

Retificador Trifásico Digital | Carregador de Baterias

Manual do Usuário

Manual do Usuário

RTDW

Documento: 10008314777 / 05

Revisão: 04

Data de publicação: 07/2025

Versão	Revisão	Descrição		
-	R00	Primeira edição.		
-	R01	Atualização de layout		
-	R02	Revisão Geral.		
-	R03	Adição de novos eventos (Tabela 6.18). Alteração da sinalização luminosa da bateria no painel sinóptico (Tabela 6.11). Alteração no funcionamento do LVD (Seção 6.5). Alteração na tensão mínima de bateria para o acionamento do contator de bateria (Seção 6.5).		
- R04 Adição de novos ev Inclusão de um nov inclusão de um sist		Adição de novos eventos (Tabela 6.18). Inclusão de um novo tipo de paralelismo (Seção 3.2.4). inclusão de um sistema de <i>bootloader</i> (Seção 6.2.3).		

A informação abaixo descreve as revisões ocorridas neste manual.

1	IN	STRUÇÕES DE SEGURANÇA	1-1
	1.1	AVISOS DE SEGURANÇA NO MANUAL	1-1
	1.2	AVISOS DE SEGURANÇA NO PRODUTO	1-1
	1.3	RECOMENDAÇÕES PRELIMINARES	1-1
2	INI		2 1
4			2-1
	2.1		2-1
	2.2	TERMOS E DEFINIÇÕES USADOS NO MANUAL	2-1
		~	
3	AF	PRESENTAÇÃO DO PRODUTO	3-1
	3.1	INTRODUÇÃO	3-1
	3.2	CARACTERÍSTICAS GERAIS	3-1
		3.2.1 Tipos de Saída	3-1
		3.2.1.1 Conversor UCQ (Configuração Padrão)	. 3-1
		3.2.1.2 Saída com UDQ (Configuração Opcional)	. 3-1
		3.2.1.3 Saída Direta (Configuração Opcional)	. 3-1
		3.2.2 Composição do Sistema	3-1
		3.2.3 Funcionamento	3-3
		3.2.4 Paralelismo com redundancia	3-3
		3.2.4.1 Paralelismo de Salda	. 3-3
	2 2	3.2.4.2 Paralelismo com divisão do banco de baterias	. 3-4
	3.3 2.4		3-0
	3.4		3-0
		3.4.2 MÓDULO DE RELÉS (A5)	3-10
		3.4.3 MÓDULO DO RETIFICADOR (A1)	3-11
		3.4.4 MÓDULO DO FILTRO LC (A2)	3-12
		3.4.5 MÓDULO DA UCQ (A3)	3-13
		3.4.6 MÓDULO IHM	3-14
4	RF		4-1
1	4.1	TRANSPORTE	 4-1
	4.2	MANUSEIO	4-1
	4.3	DESEMBALAGEM	4-1
	4.4	RECEBIMENTO	4-1
5	IN	STALAÇÃO E CONEXÃO	5-1
	5.1	MONTAGEM DE APARELHOS	5-1
	5.2		5-1
	5.3	CONEXÕES ELÉTRICAS	5-1
		5.3.1 Conexões de Potência	5-1
		5.3.2 Sensor de Temperatura das Baterias	5-2
		5.3.3 Conexão Comunicação RS485	5-2
		5.3.4 Conexão Comunicação do Paralelismo	5-2
		5.3.5 Conexão Comunicação USB	5-2
		5.3.6 Saídas de Contato Seco e Expansão de Saídas de Contato Seco	5-2
		5.3.7 Alimentação do Módulo Desumidificador	5-3
6	OF	PERAÇÃO DO PRODUTO	6-1
	6.1	INICIALIZANDO O PRODUTO	6-1
	6.2		6-1
	-	6.2.1 Configurações de Data e Hora	6-1
		6.2.2 Configurações dos Alarmes e das Saídas de Contato Seco	6-2
		6.2.3 Sistema de bootloader	6-4
	6.3	OPERAÇÃO DO RTDW	6-5

