

Motors I Automation I Energy I Transmission & Distribution I Coatings

CANopen

SCA06

User’s Manual

CANopen User’s Manual

Series: SCA06

Language: English

Document Number: 10001615296 / 02

Publication Date: 11/2017

Contents

SCA06 | 3

CONTENTS

CONTENTS ... 3

ABOUT THE MANUAL ... 6

ABBREVIATIONS AND DEFINITIONS ... 6
NUMERICAL REPRESENTATION ... 6
DOCUMENTS .. 6

1 INTRODUCTION TO THE CANOPEN COMMUNICATION ... 7

1.1 CAN ... 7
1.1.1 Data Frame ... 7
1.1.2 Remote Frame .. 7
1.1.3 Access to the Network .. 7
1.1.4 Error Control ... 7
1.1.5 CAN and CANopen .. 8

1.2 NETWORK CHARACTERISTICS .. 8
1.3 PHYSICAL LAYER ... 8
1.4 ADDRESS IN THE CANOPEN NETWORK ... 8
1.5 ACCESS TO THE DATA .. 8
1.6 DATA TRANSMISSION .. 8
1.7 COMMUNICATION OBJECTS - COB... 9
1.8 COB-ID ... 9
1.9 EDS FILE .. 10

2 CANOPEN COMMUNICATION INTERFACE... 11

2.1 CHARACTERISTICS OF THE CAN INTERFACE ... 11
2.2 PIN ASSIGNMENT OF THE CONNECTOR .. 11
2.3 POWER SUPPLY ... 11
2.4 INDICATIONS ... 12

3 CANOPEN NETWORK INSTALLATION .. 13

3.1 BAUD RATE ... 13
3.2 ADDRESS IN THE CANOPEN NETWORK ... 13
3.3 TERMINATION RESISTOR .. 13
3.4 CABLE .. 13
3.5 CONNECTION IN THE NETWORK ... 14

4 PROGRAMMING .. 15

4.1 SYMBOLS FOR THE PROPERTIES DESCRIPTION .. 15
P0070 – CAN CONTROLLER STATUS .. 15
P0071 – RECEIVED CAN TELEGRAM COUNTER .. 15
P0072 – TRANSMITTED CAN TELEGRAM COUNTER .. 15
P0073 – BUS OFF ERROR COUNTER .. 16
P0074 – LOST CAN MESSAGE COUNTER ... 16
P0075 – CANOPEN COMMUNICATION STATUS .. 16
P0076 – CANOPEN NODE STATUS .. 16
P0202 – MODE OF OPERATION .. 17
P0662 – ACTION FOR COMMUNICATION ERROR ... 17
P0700 – CAN PROTOCOL .. 18
P0701 – CAN ADDRESS ... 18
P0702 – CAN BAUD RATE ... 18
P0703 – BUS OFF RESET... 19
P0704 – FOLLOW .. 19

Contents

SCA06 | 4

P0705 – COB ID FOLLOW .. 19
P0706 – FOLLOW PERIOD ... 20
4.2 FOLLOW FUNCTION VIA CANOPEN ... 20

4.2.1 Follow Programmed by Parameters .. 20
4.2.2 Follow Programmed by the WSCAN Software ... 20

5 OBJECT DICTIONARY ... 22

5.1 DICTIONARY STRUCTURE .. 22
5.2 DATA TYPE .. 22
5.3 COMMUNICATION PROFILE – COMMUNICATION OBJECTS ... 22
5.4 MANUFACTURER SPECIFIC – SCA06 SPECIFIC OBJECTS ... 23

5.4.1 Objeto 3000h – Digital Inputs .. 24
5.4.2 Objeto 3001h – Digital Outputs ... 24
5.4.3 Objects 3002h to 3009h – Follow .. 25

5.5 DEVICE PROFILE – COMMON OBJECTS FOR DRIVES .. 25

6 COMMUNICATION OBJECTS DESCRIPTION ... 26

6.1 IDENTIFICATION OBJECTS ... 26
6.1.1 Object 1000h – Device Type .. 26
6.1.2 Object 1001h – Error Register .. 26
6.1.3 Object 1018h – Identity Object ... 27

6.2 SERVICE DATA OBJECTS – SDOS .. 27
6.2.1 Object 1200h – SDO Server ... 28
6.2.2 SDOs Operation ... 28

6.3 PROCESS DATA OBJECTS – PDOS .. 29
6.3.1 PDO Mapping Objects ... 30
6.3.2 Receive PDOs ... 30
6.3.3 Transmit PDOs ... 32

6.4 SYNCHRONIZATION OBJECT – SYNC ... 35
6.5 NETWORK MANAGEMENT – NMT .. 35

6.5.1 Slave State Control .. 35
6.5.2 Error Control – Node Guarding ... 37
6.5.3 Error Control – Heartbeat .. 38

6.6 INITIALIZATION PROCEDURE ... 40

7 DESCRIPTION OF THE OBJECTS FOR DRIVES .. 41

7.1 DEVICE CONTROL – OBJECTS FOR CONTROLLING THE DRIVE ... 42
7.1.1 Object 6040h – Controlword ... 44
7.1.2 Object 6041h – Statusword ... 45
7.1.3 Object 6060h – Modes of Operation .. 46
7.1.4 Object 6061h – Modes of Operation Display ... 46
7.1.5 Objeto 6502h – Supported Drive Modes .. 46

7.2 FACTOR GROUP – OBJECTS FOR UNIT CONVERSION ... 47
7.2.1 Object 608Fh – Position Encoder Resolution.. 47
7.2.2 Object 6091h – Gear Ratio .. 48
7.2.3 Object 6092h – Feed Constant ... 48

7.3 POSITION CONTROL FUNCTION – POSITION CONTROLLER ... 49
7.3.1 Object 6063h – Position Actual Value .. 49
7.3.2 Object 6064h – Position Actual Value in User Units ... 49

7.4 PROFILE POSITION MODE – OBJECTS FOR DRIVE CONTROL .. 49
7.4.1 Control and Status Bits ... 52
7.4.2 Object 607Ah – Target Position .. 53
7.4.3 Object 6081h – Profile Velocity ... 53
7.4.4 Object 6083h – Profile Acceleration ... 53
7.4.5 Object 6084h – Profile Deceleration ... 54
7.4.6 Object 6086h – Motion Profile Type ... 54

7.5 PROFILE VELOCITY MODE – OBJECTS FOR DRIVE CONTROL ... 54

Contents

SCA06 | 5

7.5.1 Control and Status Bits ... 54
7.5.2 Object 6069h – Velocity Sensor Actual Value ... 55
7.5.3 Object 606Bh – Velocity Demand Value .. 55
7.5.4 Object 606Ch – Velocity Actual Value .. 55
7.5.5 Object 60FFh – Target Velocity... 56

7.6 PROFILE TORQUE MODE – OBJECTS FOR DRIVE CONTROL .. 56
7.6.1 Control and Status Bits ... 56
7.6.2 Object 6071h – Target Torque .. 57
7.6.3 Object 6077h – Torque Actual Value .. 57
7.6.4 Object 6087h – Torque Slope .. 57
7.6.5 Object 6088h – Torque Profile Type ... 57

7.7 CYCLIC SYNCHRONOUS POSITION MODE .. 58
7.7.1 Control and status Bits.. 58
7.7.2 Object 60B1h – Velocity Offset ... 58
7.7.3 Objeto 60C2h – Interpolation time period ... 58
7.7.4 Mode configuration ... 59

7.8 CYCLIC SYNCHRONOUS VELOCITY MODE .. 59
7.8.1 Control and Status Bits ... 59
7.8.2 Object 60B1h – Velocity Offset ... 60
7.8.3 Object 60C2h – Interpolation time period ... 60
7.8.4 Mode configuration ... 60

8 OPERATION IN CANOPEN NETWORK – MASTER MODE 61

8.1 ENABLING OF THE MASTER CANOPEN FUNCTION .. 61
8.2 CHARACTERISTICS OF THE CANOPEN MASTER .. 61
8.3 OPERATION OF THE MASTER... 61
8.4 BLOCKS FOR THE CANOPEN MASTER ... 62

8.4.1 CANopen SDO – Data Reading/Writing via SDO .. 62

9 SYSTEM MARKERS FOR CAN/CANOPEN .. 64

9.1 STATUS READING WORDS .. 64
9.2 COMMAND WRITING WORDS ... 64

10 FAULTS AND ALARMS RELATED TO THE CANOPEN COMMUNICATION 66

A133/F33 – CAN INTERFACE WITHOUT POWER SUPPLY .. 66
A134/F34 – BUS OFF .. 66
A135/F35 – NODE GUARDING/HEARTBEAT ... 66

About the Manual

SCA06 | 6

ABOUT THE MANUAL

This manual provides the necessary information for the operation of the SCA06 frequency inverter using the
CANopen protocol. This manual must be used together with the SCA06 user manual.

ABBREVIATIONS AND DEFINITIONS

CAN Controller Area Network
CiA CAN in Automation
COB Communication Object
COB-ID Communication Object Identifier
SDO Service Data Object
PDO Process Data Object
RPDO Receive PDO
TPDO Transmit PDO
NMT Network Management Object
ro Read only
rw Read/write

NUMERICAL REPRESENTATION

Decimal numbers are represented by means of digits without suffix. Hexadecimal numbers are represented with
the letter ‘h’ after the number.

DOCUMENTS

The CANopen protocol for the SCA06 was developed based on the following specifications and documents:

Document Version Source
CAN Specification 2.0 CiA
CiA DS 301
CANopen Application Layer and Communication Profile

4.02 CiA

CiA DRP 303-1
Cabling and Connector Pin Assignment

1.1.1 CiA

CiA DSP 306
Electronic Data Sheet Specification for CANopen

1.1 CiA

CiA DSP 402
Device Profile Drives and Motion Control

2.0 CiA

In order to obtain this documentation, the organization that maintains, publishes and updates the information
regarding the CANopen network, CiA, must be consulted.

Introduction to the CANopen Communication

SCA06 | 7

1 INTRODUCTION TO THE CANOPEN COMMUNICATION

In order to operate the equipment in a CANopen network, it is necessary to know the manner this
communication is performed. Therefore, this section brings a general description of the CANopen protocol
operation, containing the functions used by the SCA06. Refer to the protocol specification for a detailed
description.

1.1 CAN

CANopen is a network based on CAN, i.e., it uses CAN telegrams for exchanging data in the network.

The CAN protocol is a serial communication protocol that describes the services of layer 2 of the ISO/OSI model
(data link layer)1. This layer defines the different types of telegrams (frames), the error detection method, the
validation and arbitration of messages.

1.1.1 Data Frame

CAN network data is transmitted by means of a data frame. This frame type is composed mainly by an 11 bit2
identifier (arbitration field), and by a data field that may contain up to 8 data bytes.

Identifier 8 data bytes
11 bits byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

1.1.2 Remote Frame

Besides the data frame, there is also the remote frame (RTR frame). This type of frame does not have a data
field, but only the identifier. It works as a request, so that another network device transmits the desired data
frame.

1.1.3 Access to the Network

Any device in a CAN network can make an attempt to transmit a frame to the network in a certain moment. If
two devices try to access the network simultaneously, the one that sends the message with the highest priority
will be able to transmit. The message priority is defined by the CAN frame identifier, the smaller the value of this
identifier, the higher the message priority. The telegram with the identifier 0 (zero) is the one with the highest
priority.

1.1.4 Error Control

The CAN specification defines several error control mechanisms, which makes the network very reliable and
with a very low undetected transmission error rate. Every network device must be able to identify the
occurrence of these errors, and to inform the other elements that an error was detected.

A CAN network device has internal counters that are incremented every time a transmission or reception error is
detected, and are decremented when a telegram is successfully transmitted or received. If a considerable
amount of errors occurs, the device can be led to the following states:

 Error Active: the internal error counters are at a low level and the device operates normally in the CAN

network. You can send and receive telegrams and act in the CAN network if it detects any error in the
transmission of telegrams.

 Warning: when the counter exceeds a defined limit, the device enters the warning state, meaning the
occurrence of a high error rate.

 Error Passive: when this value exceeds a higher limit, the device enters the error passive state, and it stops
acting in the network when detecting that another device sent a telegram with an error.

 Bus Off: finally, we have the bus off state, in which the device will not send or receive telegrams any more.
The device operates as if disconnected from the network.

1 In the CAN protocol specification, the ISO11898 standard is referenced as the definition of the layer 1 of this model (physical layer).
2 The CAN 2.0 specification defines two data frame types, standard (11 bit) and extended (29 bit). For this implementation, only the standard
frames are accepted.

Introduction to the CANopen Communication

SCA06 | 8

1.1.5 CAN and CANopen

Only the definition of how to detect errors, create and transmit a frame, are not enough to define a meaning for
the data transmitted via the network. It is necessary to have a specification that indicates how the identifier and
the data must be assembled and how the information must be exchanged. Thus, the network elements can
interpret the transmitted data correctly. In that sense, the CANopen specification defines exactly how to
exchange data among the devices and how every one must interpret these data.

There are several other protocols based on CAN, as DeviceNet, CANopen, J1939, etc., which use CAN frames
for the communication. However, those protocols cannot be used together in the same network.

1.2 NETWORK CHARACTERISTICS

Because of using a CAN bus as telegram transmission means, all the CANopen network devices have the same
right to access the network, where the identifier priority is responsible for solving conflict problems when
simultaneous access occurs. This brings the benefit of making direct communication between slaves of the
network possible, besides the fact that data can be made available in a more optimized manner without the
need of a master that controls all the communication performing cyclic access to all the network devices for
data updating.

Another important characteristic is the use of the producer/consumer model for data transmission. This means
that a message that transits in the network does not have a fixed network address as a destination. This
message has an identifier that indicates what data it is transporting. Any element of the network that needs to
use that information for its operation logic will be able to consume it, therefore, one message can be used by
several network elements at the same time.

1.3 PHYSICAL LAYER

The physical medium for signal transmission in a CANopen network is specified by the ISO 11898 standard. It
defines as transmission bus a pair of twisted wires with differential electrical signal.

1.4 ADDRESS IN THE CANOPEN NETWORK

Every CANopen network must have a master responsible for network management services, and it can also
have a set of up to 127 slaves. Each network device can also be called node. Each slave is identified in a
CANopen network by its address or Node-ID, which must be unique for each slave and may range from 1 to
127.

The address of servo drive SCA06 is programmed by the parameter P0701.

1.5 ACCESS TO THE DATA

Each slave of the CANopen network has a list called object dictionary that contains all the data accessible via
network. Each object of this list is identified with an index, which is used during the equipment configuration as
well as during message exchanges. This index is used to identify the object being transmitted.

1.6 DATA TRANSMISSION

The transmission of numerical data via CANopen telegrams is done using a hexadecimal representation of the
number, and sending the least significant data byte first.

E.g: The transmission of a 32 bit integer with sign (12345678h = 305419896 decimal), plus a 16 bit integer with
sign (FF00h = -256 decimal), in a CAN frame.

