
Hazardous Areas Motors

Tube-cooled

Manual de Instruções Instructions manual Name: Luís Araújo Signature: Responsible Engineer 50049024 v03 – 03/2020 PT-EN

Índice / Index

1	NOTAS PRÉVIAS	4
2	INSPECÇÃO GERAL	6
3	SEGURANÇA	7
4	TRANSPORTE E ARMAZENAGEM	7
5	INSTALAÇÃO	10
6	COLOCAÇÃO EM SERVIÇO	12
7	PROTECÇÕES	19
8	MANUTENÇÃO	20
9	DESMONTAGEM E MONTAGEM	22
10	MARCAÇÃO	22
11	PEÇAS DE RESERVA	27
12	INFORMAÇÕES ADICIONAIS	28
13	DECLARAÇÃO DE CONFORMIDADE	28
ΑN	EXO I	29
1.	PRELIMINARY NOTES	32
2.	GENERAL INSPECTION	34
3.	SAFETY INSTRUCTIONS	34
4.	TRANSPORT AND STORAGE	35
5.	INSTALLATION	37
6.	START UP	39
7.	MOTOR PROTECTIONS	46
8.	MAINTENANCE	47
9.	ASSEMBLING AND DISASSEMBLING	48
10.	MARKING	49

ANNE	ΞΧΙ	55
13.	DECLARATION OF CONFORMITY	54
12.	ADDITIONAL INFORMATION	54
11.	SPARE PARTS	53

Manual de Instruções

Motores e Geradores Assíncronos Trifásicos Antideflagrantes

1 NOTAS PRÉVIAS

1.1 Obrigado por terem mostrado a vossa preferência por motores WEGeuro.

Para que deles possam tirar os melhores resultados aconselhamos que sigam as instruções seguintes que são especialmente importantes para motores instalados em áreas perigosas. O seu não cumprimento compromete a segurança do produto e da sua instalação.

- 1.2 As operações de Instalação e Manutenção deverão ser executadas por pessoas devidamente qualificadas e com formação certificada para intervir neste tipo de motores. As pessoas envolvidas nestas operações devem estar familiarizadas com as regras de segurança e exigências em vigor e, nomeadamente, com o conceito de protecção.
- 1.3 Para reduzir ao mínimo os riscos de ignição devido à presença de material eléctrico em zonas perigosas, deve ser garantida a inspecção e a manutenção eficazes do material.
- 1.4 Os motores WEG são concebidos para serem montados, postos em funcionamento e utilizados de acordo com as regras deste Manual de Instruções o qual deve ser lido conjuntamente com as normas:

EN 60079-14:2014	IEC 60079-14:2013/ISH1:2017
EN 60079-17:2014	IEC 60079-17:2013
EN 60079-19:2011/A1:2015	IEC 60079-19:2019

Nenhuma responsabilidade poderá ser-nos imputada pelo seu não cumprimento.

1.5 Os motores WEG têm marcação de conformidade "CE" e cumprem todos os requisitos da Directiva ATEX 2014/34/UE e do esquema IECEx. Estão previstos para

serem utilizados em atmosferas explosivas – Categorias 2G, 2GD ou M2 – Zonas 1 e 2; 21 e 22.

- 1.6 O utilizador deve assegurar-se da compatibilidade entre as indicações constantes da chapa de características, a atmosfera explosiva presente, a zona de utilização e as temperaturas ambiente e de superfície. A correcta classificação da área de instalação e das características do ambiente é da responsabilidade do utilizador.
- 1.7 Os motores antideflagrantes WEG são fornecidos, na execução padrão, com caixas de terminais antideflagrantes "Ex db". Em opção, podem ser fornecidos com caixas de terminais de Segurança Aumentada "Ex eb". Neste caso a designação do tipo de protecção do motor é "Ex db eb".
- 1.8 Os motores "Ex db" são fabricados de acordo com as normas EN IEC 60079-0:2018, IEC 60079-0:2017, EN 60079-1:2014, IEC 60079-1:2014 e os motores "Ex db eb" estão, para além destas, conformes às normas EN IEC 60079-7:2015/A1:2018 e IEC 60079-7:2015/A1:2017. Os motores com equipamento de segurança intrinseca "Ex i" estão também de acordo com as normas EN 60079-11:2012 e IEC 60079-11:2011. O grupo de gases será IIB, IIC ou I consoante o tipo de motor.
- 1.9 A instalação deve estar em conformidade com as normas EN 60079-14:2014, IEC 60079-14:2013/ISH1:2017, EN 60079-25:2010/AC:2013 e IEC 60079-25:2010/AC:2013 para segurança intrinseca.
- 1.10 As juntas antideflagrantes dos motores WEG podem ter valores mais restritos do que os valores mínimos impostos pela Norma. Assim, os reparadores autorizados, sempre que necessitem de informações detalhadas relativamente a estas juntas, deverão contactar o Serviço Após Venda da WEG. Para motores do grupo I (minas), o utilizador deve ter em consideração que estes foram sujeitos apenas a um impacto correspondente a uma energia de baixo risco.
- 1.11 Os motores com protecção IP65 ou IP66, concebidos para serem utilizados em atmosferas explosivas com poeiras combustíveis (Ex tb IIIC T125°C (ou T135°C) Db IP65 ou IP66), estão também em conformidade com as normas EN 60079-31:2014 e IEC 60079-31:2013.
- 1.12 Os motores podem ser equipados com intercalares, montados no topo das carcaças ou noutros intercalares, permitindo a montagem de caixas de terminais

adicionais em diferentes posições. Os intercalares podem ter protecção antideflagrante "Ex db" ou de segurança aumentada "Ex eb" e permitem montar caixas de terminais antideflagrantes "Ex db" ou de segurança aumentada "Ex eb".

No caso de motores equipados com caixas de terminais de fases segregadas ou fases isoladas com protecção de segurança aumentada "Ex eb", a montagem é feita num intercalar com protecção de segurança aumentada "Ex eb" e podem ser utilizadas em temperaturas ambiente até -20°C.

1.13 Sempre que os motores são equipados com componentes de segurança intrínseca "Ex i", para protecção térmica da bobinagem e/ou rolamentos, detecção e/ou controlo de vibrações, os seus circuitos, nas caixas de terminais auxiliares, estão separados dos circuitos que não são de segurança intrínseca. Estes circuitos são visualmente diferentes (com terminais na cor azul) e estão devidamente identificados devendo ser conectados a barreiras de segurança Zener, adequadas em função dos parâmetros de entrada destes componentes.

Os componentes de segurança intrinseca são ligados, no interior das caixas de terminais auxiliares, a terminais montados em calha DIN com o cabo de terra devidamente conectado ao terminal de terra existente para esse efeito.

1.14 Quando os motores são equipados com componentes de segurança intrínseca "Ex i", deverá ser consultada a informação sobre os parâmetros de entrada destes componentes, referida no Anexo I deste manual, necessária para a definição da barreira Zener de segurança intrínseca.

Ver **Anexo I** para detalhes.

2 INSPECÇÃO GERAL

- 2.1 Verificar se as características do motor, indicadas na chapa de características, estão de acordo com o pedido na encomenda. Deve ser dada atenção especial ao tipo de protecção e/ou EPL do motor. Se forem detectadas não-conformidades, estas devem ser reportadas de imediato aos Serviços Comerciais da WEG.
- 2.2 Estes motores são fabricados para funcionar num ambiente que apresente risco de explosão. É portanto, indispensável controlar rigorosamente, durante a recepção do

- material, todas as peças exteriores (carcaça, tampa, chumaceira, caixa de terminais e tampa da caixa de terminais).
- 2.3 Qualquer anomalia detectada deve ser assinalada, comunicada aos Serviços Comerciais da WEG e devidamente analisada de forma a garantir que os motores podem funcionar sem risco neste ambiente. Se necessário, devem substituir-se as peças danificadas ou que possam vir a apresentar qualquer risco, mesmo que a longo prazo.

3 SEGURANÇA

- 3.1 Os motores para áreas classificadas são especialmente projetados para atender às regulamentações oficiais referentes aos ambientes em que estão instalados. Uma aplicação inadequada, conexão errada ou outras alterações, por menores que sejam, podem colocar em risco a fiabilidade do produto.
- 3.2 Qualquer componente adicionado ao motor pelo utilizador, como por exemplo, bucim, tampão, encoder, etc., deve ser seleccionado em conformidade com o tipo de proteção do invólucro, o "nível de proteção de equipamento" (EPL) e o grau de proteção do motor, de acordo com as normas indicadas no certificado do produto.
- 3.3 O símbolo "X" junto ao número do certificado, informado na placa de identificação do motor, indica que o mesmo requer condições especiais de instalação, utilização e/ou manutenção do equipamento, sendo estas descritas no certificado e fornecidas na documentação do motor. A não observação destes requisitos compromete a segurança do produto e da instalação.
- 3.4 Para os motores dos grupos I e IIB a espessura total de tinta deve ser menor ou igual a 2mm. Para motores do grupo IIC, a espessura total de tinta deve ser menor ou igual 200μm. Se o esquema de pintura selecionado exceder este valor, é colocada no motor uma placa de aviso com a informação de que existe o risco de descargas elctrostáticas (Ver 8.6).

4 TRANSPORTE E ARMAZENAGEM

4.1 Os motores não deverão ser submetidos a acções prejudiciais durante o transporte e armazenagem.

- 4.2 Na recepção do motor, verificar se ocorreram danos durante o transporte. Na ocorrência de qualquer dano, registar por escrito junto do agente transportador, e comunicar imediatamente à companhia seguradora e à WEG. A não comunicação pode resultar no cancelamento da garantia.
- 4.3 Todos os motores com rolamentos de rolos cilíndricos e com rolamentos de esferas de contacto oblíquo são equipados com um dispositivo de bloqueamento do veio para o transporte, colocado em regra no lado dianteiro. Alguns motores poderão ter dois dispositivos de travamento, um no lado dianteiro e outro no lado traseiro. Para o motor poder operar é necessário remover o dispositivo, que deve ser reinstalado, no caso de o motor ser sujeito a qualquer manipulação e/ou transporte.
- 4.4 Na recepção do motor devem ser removidos os dispositivos de travamento do veio e rodar manualmente o veio para verificar se o mesmo roda livremente. Caso o motor seja para armazenar, deverão colocar-se novamente os dispositivos de travamento do veio.
- 4.5 A armazenagem deverá ser feita num local limpo, seco e sem vibrações. Se o motor não for instalado de imediato, este deve ser armazenado num local limpo, seco e sem vibrações, com uma humidade relativa não excedendo 60% e uma temperatura ambiente entre 5°C e 40°C, sem variações rápidas de temperatura, sem poeiras, gases ou agentes corrosivos. O motor deve ser armazenado na posição horizontal a menos que tenha sido projectado para operar na vertical.
- 4.6 Se bem que as superfícies trabalhadas ponta de veio, face da flange, etc. estejam protegidas com uma camada de produto anticorrosivo (ANTICORIT BW 366 da FUCHS, ou equivalente), se for prevista uma armazenagem prolongada, essas superfícies deverão ser examinadas e, se necessário, deve ser aplicada nova camada.
- 4.7 As superfícies das juntas antideflagrantes devem ser protegidas com uma camada de massa anti-corrosão que não endureça com o envelhecimento e não contenha solventes (MOBIL Polyrex EM, Lumomoly PT/4, Molykote 33 ou outra equivalente recomendada pela WEG). Estas superfícies devem ser examinadas periodicamente e, se necessário, nova camada deve ser aplicada nomeadamente nas juntas das caixas de terminais, se estas já foram abertas.