	6.3.1	Acionar	nento e Desligamento do Sistema via Menu Comandos	6-5
	6.3.2	Acionar	nento do Sistema via Tecla On	6-5
	6.3.3	Acionar	nento e Desligamento do Retificador	6-5
	6.3.4	Acionar	nento e Desligamento da UCQ	6-5
	6.3.5	Acionar	nento e Desligamento do <i>Bypass</i>	6-6
6.4	MODC	S DE OF	PERAÇÃO DO CARREGADOR DE BATERIA	6-7
6.5	LVD -	DESCON	IEXÃO POR TENSÃO BAIXA NAS BATERIAS	6-10
6.6	SISTE	MA SUP	ERVISÓRIO	6-10
6.7	IHM			6-12
	6.7.1	Teclas o	le Comando	6-13
	6.7.2	Painel S	Sinóptico	6-13
	6.7.3	Menus	do Display	6-15
	•	6731	Menu Comandos	6-16
		6732	Menu Medidas	6-16
		6733	Monu Status Sistema	6-16
		6731	Monu Status Olsteina	6-17
		6725	Manu Configuraçãos	6 17
		6726	Menu Degistre de Eventes	6 47
		0.7.3.0		.0-17
	074	0./.3./	menu informações	.0-17
	0.7.4		35	0-1/
	6.7.5	Registro	D de Eventos	6-20
	6.7.6	Status c	los Alarmes Internos e Configurados	6-22
6.8	COMU	INICAÇA	O MODBUS-RTU	6-23
	6.8.1	Configu	rações dos Parâmetros da Comunicação	6-24
	•	6.8.1.1	Resistores de Terminação	.6-24
6.9	PARA	METROS	DE LEITURA E ESCRITA	6-25
	6.9.1	Informa	ções do Modelo do RTDW	6-25
	6.9.2	Registro	o de Eventos	6-25
	6.9.3	Comano	los	6-26
	6.9.4	Mediçõe	€S	6-26
		6.9.4.1	Medidas das Tensões de Entrada CA	.6-27
		6.9.4.2	Medidas das Tensões CC	.6-27
		6.9.4.3	Medidas das Tensões da Alimentação da Eletrônica	.6-27
		6.9.4.4	Medidas das Correntes da Entrada CA	.6-27
		6.9.4.5	Medidas das Correntes CC	.6-28
		6.9.4.6	Medidas das Potências	.6-28
		6.9.4.7	Medidas das Temperaturas	.6-28
		6.9.4.8	Medidas das Frequências	.6-28
		6.9.4.9	Medidas das Velocidades dos Ventiladores	.6-29
	6.9.5	Estados		6-30
		6.9.5.1	Estados Físicos	.6-30
		6952	Estados de Operação	6-31
		6.9 5 3	Estados das Medicões	6-32
	696	Configu		6-32
	0.0.0	6961	Configurações do Relógio	6-32
		6062	Configurações da Comunicação Modhus USB	6 22
		0.3.0.2	Configurações da Comunicação Modeus OSB	.0-00
		0.9.0.3		.0-33
		0.9.0.4	Configurações das Referencias	.0-33
		0.9.0.5	Configurações dos Limites	.0-34
0.40	00115	0.9.6.6	Configuração dos límites de LVD	0-34
6.10	CONF	IGURAÇ		6-34
	6.10.1	Configu	rações do Alarme Sonoro e do Sinóptico	6-34
	6.10.2	Configu	rações do Consumidor	6-36
	6.10.3	Configu	rações do Carregador de Bateria	6-37
	6.10.4	Configu	rações da Rede de Entrada CA	6-38
	6.10.5	Configu	ração do Alarme de Corrente de Fuga a Terra	6-39
	6.10.6	Configu	ração do Idioma	6-40
	6.10.7	Configu	ração do Paralelismo	6-40