Identifier 6 data bytes
11 bits 32 bit integer 16 bit integer

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5
78h 56h 34h 12h 00h FFh

Introduction to the CANopen Communication

SCA06 | 9

1.7 COMMUNICATION OBJECTS - COB

There is a specific set of objects that are responsible for the communication among the network devices. Those
objects are divided according to the type of data and the way they are sent or received by a device. The SCA06
supports the following communication objects (COB):

Table 1.1: Types of Communication Objects (COB)

Type of object Description
Service Data Object
(SDO)

SDO are objects responsible for the direct access to the object dictionary of a device. By means of messages
using SDO, it is possible to indicate explicitly (by the object index) what data is being handled. There are two
SDO types: Client SDO, responsible for doing a read or write request to a network device, and the Server SDO,
responsible for taking care of that request. Since SDO are usually used for the configuration of a network node,
they have less priority than other types of message.

Process Data Object
(PDO)

PDO are used for accessing equipment data without the need of indicating explicitly which dictionary object is
being accessed. Therefore, it is necessary to configure previously which data the PDO will be transmitting (data
mapping). There are also two types of PDO: Receive PDO and Transmit PDO. They are usually utilized for
transmission and reception of data used in the device operation, and for that reason they have higher priority
than the SDO.

Emergency Object
(EMCY)

This object is responsible for sending messages to indicate the occurrence of errors in the device. When an error
occurs in a specific device (EMCY producer), it can send a message to the network. In the case that any
network device be monitoring that message (EMCY consumer), it can be programmed so that an action be taken
(disabling the other devices, error reset, etc.).

Synchronization Object
(SYNC)

In the CANopen network, it is possible to program a device (SYNC producer) to send periodically a
synchronization message for all the network devices. Those devices (SYNC consumers) will then be able, for
instance, to send a certain datum that needs to be made available periodically.

Network Management
(NMT)

Every CANopen network needs a master that controls the other devices (slaves) in the network. This master will
be responsible for a set of services that control the slave communications and their state in the CANopen
network. The slaves are responsible for receiving the commands sent by the master and for executing the
requested actions. The protocol describes two types of service that the master can use: device control service,
with which the master controls the state of each network slave, and error control service (Node Guarding), with
which the slave sends periodic messages to the master informing that the connection is active.

All the communication of the inverter with the network is performed using those objects, and the data that can
be accessed are the existent in the device object dictionary.

1.8 COB-ID

A telegram of the CANopen network is always transmitted by a communication object (COB). Every COB has an
identifier that indicates the type of data that is being transported. This identifier, called COB-ID has an 11 bit
size, and it is transmitted in the identifier field of a CAN telegram. It can be subdivided in two parts:

Function Code Address
bit 10 bit 9 bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

 Function Code: indicates the type of object that is being transmitted.
 Node Address: indicates with which network device the telegram is linked.

A table with the standard values for the different communication objects available in the SCA06 is presented
next. Notice that the standard value of the object depends on the slave address, with the exception of the COB-
ID for NMT and SYNC, which are common for all the network elements. Those values can also be changed
during the device configuration stage.

Introduction to the CANopen Communication

SCA06 | 10

Table 1.2: COB-ID for the different objects

COB Function code
(bits 10 – 7)

Resultant COB-ID
(function + address)

NMT 0000 0
SYNC 0001 128 (80h)
EMCY 0001 129 – 255 (81h – FFh)

PDO1 (tx) 0011 385 – 511 (181h – 1FFh)
PDO1 (rx) 0100 513 – 639 (201h – 27Fh)
PDO2 (tx) 0101 641 – 767 (281h – 2FFh)
PDO2 (rx) 0110 769 – 895 (301h – 37Fh)
PDO3 (tx) 0111 897 – 1023 (381h – 3FFh)
PDO3 (rx) 1000 1025 – 1151 (401h – 47Fh)
PDO4 (tx) 1001 1153 – 1279 (481h – 4FFh)
PDO4 (rx) 1010 1281 – 1407 (501h – 57Fh)
SDO (tx) 1011 1409 – 1535 (581h – 5FFh)
SDO (rx) 1100 1537 – 1663 (601h – 67Fh)

Node Guarding/Heartbeat 1110 1793 – 1919 (701h – 77Fh)

1.9 EDS FILE

Each device in a CANopen network has an EDS configuration file that contains information about the operation
of the device in the CANopen network, as well as the description of all the communication objects available. In
general, this file is used by a master or by the configuration software for programming of devices present in the
CANopen Network.

The EDS configuration file for the SCA06 is supplied together with the product, and it can also be obtained from
the website http://www.weg.net. It is necessary to observe the inverter software version, in order to use an EDS
file that be compatible with that version.

http://www.weg.net/

CANopen Communication Interface

SCA06 | 11

2 CANOPEN COMMUNICATION INTERFACE

The standard SCA06 servo drive features a CAN interface. It can be used for communication in CANopen
protocol as a network master or slave. The characteristics of this interface are described below.

2.1 CHARACTERISTICS OF THE CAN INTERFACE

Figure 2.1: Detail of the CAN connector in the lower part of the product

 Interface galvanically insulated and with differential signal, providing more robustness against

electromagnetic interference.
 External power supply of 24 V.
 It allows the connection of up to 64 devices to the same segment. More devices can be connected by using

repeaters3.
 Maximum bus length of 1000 meters.

2.2 PIN ASSIGNMENT OF THE CONNECTOR

The CAN interface has a 5-way plug-in connector (x4) with the following pin assignment:

Table 2.1: Pin assignment of X4 connector for CAN interface

Pin Name Function
1 V- Negative pole of the power supply
2 CAN_L Communication signal CAN_L
3 Shield Cable shield
4 CAN_H Communication signal CAN_H
5 V+ Positive pole of the power supply

2.3 POWER SUPPLY

The CAN interfaces require an external power supply between pins 1 and 5 of the network connector. The data
for individual consumption and input voltage are shown in the following table.

Table 2.2: Characteristics of the supply for the CAN interface

Power Supply (VDC)
Minimum Maximum Recommended

11 30 24
Current (mA)

Typical Maximum
30 50

3 The maximum number of devices that can be connected to the network also depends on the protocol used.

CANopen Communication Interface

SCA06 | 12

2.4 INDICATIONS

The alarm, fault and status indications of the CAN open communication for the SCA06 servo drive are made
trough the HMI and parameters of the product.

CANopen Network Installation

SCA06 | 13

3 CANOPEN NETWORK INSTALLATION

The CANopen network, such as several industrial communication networks, for being many times applied in
aggressive environments with high exposure to electromagnetic interference, requires that certain precautions
be taken in order to guarantee a low communication error rate during its operation. Recommendations to
perform the connection of the product in this network are presented next.

3.1 BAUD RATE

Equipments with CANopen interface generally allow the configuration of the desired baud rate, ranging from
10Kbit/s to 1Mbit/s. The baud rate that can be used by equipment depends on the length of the cable used in
the installation. The next table shows the baud rates and the maximum cable length that can be used in the
installation, according to the CiA recommendation4.

Table 3.1: Supported baud rates and installation size

Baud Rate Cable Length
1 Mbit/s 25 m

800 Kbit/s 50 m
500 Kbit/s 100 m
250 Kbit/s 250 m
125 Kbit/s 500 m
100 Kbit/s 600 m
50 Kbit/s 1000 m
20 Kbit/s 1000 m
10 Kbit/s 1000 m

All network equipment must be programmed to use the same communication baud rate. At the SCA06 servo
drive the baud rate configuration is done through the parameter .

3.2 ADDRESS IN THE CANOPEN NETWORK

Each CANopen network device must have an address or Node ID, and may range from 1 to 127. This address
must be unique for each equipment. For SCA06 servo drive the address configuration is done through the
parameter .

3.3 TERMINATION RESISTOR

The CAN bus line must be terminated with resistors to avoid line reflection, which can impair the signal and
cause communication errors. The extremes of the CAN bus must have a termination resistor with a 121Ω /
0.25W value, connecting the CAN_H and CAN_L signals.

3.4 CABLE

The connection of CAN_L and CAN_H signals must done with shielded twisted pair cable. The following table
shows the recommended characteristics for the cable.

Table 3.2: CANopen cable characteristics

Cable length
(m)

Resistance per
meter (mOhm/m)

Conductor cross
section (mm2)

0 ... 40 70 0.25 ... 0.34
40 ... 300 <60 0.34 ... 0.60
300 ... 600 <40 0.50 ... 0.60

600 ... 1000 <26 0.75 ... 0.80

It is necessary to use a twisted pair cable to provide additional 24Vdc power supply to equipments that need
this signal. It is recommended to use a certified DeviceNet cable.

4 Different products may have different maximum allowed cable length for installation.

CANopen Network Installation

SCA06 | 14

3.5 CONNECTION IN THE NETWORK

In order to interconnect the several network nodes, it is recommended to connect the equipment directly to the
main line without using derivations. During the cable installation the passage near to power cables must be
avoided, because, due to electromagnetic interference, this makes the occurrence of transmission errors
possible. In order to avoid problems with current circulation caused by difference of potential among ground
connections, it is necessary that all the devices be connected to the same ground point.

Figure 3.1: CANopen network installation example

To avoid voltage difference problems between the power supplies of the network devices, it is recommended
that the network is fed by only one power supply and the signal is provided to all devices through the cable. If it
is required more than one power supply, these should be referenced to the same point.

The maximum number of devices connected to a single segment of the network is limited to 64. Repeaters can
be used for connecting a bigger number of devices.

Programming

SCA06 | 15

4 PROGRAMMING

Next, only the SCA06 servo drive parameters related to the CANopen communication will be presented.

4.1 SYMBOLS FOR THE PROPERTIES DESCRIPTION

RO Read-only parameter
CFG Parameter that can be changed only with a stopped motor
CAN Parameter visible on the HMI if the product has the CAN interface installed

P0070 – CAN CONTROLLER STATUS

Range: 0 = Disabled Default: -
 1 = Autobaud
 2 = CAN Enabled
 3 = Warning
 4 = Error Passive
 5 = Bus Off
 6 = No Bus Power
Properties: RO

Description:
It allows identifying if the CAN interface board is properly installed and if the communication presents errors.

Table 4.1: Values for the parameter P0070

Value Description
0 = Disabled Inactive CAN interface. It occurs when CAN protocol is not programmed at

P0700.
1 = Autobaud CAN controller is trying to detect baud rate of the network (only for DeviceNet

communication protocol).
2 = CAN Enabled CAN interface is active and without errors.
3 = Warning CAN controller has reached the warning state.
4 = Error Passive CAN controller has reached the error passive state.
5 = Bus Off CAN controller has reached the bus off state.
6 = No Bus Power CAN interface does not have power supply between the pins 1 and 5 of the

connector.

P0071 – RECEIVED CAN TELEGRAM COUNTER

Range: 0 to 65535 Default: -
Properties: RO

Description:
This parameter works as a cyclic counter that is incremented every time a CAN telegram is received. It informs
the operator if the device is being able to communicate with the network. This counter is reset every time the
device is switched off, a reset is performed or the parameter maximum limit is reached.

P0072 – TRANSMITTED CAN TELEGRAM COUNTER

Range: 0 to 65535 Default: -
Properties: RO

Description:
This parameter works as a cyclic counter that is incremented every time a CAN telegram is transmitted. It
informs the operator if the device is being able to communicate with the network. This counter is reset every
time the device is switched off, a reset is performed or the parameter maximum limit is reached.

Programming

SCA06 | 16

P0073 – BUS OFF ERROR COUNTER

Range: 0 to 65535 Default: -
Properties: RO

Description:
It is a cyclic counter that indicates the number of times the device entered the bus off state in the CAN network.
This counter is reset every time the device is switched off, a reset is performed or the parameter maximum limit
is reached.

P0074 – LOST CAN MESSAGE COUNTER

Range: 0 to 65535 Default: -
Proprerties: RO

Description:
It is a cyclic counter that indicates the number of messages received by the CAN interface, but could not be
processed by the device. In case that the number of lost messages is frequently incremented, it is
recommended to reduce the baud rate used in the CAN network. This counter is reset every time the device is
switched off, a reset is performed or the parameter maximum limit is reached.

P0075 – CANOPEN COMMUNICATION STATUS

Range: 0 = Disabled Default: -
 1 = Reserved
 2 = Communication Enabled
 3 = Error Control Enabled
 4 = Guarding Error
 5 = Heartbeat Error
Properties: RO, CAN

Description:
It indicates the board state regarding the CANopen network, informing if the protocol has been enabled and if
the error control service is active (Node Guarding or Heartbeat).

P0076 – CANOPEN NODE STATUS

Range: 0 = Disabled Default: -
 1 = Initialization
 2 = Stopped
 3 = Operational
 4 = Preoperational
Properties: RO, CAN

Description:
It operates as a slave of the CANopen network, and as such element it has a state machine that controls its
behavior regarding the communication. This parameter indicates in which state the device is.

Programming

SCA06 | 17

P0202 – MODE OF OPERATION

Value 1 = Torque Mode Default: 2
Range: 2 = Speed Mode
 3 = Reserved
 4 = Ladder Mode
 5 = CANopen
 6 = Profibus DP
Properties: CFG

Description:
This parameter defines the mode of operation of the SCA06 servo drive. For the equipment to be controlled by
the CANopen network, it is necessary to use mode 5 = CANopen. If this mode is programmed, commands and
references for the product operation will be provided via CANopen network, using the objects defined on the
object dictionary.

Among the main objects used to control and monitor the equipment, we can mention:

 6040h: ControlWord
 6041h: StatusWord
 6060h: Mode of operation
 6063h: Position actual value
 607Ah: Target position
 60FFh: Target velocity
 6071h: Target Torque

The detailed description of these and other objects is found in 7. For details about the modes of operation from
1 to 4, refer to the user’s manual of the SCA06 servo drive.

NOTE!
 Controlling the equipment through the objects for drives is only possible for mode of operation 5,

but the CANopen communication can be used in any mode of operation.
 For the SCA06 operating as slave of the Follow function, mode of operation 4 (ladder) must be

programmed, and the MC_GearInPos block must be used.

P0662 – ACTION FOR COMMUNICATION ERROR

Range: 0 = Cause Alarm Default: 0
 1 = Cause Fault
 2 = Cause alarm and execute STOP
 3 = Cause alarm and disable drive
Properties: CFG

Description:
This parameter allows selecting which action must be executed by the equipment in case it is controlled via
network and a communication error is detected.

Table 4.2: Options for the parameter P0662

Option Description
0 = Cause Alarm It just indicates alarm.
1 = Cause Fault Instead of alarm, a communication error causes a fault on the

equipment, and it is necessary to reset the faults so as to return to
normal operation.

2 = Execute STOP The alarm will be indicated together with the execution of the STOP
command. It is necessary to reset the faults or disable the drive for
the servo to exit this condition.

3 = Disable drive The alarm will be indicated together with the execution of the
disable command.

The followings events are considered communication errors:

Programming

SCA06 | 18

Serial Communication (RS232/RS485):
 Alarm A00128/Fault F00028: timeout of the serial interface.

CANopen communication:
 Alarm A133/Fault F233: no power supply on the CAN interface.
 Alarm A134/Fault F234: bus off.
 Alarm A135/Fault F235: CANopen communication error (Node Guarding/Heartbeat).