- 4.8 Para períodos de armazenagem longos recomenda-se que o rotor seja rodado periodicamente para evitar a deterioração dos rolamentos.
- 4.9 Se o motor for equipado com chumaceiras deve ser armazenado na sua posição original de funcionamento, e com óleo nos mancais. O nível do óleo deve ser respeitado, permanecendo na metade do visor de nível. Durante o período de armazenamento, deve-se retirar o dispositivo de travamento do veio e, mensalmente, rodar o veio manualmente 5 voltas (e a 30 rpm, no mínimo), para recircular o óleo e conservar o mancal em boas condições de operação. Caso seja necessário movimentar o motor, o dispositivo de travamento do veio deve ser reinstalado. Para motores armazenados por mais de seis meses, os mancais devem ser relubrificados, antes da entrada em operação. Caso o motor fique armazenado por período maior que o intervalo de troca de óleo, ou não seja possível rodar o veio do motor, o óleo deve ser drenado e aplicada uma proteção anticorrosiva e desumidificadores.
- 4.10 Se o motor estiver equipado com resistências anti-condensação, estas deverão estar ligadas durante o período de armazenamento.
- 4.11 A resistência de isolamento do motor deve ser medida periódicamente (ver valores em 6.1) durante o período de armazenamento e antes de o ligar pela primeira vez. Verificar os procedimentos e valores na secção 6 deste manual.
- 4.12 A movimentação do motor deve ser feita utilizando os olhais de suspensão conforme indicado na figura:

4.13 Levante o motor sempre pelos olhais de suspensão que foram projetados para suportar apenas para o peso do motor. Estes nunca devem ser usados para levantamento de cargas adicionais acopladas. Os olhais de suspensão dos componentes, como caixa de ligação, tampa defletora, etc., devem ser utilizados apenas para manusear estas peças quando desmontadas. Informações adicionais sobre os ângulos máximos de suspensão estão indicados no manual geral disponível no website da WEG, em www.weg.net.

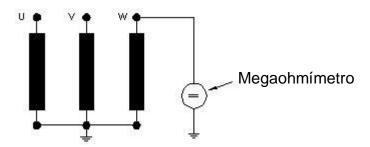
5 INSTALAÇÃO

- 5.1 Durante a instalação, os motores devem estar protegidos contra arranques acidentais.
 Confirme o sentido de rotação do motor, ligando-o em vazio antes de acoplá-lo à carga.
- 5.2 Os motores só devem ser instalados em aplicações, ambientes e forma construtiva informados na documentação do produto. Deve ser respeitado o tipo de proteção e o EPL indicado na chapa de identificação do motor, de acordo com a classificação da área onde o motor será instalado.
- 5.3 O dispositivo de bloqueamento do veio deverá ser retirado durante a montagem do motor.
- 5.4 Os rotores dos motores são equilibrados dinamicamente com meia-chaveta. Por esta razão, o acoplamento a montar na ponta de veio deve também ser equilibrado com meia-chaveta, de acordo com a norma IEC 60034-14.
 - Quando solicitado especificamente os motores poderão estar equilibrados com chaveta inteira.
- 5.5 Para a montagem do acoplamento na ponta de veio, aquecer o acoplamento a cerca de 80°C.
 - Se necessário a montagem pode ser feita com o auxílio de um parafuso que é roscado no furo da ponta de veio.
 - Nota Nunca fazer a montagem do acoplamento com pancadas, pois podem danificar os rolamentos.

- 5.6 No caso de acoplamento directo, o motor e a máquina accionada devem ser alinhados respeitando os valores de alinhamento,paralelo e angular, preconizados pelo fabricante do acoplamento. Não esquecer que quanto mais rigoroso for o alinhamento mais longa será a vida dos rolamentos.
 - No caso de uma transmissão por correias, estas terão que ser anti-estáticas e dificultar a propagação da chama. Não deverão ser utilizadas polias de diâmetro muito pequeno nem polias de largura superior ao comprimento da ponta de veio. Ter em atenção que a tensão das correias não deve ultrapassar os valores de cargas radiais recomendadas para os rolamentos. Se estas recomendações não forem respeitadas existe o risco de danificar os rolamentos ou de fracturar o veio.
- 5.7 Os motores WEGeuro podem operar em temperaturas ambiente entre -20°C a +60°C. Salvo indicação em contrário na chapa de características, os motores estão preparados para funcionar a uma temperatura ambiente de -20°C a +40°C.
 - Para temperaturas acima de +40°C, a fábrica deverá ser consultada para verificar se são requeridas execuções e/ou certificações especiais.
- 5.8 Não cobrir ou obstruir a ventilação do motor. Manter uma distância mínima livre de ¼ do diâmetro da entrada de ar da defletora em relação à distância das paredes. O ar utilizado para refrigeração do motor deve estar na temperatura ambiente, limitada à faixa de temperatura indicada na placa de identificação do motor (quando não indicado, considerar de -20°C a +40°C).
- 5.9 Antes da entrada em funcionamento, os tubos de arrefecimento do motor devem ser desobstruídos, limpos e secos.
- 5.10 Para evitar acidentes, certifique-se, antes de ligar o motor, de que o aterramento foi realizado conforme as normas vigentes e que a chaveta esteja bem fixa.
- 5.11 Conecte o motor corretamente à rede elétrica através de contatos seguros e permanentes, observando sempre os dados informados na placa de identificação, como tensão nominal, esquema de ligação, etc.
- 5.12 Quando utilizado terminal, todos os fios que formam o cabo multifilar devem estar presos dentro da luva. O isolamento dos cabos dos acessórios deve ser mantido até 1mm do ponto de conexão do conector.

6 COLOCAÇÃO EM SERVIÇO

6.1 Se o motor teve uma armazenagem prolongada ou se, após montagem, esteve por um longo período de tempo fora de serviço, aconselha-se a medida da resistência de isolamento antes do arranque.


A resistência de isolamento deve ser medida utilizando um Megaohmímetro. A tensão de ensaio dos enrolamentos do motor deve ser a indicada na tabela abaixo, conforme a norma IEEE43.

Tensão nominal dos enrolamentos do motor (V)	Tensão contínua para ensaio da resistência de isolamento (V)
< 1000	500
1000 – 2500	500-1000
2501 – 5000	1000 – 2500
5001 - 12000	2500 – 5000
> 12000	5000 – 10000

A tensão de ensaio para as resistências anti-condensação, protectores térmicos e outros acessórios é de 500 V_{CC}.

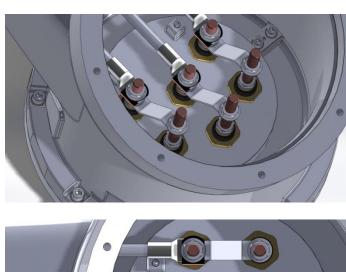
Estas medidas deverão ser feitas antes de se ligarem os cabos de alimentação.

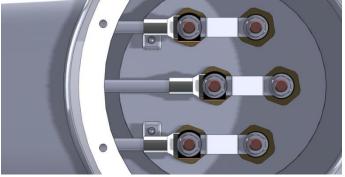
Um possível esquema para efectuar a medida da resistência de isolamento é o que se mostra na figura abaixo, devendo efectuar-se a leitura 1 minuto após a aplicação da tensão contínua pelo Megaohmímetro.

Os valores mínimos recomendados para a resistência de isolamento, de acordo com a norma IEEE 43, corrigidos para a temperatura de 40°C, são os seguintes:

■ 5 MΩ, para motores de baixa tensão (U <u><</u> 1,1kV)

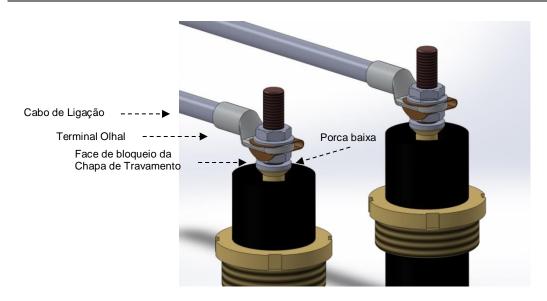
100 MΩ, para motores de média tensão (1,1kV < U ≤ 11kV)


O valor da resistência de isolamento, varia principalmente em função da temperatura do enrolamento conforme se mostra no quadro seguinte:


TEMPERATURA DE ENROLAMENTO	TENSÃO DE SERVIÇO	
TEMPERATURA DE ENROLAMIENTO	<u><</u> 1,1 kV	> 1,1kV
20° C	20 ΜΩ	400 ΜΩ
30° C	10 MΩ	200 ΜΩ
40° C	5 ΜΩ	100 ΜΩ

Se o valor da resistência de isolamento for inferior aos valores indicados, verificar primeiramente se o isolamento da bobinagem do motor está afectado por humidade ou depósito de poeiras. Se necessário limpar os enrolamentos da bobinagem e secar o motor a uma temperatura inferior a 100°C. Se estas medidas não forem suficientes deve ser solicitada ajuda técnica especializada.

- 6.2 Verificar se a tensão indicada na chapa de características é a mesma da rede onde será ligado o motor. Respeitar sempre os esquemas de ligação incluídos na caixa de terminais face à tensão disponível e/ou velocidades pretendidas.
 - Para informação, os esquemas de ligação mais comuns estão indicados nas páginas 58/59.
- 6.3 Os enrolamentos dos motores estão ligados de tal modo que o motor roda no sentido dos ponteiros do relógio quando se vê o motor do lado da ponta de veio principal e quando a ordem alfabética das extremidades do enrolamento do motor (U,V,W) corresponde à ordem de sucessão das fases no tempo (L1, L2, L3). Para rodar no sentido contrário devem permutar-se dois dos três cabos de alimentação.
 - Se o motor só puder rodar num só sentido de rotação terá uma placa com uma flecha indicando esse sentido.
- 6.4 Nos motores com caixas de terminais "Ex eb", os isoladores deverão ser equipados com cerra-cabos ou com chapas de travamento para manter o cabo sempre na posição inicial fixada durante o seu aperto.
- 6.5 Como padrão, os isoladores nas caixas de terminais "Ex eb" são equipados com chapas de travamento. A utilização das placas de travamento não altera a capacidade de curto-circuito das caixas de terminais (I_{cc}).

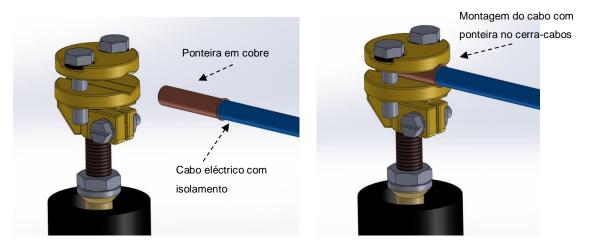

Nos isoladores com chapa de travamento é necessário garantir um alinhamento entre a chapa e o terminal olhal que permita a correta saída dos cabos de ligação, tal como representado nas figuras seguintes.

Exemplo de uma montagem "Ex eb" com chapas de travamento.

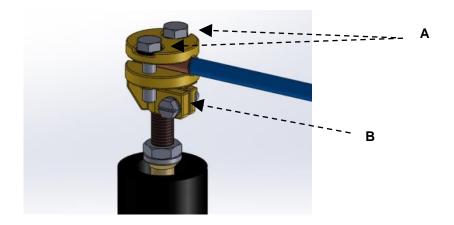
Para a correta saída dos cabos de ligação, a face de bloqueio da chapa de travamento em conjunto com a porca baixa imediatamente abaixo, devem estar paralelos ao terminal olhal onde o cabo de ligação é cravado.

Detalhe do alinhamento entre a chapa de travamento e a saída do cabo de ligação.

