name COB-ID emergency message
Object VAR
Type UNSIGNED32

Access ro
PDO Mapping No
Range UNSIGNED32
Default value 80h + Node-ID

5.5 Synchronization Object - SYNC

This object is transmitted for allowing the event synchronization between the CANopen
network devices. It is transmitted by a SYNC producer and the devices that detect its trans-
mission are called SYNC consumers.

41

5 Communication objects description

The PLC2 has the SYNC consumer function and it can program its PDO as synchronous.
As describes in table 21, synchronous PDOs are those related to the synchronization object an
they can be programmed to be transmitted or updated by considering this object.

mess
ag

e

PDO #1

PDO #2

PDO #1

PDO #3
SYNC

SYNC

PDO #3

Period

Asy
nc

hro
no

us

PDO #2

Figure 8: SYNC

NOTE!
Please consider that the time programmed in the producer for the SYNC telegrams
periods must be set according to the used baud rate and number of the synchronous
PDOs to be transmitted. Sufficient time must be provided for this purpose. Please
provide also sufficient time for sending the asynchronous messages, as the EMCY,
asynchronous PDOs and SDOs.

The SYNC message transmitted by the producer has a cleared data field, since its purpose
is to provide a time basis for the other objects. There is an object on the PLC2 board for
configuring the COB-ID of the SYNC consumer.

Index 1005h
Name COB-ID SYNC
Object VAR
Type UNSIGNED32

Access rw
PDO Mapping No
Range UNSIGNED32
Default value 80h

5.6 Network Management - NMT

The network management object provides several services for controlling the CANopen
network devices. For the PLC2 board are available the node state control and the error control
services (Node Guarding).

5.6.1 Slave state control

Relating to the communication, a CANopen network device can be described by the
following state machine:

42

5 Communication objects description

Stopped

Power On

(1)

(2)

(3) (4)

(3)

(4)

(5)

(5)

(6, 7)
Initialization

Pre−operational

Operational

Figure 9: State diagram of the CANopen Node

Transition Description

1 At power on the initialization state is entered autonomously
2 Initialization finished, enter Pre-operational state automatically
3 It receives the command Start Node to enter into the operational

state
4 It receives the command Enter Pre-Operational and goes to the

pre-operational state
5 It receives the command Stop Node and enters into the stopped

state
6 It receives the command Reset Node and executes the complete

device reset
7 It receives the command Reset Communication and reinitializes the

objects value and the CANopen device communication.

Table 22: State transition description

During the initialization is defined the Node-ID, created the objects and configured the
CAN network interface. During this stage you can not communicate with the device which is
ended automatically.

At the end of this stage, the slave sends a Boot-up telegram to the network, which for
indicating only that the boot has been concluded and that the slave entered into the pre-
operational state. This telegram has the identifier 700h + Node-ID and only one byte of data
with value equal to 0 (zero).

In the pre-operational state you can already communicate with the slave, however the
PDOs are not available for operation yet. In the operational state all objects are available,
whilst in the stopped state, only the object NMT can receive or transmit telegrams to the
network. Table below shows the objects which are available in each state.

43

5 Communication objects description

Initialization Pre-operational Operational Stopped

PDO •
SDO • •

SYNC • •
EMCY • •
Boot-up •
NMT • • •

Table 23: States and communication objects

As describes in section 3.12, the Parameter P781 allows checking the current PLC2 state.

The state machine is controlled by the network master that sends command to each slave
for executing the desired state transition. These telegrams are not confirmed. This means that
the slave receives the telegram only without answering to the master. The received telegrams
have following structure.

Identifier byte 1 byte 2
00h Command code Destination Node-ID

Command code Destination Node-ID

1 = START node (transition 3) 0 = All slaves
2 = STOP node (transition 4) 1 ... 127 = Specific slaves
128 = Enter pre-operational (transition 5)
129 = Reset node (transition 6)
130 = Reset comunication (transition 7)

Table 24: NMT Commands

The transitions indicated in the command code are similar to the state transition executed
by the node after receiving the code (as shown in figure 9). The command Reset Node causes
the PLC2 for executing a complete device reset, whilst the command Reset Communication
causes the device for reinitializing only the objects relating to the CANopen communication.