P0700 – CAN PROTOCOL

Range: 0 = Disabled Default: 0
 1 = CANopen
 2 = Reserved
 3 = CANespecial 1
Properties:

Description:
It allows selecting the desired protocol for the CAN interface. If this parameter is changed, the change takes
effect only if the CAN interface is not powered, it is in auto-baud or after the equipment is switched off and on
again.

P0701 – CAN ADDRESS

Range: 0 to 127 Default: 63
Properties:

Description:
It allows programming the address used for the CAN communication. It is necessary that each element of the
network has an address different from the others. The valid addresses for this parameter depend on the
protocol programmed in P0700:

 P0700 = 1 (CANopen) → valid addresses: 1 to 127.

If this parameter is changed, the change takes effect only if the CAN interface is not powered, auto-baud or
after the equipment is switched off and on again.

P0702 – CAN BAUD RATE

Range: 0 = 1 Mbit/s / Autobaud Default: 0
 1 = 800 Kbit/s / Autobaud
 2 = 500 Kbit/s
 3 = 250 Kbit/s
 4 = 125 Kbit/s
 5 = 100 Kbit/s / Autobaud
 6 = 50 Kbit/s / Autobaud
Properties:

Description:
It allows programming the desired baud rate for the CAN interface, in bits per second. This rate must be the
same for all the devices connected to the network. The supported bauld rates for the device depend on the
protocol programmed in the parameter P0700:

 P0700 = 1 (CANopen): It is possible to use any rate specified in this parameter, but it does not have the

automatic baud rate detection function – autobaud.

If this parameter is changed, the change takes effect only if the CAN interface is not powered or after the
equipment is switched off and on again.

Programming

SCA06 | 19

P0703 – BUS OFF RESET

Range: 0 = Manual Default: 1
 1 = Automatic
Properties:

Description:
It allows programming the inverter behavior when detecting a bus off error at the CAN interface:

Table 4.3: Options for the parameter P0703

Option Description
0 = Manual Reset If bus off occurs, the A134/F34 alarm will be indicated on the HMI,

the action programmed in parameter P0662 will be executed and the
communication will be disabled. In order that the inverter
communicates again through the CAN interface, it will be necessary
to cycle the power of the inverter.

1= Automatic Reset If bus off occurs, the communication will be reinitiated automatically
and the error will be ignored. In this case the alarm will not be
indicated on the HMI and the inverter will not execute the action
programmed in P0662.

P0704 – FOLLOW

Value 0 = Disabled Default: 0
Range: 1 = Real Follow Master
 2 = Virtual Follow Master
 3 = Follow Slave
Properties: CFG

Description:
It allows enabling the Follow function via CANopen, besides defining if the equipment will be Follow master
(producer) or slave (consumer).

Table 4.1: Options for parameter P0704

Option Description
0 = Disabled It does not send Follow message
1 = Real Follow Master It sends Follow telegrams containing position and speed of the real

axis.
2 = Virtual Follow
Master

It sends Follow telegrams containing position and speed of the virtual
axis.

3 = Follow Slave It receives Follow telegrams. It requires the MC_GearInPos block to
execute the Follow function.

Once programmed as master or slave, the SCA06 servo drive must automatically enter the mode of operation
on the CANopen network so as to enable the exchange of PDOs among the network devices.

For further details about the operation of the Follow function, refer to item 4.2.

P0705 – COB ID FOLLOW

Value 385 to 511 Default: 0
Range:
Properties: CFG

Description:
It defines the COB ID (Communication Object Identifier) of the Follow PDO. The adjustable range 385 (181h) to
511 (1FFh) is defined by the CANopen specification as standard range for the TPDO1. Both the master and
slaves must use the same COB ID.

Programming

SCA06 | 20

The function of the TPDO1 (master) and of the RPDO1 (slaves) is dedicated to this function and, therefore, these
PDOs must not be configured for communication of other data.

For details about the operation of the Follow function, refer to item 4.2.

P0706 – FOLLOW PERIOD

Value 0.2 to 5.0 ms Default: 1,0
Range:
Properties: CFG

Description:
It allows programming the transmission period of the Follow telegram by the network master. It is not used by
the slaves.

The shorter the period, the faster the references are transmitted and the more accurate the synchronism.
However, the bus occupation time will also be longer, which can hinder the communication in case there are
other data to be communicated by the CANopen network. This period must also be programmed considering
the baud rate. At 1 Mbit/s, it takes a Follow telegram about 100 us to be transmitted. As the baud rate gets
slower, the transmission time increases proportionally.

If the Follow function is used on the network only, you can program the shortest possible period, since there will
not be other transmitted telegrams on the network. But if the CANopen master function is used in parallel, it is
important that there is available time to transmit the other CANopen telegrams. As a recommendation, when the
CANopen master is used, the Follow telegrams must take about 10 to 20% of the bus time.

For further details about the operation of the Follow function, refer to item 4.2.

4.2 FOLLOW FUNCTION VIA CANOPEN

The Follow function allows the position synchronism between two or more servomotors. The synchronism is
established by sending the telegrams of the PDO type, where the Follow master sends position and speed
values of the motor, which will be used as reference by one or more Follow slaves.

The Follow function can be programmed by two different sources: by parameters or by the WSCAN software.

4.2.1 Follow Programmed by Parameters

If you do not wish to use the CANopen master function available for the SCA06 servo drive, you can program
the Follow function only by using parameters. In this case, parameters P0704, P0705 and P0706 are used, and
it is necessary to program/configure the following elements:

 Network: In order to use the Follow function, first it is necessary to configure the CANopen interface,

defining the protocol, address and baud rate, as well as to perform the necessary installation for the
communication – cables, power supply, termination resistors, etc.

 Master: For the master (or producer), it is necessary to enable the Follow function, select the reference
shaft, and program the COB ID and the transmission period.

 Slaves: On slaves (or consumers), you must enable the Follow function in the slave mode and program the
COB ID equal to that programmed for the master. For the slaves to receive and use these speed and
position values, it is also necessary that they be programmed for the Ladder mode (P0204 = 4), and the
MC_GearInPos block must be used. More details about the configuration of the MC_GearInPos block in the
Help of the WLP software.

4.2.2 Follow Programmed by the WSCAN Software

Another option for programming the Follow function is trough the WSCAN software. In this case, the parameters
P0704, P0705 and P0706 must not be programmed, and the function is enabled through the SCA06 servo
drive configuration window in the WSCAN software.

Programming

SCA06 | 21

Figure 4.1: Configuration windows for Follow master and slave

Once programmed, during the initialization of the slaves with the Follow function, the CANopen network master
will program the function by using internal objects of the device. The programming is done online, and it is not
necessary to restart the equipment for the new values to be used.

Along with the programming of the Follow function, you can also program other services for the CANopen
network, such as PDOs, SDOs, Node Guarding, etc., always bearing in mind that the CAN bus occupation time
by the Follow telegrams must allow for the use of these other services.

Object Dictionary

SCA06 | 22

5 OBJECT DICTIONARY

The object dictionary is a list containing several equipment data which can be accessed via CANopen network.
An object of this list is identified by means of a 16-bit index, and it is based in that list that all the data exchange
between devices is performed.

The CiA DS 301 document defines a set of minimum objects that every CANopen network slave must have. The
objects available in that list are grouped according to the type of function they execute. The objects are
arranged in the dictionary in the following manner:

Table 5.1: Object dictionary groupings

Index Objects Description
0001h – 025Fh Data type definition Used as reference for the data type supported by the system.
1000h – 1FFFh Communication objects They are objects common to all the CANopen devices. They contain

general information about the equipment and also data for the
communication configuration.

2000h – 5FFFh Manufacturer specific objects In this range, each CANopen equipment manufacturer is free to define
which data those objects will represent.

6000h – 9FFFh Standardized device objects This range is reserved to objects that describe the behavior of similar
equipment, regardless of the manufacturer.

The other indexes that are not referred in this list are reserved for future use.

5.1 DICTIONARY STRUCTURE

The general structure of the dictionary has the following format:

Index Object Name Type Access

 Index: indicates directly the object index in the dictionary.
 Object: describes which information the index stores (simple variable, array, record, etc.).
 Name: contains the name of the object in order to facilitate its identification.
 Type: indicates directly the stored data type. For simple variables, this type may be an integer, a float, etc.

For arrays, it indicates the type of data contained in the array. For records, it indicates the record format
according to the types described in the first part of the object dictionary (indexes 0001h – 0360h).

 Access: informs if the object in question is accessible only for reading (ro), for reading and writing (rw), or if
it is a constant (const).

For objects of the array or record type, a sub-index that is not described in the dictionary structure is also
necessary.

5.2 DATA TYPE

The first part of the object dictionary (index 0001h – 025Fh) describes the data types that can be accessed at a
CANopen network device. They can be basic types, as integers and floats, or compound types formed by a set
of entries, as records and arrays.

5.3 COMMUNICATION PROFILE – COMMUNICATION OBJECTS

The indexes from 1000h to 1FFFh in the object dictionary correspond to the part responsible for the CANopen
network communication configuration. Those objects are common to all the devices, however only a few are
obligatory. A list with the objects of this range that are supported by the servo drive SCA06, working in slave
mode.is presented next.

Object Dictionary

SCA06 | 23

Table 5.2: Object list – Communication Profile

Índice Objeto Nome Tipo Acesso
1000h VAR device type UNSIGNED32 ro
1001h VAR error register UNSIGNED8 ro
1005h VAR COB-ID SYNC UNSIGNED32 rw
100Ch VAR guard time UNSIGNED16 rw
100Dh VAR life time factor UNSIGNED8 rw
1016h ARRAY Consumer heartbeat time UNSIGNED32 rw
1017h VAR Producer heartbeat time UNSIGNED16 rw
1018h RECORD Identity Object Identity ro

Server SDO Parameter
1200h RECORD 1st Server SDO parameter SDO Parameter ro

Receive PDO Communication Parameter
1400h RECORD 1st receive PDO Parameter PDO CommPar rw
1401h RECORD 2nd receive PDO Parameter PDO CommPar rw

...
1407h RECORD 8th receive PDO Parameter PDO CommPar rw

Receive PDO Mapping Parameter
1600h RECORD 1st receive PDO mapping PDO Mapping rw
1601h RECORD 2nd receive PDO mapping PDO Mapping rw

...
1607h RECORD 8th receive PDO mapping PDO Mapping rw

Transmit PDO Communication Parameter
1800h RECORD 1st transmit PDO Parameter PDO CommPar rw
1801h RECORD 2nd transmit PDO Parameter PDO CommPar rw

...
1807h RECORD 8th transmit PDO Parameter PDO CommPar rw

Transmit PDO Mapping Parameter
1A00h RECORD 1st transmit PDO mapping PDO Mapping rw
1A01h RECORD 2nd transmit PDO mapping PDO Mapping rw

...
1A07h RECORD 8th transmit PDO mapping PDO Mapping rw

These objects can only be read and written via the CANopen network, it is not available via the keypad (HMI) or
other network interface. The network master, in general, is the equipment responsible for setting up the
equipment before starting the operation. The EDS configuration file brings the list of all supported
communication objects.

Refer to item 6 for more details on the available objects in this range of the objects dictionary.

5.4 MANUFACTURER SPECIFIC – SCA06 SPECIFIC OBJECTS

For indexes from 2000h to 5FFFh, each manufacture is free to define which objects will be present, and also the
type and function of each one. In the case of the SCA06, the whole list of parameters was made available in this
object range. It is possible to operate the SCA06 by means of these parameters, carrying out any function that
the inverter can execute. The parameters were made available starting from the index 2000h, and by adding
their number to this index their position in the dictionary is obtained. The next table illustrates how the
parameters are distributed in the object dictionary.

Table 5.3: SCA06 object list – Manufacturer Specific

Index Object Name Type Access
2000h VAR P0000 – Access parameter INTEGER16 rw
2002h VAR P0002 – Motor speed INTEGER16 ro
2003h VAR P0003 – Motor current INTEGER16 ro
2004h VAR P0004 – DC voltage INTEGER16 ro

...
2077h VAR P0119 – Current Reference INTEGER16 rw
2079h VAR P0121 – Speed Reference INTEGER16 rw

...

Refer to the SCA06 manual for a complete list of the parameters and their detailed description. In order to be
able to program the device operation correctly via the CANopen network, it is necessary to know its operation
through the parameters.

Besides parameters, SCA06 also have the following objects:

Object Dictionary

SCA06 | 24

 0x3000h – digital inputs.
 0x3001h – digital outputs.
 0x3002h – Follow Position Actual Value.
 0x3003h – Follow Velocity Actual Value.
 0x3004h – Follow Target Position.
 0x3005h – Follow Target Velocity.
 0x3008h – Follow Type.
 0x3009h – Follow Period.

5.4.1 Objeto 3000h – Digital Inputs

This object allows reading the digital inputs status from SCA06 servo drive.

Index 3000h
Name Digital Inputs
Object Array
Type UNSIGNED16

Sub-index 0
Description Number of Entries
Access ro
PDO Mapping No
Range UNSIGNED16

Sub-index 1
Description Standard Digital Inputs
Access ro
PDO Mapping Yes
Range UNSIGNED16

Sub-index 2
Description Digital Inputs Slot 1
Access ro
PDO Mapping Yes
Range UNSIGNED16

Sub-index 3
Description Digital Inputs Slot 2
Access ro
PDO Mapping Yes
Range UNSIGNED16

Sub-index 4
Description Digital Inputs Slot 3
Access ro
PDO Mapping Yes
Range UNSIGNED16

5.4.2 Objeto 3001h – Digital Outputs

This object allows writing the digital output values to SCA06 servo drive.

Index 3001h
Name Digital Outputs
Object Array
Type UNSIGNED8

Sub-index 0
Description Number of Entries
Access ro
PDO Mapping No
Range UNSIGNED16

Object Dictionary

SCA06 | 25

Sub-index 1
Description Standard Digital Outputs
Access rw
PDO Mapping Yes
Range UNSIGNED8

Sub-index 2
Description Digital Outputs Slot 1
Access rw
PDO Mapping Yes
Range UNSIGNED8

Sub-index 3
Description Digital Outputs Slot 2
Access rw
PDO Mapping Yes
Range UNSIGNED8

Sub-index 4
Description Digital Outputs Slot 3
Access rw
PDO Mapping Yes
Range UNSIGNED8

5.4.3 Objects 3002h to 3009h – Follow

Objects 3002h to 3009h are used for Follow function.

5.5 DEVICE PROFILE – COMMON OBJECTS FOR DRIVES

The CANopen documentation also includes suggestions for standardization of certain device types. The SCA06
servo drive follows the CiA DPS 402 – Device Profile Drives and Motion Control description. This document
describes a set of objects that must be common for drives, regardless of the manufacturer. This makes the
interaction between devices with the same function easier (as for servo drives), because the data, as well as the
device behavior, are made available in a standardized manner. For those objects the indexes from 6000h to
9FFFh were reserved.

Refer to the section 7 for a detailed description of which objects are available for this range of the object
dictionary.

Communication Objects Description

SCA06 | 26

6 COMMUNICATION OBJECTS DESCRIPTION

This item describes in detail each of the communication objects available for the servo drive SCA06 working in
slave mode. It is necessary to know how to operate these objects to be able to use the available functions for
the inverter communication.