Os binários de aperto para a parte superior dos terminais isoladores M10 a M24 são:


Rosca	Mínimo [<i>N.m</i>]	Máximo [<i>N.m</i>]	
M10	8	13	
M12	15	30	
M16	30	50	
M20	50	80	
M24	130	186	

6.6 Opcionalmente, os isoladores nas caixas de terminais "Ex eb" podem ser equipadas com cerra-cabos. Neste caso deve ser garantido um aperto perfeito do cerra-cabos ao isolador e do cabo no interior do cerra-cabos.


Nestas caixas, as pontes de ligação (shunts) devem ser desmontadas ou montadas cuidadosamente conforme instruções fornecidas neste manual, sem que o posicionamento dos cerra-cabos seja alterado (ver instruções na página 60).

Nas caixas equipadas com cerra-cabos, a capacidade de curto circuito (Icc) é reduzida face à capacidade de curto circuito da mesma caixa com isoladores sem cerra-cabos.

6.7 Para fazer a ligação do cabo de alimentação ao cerra-cabos, deve aplicar-se uma ponteira no cabo descarnado e de seguida fazer o aperto no cerra-cabos, conforme as imagens seguintes:



Para os parafusos dos cerra-cabos, recomenda-se que sejam utilizados os seguintes valores de binário:

Binário de aperto (Nm)			
A - Parafusos aperto do cabo no cerra-cabos cerra-cabos ao terminal			
50	25		

6.8 Junto a cada orifício roscado previsto para entrada de cabos é colocada uma placa com as respectivas dimensões tipo de rosca.

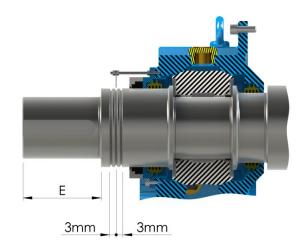
6.9 Os cabos e bucins utilizados devem ser compatíveis com a temperatura indicada na placa de certificação afixada no motor sempre que o seu valor é superior a 80°C:

Bucins montados nas caixas de terminais			
•	85°C para temperatura ambiente de 50°C		
Possini	95°C para temperatura ambiente de 60°C		
Bucins montados nas placas de obturação para motores com			

- saida de cabos
 - 95°C para temperatura ambiente de 40°C
 - 105°C para temperatura ambiente de 50°C
 - 115°C para temperatura ambiente de 60°C
- 6.10 Os bucins a utilizar devem ter <u>certificação ATEX no caso de motores ATEX e</u>

 <u>IECEx no caso de motores com certificação IECEx</u> e protecção (Ex d ou db IIB, Ex d ou db IIC, Ex e ou eb II, Ex d ou db I ou Ex e ou eb I) idêntica à da caixa de terminais e um grau de protecção mecânica IP pelo menos igual ao da caixa de terminais.
- 6.11 Antes de fechar as caixas de terminais, assegurar-se que o interior está completamente livre de poeiras.
- 6.12 Os binários recomendados para os parafusos de aperto das tampas das caixas de terminaios às caixas de terminais e das tampas do motor ao motor são os seguintes:

	Torque (Nm)			
Tipo	Aço carbono / classe 12.9		Aço inox / Classe 70/80	
	Min Máx.		Min.	Máx.
M8	14	30	14	19
M10	28	60	28	40
M12	45	105	45	60
M14	75	110	75	100


M16	115	170	115	170
M20	230	330	225	290
M24	400	510	400	510

- 6.13 Antes da entrada em funcionamento, verificar se as ligações foram efectuadas de acordo com os esquemas constantes deste manual ou fornecido na caixa de terminais, tendo em consideração o tipo de motor e enrolamento.
- 6.14 As entradas de cabos não utilizadas da caixa de terminais de potência, da caixa auxiliar e das caixas das protecções de rolamentos/chumaceiras devem ser sempre obturadas com tampões roscados com certificação ATEX / IECEx e com protecção (Ex d ou db IIB, Ex d ou db IIC, Ex e ou eb II, Ex d ou db I ou Ex e ou eb I) idêntica à da caixa de terminais.
- 6.15 A ligação de motores com cabo(s) solidário(s) (sem caixa de terminais) deve ser feito fora da zona com atmosfera explosiva ou protegido por um tipo de protecção normalizado
- 6.16 Os motores equipados com rolamentos de contacto oblíquo não deverão rodar sem carga axial e apenas devem ser usados na posição de montagem prevista (ver IM na chapa de características).
- 6.17 Motores com chumaceiras lisas (não previstos para o grupo IIC) devem ser acoplados directamente à máquina accionada. Os acoplamentos polia/correia não são recomendados para este tipo de motor.

Quando o motor estiver acoplado à máquina accionada, verificar os deslocamentos axiais da chumaceira do motor e da máquina accionada, bem como a folga axial máxima do acoplamento.

Os motores com este tipo de chumaceira não podem, em circunstância alguma, funcionar com forças axiais nas chumaceiras pois não estão preparados para as suportar.

Motores com chumaceiras devem ser acoplados garantindo-se o alinhamento axial do seu rotor, quando a seta indicadora aponta para a marcação central do veio (conforme imagem abaixo).

O sistema de acoplamento com a máquina accionada deve permitir a expansão térmica do veio mas travar o passeio axial do mesmo.

7 PROTECÇÕES

- 7.1 Recomendamos que, pelo menos, os motores estejam protegidos contra sobrecargas e sobreintensidades.
- 7.2 Não esquecer a ligação da massa do motor à terra, utilizando os terminais de terra disponíveis, quer na caixa de terminais quer sobre o invólucro do motor.
- 7.3 A instalação dos motores deve ser feita segundo as normas EN/IEC 60079-14. A sua inspeção e manutenção deverão ser feitas conforme as normas EN/IEC 60079-17.
- 7.4 Se os motores estiverem equipados com protecções térmicas, estas <u>podem ser</u> <u>ligadas</u> como proteção adicional e fonte de informação para manutenção. No caso de Pt100 ou termopares, a temperatura de disparo deve ser regulada para os valores indicados pela WEG.
- 7.5 Se as proteções térmicas não forem ligadas, o utilizador deve assegurar que a instalação e a manutenção são realizadas de forma adequada de modo a que sejam evitadas eventuais falhas nos rolamentos que podem resultar na ocorrência de uma fonte de ignição.
- 7.6 Quando necessário, e dependendo das condições de instalação e operação da máquina, devem ser tomadas precauções, como o monitoramento continuo da temperatura nos rolamentos lado ataque e lado oposto ao ataque, para proteger contra quaisquer efeitos originados pela presença de correntes circulantes.

- 7.7 Os motores alimentados por variação de frequência, devem estar equipados com sondas térmicas na bobinagem e, eventualmente, nos rolamentos. A ligação destas protecções <u>é obrigatória</u>. Estes motores são sempre equipados com caixas de terminais antideflagrantes "Ex db".
 - Nos motores de 2 velocidades com 2 enrolamentos, os 2 enrolamentos devem ser protegidos individualmente (protecção individual de cada um dos enrolamentos).
- 7.8 Se existirem resistências anti-condensação, estas não devem, em caso algum, ser ligadas senão quando o motor estiver frio e não alimentado.
- 7.9 Nos motores equipados com ventilação forçada, um dispositivo deve impedir o funcionamento do motor principal na ausência de ventilação.

Para evitar que a temperatura máxima de superfície seja excedida, as protecções térmicas do motor principal e do motor auxiliar devem ser ligadas a equipamento adequado e, no caso de Pt100 ou termopares, a temperatura de disparo deve ser regulada para os valores indicados pela WEG.

8 MANUTENÇÃO

- 8.1 Para motores à prova de explosão ou com proteção por invólucro, somente abrir a caixa de ligação e/ou desmontar o motor quando a temperatura superficial do invólucro estiver à temperatura ambiente.
- 8.2 Para os rolamentos, o tipo de massa lubrificante, a quantidade de massa e os períodos de relubrificação são indicados na chapa de características para as condições de funcionamento normais. A adição de massa deve ser feita com o motor em funcionamento e respeitando as condições de segurança.
 - Para condições de trabalho difíceis tais como graus de humidade e poluição elevados, cargas importantes nos rolamentos ou níveis de vibração excessivos, recomenda-se a redução dos intervalos de relubrificação.
- 8.3 A cada dois anos os motores devem ser abertos e os rolamentos examinados e, se necessário, substituídos. Durante a inspecção retirar toda a massa antiga acumulada nas peças envolventes dos rolamentos.
 - Para condições de trabalho difíceis, este período deve ser reduzido.

- 8.4 As entradas de ar, as passagens de ar e as superfícies de arrefecimento (tubos de arrefecimento da carcaça) devem ser limpas periodicamente. Os períodos dependem do grau de poluição e acumulação de poeira do ar ambiente.
- 8.5 Inspecione periodicamente o funcionamento do motor segundo a sua aplicação, assegurando um livre fluxo de ar. Inspecione as vedações, os parafusos de fixação, os mancais, os níveis de vibração e de ruído, as purgas, etc.
- 8.6 Motores que possuem risco potencial de acumulação de cargas electrostáticas, fornecidos devidamente identificados com uma placa de aviso, devem ser limpos de maneira cuidadosa recorrendo, por exemplo, à utilização de um pano húmido, para evitar a geração de descargas electrostáticas.
- 8.7 A manutenção dos motores antideflagrantes é particularmente importante porque:
 - Ao nível dos rolamentos, uma alteração faz:
 - o aumentar rapidamente a temperatura provocando risco de explosão
 - aumentar o interstício de travessia do veio devido à fricção do veio na placa de fecho; uma combustão interna pode transmitir-se para o exterior e provocar uma explosão.
 - Ao nível da ventilação exterior, um mau arrefecimento aumenta a temperatura de superfície que pode atingir valores superiores aos permitidos pela classe de temperatura definida.
 - É necessário verificar na chapa de certificado a classe de temperatura, a qual indica a máxima temperatura como se segue:

T3 ou T4 ou T135°C ou T125°C

8.8 Todos os motores à prova de explosão são fornecidos com produto anticorrosivo nos encaixes e parafusos. Antes de montar os componentes com faces maquinadas (por exemplo, tampas da caixa de ligação de motores antideflagrantes), limpar as superfícies e aplicar uma nova camada deste produto.

Para motores antideflagrantes, utilizar nos encaixes somente os seguintes produtos anticorrosivos: Lumomoly PT/4 (fabricante Lumobras) ou Molykote 33 (fabricante Dow Corning).

8.9 Para motores à prova de explosão, deve ser tomado cuidado adicional com as superfícies maquinadas de passagem de chama, de maneira a não conter rebarbas, riscos, etc., que reduzam seu comprimento e/ou aumentem a folga da passagem de chama.

9 DESMONTAGEM E MONTAGEM

Estes motores exigem cuidados especiais. Em particular na desmontagem e montagem de peças é necessário verificar o bom estado das juntas. As dimensões das juntas são o seu comprimento e o interstício, os quais são controlados a 100% durante a fabricação dos motores. As juntas não podem ser modificadas.

É necessário:

- Estar seguro que os alojamentos não estão danificados e não têm golpes ou riscos.
 Se isso acontecer, as peças devem ser substituídas.
- Todos os parafusos devem ser bem apertados. Um parafuso mal apertado altera a resistência do invólucro. Se for necessário substituir um parafuso, é imperativo que a qualidade e comprimento do parafuso sejam mantidos.
- Durante a manutenção, não trocar as peças intermutáveis.

Os parafusos de aperto dos invólucros do motor e caixas de terminais deverão ter uma resistência à tracção igual ou superior a:

- Classe 12.9 no caso de parafusos em aço.
- Classe A2-70 ou A4-80 no caso de parafusos em aço inox.

10 MARCAÇÃO

10.1 Todos os motores têm duas placas de marcação:

Chapa de características

Esta chapa contém as informações pedidas pela norma IEC 60034-1 e outras tecnicamente úteis.