5.6.2 Error control - Node Guarding

Two services are available for the device error control: Heartbeat and Guarding, but only
the Guarding has been implemented in the PLC2.

The Guarding enables monitoring the communication with the CANopen network both
by master and by slave. In this service type, the master sends telegrams periodically to the
slave that responds to the received telegram. If any error is detected which interrupts the
communication, you can identify this error, since both the master and the slave are notified by
the timeout during the execution of this service. The error events are called Node Guarding by
the master and as Life guarding by the slave.

44

5 Communication objects description

Response timeout
Error!!!

Request timeout
Error!!!

PLC2
MASTER

(PC, PLC, CNC, etc.)

Response

Request

Periodically

Request

Communication faultMASTER
(PC, PLC, CNC, etc.)

PLC2

Figure 10: Error control service - Guarding

For the guarding service of the CANopen device, there are two objects in the dictionary
for configuring the timer for the error display.

Index 100Ch
Name Guard time
Object VAR
Type UNSIGNED16

Access rw
PDO Mapping No
Range UNSIGNED16
Default value 0

Index 100Dh
Name Life time factor
Object VAR
Type UNSIGNED8

Access rw
PDO Mapping No
Range UNSIGNED8

0 = Desabilitado
Default value 0

The object 100CH allows programming the required time (in milliseconds) for detecting
an fault occurrence when PLC2 does not receive any guarding telegram from master. The
object 100DH indicates how many sequence faults are required till a communication error will
be considered. Thus the multiplication of these two values will provide the total time required

45

5 Communication objects description

for communication error detection by using this object. The value 0 (zero) will disable this
function.

Once the PLC2 has been configured, it starts to count these times beginning with the
first guarding telegram received from the master.

The master sends a remote frame that does not have data bytes. The identifier is equal
to 700h + Node-ID of the destination slave. The slave response telegram has a data byte with
following structure:

Identifier byte 1
bit 7 bit 6 ... bit 0

700h + Node-ID Toggle Slave state

This byte contains, at its seven least significant bits, a value for indicating the slave state
(4 = Stopped, 5 = Operational and 127 = Pre-operational and at its eighth bit a value that
must be changed at every guarding telegram sent by the slave (toggle bit).

If the PLC2 detects an error by using this mechanism, it goes automatically to the pre-
operational state. The board state on the network can be checked at parameter P781, whilst
the occurrence of a guarding error can be checked at parameter P780.

Through the parameter P774 you can also program the PLC2 for adopting an action when
this error is detected. For more details about this parameter, refer to section 3.

NOTE!
For using this service, please note following:
• This object is active even in stopped state (table 23).
• The max. allowed value for this timer is 3276ms.
• The enabling times of this function must be programmed both for the master
and the slave on the network, so they can operate jointly.
• By considering the baud rate and the number of network points, the time must be
so programmed that they are coherent and there is sufficient time for transmission
of the guarding telegrams and the remaining communication can be processed.

5.7 Initialization procedure

After the operation of the available objects for the PLC2 board is known, you must
now program the different objects for operating jointly on the network. In general, the object
initialization procedures on a CANopen network are as shown in the flow chart below:

46

5 Communication objects description

(when used)

parameters via SDO

Start of Node Guarding

Setting of all nodes to the
operational state

Configuration of all device

Start transmission of SYNC
(when used)

Figure 11: Network initialization process flow chart

Please note that the PLC2 communication objects (1000h to 1FFFh) are not stored
automatically in the non-volatile board memory. So for each network device you must adopt
following strategies:

• save the device configuration by using the object 1010h, or

• Always when equipment is reset or switched off, configure the communication objects
again.

The specific manufacturer objects (2000h to 5FFFh), equivalent to the PLC2 board pa-
rameters, are stored automatically into the non-volatile memory, thus parameter setting is not
required at every initialization.