NOTE!
The servo drive SCA06 can operate as master or slave of the CANopen network. The objects below
describe the operation of the equipment as slave of the CANopen network. For a description of the
characteristics of the product operating as CANopen network master, refer to the item 8 together with
the WSCAN CANopen network configuration software.

6.1 IDENTIFICATION OBJECTS

There is a set of objects in the dictionary which are used for equipment identification; however, they do not have
influence on their behavior in the CANopen network.

6.1.1 Object 1000h – Device Type

This object gives a 32-bit code that describes the type of object and its functionality.

Index 1000h
Name Device type
Object VAR
Type UNSIGNED32

Access ro
PDO Mapping No
Range UNSIGNED32
Default value 0002.0192h

This code can be divided into two parts: 16 low-order bits describing the type of profile that the device uses,
and 16 high-order bits indicating a specific function according to the specified profile.

6.1.2 Object 1001h – Error Register

This object indicates whether or not an error in the device occurred. The type of error registered for the SCA06
follows what is described in the table 6.1.

Index 1001h
Name Error register
Object VAR
Type UNSIGNED8

Access ro
PDO Mapping Yes
Range UNSIGNED8
Default value 0

Table 6.1: Structure of the object Error Register

Bit Meaning
0 Generic error
1 Current
2 Voltage
3 Temperature
4 Communication
5 Reserved (always 0)
6 Reserved (always 0)
7 Specific of the manufacturer

If the device presents any error, the equivalent bit must be activated. The first bit (generic error) must be
activated with any error condition.

Communication Objects Description

SCA06 | 27

6.1.3 Object 1018h – Identity Object

It brings general information about the device.

Index 1018h
Name Identity object
Object Record
Type Identity

Sub index 0
Description Number of the last sub-index
Access RO
PDO Mapping No
Range UNSIGNED8
Default value 4

Sub index 1
Description Vendor ID
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 0000.0123h

Sub index 2
Description Product code
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 0000.0700h

Sub index 3
Description Revision number
Access RO
PDO Mapping No
Range UNSIGNED32
Default value According to the equipment firmware version

Sub index 4
Description Serial number
Access RO
PDO Mapping No
Range UNSIGNED32
Default value Different for every SCA06

The vendor ID is the number that identifies the manufacturer at the CiA. The product code is defined by the
manufacturer according to the type of product. The revision number represents the equipment firmware version.
The sub-index 4 is a unique serial number for each servo drive SCA06 in CANopen network.

6.2 SERVICE DATA OBJECTS – SDOS

The SDOs are responsible for the direct access to the object dictionary of a specific device in the network. They
are used for the configuration and therefore have low priority, since they do not have to be used for
communicating data necessary for the device operation.

There are two types of SDOs: client and server. Basically, the communication initiates with the client (usually the
master of the network) making a read (upload) or write (download) request to a server, and then this server
answers the request.

Communication Objects Description

SCA06 | 28

Figure 6.1: Communication between SDO client and server

6.2.1 Object 1200h – SDO Server

The servo drive SCA06 working in slave mode has only one SDO of the server type, which makes it possible the
access to its entire object dictionary. Through it, an SDO client can configure the communication, the
parameters and the drive operation. Every SDO server has an object, of the SDO_PARAMETER type, for its
configuration, having the following structure:

Index 1200h
Name Server SDO Parameter
Object Record
Type SDO Parameter

Sub index 0
Description Number of the last sub-index
Access RO
PDO Mapping No
Range UNSIGNED8
Default value 2

Sub index 1
Description COB-ID Client - Server (rx)
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 600h + Node-ID

Sub index 2
Description COB-ID Server - Client (tx)
Access RO
PDO Mapping No
Range UNSIGNED32
Default value 580h + Node-ID

6.2.2 SDOs Operation

A telegram sent by an SDO has an 8 byte size, with the following structure:

Identifier 8 data bytes

11 bits
Command Index Sub-index Object data

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

The identifier depends on the transmission direction (rx or tx) and on the address (or Node-ID) of the destination
server. For instance, a client that makes a request to a server which Node-ID is 1, must send a message with
the identifier 601h. The server will receive this message and answer with a telegram which COB-ID is equal to
581h.

The command code depends on the used function type. For the transmissions from a client to a server, the
following commands can be used:

Communication Objects Description

SCA06 | 29

Table 6.2: Command codes for SDO client

Command Function Description Object data
22h Download Write object Not defined
23h Download Write object 4 bytes
2Bh Download Write object 2 bytes
2Fh Download Write object 1 byte
40h Upload Read object Not used

60h or 70h Upload segment Segmented read Not used

When making a request, the client will indicate through its COB-ID, the address of the slave to which this
request is destined. Only a slave (using its respective SDO server) will be able to answer the received telegram
to the client. The answer telegram will have also the same structure of the request telegram, the commands
however are different:

Table 6.3: Command codes for SDO server

Command Function Description Object data
60h Download Response to write object Not used
43h Upload Response to read object 4 bytes
4Bh Upload Response to read object 2 bytes
4Fh Upload Response to read object 1 byte
41h Upload segment Initiates segmented response for read 4 bytes

01h ... 0Dh Upload segment Last data segment for read 8 ... 2 bytes

For readings of up to four data bytes, a single message can be transmitted by the server; for the reading of a
bigger quantity of bytes, it is necessary that the client and the server exchange multiple telegrams.

A telegram is only completed after the acknowledgement of the server to the request of the client. If any error is
detected during telegram exchanges (for instance, no answer from the server), the client will be able to abort the
process by means of a warning message with the command code equal to 80h.

NOTE!
When the SDO is used for writing in objects that represent the SCA06 parameters (objects starting
from the index 2000h), this value is saved in the nonvolatile frequency inverter memory. Therefore, the
configured values are not lost after the equipment is switched off or reset. For all the other objects
these values are not saved automatically, so that it is necessary to rewrite the desired values

E.g.: A client SDO requests for a SCA06 at address 1 the reading of the object identified by the index 2000h,
sub-index 0 (zero), which represents an 16-bit integer. The master telegram has the following format:

Identifier Command Index Sub-index Data
601h 40h 00h 20h 00h 00h 00h 00h 00h

The SCA06 responds to the request indicating that the value of the referred object is equal to 9995:

Identifier Command Index Sub-index Data
581h 4Bh 00h 20h 00h E7 03h 00h 00h

6.3 PROCESS DATA OBJECTS – PDOS

The PDOs are used to send and receive data used during the device operation, which must often be
transmitted in a fast and efficient manner. Therefore, they have a higher priority than the SDOs.

In the PDOs only data are transmitted in the telegram (index and sub-index are omitted), and in this way it is
possible to do a more efficient transmission, with larger volume of data in a single telegram. However it is
necessary to configure previously what is being transmitted by the PDO, so that even without the indication of
the index and sub-index, it is possible to know the content of the telegram.

There are two types of PDOs, the receive PDO and the transmit PDO. The transmit PDOs are responsible for
sending data to the network, whereas the receive PDOs remain responsible for receiving and handling these

5 Do not forget that for any integer type of data, the byte transfer order is from the least significant to the most significant.

Communication Objects Description

SCA06 | 30

data. In this way it is possible to have communication among slaves of the CANopen network, it is only
necessary to configure one slave to transmit information and one or more slaves to receive this information.

Figure 6.2: Communication using PDOs

NOTE!
PDOs can only be transmitted or received when the device is in the operational state. The figure 6.2
illustrates the available states for CANopen network node.

6.3.1 PDO Mapping Objects

In order to be able to be transmitted by a PDO, it is necessary that an object be mapped into this PDO content.
In the description of communication objects (1000h – 1FFFh), the filed “PDO Mapping” informs this possibility.
Usually only information necessary for the operation of the device can be mapped, such as enabling
commands, device status, reference, etc. Information on the device configuration are not accessible through
PDOs, and if it is necessary to access them one must use the SDOs.

For SCA06 specific objects (2000h – 5FFFh), the next table presents some PDO mapping objects. Read-only
parameters (ro) can be used only by transmit PDOs, whereas the other parameters can be used only by receive
PDOs. The SCA06 EDS file brings the list of all the objects available for the inverter, informing whether the object
can be mapped or not.

Table 6.4: Examples of PDO mapping parameters

Index Object Name Type Access
2002h VAR P0002 – Motor speed INTEGER16 ro
2003h VAR P0003 – Motor current INTEGER16 ro
2004h VAR P0004 – DC Link Voltage (Ud) UNSIGNED16 ro
2008h VAR P0008 – DI1 to DI3 status UNSIGNED16 ro
2063h VAR P0099 – Enable UNSIGNED16 rw
2077h VAR P0119 – Current Reference INTEGER16 rw
2079h VAR P0121 – Speed Reference INTEGER16 rw

The EDS file brings the list of all available objects informing whether the object can be mapped or not.

6.3.2 Receive PDOs

The receive PDOs, or RPDOs, are responsible for receiving data that other devices send to the CANopen
network. The servo drive SCA06 working in slave mode has 8 receive PDOs, each one being able to receive up
to 8 bytes. Each RPDO has two parameters for its configuration, a PDO_COMM_PARAMETER and a
PDO_MAPPING, as described next.

PDO_COMM_PARAMETER

Index 1400h up to 1407h
Name Receive PDO communication parameter
Object Record
Type PDO COMM PARAMETER

Communication Objects Description

SCA06 | 31

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 2

Sub index 1
Description COB-ID used by the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1400h: 200h + Node-ID

1401h: 300h + Node-ID
1402h: 400h + Node-ID
1403h: 500h + Node-ID
1404h – 1407h: 0

Sub index 2
Description Transmission Type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

The sub-index 1 contains the receive PDO COB-ID. Every time a message is sent to the network, this object will
read the COB-ID of that message and, if it is equal to the value of this field, the message will be received by the
device. This field is formed by an UNSIGNED32 with the following structure:

Table 6.5: COB-ID description

Bit Value Description
31 (MSB) 0 PDO is enabled

1 PDO is disabled
30 0 RTR permitted
29 0 Identifier size = 11 bits

28 – 11 0 Not used, always 0
10 – 0 (LSB) X 11-bit COB-ID

The bit 31 allows enabling or disabling the PDO. The bits 29 and 30 must be kept in 0 (zero), they indicate
respectively that the PDO accepts remote frames (RTR frames) and that it uses an 11-bit identifier. Since the
SCA06 frequency inverter does not use 29-bit identifiers, the bits from 28 to 11 must be kept in 0 (zero),
whereas the bits from 10 to 0 (zero) are used to configure the COB-ID for the PDO.

The sub-index 2 indicates the transmission type of this object, according to the next table.

Table 6.6: Description of the type of transmission

Type of transmission PDOs transmission
 Cyclic Acyclic Synchronous Asynchronous RTR
0 • •

1 – 240 • •
241 – 251 Reserved

252 • •
253 • •
254 •
255 •

 Values 0 – 240: any RPDO programmed in this range presents the same performance. When detecting a

message, it will receive the data; however it won't update the received values until detecting the next SYNC
telegram.

 Values 252 and 253: not allowed for receive PDOs.
 Values 254 and 255: they indicated that there is no relationship with the synchronization object. When

receiving a message, its values are updated immediately.

PDO_MAPPING

Communication Objects Description

SCA06 | 32

Index 1600h up to 1607h
Name Receive PDO mapping
Object Record
Type PDO MAPPING

Sub index 0
Description Number of mapped objects
Access RO
PDO Mapping No
Range 0 = disable

1 ... 4 = number of mapped objects
Default value 0

Sub index 1 up to 4
Description 1 up to 4 object mapped in the PDO
Access Rw
PDO Mapping No
Range UNSIGNED32
Default value According EDS file

This parameter indicates the mapped objects in the SCA06 receive PDOs. It is possible to map up to 4 different
objects for each RPDO, provided that the total length does not exceed eight bytes. The mapping of an object is
done indicating its index, sub-index6 and size (in bits) in an UNSIGNED32, field with the following format:

UNSIGNED32
Index

(16 bits)
Sub-index

(8 bits)
Size of the object

(8 bits)

For instance, analyzing the receive PDO standard mapping, we have:

 Sub-index 0 = 2: the RPDO has two mapped objects.
 Sub-index 1 = 2063.0010h: the first mapped object has an index equal to 2063h, sub-index 0 (zero), and

a size of 16 bits. This object corresponds to the inverter parameter P0099, which represents the drive
enabling command.

 Sub-index 2 = 2079.0010h: the second mapped object has an index equal to 2079h, sub-index 0 (zero),
and a size of 16 bits. This object corresponds to the inverter parameter P0121, which represents the speed
reference.

It is possible to modify this mapping by changing the quantity or the number of mapped objects. Remembering
that only 84 objects or 8 bytes can be mapped at maximum.

NOTE!
 In order to change the mapped objects in a PDO, it is first necessary to write the value 0 (zero) in

the sub-index 0 (zero). In that way the values of the sub-indexes 1 to 8 can be changed. After the
desired mapping has been done, one must write again in the sub-index 0 (zero) the number of
objects that have been mapped, enabling again the PDO.

 In order to speed up the updating of data via PDO, the values received with these objects are not
saved in the inverter non-volatile memory. Therefore, after switching off or resetting the equipment
the objects modified by an RPDO get back to their default value.

 Do not forget that PDOs can only be received if the SCA06 is in the operational state.

6.3.3 Transmit PDOs

The transmit PDOs, or TPDOs, as the name says, are responsible for transmitting data for the CANopen
network. The servo drive SCA06 has transmit PDOs, each one being able to transmit up to 8 data bytes. In a
manner similar to RPDOs, each TPDO has two parameters for its configuration, a PDO_COMM_PARAMETER
and a PDO_MAPPING, AS DESCRIBED NEXT.

PDO_COMM_PARAMETER

6 If the object is of the VAR type and does not have sub-index, the value 0 (zero) must be indicated for the sub-index.

Communication Objects Description

SCA06 | 33

Index 1800h up to 1807h
Name Transmit PDO Parameter
Object Record
Type PDO COMM PARAMETER

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range UNSIGNED8
Default value 5

Sub index 1
Description COB-ID used by the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 1800h: 180h + Node-ID

1801h: 280h + Node-ID
1802h: 380h + Node-ID
1803h: 480h + Node-ID
1804h – 1807h: 0

Sub index 2
Description Transmission Type
Access rw
PDO Mapping No
Range UNSIGNED8
Default value 254

Sub index 3
Description Time between transmissions
Access rw
PDO Mapping No
Range UNSIGNED16
Default value -

Sub index 4
Description Reserved
Access rw
PDO Mapping No
Range UNSIGNED8
Default value -

Sub index 5
Description Event timer
Access rw
PDO Mapping No
Range 0 = disable

UNSIGNED16
Default value 0

The sub-index 1 contains the transmit PDO COB-ID. Every time this PDO sends a message to the network, the
identifier of that message will be this COB-ID. The structure of this field is described in table 6.5.

The sub-index 2 indicates the transmission type of this object, which follows the table 6.6 description. Its
working is however different for transmit PDOs:

 Value 0: indicates that the transmission must occur immediately after the reception of a SYNC telegram,

but not periodically.
 Values 1 – 240: the PDO must be transmitted at each detected SYNC telegram (or multiple occurrences of

SYNC, according to the number chosen between 1 and 240).
 Value 252: indicates that the message content must be updated (but not sent) after the reception of a

SYNC telegram. The transmission of the message must be done after the reception of a remote frame (RTR
frame).