Nota – Os dois primeiros algarismos do número de série do motor indicam o seu ano de fabricação.

Chapa de certificado

A chapa de certificação deve estar de acordo com a atmosfera explosiva onde irá ser utilizado o equipamento ou de acordo com a sua certificação, ATEX ou IECEx podendo conter as informações seguintes:

10.1.1 Atmosferas explosivas com gás:

Marcação ATEX Marcação IECEx

€x _{II 2 G}

Ex db IIB T4 (ou T3) Gb ou Ex db eb IIB T4 (ou T3) Gb ou Ex db ia (ou ib) IIB T4 (ou T3) Gb ou Ex db eb ia (ou ib) IIB T4 (ou T3) Gb ou Ex db eb IIC T4 (ou T3) Gb ou Ex db ia (ou ib) IIC T4 (ou T3) Gb ou Ex db eb ia (ou ib) IIC T4 (ou T3) Gb

- ⟨€x⟩ Marca europeia para os produtos "Ex"
- Grupo de material destinado a locais com atmosferas explosivas que não as minas de grisú
- Zona em que a atmosfera explosiva não é susceptível de aparecer senão em caso de funcionamento anormal da instalação
- G Atmosferas explosivas com gás
- Ex
 Símbolo para o material eléctrico correspondente a um ou mais modos de protecção segundo as Normas Europeias
- **db** Invólucro com protecção antideflagrante
- eb Componente com protecção de segurança aumentada
- ia Nível de protecção de segurança intrínseca ia
- ib Nível de protecção de segurança intrínseca ib
- B Subdivisão do grupo II
- C Subdivisão do grupo II
- T3/T4 Classe de temperatura

Gb Nível de protecção do equipamento

10.1.2 Atmosferas explosivas com gás e/ou poeiras:

Marcação ATEX Marcação IECEx

(€x) | 1 2 GD

Ex db IIB T4 (ou T3) Gb ou Ex db eb IIB T4 (ou T3) Gb ou Ex db ia (ou ib) IIB T4 (ou T3) Gb ou Ex db eb ia (ou ib) IIB T4 (ou T3) Gb ou

Ex db IIC T4 (ou T3) Gb ou Ex db eb IIC T4 (ou T3) Gb ou Ex db ia (ou ib) IIC T4 (ou T3) Gb ou Ex db eb ia (ou ib) IIC T4 (ou T3) Gb e/ou

Ex tb IIIC T125°C (ou T135°C)Db IP 65 (ou IP 66) ou

Ex ia (ou ib) tb IIIC T125°C (ou T135°C) Db IP 65 (ou IP 66)

€ x	Marca europeia para os produtos "Ex"		
II	Grupo de material destinado a locais com atmosferas explosivas que não as minas de grisú		
2	Zona em que a atmosfera explosiva não é susceptível de aparecer senão em caso de funcionamento anormal da instalação		
GD	Atmosferas explosivas com gás e/ou poeiras combustíveis		
Ex	Símbolo para o material eléctrico correspondente a um ou mais modos de protecção segundo as Normas Europeias		
db	Invólucro com protecção antideflagrante		
eb	Componente com protecção de segurança aumentada		
ia	Nível de protecção de segurança intrínseca ia		
ib	Nível de protecção de segurança intrínseca ib		
В	Subdivisão do grupo II		

C Subdivisão do grupo II

T3/T4 Classe de temperatura

Gb Nível de protecção d equipamento

tb Protecção por invólucro para zona 21

IIIC Subdivisão do grupo III

IP65 ou IP66 Índice de protecção

Db Nível de protecção do equipamento

T125°C/T135°C Máxima temperatura de superfície

10.1.3 Locais subterrâneos em minas:

Marcação ATEX Marcação IECEx

Ex db I Mb ou Ex db eb I Mb ou

Ex db ia (ou ib) I Mb ou Ex db eb ia (ou ib) I Mb

⟨⟨€x⟩ Marca europeia para os produtos "Ex"

Grupo de material destinado a locais subterrâneos em minas e nas partes das instalações de superfície colocadas em perigo pelo grisú e/ou poeiras combustíveis

Categoria de aparelhos concebidos para poderem funcionar dentro dos M2 parâmetros operacionais fornecidos pelo fabricante e baseados num elevado nível de protecção

Símbolo para o material eléctrico correspondente a um ou mais modos de protecção segundo as Normas Europeias

db Invólucro com protecção antideflagrante

eb Componente com protecção de segurança aumentada

ia Nível de protecção de segurança intrínseca ia

ib Nível de protecção de segurança intrínseca ib

Mb Nível de protecção do equipamento

10.1.4 Número de certificado

	ATEX	IECEx
Exemplos de certificados ATEX e IECEX	INERIS ** ATEX ****X	IECEx INE **.***X

INERIS	INE	Nome da entidade certificadora			
**		Ano de certificação			
ATEX		Designação da Directiva 2014/34/UE (Atmosferas explosivas)			
***		Número do certificado			
Х		Condições especiais de utilização especificadas no certificado			

10.2 Marcação complementar

Cabo de alimentação compatível com uma temperatura de __ºC
WEGeuro INDÚSTRIA ELÉCTRICA, S.A.
Rua Eng.º Frederico Ulrich, Sector V
4470-605 Maia - Portugal

Na tampa das caixas de terminais existem as seguintes indicações:

ATENÇÃO:

■ NÃO ABRIR SOB TENSÃO

NÃO ABRIR QUANDO UMA ATMOSFERA EXPLOSIVA ESTÁ PRESENTE

Informação suplementar: Endereço das filiais WEG em anexo.

10.3 Marcação adicional nas caixas de terminais quando estas estas estão separadas do motor

Nº do certificado:

Marcação para gás:

Ex db IIB T4 (ou T3) Gb ou Ex eb IIB T4 (ou T3) Gb ou Ex db ia (ou ib) IIB T4 (ou T3) Gb ou Ex eb ia (ou ib) IIB T4 (ou T3) Gb ou

Ex db IIC T4 (ou T3) Gb ou Ex eb IIC T4 (ou T3) Gb ou Ex db ia (ou ib) IIC T4 (ou T3) Gb ou Ex eb ia (ou ib) IIC T4 (ou T3) Gb e/ou

Marcação para gás e poeiras :

Ex db IIB T4(ou T3) Gb ou Ex eb IIB T4 (ou T3) Gb ou Ex db ia (ou ib) IIB T4 (ouT3) Gb ou Ex eb ia (ou ib) IIB T4 (ou T3) Gb ou

Ex db IIC T4 (ou T3) Gb ou Ex eb IIC T4 (ou T3) Gb ou Ex db ia (ou ib) IIC T4 (ou T3) Gb ou Ex eb ia (ou ib) IIC T4 (ou T3) Gb e/ou

Ex tb IIIC T125°C (ou T135°C) Db IP 65 (ou IP 66) ou

Ex ia (ou ib) tb IIIC T125°C (ou T135°C) Db IP 65 (ou IP 66)

Marcação para minas:

Ex db I Mb ou Ex eb I Mb ou

Ex db ia (ou ib) I Mb ou Ex eb ia (ou ib) I Mb

11 PEÇAS DE RESERVA

Para encomendar uma peça de reserva é necessário indicar:

- Tipo de motor.
- Número de série do motor.
- Designação da peça de reserva.

O tipo e o número de série do motor estão indicados na sua chapa de características.

Ao entrar em contato com a WEG, tenha em mãos a designação completa do motor, bem como seu número de série e data de fabricação indicados na chapa de características do motor.

12 INFORMAÇÕES ADICIONAIS

Para informações adicionais sobre transporte, armazenagem, manuseio, instalação, operação, manutenção e reparação de motores elétricos, aceda ao site http://www.weg.net.

13 DECLARAÇÃO DE CONFORMIDADE

As Declarações de Conformidade são fornecidas juntamente com os motores. Nos casos dos motores ou caixas de terminais cujos números de certificados tenham o sufixo "X", incluem também condições especiais de utilização, às quais deve ser dada especial atenção para uso do motor.

ANEXO I

Motores e Geradores Assíncronos Trifásicos Antideflagrantes equipados com componentes Ex i Parâmetros para definição da barreira de protecção de segurança intrínseca

a) Sensores para proteção térmica e transmiters:

Os parâmetros de saída da barreira de protecção zener, a usar pelo cliente ou instalador, devem estar de acordo com os parâmetros de entrada dos sensores usados no motor. Estes parâmetros estão indicados no manual de instruções e nos certificados ATEX e/ou IECEx dos sensores.

Na tabela seguinte estão listados os protetores térmicos e transmiters Ex i, usados nos motores WEG, e os seus certificados ATEX e IECEx:

Tipo de sensor	Fabricante	Modelo	Número do Certificado
	Ephy Mess	PR-SPA-EX-LTH (tolerance class B)	IBExU14ATEX1291X
			IECEx IBE14.0048X
Sensor de temperatura		TR/TC For gas	TUV10ATEX555793X
	Wika	TR/TC For dust	IECEx TUN10.0002X
Transdutor de		T32.**.0IS/T32.1*.0IS-* For gas	BVS08ATEXE019X
temperatura	Wika	T32.**.0IS/T32.1*.0IS-* For dust	IECEx BVS08.0018X
		PT 2XEX(I) 24DC-ST	KENA OO ATEYA OO Y
Protetores contra	Phoenix Contact	PT 4EX(I) 24DC-ST	KEMA00ATEX1099X
sobretensões			IECEx KEM10.0063X

b) Sensores para detecção e controlo de vibrações:

Os parâmetros de saída da barreira de protecção zener, a usar pelo cliente ou instalador, devem estar de acordo com os parâmetros de entrada dos sensores usados no motor. Estes parâmetros estão indicados no manual de instruções e nos certificados ATEX e/ou IECEx dos sensores.

Na tabela seguinte estão listados os sensores Ex i, para detecção e controlo de vibrações, usados nos motores WEG e os seus certificados ATEX e IECEx:

Tipo de sensor	Fabricante	Modelo	Número do certificado
	Bently Nevada	3300XL, 7200	BAS 99 ATEX 1101
		3000, 3300/3300XL, 7200	IECEx CSA 17.0001X
Sensor de proximidade	Metrix	10.000 series	Baseefa 03 ATEX 0204X
ochsor de proximidade			IECEx BAS11.0065X
		Mx 2032, Mx 2034	Baseefa 12 ATEX 0049X
		Mx 2033	IECEx BAS 12.0032X
	Bently Nevada	177230	LCIE 07 ATEX 6101X
			IECEx LCI 11.0056X
		190501	LCIE 04 ATEX 6042X
		330400, 330425	IECEx LC06.0003X
		330500, 330525	IECEx UL 19.0123
Sensor de vibrações		330450 Group IIC	
,		330750 and 330752 Group IIC	LCIE 04 ATEX 6140X
		350900 Group IIB	IECEx LCI 11.0067X
		350900 Group IIC	
		200350	LCIE 07 ATEX 6096X
			IECEx LCIE 13.0070X
	5	20015X	LCIE 04 ATEX 6028X
	Bently Nevada		IECEx LCI 10.0047X
	Hansford sensors	HS-100	Baseefa 07ATEX 0149X
Acelerómetro		For group I	IECEx BAS 07.0037X
Acelerometro		HS-100	Baseefa 07ATEX 0144X
		For group II	IECEx BAS07.0035X
	SKF	СМРТ23ххуу	Baseefa 08 ATEX 0268
			IECEx BAS 08.0087

Tipo de sensor	Fabricante	Modelo	Número do certificado
	Bruel & Kjaer Vibro GmbH	ASA-06X	PTB 07 ATEX 2008
			IECEx PTB 12.0033
		990, 991	LCIE 06 ATEX 6052X
Transdutor de	Bently Nevada		IECEx LCIE 13.0046X
vibrações	Metrix	ST5484E	LCIE 02 ATEX 6244X
			IECEx LCI 10.0035X
Transdutor de	Metrix	5485C	Baseefa 10ATEX 0056X
velocidade			IECEx BAS 10.0021X

No fornecimento do motor serão enviados, junto com a documentação do motor, os manuais de instruções e os certificados ATEX ou IECEx, de acordo com a certificação do motor, dos componentes de segurança intrinseca que equipam o motor.