47

6 CANopen communication errors

6 CANopen communication errors

Please find below a description of the PLC2 specific errors for the CAN interface and the
CANopen protocol.

6.1 E61 - Bus off

When a too high number of communication errors is detected by a CAN network device,
this device can enter into the bus off state and then stopping the bus accessing. When this
condition occurs with the PLC2, the drive keypad will display the error message E61, and it is
necessary to reset the device in order to enable communication again. Please note that when
the parameter P773 has been programmed for resetting the bus off automatically, this error
will be disregarded and it will not be displayed.

This error can be caused due to several problems. Please consider following items for
solving this problem:

• Communication baud rate has been set incorrectly. All CANopen network devices must
be set to the same communication baud rate. If some device has been set incorrectly, this
may cause an error in this device or in the other devices.

• Without termination resistor. Enable the termination resistors at the bus end to ensure
trouble-free communication.

• Incorrect installation. Check all cables to ensure that no connection has been reversed,
that all cables have been installed correctly and that the cable and the devices are
grounded properly.

6.2 E63 - No power supply

When the CANopen protocol is enabled, the CAN interface must receive a voltage supply.
If the CAN interface is not powered up, the product HMI will display the error message E63
and the CANopen communication will be disabled. The protocol will only operate again after
the power supply has been restored.

6.3 E65 - Node Guarding error

One of the available services for the PLC2 is the error control using Guarding mecha-
nism, where telegrams are exchanged periodically for ensuring that the communication is made
without problems (Node Guarding). After the telegram exchange has started and the commu-
nication is interrupted during a time longer than the programmed one, the board will display
on the drive keypad the error message E65, indicating that there is a Node Guarding error.

This function depends on the configurations which have been set by the network master.
Eventual errors may occur due to communication problems or improper programming of the
master or objects through which this function is enabled. Please refer to section 5.6.2 for more
details about this function.

48

6 CANopen communication errors

NOTA!
Once these errors have been shown on the frequency inverter, they will be erased
only if user presses any key of the keypad. To have the update communication
status, it is recommended to check the PLC2 status parameters, according to de-
scribed at section 3.

49

7 Application examples

7 Application examples

This section gives examples about parameter setting and operation procedures with a
PLC2 board connected to a CFW-09 frequency inverter and operated via CANopen network.
Following network configuration is considered in the examples:

• 1 Master : a generic programmable equipment will be used with interface to the CANopen
network having following functions:

– Network master (controls the slave states and node guarding).

– SYNC Producer

– EMCY Consumer

– SDO Client

The PLC2 board can also be used for this function if configured as network master.

• 2 Slaves : as CANopen network slaves will be used 2 PLC2 boards installed in 2 CFW-09.

HMI
PLC
Etc...

MASTER

24 VDC

Termination

Termination

PLC2 #1 PLC2 #2

CAN Bus

Power Supply

Figure 12: Network used in the application examples

Both CAN bus ends must be fitted with a 120Ω / 0.25W termination resistor connected
to the signals CAN H and CAN L. When it is not provided by the device, this resistor can be
fitted directly to the CAN connector. All network points must be grounded, and if possible,
connected to the common grounding point. Use a power supply to supply the CAN interface
via bus.

For the CANopen communication, following parameters are important for the PLC2 board
parameter settings:

• P770: you must enable the CANopen protocol for both PLC2 boards. Thus you must set
P770 to 1.

• P771: the Node-ID is set at P771. This setting must be different for each network slave.
In our example, one PLC2 board will be programmed to the address #1 and the other
to the address #2

• P772: considering that the network cable length will be shorter than 40 m, the max.
baud rate will be used (1 Mbit/s). This is achieved by setting P772 to 0 (zero).

50

7 Application examples

• P773: this parameter can be programmed according to the required application. In this
example, the reset of bus off error must be executed in manual way (P773 = 0 (zero)).

• P774: if a communication error occurs with the PLC2 board on the CANopen network,
this must cause a drive error. This is achieved by setting P774 = 1.