 Value 253: the PDO must update and send a message as soon as it receives a remote frame.
 Values 254: The object must be transmitted according to the timer programmed in sub-index 5.

Communication Objects Description

SCA06 | 34

 Values 255: the object is transmitted automatically when the value of any of the objects mapped in this
PDO is changed. It works by changing the state (Change of State). This type does also allow that the PDO
be transmitted according to the timer programmed in sub-index 5.

In the sub-index 3 it is possible to program a minimum time (in multiples of 100μs) that must elapse after the a
telegram has been sent, so that a new one can be sent by this PDO. The value 0 (zero) disables this function.

The sub-index 5 contains a value to enable a timer for the automatic sending of a PDO. Therefore, whenever a
PDO is configured as the asynchronous type, it is possible to program the value of this timer (in multiples of
1ms), so that the PDO is transmitted periodically in the programmed time.

NOTE!
 The value of this timer must be programmed according to the used transmission rate. Very short

times (close to the transmission time of the telegram) are able to monopolize the bus, causing
indefinite retransmission of the PDO, and avoiding that other less priority objects transmit their
data.

 The minimum time allowed for this Function in the servo drive SCA06 is 1ms.
 It is important to observe the time between transmissions programmed in the sub-index 3,

especially when the PDO is programmed with the value 255 in the sub-index 2 (Change of State).

PDO_MAPPING

Index 1A00h up to 1A07h
Name Transmit PDO mapping
Object Record
Type PDO MAPPING

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range 0 = disable

1 ... 4 = number of mapped objects
Default value 0

Sub index 1 up to 4
Description 1 up to 4 object mapped in the PDO
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 0

The PDO MAPPING for the transmission works in similar way than for the reception, however in this case the
data to be transmitted by the PDO are defined. Each mapped object must be put in the list according to the
description showed next:

UNSIGNED32
Index

(16 bits)
Sub-index

(8 bits)
Size of the object

(8 bits)

For instance, analyzing the standard mapping of the fourth transmit PDO, we have:

 Sub- index 0 = 2: This PDO has two mapped objects.
 Sub- index 1 = 2002.0010h: the first mapped object has an index equal to 2002h, sub-index 0 (zero), and

a size of 16 bits. This object corresponds to the parameter P0002 that is motor speed.
 Sub-índice 2 = 2023.0010h: the second mapped object has an index equal to 2023h, sub- index 0 (zero),

and a size of 16 bits. This object corresponds to the parameter P0035 that is present fault.

Therefore, every time this PDO transmits its data, it elaborates its telegram containing four data bytes, with the
values of the parameters P0680 and P0681. It is possible to modify this mapping by changing the quantity or
the number of mapped objects. Remember that a maximum of 4 objects or 8 bytes can be mapped.

Communication Objects Description

SCA06 | 35

NOTE!
In order to change the mapped objects in a PDO, it is first necessary to write the value 0 (zero) in the
sub-index 0 (zero). In that way the values of the sub-indexes 1 to 4 can be changed. After the desired
mapping has been done, one must write again in the sub-index 0 (zero) the number of objects that
have been mapped, enabling again the PDO.

6.4 SYNCHRONIZATION OBJECT – SYNC

This object is transmitted with the purpose of allowing the synchronization of events among the CANopen
network devices. It is transmitted by a SYNC producer, and the devices that detect its transmission are named
SYNC consumers

The servo drive SCA06 working in slave mode has the function of a SYNC consumer and, therefore, it can
program its PDOs to be synchronous. As described in table 6.6, synchronous PDOs are those related to the
synchronization object, thus they can be programmed to be transmitted or updated based in this object.

Figure 6.3: SYNC

The SYNC message transmitted by the producer does not have any data in its data field, because its purpose is
to provide a time base for the other objects. There is an object in the SCA06 for the configuration of the COB-ID
of the SYNC consumer.

Index 1015h
Name COB-ID SYNC
Object VAR
Type UNSIGNED32

Access rw
PDO Mapping No
Range UNSIGNED32
Default value 80h

NOTE!
The period of the SYNC telegrams must be programmed in the producer according to the
transmission rate and the number of synchronous PDOs to be transmitted. There must be enough
time for the transmission of these objects, and it is also recommended that there is a tolerance to
make it possible the transmission of asynchronous messages, such as EMCY, asynchronous PDOs
and SDOs.

6.5 NETWORK MANAGEMENT – NMT

The network management object is responsible for a series of services that control the communication of the
device in a CANopen network. For the SCA06 the services of node control and error control are available (using
Node Guarding or Heartbeat).

6.5.1 Slave State Control

With respect to the communication, a CANopen network device can be described by the following state
machine:

Communication Objects Description

SCA06 | 36

Figure 6.4: CANopen node state diagram

Table 6.7: Transitions Description

Transition Description
1 The device is switched on and initiates the initialization (automatic).
2 Initialization concluded, it goes to the preoperational state (automatic).
3 It receives the Start Node command for entering the operational state.
4 It receives the Enter Pre-Operational command, and goes to the preoperational state.
5 It receives the Stop Node command for entering the stopped state.
6 It receives the Reset Node command, when it executes the device complete reset.
7 It receives the Reset Communication command, when it reinitializes the object values and the CANopen device

communication.

During the initialization the Node-ID is defined, the objects are created and the interface with the CAN network is
configured. Communication with the device is not possible during this stage, which is concluded automatically.
At the end of this stage the slave sends to the network a telegram of the Boot-up Object, used only to indicate
that the initialization has been concluded and that the slave has entered the preoperational state. This telegram
has the identifier 700h + Node-ID, and only one data byte with value equal to 0 (zero).

In the preoperational state it is already possible to communicate with the slave, but its PDOs are not yet
available for operation. In the operational state all the objects are available, whereas in the stopped state only
the NMT object can receive or transmit telegrams to the network. The next table shows the objects available for
each state.

Table 6.8: Objects accessible in each state

 Initialization Preoperational Operational Stopped
PDO •
SDO • •

SYNC • •
EMCY • •

Boot-up •
NMT • • •

This state machine is controlled by the network master, which sends to each slave the commands so that the
desired state change be executed. These telegrams do not have confirmation, what means that the slave does
only receive the telegram without returning an answer to the master. The received telegrams have the following
structure:

Identifier byte 1 byte 2
00h Command code Destination Node-ID

Communication Objects Description

SCA06 | 37

Table 6.9: Commands for the state transition

Command code Destination Node-ID
1 = START node (transition 3)
2 = STOP node (transition 4)
128 = Enter pre-operational (transition 5)
129 = Reset node (transition 6)
130 = Reset communication (transition 7)

0 = All the slaves
1 ... 127 = Specific slave

The transitions indicated in the command code correspond to the state transitions executed by the node after
receiving the command (according to the Figure 6.4). The Reset node command makes the SCA06 execute a
complete reset of the device, while the Reset communication command causes the device to reinitialize only the
objects pertinent to the CANopen communication.

6.5.2 Error Control – Node Guarding

This service is used to make it possible the monitoring of the communication with the CANopen network, both
by the master and the slave as well. In this type of service the master sends periodical telegrams to the slave,
which responds to the received telegram. If some error that interrupts the communication occurs, it will be
possible to identify this error, because the master as well as the slave will be notified by the Timeout in the
execution of this service. The error events are called Node Guarding for the master and Life Guarding for the
slave.

Figure 6.5: Error control service – Node Guarding

There are two objects of the dictionary for the configuration of the error detection times for the Node Guarding
service:

Index 100Ch
Name Guard Time
Object VAR
Type UNSIGNED16

Access rw
PDO Mapping No
Range UNSIGNED16
Default value 0

Index 100Dh
Name Life Time Factor
Object VAR
Type UNSIGNED8

Communication Objects Description

SCA06 | 38

Access rw
PDO Mapping No
Range UNSIGNED8
Default value 0

The 100Ch object allows programming the time necessary (in milliseconds) for a fault occurrence being
detected, in case the SCA06 does not receive any telegram from the master. The 100Dh object indicates how
many faults in sequence are necessary until it be considered that there was really a communication error.
Therefore, the multiplication of these two values will result in the total necessary time for the communication
error detection using this object. The value 0 (zero) disables this function.

Once configured, the SCA06 starts counting these times starting from the first Node Guarding telegram
received from the network master. The master telegram is of the remote type, not having data bytes. The
identifier is equal to 700h + Node-ID of the destination slave. However the slave response telegram has 1 data
byte with the following structure:

Identifier
byte 1

bit 7 bit 6 ... bit 0
700h + Node-ID Toggle Slave state

This telegram has one single data byte. This byte contains, in the seven least significant bits, a value to indicate
the slave state (4 = stopped, 5 = operational and 127 = preoperational), and in the eighth bit, a value that must
be changed at every telegram sent by the slave (toggle bit).

If the servo drive SCA06 detects an error using this mechanism, it will turn automatically to the preoperational
state and indicate alarm A135 on its HMI.

NOTE!
 This object is active even in the stopped state (see table 6.8).
 The value 0 (zero) in any of these two objects will disable this function.
 If after the error detection the service is enabled again, then the error indication will be removed

from the HMI.
 The minimum value accepted by the SCA06 is 1ms., but considering the transmission rate and

the number of nodes in the network, the times programmed for this function must be consistent,
so that there is enough time for the transmission of the telegrams and also that the rest of the
communication be able to be processed.

 For any every slave only one of the two services - Heartbeat or Node Guarding – can be enabled.

6.5.3 Error Control – Heartbeat

The error detection through the Heartbeat mechanism is done using two types of objects: the Heartbeat
producer and the Heartbeat consumer. The producer is responsible for sending periodic telegrams to the
network, simulating a heartbeat, indicating that the communication is active and without errors. One or more
consumers can monitor these periodic telegrams, and if they cease occurring, it means that any communication
problem occurred.

Communication Objects Description

SCA06 | 39

Figure 6.6: Error control service – Heartbeat

One device of the network can be both producer and consumer of heartbeat messages. For example, the
network master can consume messages sent by a slave, making it possible to detect communication problems
with the master, and simultaneously the slave can consume heartbeat messages sent by the master, also
making it possible to the slave detect communication fault with the master.

The SCA06 has the producer and consumer of heartbeat services. As a consumer, it is possible to program up
to 4 different producers to be monitored by the inverter.

Index 1016h
Name Consumer Heartbeat Time
Object ARRAY
Type UNSIGNED32

Sub index 0
Description Number of the last sub-index
Access ro
PDO Mapping No
Range -
Default value 8

Sub index 1 – 8
Description Consumer Heartbeat Time 1 – 8
Access rw
PDO Mapping No
Range UNSIGNED32
Default value 0

At sub-indexes 1 to 8, it is possible to program the consumer by writing a value with the following format:

UNSIGNED32
Reserved

(8 bits)
Node-ID
(8 bits)

Heartbeat time
(16 bits)

 Node-ID: it allows programming the Node_ID for the heartbeat producer to be monitored.
 Heartbeat time: it allows programming the time, in 1 millisecond multiples, until the error detection if no

message of the producer is received. The value 0 (zero) in this field disables the consumer.

Once configured, the heartbeat consumer initiates the monitoring after the reception of the first telegram sent by
the producer. In case that an error is detected because the consumer stopped receiving messages from the
heartbeat producer, the servo drive will turn automatically to the preoperational state and indicate alarm A135 in
the HMI.

Communication Objects Description

SCA06 | 40

As a producer, the servo drive SCA06 has an object for the configuration of that service:

Index 1017h
Name Producer Heartbeat Time
Object VAR
Type UNSIGNED16

Access rw
PDO Mapping No
Range UNSIGNED8
Default value 0

The 1017h object allows programming the time in milliseconds during which the producer has to send a
heartbeat telegram to the network. Once programmed, the inverter initiates the transmission of messages with
the following format:

Identifier
byte 1

bit 7 bit 6 ... bit 0
700h + Node-ID Always 0 Slave state

NOTE!
 This object is active even in the stopped state (see table 6.8).
 The value 0 (zero) in the object will disable this function.
 If after the error detection the service is enabled again, then the error indication will be removed

from the HMI.
 The time value programmed for the consumer must be higher than the programmed for the

respective producer. Actually, it is recommended to program the consumer with a multiple of the
value used for the producer.

 For any every slave only one of the two services - Heartbeat or Node Guarding – can be enabled.

6.6 INITIALIZATION PROCEDURE

Once the operation of the objects available for the servo drive SCA06 is known, then it becomes necessary to
program the different objects to operate combined in the network. In a general manner, the procedure for the
initialization of the objects in a CANopen network follows the description of the next flowchart:

Figure 6.7: Initialization process flowchart

It is necessary to observe that the servo drive SCA06 communication objects (1000h to 1FFFh) are not stored in
the nonvolatile memory. Therefore, every time the equipment is reset or switched off, it is necessary to redo the
communication objects parameter setting. The manufacturer specific objects (starting from 2000h that
represents the parameters), they are stored in the nonvolatile memory and, thus, could be set just once.

Description of the Objects for Drives

SCA06 | 41

7 DESCRIPTION OF THE OBJECTS FOR DRIVES

The objects that are common for drives, defined by the CANopen specification in the CiA DSP 402 document,
are described in this section. Regardless of the drive manufacturer, the objects mentioned here have a similar
description and operation. This makes it easier the interaction and the interchangeability between different
devices.

The figure 8 shows a diagram with the logic architecture and the operation of a drive through the CANopen
network, with the different operation modes defined in this specification. Each operation mode has a set of
objects that allows the configuration and operation of the drive in the network.

Figure 8: Communication architecture for a drive in the CANopen network

For the SCA06, only the Velocity Mode is supported. The following table presents the list of the available objects
for the SCA06, divided according to the different operation modes of the inverter.

Description of the Objects for Drives

SCA06 | 42

Table 10: Object list – Drive Profile

Index Object Name Type Access PDO Mapping
Control Device

6040h VAR ControlWord Unsigned16 rw Yes
6041h VAR StatusWord Unsigned16 ro Yes
6060h VAR Mode of operation Integer8 rw Yes
6061h VAR Modes of operation display Integer8 ro Yes
6502h VAR Supported drive modes Unsigned32 ro Yes

Factor Group
608Fh VAR Position encoder resolution Unsigned32 rw No
6091h VAR Gear ration Unsigned32 rw No
6092h VAR Feed constant Unsigned32 rw No

Position Control Function
6063h VAR Position actual value Integer32 ro Yes
6064h VAR Position actual value in user units Integer32 ro Yes

Profile Position Mode
607Ah VAR Target position Interger32 rw Yes
6081h VAR Profile velocity Unsigned32 rw Yes
6083h VAR Profile acceleration Unsigned32 rw Yes
6084h VAR Profile deceleration Unsigned32 rw Yes
6086h VAR Motion profile type Integer16 rw Yes

Profile Velocity Profile
6069h VAR Velocity sensor actual value Integer32 ro Yes
606Bh VAR Velocity demand value Integer32 ro Yes
606Ch VAR Velocity actual value Integer32 ro Yes
60FFh VAR Target velocity Integer32 rw Yes

Profile Torque Mode
6071h VAR Target torque Integer16 rw Yes
6077h VAR Torque actual value Integer16 ro Yes
6087h VAR Torque slope Unsigned32 rw Yes
6088h VAR Torque profile type Integer16 rw Yes

Cyclic synchronous position mode/ Cyclic synchronous velocity mode
60B1h VAR Velocity offset Integer32 rw Sim
60C2h RECORD Interpolation time period Interpolation time period

record
rw Sim

Every time an object of that list is read or written, the SCA06 will map its functions in the inverter parameters.
Thus, by operating the system through these objects, the value of the parameters can be changed according to
the used function. In the next items a detailed description of each of these objects is presented, where the
inverter parameters used to execute these object functions are indicated.