SUMÁRIO

	6.11 MONITORAÇÃO VIA SOFTWARE WPS - WEG PROGRAMMING SUITE	
	6.11.1 Configuração do WPS	
	6.11.2 Calibração das Leituras	
	6.11.3 Monitoração do RTDW via WPS	6-47
	6.11.3.1 Monitoração via Parâmetros	6-48
	6.11.3.2 Monitoração via Assistente Estados	6-49
7	ESPECIFICACÕES TÉCNICAS	7-1
	71 DADOS DA POTÊNCIA	7-1
	7.2 DADOS GERAIS	
	7.5 DADOS MECANICOS	
	7.4 NORWAS	
8	MANUTENÇÃO PREVENTIVA	8-1
	8.1 RESET DOS PARÂMETROS PADRÃO DE FÁBRICA	8-1
	8.2 OPERAÇÃO PARA ENTRAR NO MODO MANUTENÇÃO (BYPASS MANUAL)	8-1
	8.3 OPERAÇÃO PARA SAIR DO MODO MANUTENÇÃO (BYPASS MANUAL)	8-2
	8.4 MANUTENÇÃO DAS BATERIAS	8-2
Α	APÊNDICE	A-1
	A.1 VISTAS	Δ_1

1 INSTRUÇÕES DE SEGURANÇA

Este manual contém as informações necessárias para o uso correto do seu produto. As instruções a seguir são de extrema importância para o bom desempenho do produto, e devem ser integralmente observadas durante a instalação, manutenção e operação. Não seguir as instruções do produto poderá ocasionar acidentes operacionais, danos ao meio ambiente, ao produto e aos equipamentos a ele conectados, além do cancelamento da garantia.

1.1 AVISOS DE SEGURANÇA NO MANUAL

Neste manual são utilizados os seguintes avisos de segurança:

PERIGO!

Os procedimentos recomendados neste aviso têm como objetivo proteger o usuário contra morte, ferimentos graves e danos materiais consideráveis.

ATENÇÃO!

Os procedimentos recomendados neste aviso têm como objetivo evitar danos materiais.

\bigcirc

NOTA!

O texto objetiva fornecer informações importantes para o correto entendimento e bom funcionamento do produto.

1.2 AVISOS DE SEGURANÇA NO PRODUTO

Os seguintes símbolos estão afixados ao produto, servindo como aviso de segurança:

Tensões elevadas presentes.

Componentes sensíveis a descarga eletrostática. Não tocar.

Conexão obrigatória ao terra de proteção (PE).

Conexão da blindagem ao terra.

Superfície quente. Não tocar.

1.3 RECOMENDAÇÕES PRELIMINARES

PERIGO!

Não seguir as instruções de segurança pode resultar em risco de morte e/ ou danos no equipamento. O produto possui sua própria fonte de energia (baterias). Portanto, as conexões e/ou bornes de saída podem estar energizados mesmo que a alimentação de entrada não esteja disponível ou conectada ao equipamento. Esses equipamentos possuem tensões potencialmente perigosas.

PERIGO!

Não introduza objetos ou obstrua as aletas de ventilação. Jamais cubra o equipamento com outros materiais/objetos, pois poderá provocar sobreaquecimento e risco de incêndio. Todos os reparos e manutenções devem ser executados com o equipamento totalmente desenergizado e realizados somente por técnicos da Rede de Assistentes Técnicos Autorizados WEG.

PERIGO!

Sempre desconecte todas as fontes de alimentação (rede elétrica e bateria) antes de tocar em qualquer componente elétrico associado ao equipamento. Muitos componentes podem permanecer carregados com tensões elevadas e/ ou em movimento (ventiladores), mesmo depois que a bateria foi desconectada. Aguarde pelo menos 10 minutos para garantir a total descarga dos capacitores.

PERIGO!

As baterias devem ser recicladas. Nunca se desfaça delas através de incineradores, trituradores, compactadores de lixo, lixeiras comuns ou jogando-as diretamente no meio ambiente. Há risco de explosão ou incêndio quando expostas a chamas, submetidas a pressão ou quando entram em contato com materiais condutores de energia (metais ou líquidos), além de contaminarem o meio ambiente devido aos materiais que fazem parte da sua composição.