After parameter setting you must switch off/on or reset the drive to initialize the PLC2
board and so the new configurations could be accepted by the device. For diagnostic procedures
you must observe following parameter sequence:

• P775: indicates the CAN network status. This parameter must display 2 (no error) when
the CANopen protocol has been programmed, when the baud rate is correct and when
the equipments are connected to the network.

• P780: this parameter must display 2 indicating that the CANopen protocol has been
started without problems.

• P781: this parameter must display the value 127 while the network master does not start
the PLC2 operation, indicating that the device is in pre-operational state.

After installation and parameter setting, the PLC2 will be now ready to be operated via
CANopen network.

7.1 Example 1 - Slave state controlling

Section 5.6.1 shows a state diagram describing the behavior of a network slave. The slave
state is controlled by the master through the managing services.

After initialization all slave are in pre-operational state. According to the sent telegram,
the master can now request the reset or enter the slave into an existing state. Please find below
some telegram examples. Please note that the telegrams are not confirmed by the master, i.e.,
the master send only messages to the network.

Master sends Start Node command to the slave at address 1

Master → 000h 01h 01h → Network

Master sends Stop Node command to the slave at address 1

Master → 000h 02h 01h → Network

Master sends Enter Pre-operational command to the slave at ad-
dress 2

Master → 000h 80h 02h → Network

Master sends Reset Communication command to the slave at ad-
dress 2

Master → 000h 82h 02h → Network

51

7 Application examples

Master sends Reset Node command to all slaves on the network

Master → 000h 81h 00h → Network

Please note that the COB-ID of the telegram is always 0 (zero). All slaves will receive
the telegram, however only the slave with the destination Node-ID (byte 2) will execute the
command (byte 1). If the byte 2 has the value 0 (zero), this means that the message is of
broadcast type and that all slaves must execute the command.

7.2 Example 2 - SDOs messages

In this example, the telegrams will be shown via SDO, where the master reads and write
the parameters and other network slave objects. Please note that the SDO telegram will have
following structure:

COB-ID Command Index Sub-index Object data
11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

Object read 1018h, sub-index 2 (Product code) of the address 1
→ 601h 40h 18h 10h 02h 00h 00h 00h 00h →

Master PLC2

← 581h 43h 18h 10h 02h 01h 02h 00h 00h ←
Response with the object content with value equal to 0000.201h

Write of P762 = 10 (object 22FAh) at address 2
→ 602h 2Bh FAh 22h 00h 0Ah 00h 00h 00h →

Master PLC2

← 582h 60h FAh 22h 00h 00h 00h 00h 00h ←
Response confirming parameter write

Read of P755 (object 22F3h) at address 2
→ 602h 40h F3h 22h 00h 00h 00h 00h 00h →

Master PLC2

← 582h 4Bh F3h 22h 00h E8h 03h 00h 00h ←
Response with P755 content equal to 100, 0o

7.3 Example 3 - Error control enabling - Guarding

The error control service allows the network integrants detecting errors which occur on
remote devices. For this detecting service, the PLC2 board uses the Guarding service.

For configuring this service, you must proceed as follows:

• Which action should be adopted by the PLC2 board relating to CFW-09 when a network
fault is detected?

52

7 Application examples

For this example, the PLC2 should cause a fatal error in the drive when a communica-
tion error is detected, disabling the motor. But for this purpose you must program the
Parameter P774 to 1, as described in section 3.5. This setting can be made directly by
the equipment HMI or through the CANopen network by using a SDO to write in the
object 2306h (equivalent to P774).

• How many time can elapse for the PLC2 to detect a network fault?

For this application we will consider that the limit time for detecting this communication
error is 1 second. Based on this time, you can define the objects 100Ch - Guard time
and 100Dh - Life time factor so the device will act within the programmed time. In
this case, you can set the object 100Ch = 500 (which means that the PLC2 will receive a
message from the master every 500 ms, if no message is received, this will be considered as
service fault), and the object 100Dh = 2 (which means that when two faults are detected
in sequence, this will be considered as an communication error). These values must be
written by using the SDO of the PLC2.