7.1 DEVICE CONTROL – OBJECTS FOR CONTROLLING THE DRIVE

Every drive operating in a CANopen network following the DSP 402 must be in accordance with the description
of the following state machine:

Description of the Objects for Drives

SCA06 | 43

Figure 9: State machine for drives

Estate descriptions:

 Not ready to switch on: The inverter is initializing, it cannot be commanded.
 Switch on disabled: Initialization complete, the inverter is able to receive commands.
 Ready to switch on: Command to allow powering up the drive has been received.
 Switched on: Command for powering up the drive has been received.
 Operation enabled: The drive is enabled, being controlled according to the programmed operation mode.

Power is being applied to the motor.
 Quick stop active: During the operation, the quick stop command was received. Power is being applied to

the motor.
 Fault reaction active: A fault has occurred and the drive is performing the action related to the type of fault.
 Fault: Drive with fault. Disabled function, without power being applied to the motor.

NOTE!
The frequency inverter SCA06 does not have a switch for disabling / enabling the power section
supply of the equipment. Therefore, the states described in the Power disabled group were
implemented for a matter of compatibility with the described state machine; however the power
section supply remains active even in these states.

Description of the transitions:

 Transition 0: The drive is switched on and the initialization procedure starts. The power section supply of

the drive is active.
 Transition 1: Initialization completed (automatic).
 Transition 2: The Shutdown command has been received. The state transition is performed, but no action

is taken by the SCA06.
 Transition 3: The Switch on command has been received. The state transition is performed, but no action

is taken by the SCA06.
 Transition 4: The Enable operation command has been received. the servo drive is enabled.
 Transition 5: The Disable operation command has been received. the servo drive is disabled.

Description of the Objects for Drives

SCA06 | 44

 Transition 6: The Shutdown command has been received. The state transition is performed, but no action
is taken by the SCA06.

 Transition 7: The Quick stop and Disable voltage commands have been received. The state transition is
performed, but no action is taken by the SCA06.

 Transition 8: The Shutdown command has been received. During the operation of the servo drive it is
disabled, blocking the supply for the motor.

 Transition 9: The Shutdown command has been received. During the operation of the servo drive it is
disabled, blocking the supply for the motor.

 Transition 10: The Quick stop or Disable voltage command has been received. The state transition is
performed, but no action is taken by the SCA06.

 Transition 11: The Quick stop command has been received. the servo drive performs the stopping via
ramp function.

 Transition 12: The Disable voltage command has been received. the servo drive is disabled.
 Transition 13: A fault is detected and the servo drive is disabled.
 Transition 14: After disabling the drive, it goes to the fault state (automatic).
 Transition 15: The Fault reset command has been received. the servo drive performs the fault reset and

returns to the disabled and without fault state.
 Transition 16: The Enable operation command has been received. the servo drive performs the start via

ramp function.

This state machine is controlled by the 6040h object, and the other states can be monitored by the 6041h
object. Both objects are described next.

7.1.1 Object 6040h – Controlword

It controls the servo drive state

Index 6040h
Name Controlword
Object VAR
Type UNSIGNED16
Used parameter P0684

Access rw
PDO Mapping Yes
Range UNSIGNED16
Default value -

The bits of this word have the following functions:

15 – 9 8 7 6 – 4 3 2 1 0

Reserved Halt
Fault
reset

Operation
mode specific

Enable
operation

Quick
stop

Enable
voltage Switch on

The bits 0, 1, 2, 3 and 7 allow controlling the drive state machine. The commands for state transitions are given
by means of the bit combinations indicated in the table 11. The bits marked with “x” are irrelevant for the
command execution.

Table 11: Control word commands

Command
Control word bits

Transitios
Fault reset Enable operation Quick stop Enable voltage Switch on

Shutdown 0 × 1 1 0 2, 6, 8
Switch on 0 0 1 1 1 3
Disable voltage 0 × × 0 × 7, 9, 10, 12
Quick stop 0 × 0 1 × 7, 10, 11
Disable operation 0 0 1 1 1 5
Enable operation 0 1 1 1 1 4, 16
Fault reset 0 → 1 × × × × 15

The bits 4, 5, 6 and 8 have different functions according to the used operation mode.

Description of the Objects for Drives

SCA06 | 45

NOTE!
For the commands sent by the control word to be executed by the servo drive SCA06, it is necessary
that the drive be programmed for the “CANopen” mode of operation. This programming is done on
parameter P0202.

7.1.2 Object 6041h – Statusword

It indicates the SCA06 present state.

Index 6041h
Name Statusword
Object VAR
Type UNSIGNED16
Used parameter P0680

Access ro
PDO Mapping Yes
Range UNSIGNED16
Default value -

Table 12: Statusword bit function

Bit Description
0 Ready to switch on
1 Switched on
2 Operation enabled
3 Fault
4 Voltage enabled
5 Quick stop
6 Switch on disabled
7 Warning
8 Reserved
9 Remote
10 Target reached
11 Internal limit active

12 – 13 Operation mode specific
14 – 15 Reserved

In this word the bits 0, 1, 2, 3, 5 and 6 indicate the state of the device according to the state machine described
in the figure 9. The table 13 describes the combinations of these bits for the state indications. The bits marked
with “x” are irrelevant for the state indication.

Table 13: Drive states indicated through the Statusword

Value (binary) State
xxxx xxxx x0xx 0000 Not ready to switch on
xxxx xxxx x1xx 0000 Switch on disabled
xxxx xxxx x01x 0001 Ready to switch on
xxxx xxxx x01x 0011 Switched on
xxxx xxxx x01x 0111 Operation enabled
xxxx xxxx x00x 0111 Quick stop active
xxxx xxxx x0xx 1111 Fault reaction active
xxxx xxxx x0xx 1000 Fault

The other bits indicate a specific condition for the drive.

 Bit 4 – Voltage enabled: indicates that the drive power section is being fed.
 Bit 7 – Warning: It is not used for the SCA06.
 Bit 9 – Remote: indicates when the drive is in the remote mode and accepts commands via the CANopen7

network.
 Bit 10 – Target reached: indicates when the drive is operating at the reference value, which depends on

the used operation mode. It is also set to 1 when the functions Quick stop or Halt are activated.

7 It depends on the inverter programming.

Description of the Objects for Drives

SCA06 | 46

 Bit 11 – Internal limit active: not is used for the servo drive SCA06.
 Bits 12 and 13 – Operation mode specific: they depend on the drive operation mode.

7.1.3 Object 6060h – Modes of Operation

It allows programming the SCA06 operation mode.

Index 6060h
Name Modes of operation
Object VAR
Type INTEGER8
Used parameter -

Access rw
PDO Mapping Yes
Range INTEGER8
Default value -

Acceptable values for this object are described in table 14. Other values are reserved.

Table 14: Modes of operation for servo drive SCA06

Value Modes of Operation
1 Profile Position Mode
3 Profile Velocity Mode
4 Profile Torque Mode
8 Cyclic sync position mode
9 Cyclic sync velocity mode

7.1.4 Object 6061h – Modes of Operation Display

It indicates the SCA06 operation mode.

Index 6061h
Name Modes of operation display
Object VAR
Type INTEGER8
Used parameter -

Access rw
PDO Mapping Yes
Range INTEGER8
Default value -

The value presented at this object follows the same options for object 6060h.

7.1.5 Objeto 6502h – Supported Drive Modes

It indicates the modes of operation supported by the drive. Each bit represents a mode of operation, and the
value 1 in bit indicates that the mode of operation is supported.

31 – 15 15 – 7 9 8 7 6 5 4 3 2 1 0
Manufecturer

specific reserved cst csv csp ip hm reserved tq pv vl PP

The SCA06 servo drive features three modes of operation:

 pp: Profile Position mode.
 pv: Profile Velocity mode.
 tq: Torque mode.
 csv: Cyclic sync velocity mode
 csp: Cyclic sync position mode

Description of the Objects for Drives

SCA06 | 47

Knowing the modes supported on the SCA06, the value of 0Dh for this object is defined.

Index 6502h
Name Supported drive modes
Object VAR
Type UNSIGNED32

Sub-index 0
Access ro
Mappable Yes
Range UNSIGNED8
Default Value 0Dh

7.2 FACTOR GROUP – OBJECTS FOR UNIT CONVERSION

This object group allows converting units for objects that represent position values. These values will have their
scale and dimension defined according to the programmed notation and dimension values, as described below:

7.2.1 Object 608Fh – Position Encoder Resolution

This object defines the increment of the encoder according to the motor speed:

 Position encoder resolution = encoder increments / motor revolutions

Index 608Fh
Name Position encoder resolution
Object ARRAY
Type UNSIGNED32

Sub-index 0
Description Number of the last sub-index
Access ro
Mappable No
Range UNSIGNED8
Default Value 02h

Sub-index 1
Description Encoder increments
Access rw
Mappable No
Range UNSIGNED32
Default Value FFh

Sub-index 2
Description Motor revolutions
Access rw
Mappable No
Range UNSIGNED32
Default Value 01h

Possible values for the sub-index 1 (Encoder increments):

Table 15: Values for the Encoder Increments Sub-index

Value Mode of operation
41 Degrees
42 Minutes
43 Seconds
FF Internal unit - 65536 increments by revolution

The sub-index 2 (Motor revolutions) only accepts value equal to 1.

Description of the Objects for Drives

SCA06 | 48

7.2.2 Object 6091h – Gear Ratio

This object indicates the configuration and number of motor shaft revolutions and number of driving shaft
revolutions, that is, it defines the gear ratio. The gear ration is defined by the following formula:

Gear ratio = motor shaft revolutions / driving shaft revolutions

Index 6091h
Name Gear ratio
Object ARRAY
Type UNSIGNED32

Sub-index 0
Description Number of the last sub-index
Access ro
Mappable No
Range UNSIGNED8
Default Value 02h

Sub-index 1
Description Motor revolutions
Access rw
Mappable No
Range UNSIGNED32
Default Value 01h

Sub-index 2
Description Shaft revolutions
Access rw
Mappable No
Range UNSIGNED32
Default Value 01h

The only possible value for the sub-index 1 and sub-index 2 is 1.

7.2.3 Object 6092h – Feed Constant

This object indicates the distance per one revolution of the motor shaft.

Index 6092h
Name Feed constant
Object ARRAY
Type UNSIGNED32

Sub-index 0
Description Number of the last sub-index
Access ro
Mappable No
Range UNSIGNED8
Default Value 02h

Sub-index 1
Description Feed
Access rw
Mappable No
Range UNSIGNED32
Default Value FFh

Sub-index 2
Description Shaft revolutions
Access rw
Mappable No
Range UNSIGNED32
Default Value 01h

Possible values for the sub-index 1 (Feed):

Description of the Objects for Drives

SCA06 | 49

Table 16: Values for the Feed Sub-index

Value Mode of operation
41 Degrees
42 Minutes
43 Seconds
FF Internal unit - 65536 increments by revolution

The sub-index 2 (Shaft revolutions) only accepts value equal to 1.

7.3 POSITION CONTROL FUNCTION – POSITION CONTROLLER

This object group is used to describe the operation of the position controller in closed loop.

7.3.1 Object 6063h – Position Actual Value

It represents the actual position of the motor shaft in increments. A complete revolution represents 65536
increments.

Index 6063h
Name Position actual value
Object VAR
Type INTEGER32

Sub-index 0
Access ro
Mappable Yes
Range INTEGER32
Default Value -

The value of this object always represents the shaft position in a single revolution only. The number of
revolutions is not controlled by this object.

7.3.2 Object 6064h – Position Actual Value in User Units

It represents the actual position of the motor shaft. The value of this object can be transformed from internal
units to user-defined values, according to the settings of the objects 608Fh, 6091h and 6092h, as per Table 17.

Index 6064h
Name Position actual value
Object VAR
Type INTEGER32

Sub-index 0
Access ro
Mappable Yes
Range INTEGER32
Default Value -

The value of this object always represents the shaft position in a single revolution only. The number of
revolutions is not controlled by this object.

Table 17: Programming of the Factor Group objects

Object
Unit

608Fh
sub-index 1

608Fh
sub-index 2

6091h
sub-index 1

6091h
sub-index 2

6092h
sub-index 1

6092h
sub-index 2

Degrees 41h 1 1 1 41h 1
Minutes 42h 1 1 1 42h 1
Seconds 43h 1 1 1 43h 1

Internal unit FFh 1 1 1 FFh 1

7.4 PROFILE POSITION MODE – OBJECTS FOR DRIVE CONTROL

This mode of operation allows the control of the SCA06 servo drive by adjusting of the position set-point, which
can be executed following two methods:

Description of the Objects for Drives

SCA06 | 50

 single set-point.
 set of set-points.

Regardless of the used method, the following objects must be configured:

 0x6081 – Profile Velocity;
 0x6083 – Profile Acceleration;
 0x6084 – Profile Deceleration;
 0x6086 – Motion Profile Type;
 0x607A – Target Position;

After adjusting the speed, acceleration and set-point, the following procedure must be executed:

Enable the drive by writing 15 on the object 0x6041 - ControlWord;
Write on the bits 9, 8, 6, 5 and 4 of the object 0x6041 – ControlWord, according to Table 18and Table 19;

The execution status of the positioning can be checked in the object 0x6040 – StatusWord according to Table
20. The SET-POINT ACKNOWLEDGE bit on the status object (StatusWord – 6040h) will be set, indicating that a
new set-point was received. If the set-point is accepted, the bit is reset. When the set-point is reached, the
TRAGET REACHED bit on the status object will be set. Figure 10 shows an example of set-point writing.

Figure 10: Adjustment of the position set-point (Source: IEC 61800-7-201)

Single set-point
The single set-point method is used when you want to execute a new set-point immediately. Figure 11
illustrates the method.

Description of the Objects for Drives

SCA06 | 51

Figure 11: Single set-point method (Source: IEC 61800-7-201)

Set of set-points.
The set of set-point method is used when you want to execute a new set-point only after the completion of the
previous one. Figure 12 illustrates the method.

Figure 12: Set of set-point method (Source: IEC 61800-7-201)

The servo drive SCA06 can store two set-points, the one which is in execution and the one that will be
executed, as illustrated in figure 13.

Description of the Objects for Drives

SCA06 | 52

Figure 13: Storage of set-point (Source: IEC 61800-7-201)

7.4.1 Control and Status Bits

The profile mode position uses some bits of the ControlWord and StatusWord objects to control and monitor its
operation. For the ControlWorld object the following bits are used:

 Bit 4 – New set-point;
 Bit 5 – Change set immediately;
 Bit 6 – absolute (0) /relative (1);
 Bit 8 – Halt (not implemented in the SCA06);
 Bit 9 – Change on set-point.