Instructions Manual

Three-Phase Asynchronous Flameproof Motors and Generators

1. PRELIMINARY NOTES

1.1 Thank you for showing a preference to use WEG motors.

To enable you to get the optimum performance from your motor it is recommended that the following instructions are observed. Their non-compliance will compromise the safety of the product and of the plant.

- 1.2 All the Installation and Maintenance operations shall be made by trained persons duly certified to make interventions in this type of motors and they must be familiarized with the requirements and safety rules in force, in particular with the concept of protection.
- 1.3 To reduce to the minimum the risks of ignition due to the electric material in dangerous areas, effective inspection and maintenance of the material must be assured.
- 1.4 WEG motors are designed to be installed, put into service and used in accordance with the characteristics included in this Instructions manual. The following instructions must be read jointly with the standards:

EN 60079-14:2014	IEC 60079-14:2013/ISH1:2017
EN 60079-17:2014	IEC 60079-17:2013
EN 60079-19:2011/A1:2015	IEC 60079-19:2019

The non-respect of these instructions could not engage our responsibility

- 1.5 WEG motors are "CE" marked meeting all the legal requirements for the "CE" marking and comply with all the requirements of the ATEX 2014/34/EU Directive and are according to the IECEx scheme. They are designed to be used in explosive atmospheres Categories 2 G, 2GD or M2 Zones 1 and 2; 21 and 22.
- 1.6 The user must ensure the compatibility between the nameplate indications and the surrounding hazardous atmosphere present, the classified zone of use and the surface and ambient temperatures.

- 1.7 The WEG Flameproof Motors in its standard execution are supplied with flameproof terminal boxes "Ex db". As optional can be supplied with Increase Safety terminal boxes "Ex eb". In this case the description code for the motor protection is "Ex db eb".
- 1.8 "Ex db" motors are manufactured according to the Standards EN IEC 60079-0:2018, IEC 60079-0:2017 and EN 60079-1:2014, IEC 60079-1:2014. "Ex db eb" motors are according to the same standards and EN IEC 60079-7:2015/A1:2018, IEC 60079-7:2015/A1:2017. The motors with equipment "Ex i" are also according to EN 60079-11:2012 and IEC 60079-11:2011. The gas group is IIB, IIC or I depending on motor type.
- 1.9 The instalation should be in accordance to the standards EN 60079-14:2014, IEC 60079-14:2013/ISH1:2017 and EN 60079-25:2010/AC:2013, IEC 60079-25:2010/AC:2013 for intrinsic safety.
- 1.10 Flameproof joints of WEG motors can have values more restricted than the minimum values indicated in the standard. The authorized repair shops must contact WEG After Sales Services every time they need detailed information concerning flameproof joints values. For motors to be used in group I (mines) the user must take into consideration that this equipment underwent only an impact corresponding to an energy of a low risk.
- 1.11 Motors with IP65 or IP66 protection degree, designed to be used on combustible dust environments (Ex tb IIIC T125°C (or T135°C) Db IP65 or IP66), are additionally in accordance with EN 60079-31:2014 and IEC 60079-31:2013.
- 1.12 The motors may be equipped with adapters mounted on top of the frames or on other adapters, which allow the mounting of additional terminal boxes in different positions. The adapters may have flameproof protection "Ex db" or increased safety protection "Ex eb" and allow the mounting of flameproof terminal box "Ex db" or increased safety terminal boxes "Ex eb".

In the case of motors equipped with phase segregated or phase insulated terminal boxes with increased safety protection "Ex eb", the mounting is made on an adapter with increased safety protection "Ex eb" and can be used up to an ambient temperature of -20°C.

1.13 When the motors are equipped with intrinsic safety components "Ex i" for winding and/or bearing protection or for detections and/or control of vibrations, their circuits inside the terminal boxes are separated from the circuits that are not intrinsically safe. These circuits are visually different (with terminals in blue colour) and are properly identified and should be connected to Zener barriers defined accordingly to the input parameters of the intrinsic safety components.

The intrinsically safe components are connected inside the terminal boxes, to terminals mounted on DIN rail with the earthing wire properly connected to the existing earthing terminal for this purpose.

1.14 When the motors are equipped with intrinsically safety components "Ex i" the information related to the input parameters of these components referred in the Annex I, should be consulted by the installer/end user to define the Zener barrier of intrinsic safety.

See Annex I for details.

2. GENERAL INSPECTION

- 2.1 Check if nameplate data complies with the purchase order. Special attention should be given to the type of protection and/or to the Equipment Protection Level. In case of non-compliance please contact WEG nearest Sales Office.
- 2.2 These motors have been designed to work in atmospheres that present a risk of explosion. It is therefore indispensable to carry out a very careful inspection of the material received, as well as the external parts of the motor (frame, endshields, terminal box and terminal box lid).
- 2.3 Any fault found has to be marked, reported to WEG Sales Office and analysed in order to ensure that the motors may function without any risk in this atmosphere. If necessary, the damaged parts or the parts that could present a risk in the future should be replaced.

3. SAFETY INSTRUCTIONS

3.1 Motors for hazardous areas are specially designed to meet the government regulations regarding the environment in which they are installed. Misapplication,

- incorrect connection or other changes although small, may jeopardize product reliability.
- 3.2 Components added to the motor by the user, such as cable-glands, threaded plugs, encoder, etc. must meet the type of protection, the Equipment Protection Level (EPL) in accordance with the standards indicated on the product certificate.
- 3.3 The symbol "X" added to the certificate number, informed on the motor nameplate, denotes that motor requires special conditions for installation, use and/or maintenance, as described in the certificate. Failure to follow these requirements may affect the product and installation safety.
- 3.4 For group I and IIB motors, the total thickness of the painting shall be less or equal than 2mm. For group IIC motors, the total thickness of the painting shall be less or equal than 200µm. If the painting plan selected exceeds 200µm, an additional nameplate will be added to the motor informing about the risk of electrostatic discharges (See 8.6).

4. TRANSPORT AND STORAGE

- 4.1 The motors mustn't be exposed to destructive actions during transport and storage.
- 4.2 The motor must be checked when received for any damage that may have occurred during the transportation. All damages must be reported in writing to the transportation company, to the insurance company and to WEG. Failure to comply with such procedures will void the product warranty.
- 4.3 All motors equipped with roller bearings and the motors equipped with angular contact ball bearings are fitted with a device to lock the rotor during transport generally fitted on drive end. Some motors may have two locking devices one on the drive end and other at the non-drive end. This device needs to be removed to operate the motor. The device must be reinstalled if the motor is subjected to any rigging and/ or transportation.
- 4.4 Remove the shaft locking device (if any) and rotate the shaft by hand to ensure that it rotates freely. If you're going to store the motor put the shaft locking device again on its place.

- 4.5 If the motor is not installed immediately, it must be stored in a dry and clean environment, with relative humidity not exceeding 60%, with an ambient temperature between 5 °C and 40 °C, without sudden temperature changes, free of dust, vibrations, gases or corrosive agents. The motor must be stored in horizontal position, unless specifically designed for vertical operation, without placing objects on it.
- 4.6 All exposed machined surfaces (like shaft end and flange) are factory-protected with temporary rust inhibitor (ANTICORIT BW 366 from FUCHS or equivalent). A protective film must be reapplied periodically (at least every six months), or when it has been removed and/or damaged.
- 4.7 Flameproof joints are protected with a corrosion inhibiting grease that does not harden because of ageing and doesn't contain an evaporating solvent (MOBIL Polyrex EM, Lumomoly PT/4, Molykote 33 or other equivalent recommended by WEG). These surfaces shall be periodically checked and a protective film must be reapplied periodically, mainly on terminal box joints if they are already opened.
- 4.8 For long storage periods is recommended that the rotor shafts should be turned periodically to prevent bearings deterioration.
- 4.9 If the motor is equipped with sleeve bearings it must be stored in its original operating position and with oil in the bearings. Correct oil level must be ensured. It should be in the middle of the sight glass. During the storage period, remove the shaft locking device and rotate the shaft by hand every month, at least 5 revolutions (and at 30 rpm), thus achieving an even oil distribution inside the bearing and maintaining the bearing in good operating conditions. Reinstall the shaft locking device every time the motor has to be moved. If the motor is stored for a period of over six months, the bearings must be relubricated before starting the operation. If the motor is stored for a period longer than the oil change interval, or if it is not possible to rotate the motor shaft by hand, the oil must be drained and a corrosion protection and dehumidifiers must be applied.
- 4.10 If motors are fitted with anti-condensation heaters, these should be connected during storage.
- 4.11 We recommend measuring the winding insulation resistance (see values in 6.1) at regular intervals to follow-up and evaluate its electrical operating conditions. If any

reduction in the insulation resistance values is recorded, the storage conditions should be evaluated and corrected, where necessary. Check the measuring procedures in section 6 of this instructions manual.

4.12 The lifting of the motor shall be made by using the eyebolts as shown in the picture:

4.13 Eyebolts provided on the frame are designed for lifting the machine only. Do not use these eyebolts for lifting the motor with coupled equipment such as bases, pulleys, pumps, reducers, etc. Never use damaged, bent or cracked eyebolts. Always check the eyebolt condition before lifting the motor. Eyebolts mounted on components, such as on end shields, forced ventilation kits, etc. must be used for lifting these components only. Do not use them for lifting the complete machine set. For the maximum allowed angle-of-inclination during the lifting please read the General Instructions Manual available on www.weg.net.

5. INSTALLATION

- 5.1 The motor must be disconnected from the power supply and be completely stopped before conducting any installation or maintenance procedures. Additional measures should be taken to avoid accidental motor starting. Check the direction of motor rotation, starting the motor at no-load before coupling it to the load.
- 5.2 The type of protection and the Equipment Protection Level (EPL) indicated on the motor nameplate must be respected considering the explosive atmosphere where the motor will be installed.

- 5.3 Remove the shaft locking device (if any).
- 5.4 The rotors of the motors are dynamically balanced with half key. For this reason the coupling to be fitted to the motor shaft end also has to be balanced with half key, according to the standard IEC 60034-14. When requested specifically the rotors could be balanced with full key.
- 5.5 To fit the coupling on the shaft end extension, the coupling should be heated up to approximately 80°C.

If necessary, this assembly operation can be aided by means of a screw in the threaded hole of the shaft end.

Note – Never assemble the coupling by hitting, as it could cause serious damage to bearings.

5.6 In the case of direct coupling the motor and the driven machine shall be aligned according to the parallel and angular alignment values established by the coupling manufacturer, not forgetting that the more precise the alignment, the longer will be the life of the bearings.

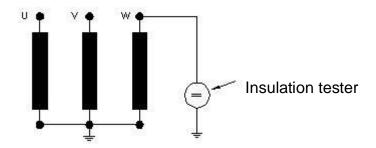
In the case of belt drive transmissions they must be static conductive, flame resistant and self-extinguishing. The pulleys should neither be too narrow or wider than the width of the shaft end. The tension of the pulleys should also be taken into account; it should not be higher than the values of radial loads recommended for bearings. If these specifications are not followed, there is a serious risk of collapse of the bearings or even the shaft.