These configurations are set to the slave at address 1, and the configuration of the slave
at address 2 can be set in similar way.

Write P774 = 1 (communication error causes faults in the CFW-09)
→ 601h 2Bh 06h 23h 00h 01h 00h 00h 00h →

Master PLC2

← 581h 60h 06h 23h 00h 00h 00h 00h 00h ←
Response confirming parameter write

Write of object 100Ch = 500 (Guard Time = 500 ms)
→ 601h 2Bh 0Ch 10h 00h F4h 01h 00h 00h →

Master PLC2

← 581h 60h 0Ch 10h 00h 00h 00h 00h 00h ←
Response confirming object write

Write of object 100Dh = 2 (Life Time Factor = 2 times)
→ 601h 2Fh 0Dh 10h 00h 02h 00h 00h 00h →

Master PLC2

← 581h 60h 0Dh 10h 00h 00h 00h 00h 00h ←
Response confirming object write

After these objects have been configured, the PLC2 board is ready for starting the Guard-
ing service. The same service must be programmed in the Master4, so the devices can operate
jointly. Once the communication through the master has been started, the PLC2 starts the
time counting as set for the error control.

4The master is usually programmed with slightly shorter sending times in order to prevent timeout problems
due to small time differences or delays for telegram sending.

53

7 Application examples

Master request for the guarding service (remote frame)
→ 701h →

Master PLC2

← 701h 7Fh ←
Slave response informing that it is in pre-operational state (127).
Toggle bit is disabled (bit 8)

Master request for the guarding service (remote frame)
→ 701h →

Master PLC2

← 701h FFh ←
Slave response informing that it is in pre-operational state (127).
Toggle bit is enabled (bit 8)

The telegrams are sent cyclically. Once this service has been enabled, you can check its
status through the Parameter P780 of the PLC2 board, which must be set to 3 (Node Guarding
enabled).

When the communication is interrupted, this will cause an error in the CFW-09 and it
goes to the pre-operational state (if it is not already in this state). The parameter P780 will
assume the value 4, indicating that guard message exchange has been interrupted during a time
longer than programmed in the objects 100Ch and 100Dh.

7.4 Example 4 - Configuring a Transmit PDO

Use the transmit PDOs for sending data from a determined equipment to the network. For
the PLC2, the information that can be sent is in the markers %WW e %WB. These markers are
programmable through the user program so the required data can be transmitted via CANopen
network.

The information that should be transmitted must be mapped in one of the four transmit
PDOs available for the PLC2. There is already a standard mapping, however, depending on the
application, other information may be added or removed. Please note the following subjects:

• Which information shall be transmitted by the PLC2 to the network?

You must define which information should be sent by the PDO. In our example, follow-
ing information will be transmitted: effective position (rotation) and effective position
(fraction of revolution) of the slave at address 1.

• In which parameters or marker this information is available?

The effective position information is available at the parameters P757 and P758 of the
board. So this information is available for the CANopen network, you must transfer the
content of these parameters to the user parameters which can be mapped in the PDOs,
as shown in the table 19. In this case, these parameters will be transferred to the markers
%WW0 and %WW1 that are already mapped in the first transmit PDO. For transferring
the content of these markers, you must program these markers through the software WLP.

54

7 Application examples

• Which is the COB-ID for the message?

When the PLC2 transmits this PDO, one or more equipment will receive this information.
Thus it is important to know the COB-ID of the transmitted message so you can program
the receive PDOs which will consume this message. In our example, the first transmit
PDO will be used for the PLC2 at address 1. The COB-ID for the PDO will not be
changed and the standard value (=181h) will be maintained (object 1800h, sub-index 1).

• How should this PDO be transmitted and how long is the time for this transmission?

The PLC2 can transmit a PDO in several ways: linking this PDO to a telegram SYNC,
programming the PDO timer so it will be transmitted periodically or by sending remote
telegrams, requesting their transmission, as shown in table 21. In this case, the timer is
used for the automatic transmission of the PDO at every 10 ms. The type of transmission
is programmed in the object PDO COMM PARAMETER of the respective PDO, in the
sub-index 5.