Table 18 and table 19 contain the definition of the control bits.

Table 18: Positioning Mode – definition of the bits 4, 5 and 9

Bit 9 Bit 5 Bit 4 Definition
0 0 0  1 Position must be completed before the next one starts.
X 1 0  1 Next position must start immediately.
1 0 0  1 Option not implemented on the SCA06

Table 19: Positioning Mode – definition of bits 6 and 8

Bit Value Definition

6
0 Position reference must be an absolute value.
1 Position reference must be a relative value.

8
0 Positioning must be executed or continued.
1 Shaft must be stopped according to object 605Dh.

For the StatusWord object, the following bits are used:

 Bit 10 – Target reached;
 Bit 12 – Set-point acknowledge;
 Bit 13 – Following error.

Description of the Objects for Drives

SCA06 | 53

Table 20 contains the definition of the status bits.

Table 20: Positioning Mode – definition of bits 10, 12 and 13

Bit Value Definition

10
0 Position reference not reached.
1 Position reference reached.

12
0 Previous position reference already processed, waiting for new position reference.
1 Previous position reference in process, replacement of position reference will be accepted.

13
0 No Following error
1 Following error

7.4.2 Object 607Ah – Target Position

It allows programming the position reference for the servo drive SCA06 in positioning mode. The 16 most
relevant bits inform the number of revolutions and the 16 bits least relevant ones inform the fraction of
revolution. The scale used in this object is 65536 for number of revolutions and 65536 increments for one
revolution of the shaft. The value of this object must be interpreted as absolute or relative, according to the
status of Bit 6 of the ControlWord object.

Number of
revolution
16MSB

Fraction of
revolution

16LSB

Index 607Ah
Name Target position
Object VAR
Type INTEGER32

Sub-index 0
Access rw
Mappable Yes
Range INTEGER32
Default Value 0000 0000h

7.4.3 Object 6081h – Profile Velocity

It allows programming the speed normally reached at the end of the acceleration ramp during a movement
profile. The value set in this object must be between 0 and 9999 rpm.

Index 6081h
Name Profile Velocity
Object VAR
Type UNSIGNED32

Sub-index 0
Access rw
Mappable Yes
Range UNSIGNED32
Default Value 0000 0000h

7.4.4 Object 6083h – Profile Acceleration

It allows programming the acceleration ramp until the motor shaft reaches the programmed speed. The scale
used is the ms/krpm scale and the values must be between 1 and 32767.

Index 6083h
Name Profile Acceleration
Object VAR
Type UNSIGNED32

Description of the Objects for Drives

SCA06 | 54

Sub-index 0
Access rw
Mappable Yes
Range UNSIGNED32
Default Value 0000 0001h

7.4.5 Object 6084h – Profile Deceleration

It allows programming the acceleration ramp until the motor shaft reaches the zero speed. The scale used in
this object is the same as that of the object 6083h.

Index 6084h
Name Profile deceleration
Object VAR
Type UNSIGNED32

Sub-index 0
Access rw
Mappable Yes
Range UNSIGNED32
Default Value 0000 0001h

7.4.6 Object 6086h – Motion Profile Type

It allows programming the profile of the acceleration and deceleration ramp for the drive.

Index 6086h
Name Motion profile type
Object VAR
Type INTERGER32

Sub-index 0
Access rw
Mappable Yes
Range INTERGER16
Default Value FFFFh

Possible values for this object:

Table 21: Values for the Motion Profile Type Sub-index

Value Definition
0000h Linear ramp
FFFFh No ramp

7.5 PROFILE VELOCITY MODE – OBJECTS FOR DRIVE CONTROL

This mode of operation allows controlling the drive in a simple way, providing functions, such as:

 Calculation of the reference value.
 Speed capture and monitoring.
 Speed limitation.
 Speed ramps, among other functions.

Those functions are executed based on a set of objects for the configuration of this mode of operation.

7.5.1 Control and Status Bits

Bits 4, 5, 6 and 8 of the control word (object 6040h – Controlword) have the following functions in the speed
mode:

Description of the Objects for Drives

SCA06 | 55

Table 22: Speed Mode – definition of bits 4, 5, 6 and 8

Bit Name Value Description
4 Reserved
5 Reserved
6 Reserved
8 Halt 0 Executes movement

1 Stops shaft

For the StatusWord object, the following bits are used:
 Bit 10 – Target reached;
 Bit 12 – Speed;
 Bit 13 – Max slippage error (not implemented).

Table 23: Speed Mode – definition of bits 10, 12 and 13

Bit Value Definition
10 0 Halt = 0 - speed reference not reached.

Halt = 1 - speed different from 0 (zero)
1 Halt = 0 - speed reference reached.

Halt = 1 - speed equal to 0 (zero)
12 0 Speed different from 0 (zero)

1 Speed equal to 0 (zero)
13 0

Not implemented
1

7.5.2 Object 6069h – Velocity Sensor Actual Value

It allows the reading of the sensor used to measure the motor speed. The servo drive SCA06 uses a solve as
position (the angular speed is obtained by deriving this value in time), so the sensor provides a value
proportional to the angular position. The sensor has resolution of 14 bits, and one complete revolution provides
16384 different position values.

Index 6069h
Name Velocity sensor actual value
Object VAR
Type INTEGER32

Sub-index 0
Access ro
Mappable Yes
Range INTERGER32
Default Value -

7.5.3 Object 606Bh – Velocity Demand Value

It indicates the speed provided by the trajectory generator of the servo drive, used by the speed controller to
control the motor. The value provided by this object is given in the internal scale of the SCA06, where 0x7FFF
FFFF  10.000 rpm.

Index 606Bh
Name Velocity demand value
Object VAR
Type INTEGER32

Sub-index 0
Access ro
Mappable Yes
Range INTERGER32
Default Value -
Minimum value 0x8000 0001
Maximum value 0x7FFF FFFF

7.5.4 Object 606Ch – Velocity Actual Value

It indicates the motor speed. The value provided by this object is given in the internal scale of the SCA06, where
0x7FFF FFFF  10.000 rpm.

Description of the Objects for Drives

SCA06 | 56

Index 606Ch
Name Velocity actual value
Object VAR
Type INTEGER32

Sub-index 0
Access ro
Mappable Yes
Range INTERGER32
Default Value -

7.5.5 Object 60FFh – Target Velocity

Allows programming the speed reference for the servo drive SCA06 in speed mode. The value set in this object
must observe the internal scale of the SCA06, where 0x7FFF FFFF  10.000 rpm and 0x8000 0000  -10.000
rpm

Index 60FFh
Name Target velocity
Object VAR
Type INTERGER32

Sub-index 0
Access rw
Mappable Yes
Range INTERGER32
Default Value 0000 0000h

7.6 PROFILE TORQUE MODE – OBJECTS FOR DRIVE CONTROL

This mode allows controlling the by means of a torque reference received by the CANopen network.

Those functions are executed based on a set of objects for the configuration of this mode of operation.

7.6.1 Control and Status Bits

Bits 4, 5, 6 and 8 of the control word (object 6040h – Controlword) have the following functions in the speed
mode:

Table 24: Torque Mode – definition of the bits 4, 5, 6 and 8

Bit Name Value Description
4 Reserved
5 Reserved
6 Reserved
8 Halt 0 Executes movement

1 Stops shaft

For the StatusWord object, the following bits are used:

 Bit 10 – Target reached;
 Bit 12 – Reserved;
 Bit 13 – Reserved.

Table 25: Torque Mode – definition of bits 10,12 and13

Bit Value Definition
10 0 Torque reference not reached.

1 Torque reference reached.
12 0 Reserved

1
13 0 Reserved

1

Description of the Objects for Drives

SCA06 | 57

7.6.2 Object 6071h – Target Torque

It allows programming the torque reference for the servo drive SCA06 in the torque mode. The scale used to
write on this object is provided in parts per thousand of the motor rated torque.

Index 6071h
Name Target Torque
Object VAR
Type INTERGER16

Sub-index 0
Access rw
Mappable Yes
Range INTERGER16
Default Value 0000h

7.6.3 Object 6077h – Torque Actual Value

It indicates the actual motor torque. The value is provided in part per thousand of the rated motor torque.

Index 6077h
Name Torque actual value
Object VAR
Type INTERGER16

Sub-index 0
Access rw
Mappable Yes
Range INTERGER16
Default Value 0

7.6.4 Object 6087h – Torque Slope

It allows programming the rate of torque variation in time (torque ramp) for the servo drive SCA06. The scale
used is of parts per thousand of the rated motor torque per second.

Index 6087h
Name Torque slope
Object VAR
Type UNSIGNED32

Sub-index 0
Access rw
Mappable Yes
Range UNSIGNED32
Default Value 0

7.6.5 Object 6088h – Torque Profile Type

Is used to select the type of torque profile.

Index 6088h
Name Torque Profile type
Object VAR
Type INTERGER16

Sub-index 0
Access rw
Mappable Yes
Range INTERGER16
Default Value FFFFh

Possible values for this object:

Description of the Objects for Drives

SCA06 | 58

Table 26: Values for the Torque Profile Type Sub-index

Value Definition
0000h Linear ramp of the torque
FFFFh No ramp

7.7 CYCLIC SYNCHRONOUS POSITION MODE

In cyclic synchronous manner, it provides a target position to the drive device, wich performs position control,
velocity control and torque control. The overall structure for this mode is shown in Figure 14.

Figure 14: Cyclic synchronous position mode overview.

7.7.1 Control and status Bits

This mode uses no mode specific bits of the contolword and three bits of the statusword for mode-specific
purposes. Table 27 defines the values for bit 10, 12 and 13 of the statusword.

Table 27: definition of bit 10, bit 12 and bit 13

Bit Value Definition

10
0 Reserved.
1 Reserved

12
0 Target position is ignored
1 Target position shall be used as input to position control loop

13
0 No following error
1 Following error

7.7.2 Object 60B1h – Velocity Offset

This object provide the offset for the velocity value. The offset shall be given in user defined velocity units. This
object contains the input value of velocity feed forward.

Index 60B1h
Name Torque Profile type
Object VAR
Type Integer32

Sub-index 0
Access rw
Mappable Yes
Range Integer32
Default Value 0h

7.7.3 Objeto 60C2h – Interpolation time period

This object shall indicate the configured interpolation cycle time.

Description of the Objects for Drives

SCA06 | 59

Index 60C2h
Name Interpolation time period
Object Record
Type Interpolation time period record

Sub-index 0
Description Highest sub-index supported
Access ro
Mappable Não
Range 02h
Default Value 02h

Sub-index 1
Description Interpolation time period value
Access rw
Mappable Não
Range UNSIGNED8
Default Value 01h

Sub-index 2
Description Interpolation time index
Access Rw
Mappable Não
Range -128 a 63
Default Value -3

7.7.4 Mode configuration

The objects below will be configured for the drive works in Cyclic Synchronization Position Mode:

 0x6040 - Controlword
 0x6060 – Modes of Operation
 0x60C2 – Interpolation Time Type
 0x60B1 – Velocity Offset
 0x6086 – Motion Profile Type
 0x607A – Target Position;

7.8 CYCLIC SYNCHRONOUS VELOCITY MODE

In cyclic synchronous manner, it provides a target velocity to the drive device, wich performs velocity control
and torque control. The overall structure for this mode is shown in Figure 15.

Figure 15: Cyclic synchronous velocity mode overview.

7.8.1 Control and Status Bits

This mode uses no mode specific bits of the contolword and three bits of the statusword for mode-specific
purposes. Table 28 defines the values for bit 10, 12 and 13 of the statusword.

Description of the Objects for Drives

SCA06 | 60

Table 28: definition of bit 10, bit 12 and bit 13

Bit Value Definition

10
0 Reserved.
1 Reserved

12
0 Target velocity ignored
1 Target velocity shall be used as input to velocity control loop

13
0 Reserved
1 Reserved

7.8.2 Object 60B1h – Velocity Offset

In cyclic synchronous velocity mode, it contains the command offset of the drive device.

Index 60B1h
Name Torque Profile type
Object VAR
Type Integer32

Sub-index 0
Access rw
Mappable Yes
Range Integer32
Default Value 0h

7.8.3 Object 60C2h – Interpolation time period

According of item 7.7.3.

7.8.4 Mode configuration

The objects below will be configured for the drive works in Cyclic Synchronization Velocity Mode:

 0x6040 - Controlword
 0x6060 – Modes of Operation
 0x60C2 – Interpolation Time Type
 0x60B1 – Velocity Offset
 0x6086 – Motion Profile Type
 0x60FF – Target Velocity;

OPERATION IN CANOPEN NETWORK – MASTER MODE

SCA06 | 61

8 OPERATION IN CANOPEN NETWORK – MASTER MODE

In addition to operating as a salve, the servo drive SCA06 can also operate as master of the CANopen network.
Below are described the characteristics and functions of the SCA06 as master of the CANopen network.

8.1 ENABLING OF THE MASTER CANOPEN FUNCTION

As default, the servo drive SCA06 is programmed to operate as slave of the CANopen network. The
programming of the equipment as network master must be done by using the WSCAN software, which also
allows the configuration of the entire CANopen network. The detailed description of the windows and functions
of the WSCAN software is obtained in the “Help” menu of the software itself.

After the configuration of the master is ready, it is necessary to download8 the configurations via one of the
programming interfaces of the product – refer to the user’s manual for further information. Once set as network
master, if necessary to erase those configurations, the function to erase the user’s program – trough P00204 –
also erases the configurations of the CANopen master.

NOTE!
The CANopen network is a flexible network that allows several forms of configurations and operation.
However, in order to use this flexibility, it is necessary that the user know well both the communication
functions and objects used to configure the network, and the WSCAN programming software.

8.2 CHARACTERISTICS OF THE CANOPEN MASTER

The servo drive SCA06 allows controlling a group of up to 8 slaves, using the following communication services
and resources:

 Network manager task (NMT)
 8 transmission PDOs
 8 reception PDOs
 8 Heartbeat Consumers
 Heartbeat Producer
 SDO Client
 SYNC producer/consumer
 Mapping in the PDOs made by using user’s parameters

The physical characteristics – installation, connector, cable, etc. – are the same for the SCA06 operating as
both master and slave. The configurations of address and baud rate are also necessary to operate as master,
but these configurations are programmed by the WSCAN software according to the properties defined for the
master in the software itself.

8.3 OPERATION OF THE MASTER

Once programmed to operate as master, the servo drive SCA06 will execute the following steps to initialize, in a
sequence, each slave:

 1st: send the communication reset command to the entire network, so that the slaves initialize with known

values for the communication objects.
 2nd: Identification of the equipment in network, trough the reading via SDO of the object 1000h/00h – Object

Identification.
 3rd: Writing via SDO of all the objects programmed for the slave, which usually includes the configuration

and mapping of the TPDOs and RPDOs, node guarding, heartbeat, besides the specific objects of the
manufacturer, in case they are programmed.

 4th: Start the error control task – node guarding or heartbeat – if they are programmed.
 5th: send the slave to mode of operation.

8 During the download of the configurations, the CANopen communication will be disabled, and it will be enabled again at the end of the
operation.