- 5.7 The ambient temperature limit range of WEGeuro motors is from -20°C to +60°C. Unless different engraved on nameplate, these motors are prepared to work on ambient temperatures from -20°C up to +40°C.
 - For temperatures above +40°C, the factory shall be contacted to analyse if a special execution and/or certification is required.
- 5.8 Ensure that the air inlet and outlet opening are not blocked. The minimum clearance to the nearest wall should be at least ¼ of the fan cover diameter. The intake air temperature must be at ambient temperature.
- 5.9 Ensure that the cooling tubes aren't blocked. Clean them with dry air.

- 5.10 To prevent accidents, check if motor has been solidly grounded in accordance with the applicable standards. Remove or fix the shaft key before starting the motor.
- 5.11 Connect the motor properly to the power supply by means of safe and permanent contacts.
- 5.12 The non-isolated part of the accessory cables should not exceed 1 mm up to the connector.

6. START UP

6.1 If the motors have been out of service or stored for a long period of time, it is recommended that the winding resistance is measured before installation and start up.


The insulation resistance should be measured using a Megohmmeter. The test voltage for the motors winding should be according the table below in accordance with the standard IEEE43.

Winding rated voltage (V)	Insulation resistance test direct voltage (V)
< 1000	500
1000 – 2500	500-1000
2501 – 5000	1000 – 2500
5001 - 12000	2500 – 5000
> 12000	5000 – 10000

The test voltage for space heaters, thermal protectors and other accessories is 500 V_{CC} .

These measurements should be made before connecting the supply cables.

A possible diagram to measure the insulation resistance for complete winding is showed below. The measure must be taken 1 minute after apply the DC voltage with the insulation tester.

According standard IEEE 43 the recommended minimum insulation resistance values at 40° C in M Ω are the following:

- 5 MΩ, for low voltage motors (U < 1,1kV)
- 100 MΩ, for medium voltage motors (1,1kV < U < 11kV)

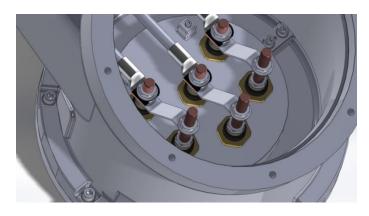
Insulation resistance depends mainly from the winding temperature as showed in the following table:

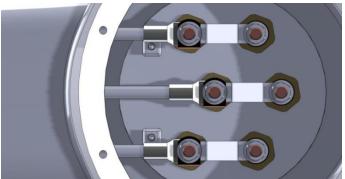
WINDING TEMPERATURE	SERVICE VOLTAGE		
WINDING TEMPERATURE	<u><</u> 1,1 kV	> 1,1kV	
20° C	20 ΜΩ	400 ΜΩ	
30° C	10 ΜΩ	200 ΜΩ	
40° C	5 ΜΩ	100 ΜΩ	

If the insulation resistance values are lower than the values of the table above check if the winding is affected by dust and moisture problem. In this case the winding must be cleaned from dust and should be oven dried carefully at a temperature less than 100°C.

If these measures are not sufficient, expert help should be requested.

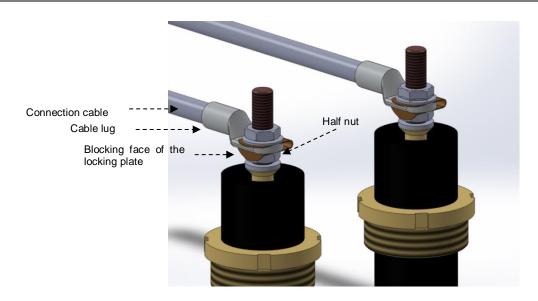
6.2 Ensure that the motor nameplate voltage is the same as the mains supply. The connection diagrams supplied inside the motor terminal box shall be always respected in function of available supply voltage and/or required speeds.


For information, the most common connection diagrams are indicated on pages 58/59.


6.3 All motors are supplied clockwise rotation, viewed from shaft end, when the alphabetical sequence of the terminal letters (U, V, W), corresponds with the time sequence or the phases (L1, L2, L3). To change the rotation of direction of the motor it is necessary to exchange 2 of the 3 supply cables.

Motors having unidirectional fan, have assembled an arrow label to indicate the direction of rotation of the motor.

- 6.4 If motors are equipped with "Ex eb" terminal boxes, the bushing insulators must be fitted with clamps or locking plates in such a way that the conductors cannot move out from the location fixed during their tightening.
- 6.5 As standard, the "Ex eb" terminal boxes are equipped with bushing insulators with locking plate, maintaining the current fault rate level (I_{cc}) characteristics.

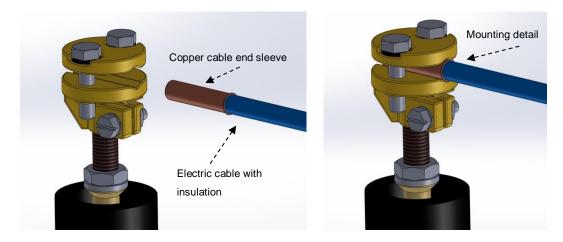

The bushing insulators with locking plate must be aligned with terminal lug in a way that allows the right connection of the cables, as represented in the following images.

Example of an "Ex eb" arrangement with locking plate

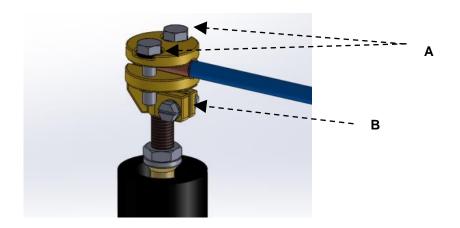
In order to guarantee the correct arrangement of the connection cable, the blocking face of the locking plate together with the low nut right below it shall be in a parallel position in relation to the cable lug.

Detail of the alignment between the stopping device and the connection cable.

The torques for the superior nut of the insulator bushings M10 up to M24 are:


Thread	Minimum [<i>N.m</i>]	Maximum [<i>N.m</i>]	
M10	8	13	
M12	15	30	
M16	30	50	
M20	50	80	
M24	130	186	

6.6 As an option, the motors with "Ex eb" terminal boxes may be equipped with bushings insulators with clamps. In this case, it's necessary to guarantee the correct thightening force between the clamp, insulator bushing and cable.


In "Ex eb" terminal boxes equipped with clamps, shunts must be assembled or disassembled as indicated in the instructions given in this manual, in order to avoid that position of connecting clamps is modified (see page 60).

For terminal boxes equipped with clamps the current fault rate level (lcc) is reduced compared with the same terminal boxes mounting bushings without clamps.

6.7 For the energy cable connection it's recommended to use a copper cable end sleeve on the end of the stripped cable, as represented in the following images.

For the clamp's screws, it's recommended to be used the following torque values:

Torque (Nm)			
A - Screws for tighten the cable inside the clamp	B - Screws for tighten the clamp to the bushing		
cable inside the damp	ciamp to the bushing		
50	25		

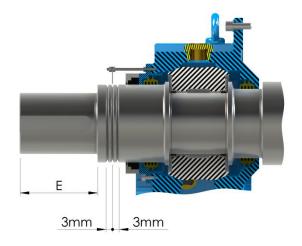
- 6.8 Near each threaded hole in enclosures foreseen for conduit entries there's a plate with its dimensions and thread type.
- 6.9 Cables and cable-glands used must be compatible with the temperature indicated in the certification plate on the motor whenever it's higher than 80°C:

Cable glands fitted on terminal boxes

- 85°C for ambient temperature 50°C
- 95°C for ambient temperature 60°C

Cable glands fitted on blankin caps for motor with flying leads

- 95°C for ambient temperature 40°C
- 105°C for ambient temperature 50°C
- 115°C for ambient temperature 60°C
- 6.10 Cable glands must be ATEX certified for motors **ATEX and IECEx in case of motors with certification IECEx** and must have the same protection (Ex d or db IIB,
 Ex d or db IIC, Ex e or eb II, Ex d or db I or Ex e or eb I) of the terminal boxes.
- 6.11 Before closing terminal boxes make sure that they are completely free from dust inside.
- 6.12 The recommended torques of the screws to fix the terminal box covers to the terminal boxes and the endshields to the frame are the following:


	Torque (Nm)			
Туре	Carbon steel / class 12.9		Stainless stee	I / Class 70/80
	Min	Max.	Min.	Max.
M8	14	30	14	19
M10	28	60	28	40
M12	45	105	45	60
M14	75	110	75	100
M16	115	170	115	170
M20	230	330	225	290
M24	400	510	400	510

- 6.13 Before the motor start-up, the supply connection shall be checked if they have been made according to the diagrams of this manual or supplied inside terminal box, taking in consideration the type of motor and winding.
- 6.14 Unused cable entries of main terminal box, auxiliary terminal box and bearing thermal protections, must be closed with ATEX / IECEx certified threaded plugs with the same protection (Ex d or db IIB, Ex d or db IIC, Ex e or eb II, Ex d or db I or Ex e or eb I) of the terminal boxes.
- 6.15 Motors with flying leads must be connected out of hazardous area or with an approved protection way or system.
- 6.16 Motors fitted with angular contact ball bearings should not be allowed to run at no load and must be used in the mounting form IM engraved on the nameplate (see IM in the nameplate).
- 6.17 Motors with sleeve bearings (not foreseen for IIC group) must be directly coupled to the driven machine. The pulley/belt drive system is not recommended for this type of motor.

When the motor is coupled to the driven machine take care to the axial float of the motor sleeve bearing, of driven machine as well as the maximum axial tolerance of the coupling.

This type of motors are not allowed in any circumstances to work with axial thrusts on the sleeve bearings as they are not designed to support this kind of loads.

In the standard motor design the rotor is not self-aligned and it has a maximum axial play of \pm 3mm from the mechanical centre. The mechanical centre is the midpoint between the rotor end float limits.

The rotor axial centre position shall be assured by the driven machine and coupling. This must be taken into consideration during the assembly of the motor together with the driven machine.

7. MOTOR PROTECTIONS

- 7.1 We recommend motor protection by using overloads and short-circuit relays.
- 7.2 Motors must be earthed, using either the grounding screw inside the terminal box and fixed to the motor frame.
- 7.3 Motor installation shall be done according to standards EN/IEC 60079-14. Inspections and maintenance shall be done according to standards EN/IEC 60079-17.
- 7.4 If motors are fitted with thermal protections, these <u>may be connected</u> as an additional protection and source of information for maintenance. In case of Pt100 or thermocouples, tripping temperature must be regulated to the values indicated by WEG.
- 7.5 If the thermal probes are not connected, the user must ensure that the installation and preventive maintenance are properly performed to avoid a bearing failure that may result in the occurrence of an ignition source.
- 7.6 Where necessary, and depending on the installation and operating conditions of the machine, provisions such as continuous temperature monitoring of the D.E. and N.D.E. bearings shall be taken to protect against any effects due to the presence of circulation currents.
- 7.7 Motors fed by variable Speed Drive must be fitted with thermal sensors on windings and, in some cases, on the bearings. The connections of these thermal protections <u>are compulsory</u>. These motors are equipped with flameproof terminal boxes "Ex db" only.
 - On 2 speed motors with two windings, both windings shall be individually protected.
- 7.8 If anti-condensation heaters are fitted, they can't be connected unless the motor is switched off and cold.
- 7.9 In the case of motors with forced ventilation, a device must avoid motor running without ventilation.
 - To avoid that maximum allowed surface temperature is exceeded, thermal protectors of main and auxiliary motors must be connected to suitable protection devices and, if protectors are Pt100 or thermocouples, trip temperatures must be regulated to the values indicated by WEG.