As described above, you must program firstly the software WLP for transferring the
contents of the parameters P757 and P758 to the markers %WW0 and %WW1. For more
detail about this programming, refer to the Programming Manual of PLC2 board.

The first transmit PDO of the board has already the mapped markers %WW0 and %WW1
(according to section 5.3.3). However there are other mapped objects which are not required,
thus you must restrict the number of the mapped objects from four to only two objects.

Object 1A00h, sub-index 0 = 2, changing the number of the mapped
objects from four to two
→ 601h 2Fh 00h 1Ah 00h 02h 00h 00h 00h →

Master PLC2

← 581h 60h 00h 1Ah 00h 00h 00h 00h 00h ←
Response confirming object write

Now you must configure the timer of the PDO so it is transmitted every 10 ms. This
configuration is made in the object 1800h, sub-index 5. The values of the sub-indexes 2 and 3
will be maintained in their standard values.

Object 1800h, sub-index 5 = 10, enabling the timer for transmitting
the PDO every 10 ms
→ 601h 2Bh 00h 18h 05h 0Ah 00h 00h 00h →

Master PLC2

← 581h 60h 00h 18h 05h 00h 00h 00h 00h ←
Response confirming object write

Now the PLC2 is ready for starting the transmission of its first PDO, containing the
information about the motor position. But this transmission will be started only after the
master has sent the command to the slave to enter into the operational state, since this is the
only state where the slave can transmit or receive PDOs.

55

7 Application examples

Master sends command Start Node to the slave at address 1

Master → 000h 01h 01h → PLC2

PLC2 sends the PDO containing %WW0 = 0 and %WW1 = 0
(position of the motor shaft)

PLC2 → 181h 00h 00h 00h 00h → Network

PLC2 sends the PDO containing %WW0 = 0 and %WW1 = 13
(new position of the motor shaft)

PLC2 → 181h 00h 00h 0Dh 00h → Network

Now the information will be sent to the network at every 10 ms. If one or more devices
of the network should receive these data, you must program reception PDO with the COB-ID
of this message and performing the mapping as required.

7.5 Example 5 - Configuring a Receive PDO

The receive PDOs are mainly used for the reception of the control data and references for
the device operation. Similar to the transmit PDOs, you can map the markers %RW and %RB
in a RPDO which will be responsible for receiving the network data and storing them into the
mapped parameters. As the configuration of a receive PDO depends on the application, you
must provide following information:

• Which information should be received by the PLC2 from the network?

You must define which information will be received by the PDO. In our example, the
PLC2 at address 2 will be used for receiving an only user parameter that will be used as
frequency inverter speed reference.

• In which parameters this information will be available?

In our case, we chose the marker %RW0 for receiving this speed reference information.
Please note that %RW0 is a programmable marker, and to use it as speed reference,
you must program the PLC2 board with the software WLP. For more details about the
programming, refer to the Programming Manual of the PLC2 board.

• Which is the COB-ID for this message?

The first receive PDO of the PLC2 board will be used, and its standard COB-ID (=202h)
will be maintained for this RPDO (object 1400h, sub-index 1). This PDO will receive
only the network messages which have the same COB-ID, so another network element
must send messages with this COB-ID.

• How is the reception of this PDO?

As shown in table 21, a receive PDO may be linked to a SYNC telegram or not. In
our example, the transmission type (object 1400h, sub-index 2) for the RPDO with its
standard value (=254) will be maintained, indicating that there is no relationship with
the SYNC telegrams. So always a telegram is received, the mapped object values will be
updated automatically.

56

7 Application examples

Based on this information, as first step you must map the chosen data. As the first receive
PDO will be used, its mapping has already the marker %RW0 configured to the first position
(object 1600, sub-index 1). This PDO has other not used mapped objects that will be excluded.