OPERATION IN CANOPEN NETWORK – MASTER MODE

SCA06 | 62

If one of these steps fails, the error of communication with slave will occur. Depending of the configurations, the
slave initialization will be aborted, and the master will initialize the next slave, returning to the slave with error
after trying to initialize all the other network slaves.

Similarly, if, during the operation of a slave, an error is identified in the error control task, depending on the
configurations of the master, the slave will be automatically reset and the initialization procedure will be run
again.

NOTE!
The communication status and the status of each slave can be observed in system markers.

8.4 BLOCKS FOR THE CANOPEN MASTER

In addition to the communication objects and the configurations made on the WSCAN software, blocks for
monitoring and sending commands are also available. They can be used during the preparation of the ladder
application for the servo drive SCA06. It is not necessary to use these blocks during the equipment operation,
but they provides more flexibility and simplify the communication troubleshooting during the operation of the
servo drive SCA06.

8.4.1 CANopen SDO – Data Reading/Writing via SDO

Block for data reading or writing via SDO of a remote slave. It allows reading or writing objects in network with
size up to 4 bytes.

DESCRIPTION:

It consists of one EN input, one ENO output and 9 arguments, which are:

 ADDRESS : Address of the CANopen network node
 FUNC : Function (reading or writing)
 INDEX : Object index which you wish to read or write (decimal)
 SUB-IND : Object sub-index which you wish to read or write (decimal)
 SIZE : Object size which you wish to read or write (bytes)
 TIMEOUT : Waiting time in ms to read or write the value
 RESULT : Result of the execution of the block
 0 = successfully executed
 1 = card cannot execute the function (example: master not enabled)
 2 = timeout in the waiting for the response of the master
 3 = slave returned error
 OUT-HIGH : Most significant value of the object read (word)
 OUT-LOW : Least significant value of the object read (word)
 IN-HIGH : Most significant value to be written on the object (word)
 OUT-HIGH : Least significant value to be written on the object (word)

The EN input is responsible for enabling the block.
The ENO output goes to 1 after executing the block

OPERATION IN CANOPEN NETWORK – MASTER MODE

SCA06 | 63

OPERATION:

If the EN input is zero, the block is not executed.
If the EN input undergoes a transition from 0 to 1, the card sends a message via CANopen network to a
network slave, according to the programmed arguments. If the block is programmed for reading, the card will
make a request to the slave, and the value reported by the slave will be saved on the output arguments. If the
block is programmed for writing, the input arguments are written to the corresponding object of the slave. After
the execution of the block, the ENO output goes to 1 and will only return to zero after the EN input goes to zero.

SYSTEM MARKERS FOR CAN/CANOPEN

SCA06 | 64

9 SYSTEM MARKERS FOR CAN/CANOPEN

For CAN interface and CANopen communication, the following reading markers (%RS) and writing markers
(%WC) are provided to control and monitor this interface:

9.1 STATUS READING WORDS

CANopen Master and Slave Status: set of reading markers to provide information about the general status of the CANopen master and
the communication status between the master and each of the slaves.

Marker Description
%RS4000 CANopen master status:

Bit 0: all slaves were contacted.
Bit 1: download of the slave configurations was performed.
Bit 2: slave error control started.
Bit 3: end of the initialization of the slaves.
Bit 4: error detected in the initialization of at least one slave.
Bit 5: error detected in the error control task of at least one slave.
Bits 6 and 7: reserved
Bit 8: it takes on the toggle bit value (see %CD3200) after the master sends NMT command.
Bits 9 ... 12: reserved
Bit 13: CAN interface in the bus off status.
Bit 14: no power supply on the CAN interface.
Bit 15: communication disabled

%RS4001 ...
%RS4127

CANopen slave status. They are 127 Word markers, seeing that each marker is linked to an address on the CANopen
network, and indicates the slave status at the address:
Bit 0: master contacted slave successfully.
Bit 1: download of the master configurations was performed successfully.
Bit 2: slave error control started.
Bit 3: end of the initialization of the slave.
Bit 4: error detected at the initialization of the slave.
Bit 5: error detected in the slave error control task.
Bits 6 ... 15: reserved

Last Error at the SDO Client: set of reading markers to report data about errors at the SDO client. If a request is made to the SDO client
and the slave does not respond, or responds with an error, the data related to the last error detected by the SDO client are saved on these
markers.

Marker Description
%RS4128 Address of the destination slave to which the SDO request was sent.
%RS4129 Index of the object accessed via SDO.
%RS4130 Sub-index of the objected accessed.
%RS4131 Type of access performed: 1 = reading, 2 = writing.

%RS4132 ...
%RS4133

For writing access, it indicates the written value.

%RS4134 ...
%RS4135

It indicates the code of the error received, according to the communication errors via SDO of the CANopen protocol
specification.

Last EMCY detected: set of reading markers to report data about errors informed by EMCY producers. The CANopen master does not
have EMCY consumer. EMCY telegrams sent by network slaves, however, are captured by the master, and the information of the last
EMCY detected is saved on these markers.

Marker Description
%RS4136 Address of the slave which reported the EMCY.

%RS4137... %
RS4140

Eight bytes of data of the EMCY telegram, with information about the error code informed by the slave.

9.2 COMMAND WRITING WORDS

CANopen Master Control: set of writing markers to control the CANopen master.
Marker Description

%WC4142 Command to control the CANopen master and send NMT telegram.
Bits 0 ... 7: NMT command code:
1 = START
2 = STOP
128 = ENTER PRE-OPERATIONAL
129 = RESET NODE
130 = RESET COMMUNICATION
Bit 8: toggle bit, whenever the value of this bit is changed, it sends the programmed command.
Bits 9 ... 14: reserved
Bit 15: disable CANopen communication

%WC4143 Bits 16 ... 23: destination slave address for sending the NMT command.

SYSTEM MARKERS FOR CAN/CANOPEN

SCA06 | 65

FAULTS AND ALARMS RELATED TO the CANOPEN COMMUNICATION

SCA06 | 66

10 FAULTS AND ALARMS RELATED TO THE CANOPEN
COMMUNICATION

A133/F33 – CAN INTERFACE WITHOUT POWER SUPPLY

Description:
It indicates that the CAN interface does not have power supply between the pins 1 and 5 of the connector.

Actuation:
In order that it be possible to send and receive telegrams through the CAN interface, it is necessary to supply
external power to the interface circuit.

If the CAN interface is connected to the power supply and the absence of power is detected, the alarm A133 –
or the fault F33, depending on the P0662 programming, will be signalized through the HMI. If the circuit power
supply is reestablished, the CAN communication will be reinitiated. In case of alarms, the alarm indication will
also be removed from the HMI.

Possible Causes/Correction:
 Measure the voltage between the pins 1 and 5 of the CAN interface connector.
 Verify if the power supply cables have not been changed or inverted.
 Make sure there is no contact problem in the cable or in the CAN interface connector.

A134/F34 – BUS OFF

Description:
The bus off error in the CAN interface has been detected.

Actuation:
If the number of reception or transmission errors detected by the CAN interface is too high9, the CAN controller
can be taken to the bus off state, where it interrupts the communication and disables the CAN interface.

In this case the alarm A134 – or the fault F34, depending on the P0662 programming, will be signalized through
the HMI. In order that the communication be reestablished, it will be necessary to cycle the power of the
product, or remove the power supply from the CAN interface and apply it again, so that the communication be
reinitiated.

Possible Causes/Correction:
 Verify if there is any short-circuit between the CAN circuit transmission cables.
 Verify if the cables have not been changed or inverted.
 Verify if all the network devices use the same baud rate.
 Verify if termination resistors with the correct values were installed only at the extremes of the main bus.
 Verify if the CAN network installation was carried out in proper manner.

A135/F35 – NODE GUARDING/HEARTBEAT

Description:
The CANopen communication error control detected a communication error by using the guarding mechanism.

Operation:
By using the error control mechanisms – Node Guarding or Heartbeat – the master and the slave can exchange
periodic telegrams, with a predetermined period. If the communication is interrupted by some reason, the
master, as well as the slave, will be able to detect communication error through the timeout in the exchange of
those messages.

9 For more information on the error detection, refer to the CAN specification.

FAULTS AND ALARMS RELATED TO the CANOPEN COMMUNICATION

SCA06 | 67

In this case the alarm A135 or the fault F35, depending on the P0662 programming, will be signalized through
the HMI. In case of alarms, the alarm indication will be removed from the HMI if this error control is enabled
again.

Possible Causes/Correction:
 Verify the times programmed in both master and slave, for the message exchanging. In order to avoid

problems due to transmission delays and differences in the time counting, it is recommended that the
values programmed for message exchanging in the master be a little bit shorter than the times programmed
for the error detection by the slave.

 Verify if the master is sending the guarding telegrams in the programmed time.
 Verify communication problems that can cause telegram losses or transmission delays.

WEG Equipamentos Elétricos S.A.
Jaraguá do Sul – SC – Brasil
Fone 55 (47) 3276-4000 – Fax 55 (47) 3276-4020
São Paulo – SP – Brasil
Fone 55 (11) 5053-2300 – Fax 55 (11) 5052-4212
automacao@weg.net
www.weg.net

http://www.weg.net/

	Contents
	About the Manual
	Abbreviations and Definitions
	Numerical Representation
	Documents

	1 Introduction to the CANopen Communication
	1.1 CAN
	1.1.1 Data Frame
	1.1.2 Remote Frame
	1.1.3 Access to the Network
	1.1.4 Error Control
	1.1.5 CAN and CANopen

	1.2 Network Characteristics
	1.3 Physical Layer
	1.4 Address in the CANopen Network
	1.5 Access to the Data
	1.6 Data Transmission
	1.7 Communication Objects - COB
	1.8 COB-ID
	1.9 EDS File

	2 CANopen Communication Interface
	2.1 CHARACTERISTICS OF THE CAN INTERFACE
	2.2 pin assignment of the connector
	2.3 POWER SUPPLY
	2.4 INDICATIONS

	3 CANopen Network Installation
	3.1 Baud Rate
	3.2 Address in the CANopen Network
	3.3 Termination Resistor
	3.4 Cable
	3.5 Connection in the Network

	4 Programming
	4.1 SYMBOLS for the Properties Description
	P0070 – CAN Controller Status
	P0071 – Received CAN Telegram Counter
	P0072 – Transmitted CAN Telegram Counter
	P0073 – Bus Off Error Counter
	P0074 – Lost CAN Message Counter
	P0075 – CANopen Communication Status
	P0076 – CANopen node status
	P0202 – MODE OF OPERATION
	P0662 – Action for communication error
	P0700 – CAN Protocol
	P0701 – CAN Address
	P0702 – CAN Baud Rate
	P0703 – Bus Off Reset
	P0704 – Follow
	P0705 – COB ID FOLLOW
	P0706 – FOLLOW PERIOD
	4.2 FOLLOW FUNCTION VIA CANOPEN
	4.2.1 Follow Programmed by Parameters
	4.2.2 Follow Programmed by the WSCAN Software

	5 Object Dictionary
	5.1 Dictionary Structure
	5.2 Data Type
	5.3 Communication Profile – Communication Objects
	5.4 Manufacturer Specific – SCA06 Specific Objects
	5.4.1 Objeto 3000h – Digital Inputs
	5.4.2 Objeto 3001h – Digital Outputs
	5.4.3 Objects 3002h to 3009h – Follow

	5.5 Device Profile – Common Objects for Drives

	6 Communication Objects Description
	6.1 Identification Objects
	6.1.1 Object 1000h – Device Type
	6.1.2 Object 1001h – Error Register
	6.1.3 Object 1018h – Identity Object

	6.2 Service Data Objects – SDOs
	6.2.1 Object 1200h – SDO Server
	6.2.2 SDOs Operation

	6.3 Process Data Objects – PDOs
	6.3.1 PDO Mapping Objects
	6.3.2 Receive PDOs
	6.3.3 Transmit PDOs

	6.4 Synchronization Object – SYNC
	6.5 Network Management – NMT
	6.5.1 Slave State Control
	6.5.2 Error Control – Node Guarding
	6.5.3 Error Control – Heartbeat

	6.6 Initialization Procedure

	7 Description of the Objects for Drives
	7.1 Device Control – Objects for Controlling the Drive
	7.1.1 Object 6040h – Controlword
	7.1.2 Object 6041h – Statusword
	7.1.3 Object 6060h – Modes of Operation
	7.1.4 Object 6061h – Modes of Operation Display
	7.1.5 Objeto 6502h – Supported Drive Modes

	7.2 FACTOR GROUP – OBJECTS FOR UNIT CONVERSION
	7.2.1 Object 608Fh – Position Encoder Resolution
	7.2.2 Object 6091h – Gear Ratio
	7.2.3 Object 6092h – Feed Constant

	7.3 POSITION CONTROL FUNCTION – POSITION CONTROLLER
	7.3.1 Object 6063h – Position Actual Value
	7.3.2 Object 6064h – Position Actual Value in User Units

	7.4 PROFILE POSITION MODE – OBJECTS FOR DRIVE CONTROL
	7.4.1 Control and Status Bits
	7.4.2 Object 607Ah – Target Position
	7.4.3 Object 6081h – Profile Velocity
	7.4.4 Object 6083h – Profile Acceleration
	7.4.5 Object 6084h – Profile Deceleration
	7.4.6 Object 6086h – Motion Profile Type

	7.5 PROFILE VELOCITY MODE – OBJECTS FOR DRIVE CONTROL
	7.5.1 Control and Status Bits
	7.5.2 Object 6069h – Velocity Sensor Actual Value
	7.5.3 Object 606Bh – Velocity Demand Value
	7.5.4 Object 606Ch – Velocity Actual Value
	7.5.5 Object 60FFh – Target Velocity

	7.6 PROFILE TORQUE MODE – OBJECTS FOR DRIVE CONTROL
	7.6.1 Control and Status Bits
	7.6.2 Object 6071h – Target Torque
	7.6.3 Object 6077h – Torque Actual Value
	7.6.4 Object 6087h – Torque Slope
	7.6.5 Object 6088h – Torque Profile Type

	7.7 Cyclic synchronous position mode
	7.7.1 Control and status Bits
	7.7.2 Object 60B1h – Velocity Offset
	7.7.3 Objeto 60C2h – Interpolation time period
	7.7.4 Mode configuration

	7.8 Cyclic synchronous velocity mode
	7.8.1 Control and Status Bits
	7.8.2 Object 60B1h – Velocity Offset
	7.8.3 Object 60C2h – Interpolation time period
	7.8.4 Mode configuration

	8 OPERATION IN CANOPEN NETWORK – MASTER MODE
	8.1 ENABLING OF THE MASTER CANOPEN FUNCTION
	8.2 CHARACTERISTICS OF THE CANOPEN MASTER
	8.3 OPERATION OF THE MASTER
	8.4 BLOCKS FOR THE CANOPEN MASTER
	8.4.1 CANopen SDO – Data Reading/Writing via SDO

	9 SYSTEM MARKERS FOR CAN/CANOPEN
	9.1 STATUS READING WORDS
	9.2 COMMAND WRITING WORDS

	10 FAULTS AND ALARMS RELATED TO the CANOPEN COMMUNICATION
	A133/F33 – CAN Interface Without Power Supply
	A134/F34 – Bus Off
	A135/F35 – Node Guarding/Heartbeat