8. MAINTENANCE

- 8.1 For explosion-proof motors or motors protected by enclosure, only open the terminal box and/or disassemble the motor when the surface temperature of the enclosure is at the ambient temperature.
- 8.2 The type, quantities of grease and the respective lubrication intervals for normal working conditions are shown on the nameplate. The addition of grease should be carried out with the motor running and in compliance with safety procedures.
 - For heavy working conditions such as humidity and high levels of pollution, important bearing loads or excessive vibration levels, it is recommended to reduce the lubrication intervals.
- 8.3 Every two years the motors should be opened and the bearings should be checked, and replaced, if necessary. During this inspection remove the old grease from the grease outlet.
 - For heavy working conditions this interval should be shortened.
- 8.4 The air inlets and the cooling surfaces shall be cleaned periodically. The intervals depend on the degree of pollution/accumulation of dust in the air.
- 8.5 Periodically inspect the motor functioning according to its application ensuring a free flow of air. Inspect the seals, the fixing screws, the bearings vibration and noise levels, the draining devices, etc.
- 8.6 Motors which may have a potential risk of electrostatic charge accumulation, supplied duly identified with a warning plate, must receive proper cleaning and maintenance interventions, e.g. with the use of a damp cloth, avoiding electrostatic discharges.
- 8.7 The maintenance of flameproof motors is particularly important, as:
 - Any changing to the bearings could:
 - o cause a sudden temperature rise, thus presenting a risk of explosion
 - increase the clearance between the shaft and the bearing plate, due to friction of the shaft on the closing plate; an internal ignition may spread to the outside and can cause an explosion

- Concerning external ventilation, a fault in the cooling system raises the surface temperature, which could reach values higher than those established for the temperature class.
- The temperature class should be checked on the certification plate; this indicates the maximum temperature as follows:

T3 or T4 or T135°C or T125°C

- 8.8 All explosion-proof motors are supplied with an anti-corrosion product in the fittings and screws. Before assembling the components with machined surfaces (for example, terminal box covers of flameproof motors) machined surfaces must be cleaned and a new protective layer of this product shall be applied.
 - To protect the surface of flameproof joints one of the following protective greases recommended by WEG shall be used: Lumomoly PT / 4 (manufacturer Lumobras) or Molykote 33 (manufacturer Dow Corning).
- 8.9 For explosion-proof motors care shall be taken with the flamepath machined surfaces in order to avoid the presence of burrs, scratches, etc., which reduce their flamepath length and/or increase the flamepath gap.

9. ASSEMBLING AND DISASSEMBLING

This type of motors requires a special care. Particularly when assembling and disassembling parts are carried out, the condition of the joints should be checked. The dimensions of the joints, e.g. length and clearance, have been 100% controlled during production of the motors. The joints must not be changed and you need to:

- Ensure that the joints are not damaged and do not have cuts or dents.
 If this happens the parts should be replaced.
- All the screws should be well tightened. A screw which is not tight enough changes the resistance of the enclosure. In case of replacement of a screw, it is imperative to keep its length and quality of material.
- Do not change interchangeable parts during maintenance.

The yield stress of the fastener elements of motor and terminal boxes enclosures must be at least equal to:

Class 12.9 for steel screws.

Class A2-70 or A4-80 for stainless steel screws.

10. MARKING

10.1 All motors have two marking plates:

Nameplate

This nameplate contains information in compliance with the IEC 60034-1, as well as other useful technical information.

Note – The two first digits of the serial number indicate the manufacturing year of the motor.

Certification plate

The certification plate must be in accordance with the explosive atmosphere where the equipment will be used or in accordance with the certification type, ATEX or IECEx and it may contain the following information:

10.1.1 For explosive atmospheres with gas:

ATEX Marking IECEx Marking

Ex db IIB T4 (or T3) Gb or Ex db eb IIB T4 (or T3) Gb or Ex db ia (or ib) IIB T4 (or T3) Gb or Ex db eb ia (or ib) IIB T4 (or T3) Gb or

Ex db IIC T4 (or T3) Gb or Ex db eb IIC T4 (or T3) Gb or Ex db ia (or ib) IIC T4 (or T3) Gb or Ex db eb ia (or ib) IIC T4 (or T3) Gb

- European symbol for "Ex" products
- II Group of material designed for places with potentially explosive atmospheres, other than mines susceptible to firedamp
- 2 Area where an explosive atmosphere, is likely to occur in case of abnormal working conditions of the installation
- **G** Explosive atmosphere due to gas
- **Ex** Symbol which indicates that the material complies with one or several of the

protection modes in accordance with European standards

db Enclosure with flameproof protection

eb Component with increased safety protection

ia Intrinsic safety protection level ia

ib Intrinsic safety protection level ib

B Subdivision of group II

C Subdivision of group II

T3/T4 Temperature class

Gb Equipment protection level

10.1.2 For explosive atmospheres with gas and/or dust:

ATEX Marking

IECEx Marking

II 2 GD

Ex db IIB T4 (or T3) Gb or Ex db eb IIB T4 (or T3) Gb or Ex db ia (or ib) IIB T4 (or T3) Gb or Ex db eb ia (or ib) IIB T4 (or T3) Gb or Ex db IIC T4 (or T3) Gb or Ex db eb IIC T4 (or T3) Gb or Ex db ia (or ib) IIC T4 (or T3) Gb or Ex db eb ia (or ib) IIC T4 (or T3) Gb and/or Ex tb IIIC T125°C (or T135°C)Db IP 65 (or IP 66) or

Ex ia (or ib) tb IIIC T125°C (or T135°C) Db IP 65 (or IP 66)

⟨£x⟩	European symbol for "Ex" products
II	Group of material designed for places with potentially explosive atmospheres, other than mines susceptible to firedamp
2	Area where an explosive atmosphere, is likely to occur in case of abnormal working conditions of the installation
GD	Explosive atmospheres with gas and/or dust
Ex	Symbol which indicates that the material complies with one or several of the protection modes in accordance with European standards

db Enclosure with flameproof protection

eb Component with increased safety protection

ia Intrinsic safety protection level ia

ib Intrinsic safety protection level ib

B Subdivision of group II

C Subdivision of group II

T3/T4 Temperature class

Gb Equipment protection level

tb Protection by enclosure for zone 21

IIIC Subdivision of group III

IP65 or IP66 Ingress protection

Db Equipment protection level

T125°C/T135°C Maximum surface temperature

10.1.3 For underground parts of mines:

ATEX Marking IECEx Marking

IM2

Ex db I Mb or Ex db eb I Mb or Ex db ia (or ib) I Mb or Ex db eb ia (or ib) I Mb

European symbol for "Ex" products

I Group of Equipment intend for use in underground parts of mines, and to those parts of surface installations of mines, liable to be endangered by firedamp and/or combustible dust

M2 Category of equipment ensuring a high level of protection and intended to be de-energized in the event of an explosive atmosphere being present

Ex Symbol which indicates that the material complies with one or several of the

protection modes in accordance with European standards

db Enclosure with flameproof protection

eb Component with increased safety protection

ia Intrinsic safety protection level ia

ib Intrinsic safety protection level ib

Mb Equipment protection level

10.1.4 Certificate number

	ATEX	IECEx
ATEX and IECEx examples	INERIS ** ATEX ****X	IECEx INE **.***X

INERIS INE	The name of the notified body
**	Year of Certification
ATEX	Designation of the Directive 2014/34/EU (explosive atmospheres)
***	Certificate number
x	Special conditions for safe use specified in the certificate

10.2 Complementary Marking

Connection cable must be compatible with a temperature of __ºC
WEGeuro INDÚSTRIA ELÉCTRICA, S.A.
Rua Eng.º Frederico Ulrich, Sector V
4470-605 Maia
Portugal

The cover of the terminal box contains the following information:

WARNINGS:

- DO NOT OPEN WHEN ENERGIZED
- DO NOT OPEN WHEN AN EXPLOSIVE ATMOSPHERE IS PRESENT

Supplementary information: Addresses of the Commercial Branches WEG are enclosed.

10.3 Additional marking for terminal boxes when they are separated from the motor

Motor Certificate number

Marking for gas:

Ex db IIB T4 (or T3) Gb or Ex eb IIB T4 (or T3) Gb or Ex db ia (or ib) IIB T4 (or T3) Gb or Ex eb ia (or ib) IIB T4 (or T3) Gb or Ex db IIC T4 (or T3) Gb or Ex eb IIC T4 (or T3) Gb or Ex db ia (or ib) IIC T4 (or T3) Gb or Ex eb ia (or ib) IIC T4 (or T3) Gb

Marking for gas and dust:

Ex db IIB T4 (or T3) Gb or Ex eb IIB T4 (or T3) Gb or Ex db ia (or ib) IIB T4 (or T3) Gb or Ex eb ia (or ib) IIB T4 (or T3) Gb or Ex db IIC T4 (or T3) Gb or Ex eb ia (or ib) IIC T4 (or T3) Gb or Ex eb ia (or ib) IIC T4 (or T3) Gb and/or

Ex tb IIIC T125°C (or T135°C) Db IP 65 (or IP 66) or Ex ia (or ib) tb IIIC T125°C (or T135°C) Db IP 65 (or IP 66)

Marking for mines:

Ex db | Mb or Ex eb | Mb or Ex db ia (or ib) | Mb or Ex eb ia (or ib) | Mb

11. SPARE PARTS

To order a spare part it is necessary to indicate:

- Motor Type
- Motor Serial Number
- Designation of the spare part.

The motor type and serial number are stamped on the nameplate.

Spare parts must always be purchased from WEG authorized Service Centers. The use of non-original spare parts can cause motor failure, performance drop and void the product warranty.

12. ADDITIONAL INFORMATION

For additional information on transport, storage, handling, installation, operation, maintenance and repair or electric motors, please check the website www.weg.net.

13. DECLARATION OF CONFORMITY

The Declarations of Conformity are supplied with motors. In the cases where the motor or terminal box certificate number have the suffix "X" is also included a special conditions for use for which special attention must be given to be respected on use.

ANNEX I

Three-Phase Asynchronous Flameproof Motors and Generators equipped with devices Ex i

Parameters to define the zener barrier of intrinsic protection

a) Sensors for thermal protection and transmitters:

The output parameters of the zener protection barrier, to be used by the installer or by the end user, shall be in accordance with the input parameters of the temperature sensors and the transmitters used on the motor. These input parameters are indicated in the instructions manual and in the ATEx or IECEX certificates.