Object 1600h, sub-index 0 = 1, for indicating that there is only 1
mapped object in this PDO
→ 602h 2Fh 00h 16h 00h 01h 00h 00h 00h →

Master PLC2

← 582h 60h 00h 16h 00h 00h 00h 00h 00h ←
Response confirming object write

After mapping, you must program the PLC2 to the operational state. In this state all
telegrams with COB-ID equal to 202h will be received by the device and the values of the
mapped parameters will be updated.

Master sends command Start Node to the slave at address 2

Master → 000h 01h 02h → PLC2

PLC2 receives from the network the PDO containing %RW0 = 1000

Network → 202h E8h 03h → PLC2

The received values are stored in the mapped parameters and they will be interpreted
according to the program set for the PLC2 board by using the WLP.

7.6 Example 6 - Using the SYNC object for sending PDOs

The SYNC telegrams can be used as time base for transmission or reception of the network
data. To use it with the PLC2 board, some network device must be the producer of this object.
The PLC2 has an entry in its dictionary (object 1005h), where you can configure the COB-ID
used by the SYNC producer.

Firstly you must define following subjects:

• Which time shall be used by the SYNC producer for the telegram transmission?

In our example, the transmission time of a SYNC telegram will be 100 ms. This pro-
gramming is only performed in the SYNC producer, which is in this case the master. The
COB-ID for this telegram will be 80h, which is the standard value.

• Is there any transmit or receive PDO that should be linked to this object? For the
transmit PDOs, they must be transmitted at every SYNC, or at SYNC multiple values.

Each device will have a transmit PDO linked to the SYNC telegram. The board at the
address 1 shall send its PDO at every detected SYNC telegram, whereas the board at the
address 2 shall send its telegram at every 2 SYNC telegrams. The mapped data in the
PDOs will be maintained with their standard values for the PLC2.

57

7 Application examples

Now the PDOs must be configured by using the SDO of each slave.

Slave 1, object 1800, sub-index 2 = 1, programming the PDO to be
transmitted with every SYNC telegram
→ 601h 2Fh 00h 18h 02h 01h 00h 00h 00h →

Master PLC2

← 581h 60h 00h 18h 02h 00h 00h 00h 00h ←
Response confirming the object write

Slave 2, object 1800, sub-index 2 = 2, programming the PDO to be
transmitted at every 2 SYNC telegrams
→ 602h 2Fh 00h 18h 02h 02h 00h 00h 00h →

Master PLC2

← 582h 60h 00h 18h 02h 00h 00h 00h 00h ←
Response confirming the object write

After configuration has been completed, you must enable the production of SYNC tele-
grams in the master, according to the time that has been stipulated for the production (in our
case, at every 100 ms). However the slaves will not transmit their PDOs before they do not
enter into the operational status. Also the master will give this command.

Master starts the transmission of the SYNC telegrams at every 100
ms

Master → 080h → PLC2

Master sends Start Node command to all slaves

Master → 000h 01h 00h → PLC2

When the slaves enter into the operational state, the slave at the address 1 will send a
PDO at every SYNC telegram, whereas the slave at address 2 will send a PDO at every 2
received SYNC telegrams. These telegrams will be repeated indefinitely during all time the
system is operating. The data transmitted by the PDOs can be consumed by other devices on
the network according to the desired operation logic.

58

7 Application examples

Master sends a new SYNC telegram

Master → 080h → PLC2

The PLC2 at address 1 sends a PDO with the content of the
markers %RW0, %RW1, %RW2 and %RW3 (equal to zero)

PLC2 → 181h 00h 00h 00h 00h 00h 00h 00h 00h → Bus

Master sends a new SYNC telegram

Master → 080h → PLC2

The PLC2 at address 1 sends a PDO with the content of the markers
%RW0, %RW1, %RW2 and %RW3 (equal to zero)

PLC2 → 181h 00h 00h 00h 00h 00h 00h 00h 00h → Bus

The PLC2 at address 2 sends a PDO with the content of the markers
%RW0 = 100, %RW1 = 200, %RW2 = 300 and %RW3 = 400
(values only for demonstration)

PLC2 → 182h 64h 00h C8h 00h 2Ch 01h 90h 01h → Bus

In the same way as the SYNC telegram is used by the transmit PDOs, they can be also
used by the receive PDOs for synchronizing the data reception by the network devices. When
you program a RPDO to synchronous type, all data received by this PDO will be updated in
the object dictionary only when the next SYNC telegram has been detected.

7.7 Example 7 - Error detection by using EMCY

The EMCY telegrams can be used for displaying any error that has been detected on the
network device. The PLC2 has an EMCY producer that sends a message to the network always
an error is detected and indicates the error type that has been detected. If the network master
is fitted with an EMCY consumer which is monitoring this event, it can detect and display this
error or adopt an action as programmed for this application.

The PLC2 boards have a single object for reading the COB-ID of this object (object
1014h), which as standard assumes the value 080h + Node-ID of the slave. Please find below
some telegram examples sent by this object for displaying the detected error. The used error
codes are shown in table 16.

The slave at address 1 sends an EMCY telegram, displaying
lag error

PLC2 → 081h 11h 86h 01h 32h 00h 00h 00h 00h → Network

The slave at address 2 sends an EMCY telegram, displaying
life guard error

PLC2 → 082h 30h 81h 11h 41h 00h 00h 00h 00h → Network

59

	List of Tables
	List of Figures
	About the Manual
	Abbreviations and Definitions
	Documents

	1 Introduction to the CANopen protocol
	1.1 CAN
	1.1.1 Data frame
	1.1.2 Remote frame
	1.1.3 Network access
	1.1.4 Error control
	1.1.5 CAN and CANopen

	1.2 Features of the CANopen network
	1.3 Physical layer
	1.4 Address at CANopen network
	1.5 Data access
	1.6 Data transfer
	1.7 Communication objects - COBs
	1.8 COB-ID
	1.9 EDS File

	2 Installation
	2.1 Connection to the network
	2.2 Power supply
	2.3 Cables and termination resistor
	2.4 Baud rate

	3 CANopen communication parameters
	3.1 P770 - CAN protocol
	3.2 P771 - Address of the CAN network
	3.3 P772 - Baud rate
	3.4 P773 - Bus Off recovery
	3.5 P774 - Action for communication error
	3.6 P775 - CAN controller state
	3.7 P776 - Number of received telegrams
	3.8 P777 - Number of transmitted telegrams
	3.9 P778 - Number of recorded errors
	3.10 P779 - CANopen Operation Mode
	3.11 P780 - CANopen network state
	3.12 P781 - CANopen node state

	4 Object dictionary
	4.1 Dictionary structure
	4.2 Data types
	4.2.1 Basic data types
	4.2.2 Compound data types
	4.2.3 Extended data types

	4.3 Communication profile objects
	4.4 Manufacturer specific objects

	5 Communication objects description
	5.1 Identification objects
	5.1.1 Object 1000h - Device Type
	5.1.2 Object 1001h - Error Register
	5.1.3 Object 1003h - Pre-defined error field
	5.1.4 Object 1018h - Identity object

	5.2 Service Data Objects - SDOs
	5.2.1 Object 1200h - SDO Server
	5.2.2 SDOs Operation

	5.3 Process Data Objects - PDOs
	5.3.1 Mappable objects for the PDOs
	5.3.2 Receive PDOs
	5.3.3 Transmit PDOs

	5.4 Emergency Object - EMCY
	5.5 Synchronization Object - SYNC
	5.6 Network Management - NMT
	5.6.1 Slave state control
	5.6.2 Error control - Node Guarding

	5.7 Initialization procedure

	6 CANopen communication errors
	6.1 E61 - Bus off
	6.2 E63 - No power supply
	6.3 E65 - Node Guarding error

	7 Application examples
	7.1 Example 1 - Slave state controlling
	7.2 Example 2 - SDOs messages
	7.3 Example 3 - Error control enabling - Guarding
	7.4 Example 4 - Configuring a Transmit PDO
	7.5 Example 5 - Configuring a Receive PDO
	7.6 Example 6 - Using the SYNC object for sending PDOs
	7.7 Example 7 - Error detection by using EMCY