The Ex i sensors for thermal protection and the transmitters, used on the WEG motors, and their ATEX and IECEx certificates are listed in the table below:

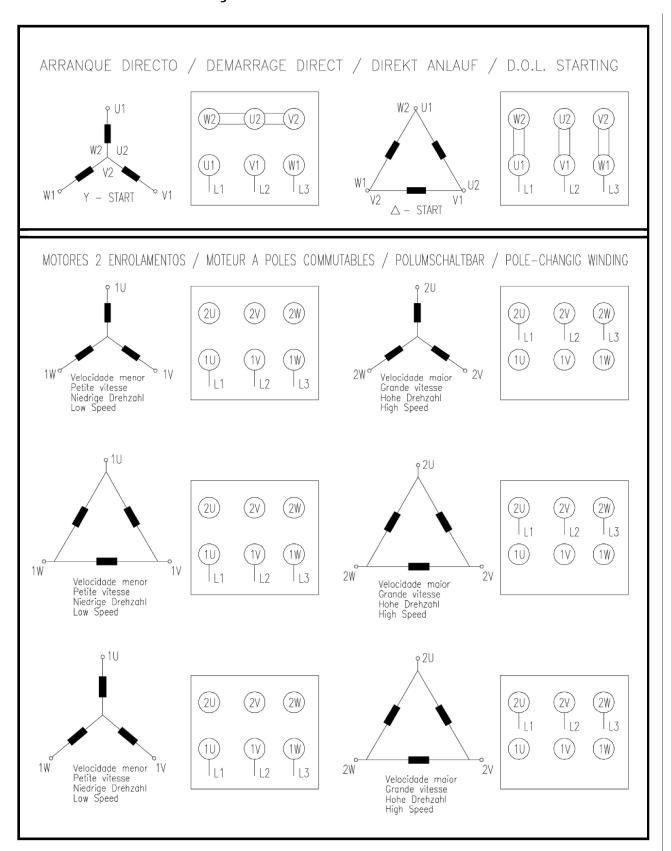
Sensor type	Manufacturer	Model	Certificate number
			IBExU14ATEX1291X
Temperature	Ephy Mess	PR-SPA-EX-LTH	IECEx IBE14.0048X
Sensor	Sensor Wika TR/TC	TR /TC	TUV10ATEX555793X
		111/1 0	IECEx TUN10.0002X
Temperature		T32.**.0IS/T32.1*.0IS-*	BVS08ATEXE019X
Transmitter	Wika	132013/132.1 .013-	IECEx BVS08.0018X
Surga protection	Phoenix PT 2XEX(I) 24DC-ST	KEMA00ATEX1099X	
Surge protection	Contact	PT 4EX(I) 24DC-ST	IECEx KEM10.0063X

b) Sensors for detections and control of vibrations:

The output parameters of the zener protection barrier, to be used by the installer or by end user, shall be in accordance with the input parameters of the Ex i sensors used on the motor. These input parameters are indicated on the instructions manual and on the ATEX or IECEX certificates.

The Ex i sensors for detection and control of vibrations, used on the WEG motors, and their ATEX and IECEx certificates are listed in the table below:

Sensor type	Manufacturer	Model	Certificate number
		3300XL, 7200	BAS 99 ATEX 1101
	Bently Nevada	3000, 3300/3300XL, 7200	IECEx CSA 17.0001X
Proximity Sensor			Baseefa 03 ATEX 0204X
. resulting concess		10.000 series	IECEx BAS11.0065X
	Metrix	Mx 2032, Mx 2034	Baseefa 12 ATEX 0049X
		Mx 2033	IECEx BAS 12.0032X
			LCIE 07 ATEX 6101X
		177230	IECEx LCI 11.0056X
		190501	DEMKO 19 ATEX 2819
		330400, 330425	IECEx UL 19.0123
		330500, 330525	ILCEX OF 19.0123
		330450 Group IIC	
Vibration Sensor	Bently Nevada	330750 and 330752 Group IIC	LCIE 04 ATEX 6140X
		350900 Group IIB	IECEx LCI 11.0067X
		350900 Group IIC	
		200350	LCIE 07 ATEX 6096X
			IECEx LCIE 13.0070X
			LCIE 04 ATEX 6028X
	Bently Nevada	20015X	IECEx LCI 10.0047X
		HS-100	Baseefa 07ATEX 0149X
	Hansford	For group I	IECEx BAS 07.0037X
Acellerometer	sensors	HS-100	Baseefa 07ATEX 0144X
		For group II	IECEx BAS07.0035X
			Baseefa 08 ATEX 0268
	SKF	CMPT23xxyy	IECEx BAS 08.0087
	Bruel & Kjaer Vibro GmbH	ASA-06X	PTB 07 ATEX 2008


Sensor type	Manufacturer	Model	Certificate number
			IECEx PTB 12.0033
			LCIE 06 ATEX 6052X
Vibration Transmitter	Bently Nevada	990, 991	IECEx LCIE 13.0046X
			LCIE 02 ATEX 6244X
	Metrix	ST5484E	IECEx LCI 10.0035X
. .			Baseefa 10ATEX 0056X
Velocity Transducer	Metrix	5485C	IECEx BAS 10.0021X

In the motor shippment, together with the motor documentation, you'll find the instructions manual and the ATEX or IECEx cerificates, according to the motor certification, for the intrinsic safety components which equip the motor.

ESQUEMA DE LIGAÇÕES / COMMON CONNECTION DIAGRAMS

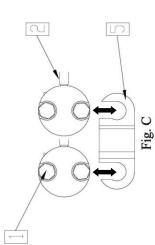
ESQUEMA DE LIGAÇÕES / COMMON CONNECTION DIAGRAMS

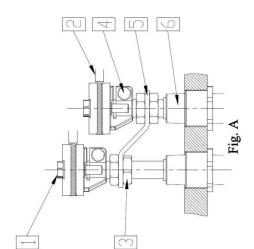
Ligação de Motores Ex d e

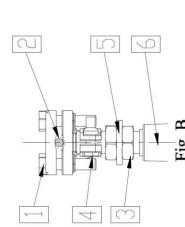
Seleccionar cabos de ligação com secção adequada ao cerra-cabos (ver indicação no cerra-cabos);

- cerra-cabos. Apertar novamente os Desapertar os parafusos [1] para fixar os cabos de ligação [2] parafusos [1];
- fig.C). Apertar novamente as porcas [3]. e retirar as pontes lateralmente (ver igação [5], desapertar as porcas [3] Para remover as pontes

Connection of Ex de Motors


- Select connection cables with a section compatible with the clamps (see indication in the top of clamps);
- Loosen the screws [1] to connect the cables [2] in the clamps. leave the screws [1] well tight;
- To remove the shunts [5], loosen the nuts [3] and remove the shunts laterally (see fig. C). Tight the nuts 3] again




NUNCA DESAPERTAR OS PARAFUSOS DE IMOBILIZAÇÃO DO CERRA-CABOS [4] **NEVER UNSCREW CLAMP IMMOBILIZATION SCREWS [4]**

- 1 Parafuso de aperto do cerra-cabos / Clamp screw
- 2 Cabo de ligação / Connection cable
- Parafuso de imobilização do cerra-cabos / Clamp immobilization screw 3 – Porca de fixação da ponte de ligação / Shunt fixing nut 4-
 - 5 Ponte de ligação / Shúnt 6 Isolador / Bushing Insulat
 - Isolador / Bushing Insulator

Portug	wês -	Fng	lisk
i Oituu	iucs -	ши	шэі

WEGeuro - In	ndústria Eléc	etrica, S.A.		Português -	· Englisl
	,		 		

Dor	tuquês	En	alick
Por	tuaues	- En	alisr

WEGeuro - Indústria Eléctrica, S.A.	Português - Englis

Porti	jauês -	. Fna	liek
Pom	idues -	· Ena	HSI

WEGeuro - Indústria Eléctrica, S.A.		Português - Englis
	 · · · · · · · · · · · · · · · · · · ·	
	 · · · · · · · · · · · · · · · · · · ·	

WEG Worldwide Operations

ARGENTINA

WEG EQUIPAMIENTOS ELECTRICOS San Francisco - Cordoba Phone: +54 3564 421 484 info-ar@weg.net www.weg.net/ar

WEG PINTURAS - Pulverlux Buenos Aires Phone: +54 11 4299 8000 tintas@weg.net

AUSTRALIA

WEG AUSTRALIA Victoria Phone: +61 3 9765 4600 info-au@weg.net www.weg.net/au

AUSTRIA

WATT DRIVE - WEG Group Markt Piesting - Vienna Phone: +43 2633 404 0 watt@wattdrive.com www.wattdrive.com

BELGIUM

WEG BENELUX Nivelles - Belgium Phone: +32 67 88 84 20 info-be@weg.net www.weg.net/be

BRAZIL

WEG EQUIPAMENTOS ELÉTRICOS Jaraguá do Sul - Santa Catarina Phone: +55 47 3276-4002 info-br@weg.net www.weg.net/br

CHILE

WEG CHILE Santiago Phone: +56 2 784 8900 info-cl@weg.net www.weg.net/cl

CHINA

WEG NANTONG Nantong - Jiangsu Phone: +86 0513 8598 9333 info-cn@weg.net www.weg.net/cn

COLOMBIA

WEG COLOMBIA Bogotá Phone: +57 1 416 0166 info-co@weg.net www.weg.net/co

FRANCE

WEG FRANCE Saint Quentin Fallavier - Lyon Phone: +33 4 74 99 11 35 info-fr@weg.net www.weg.net/fr

GERMANY

WEG GERMANY Kerpen - North Rhine Westphalia Phone: +49 2237 9291 0 info-de@weg.net www.weg.net/de

GHANA

ZEST ELECTRIC GHANA WEG Group Accra Phone: +233 30 27 664 90 info@zestghana.com.gh www.zestghana.com.gh

INDIA

WEG ELECTRIC INDIA Bangalore - Karnataka Phone: +91 80 4128 2007 info-in@weg.net www.weg.net/in

WEG INDUSTRIES INDIA Hosur - Tamil Nadu Phone: +91 4344 301 501 info-in@weg.net www.weg.net/in

ITALY

WEG ITALIA
Cinisello Balsamo - Milano
Phone: +39 02 6129 3535
info-it@weg.net
www.weg.net/it

JAPAN

WEG ELECTRIC MOTORS JAPAN Yokohama City - Kanagawa Phone: +81 45 550 3030 info-jp@weg.net www.weg.net/jp

MALAYSIA

WATT EURO-DRIVE - WEG Group Shah Alam, Selangor Phone: 603 78591626 info@wattdrive.com.my www.wattdrive.com

MEXICO

WEG MEXICO Huehuetoca Phone: +52 55 5321 4231 info-mx@weg.net www.weg.net/mx

VOLTRAN - WEG Group Tizayuca - Hidalgo Phone: +52 77 5350 9354 www.voltran.com.mx

NETHERLANDS

WEG NETHERLANDS Oldenzaal - Overijssel Phone: +31 541 571 080 info-nl@weg.net www.weg.net/nl

PERU

WEG PERU Lima Phone: +51 1 472 3204 info-pe@weg.net www.weg.net/pe

PORTUGAL

WEG EURO Maia - Porto Phone: +351 22 9477705 info-pt@weg.net www.weg.net/pt

RUSSIA and CIS

WEG ELECTRIC CIS Saint Petersburg Phone: +7 812 363 2172 info-ru@weg.net www.weg.net/ru

SOUTH AFRICA

ZEST ELECTRIC MOTORS WEG Group Johannesburg Phone: +27 11 723 6000 info@zest.co.za www.zest.co.za

SPAIN

WEG IBERIA Madrid Phone: +34 91 655 30 08 info-es@weg.net www.weg.net/es

SINGAPORE

WEG SINGAPORE Singapore Phone: +65 68589081 info-sg@weg.net www.weg.net/sg

SCANDINAVIA

WEG SCANDINAVIA Kungsbacka - Sweden Phone: +46 300 73 400 info-se@weg.net www.weg.net/se

UK

WEG ELECTRIC MOTORS U.K. Redditch - Worcestershire Phone: +44 1527 513 800 info-uk@weg.net www.weg.net/uk

UNITED ARAB EMIRATES

WEG MIDDLE EAST Dubai Phone: +971 4 813 0800 info-ae@weg.net www.weg.net/ae

USA

WEG ELECTRIC Duluth - Georgia Phone: +1 678 249 2000 info-us@weg.net www.weg.net/us

ELECTRIC MACHINERY WEG Group Minneapolis - Minnesota Phone: +1 612 378 8000 www.electricmachinery.com

VENEZUELA

WEG INDUSTRIAS VENEZUELA Valencia - Carabobo Phone: +58 241 821 0582 info-ve@weg.net www.weg.net/ve

WEGeuro - Indústria Eléctrica, S.A. Rua Engº Frederico Ulrich, Sector V 4470-605 Maia - Portugal Phone: (+351) 229 477 700 info-pt@weg.net www.weg.net/pt