PERIGO!

Em operação, sistemas de energia elétrica, como transformadores, conversores, motores e os cabos utilizados, geram campos eletromagnéticos (CEM). Assim, há risco para as pessoas portadoras de marca-passos ou de implantes que permaneçam na proximidade imediata desses sistemas. Dessa forma, é necessário que essas pessoas se mantenham a uma distância de no mínimo 2 metros destes equipamentos.

ATENÇÃO!

Para reduzir os riscos de incêndio e choques elétricos, instale o produto em ambiente interno, onde não haja incidência de luz solar direta, com temperatura e umidade controladas, livre de agentes poluentes ou explosivos. Não instale o produto em local onde a temperatura e a umidade estejam fora das especificações técnicas indicadas no Capítulo 7 ESPECIFICAÇÕES TÉCNICAS na página 7-1.

ATENÇÃO!

O desempenho e a segurança do sistema estão diretamente relacionados ao correto dimensionamento e execução do projeto elétrico, que deve seguir as normas da ABNT, em especial a NBR 5410 (Instalações Elétricas de Baixa Tensão).

ATENÇÃO!

Antes de realizar a instalação do produto, certifique-se de que a infraestrutura disponível é adequada e compatível com as especificações técnicas do produto (tensões de entrada, saída, bateria e potência das cargas).

ATENÇÃO!

Os cartões eletrônicos possuem componentes sensíveis a descargas eletrostáticas. Não toque diretamente sobre componentes ou conectores. Caso necessário, toque antes na carcaça metálica aterrada ou utilize pulseira de aterramento adequada.

ATENÇÃO!

Este equipamento requer instruções para instalação e operação, detalhadamente fornecidas no Manual do Usuário e Projeto Elétrico. Os manuais estão disponíveis para *download* no site **www.weg.net**.

NOTA!

Em caso de substituição da bateria, a embalagem da bateria nova poderá ser utilizada para armazenar as antigas, ou então, coloque-as em sacos plásticos individuais e entregue diretamente ao seu fornecedor. Caso este não aceite, entre em contato com o fabricante da bateria ou distribuidor, pois são os responsáveis pela coleta. As baterias substituídas pela Assistência Técnica WEG são recolhidas e remetidas aos respectivos fornecedores para providenciarem a reciclagem.

NOTA!

Leia completamente este manual antes de instalar ou operar este equipamento. Após ler este documento, mantenha-o armazenado em local de fácil acesso para os demais usuários do produto.

2 INFORMAÇÕES GERAIS

2.1 SOBRE O MANUAL

Este manual apresenta as informações para instalar, colocar em funcionamento, principais características técnicas e como identificar e corrigir os problemas mais comuns do produto.

Está disponível para download no site: www.weg.net.

2.2 TERMOS E DEFINIÇÕES USADOS NO MANUAL

- ABNT: Associação Brasileira de Normas Técnicas.
- UCQ: unidade conversora de queda.
- UDQ: unidade de diodos de queda.
- Amp, A: amperes.
- mA: miliampere = 0,001 ampere.
- V: volt.
- VA: volt ampere; potência aparente.
- W: watt; potência ativa.
- Ω: ohm; resistência ou impedância.
- s: segundo.
- min: minuto.
- h: hora.
- mm: milímetro.
- m: metro.
- cm: centímetro.
- Hz: hertz.
- kg: quilograma = 1000 gramas.
- °C: graus Celsius.
- cd: candela.
- bps: bits por segundo.
- AVG: abreviação de "Average", valor médio.
- BPS: do inglês "Backup Power Source"; fonte de alimentação auxiliar.
- CA: corrente alternada.
- CC: corrente contínua.
- CEM: campo eletromagnético.
- IGBT: do inglês "Insulated Gate Bipolar Transistor"; componente utilizado no conversor CC/CC de saída. Funciona como chave eletrônica nos modos: saturado (chave fechada) e cortado (chave aberta).
- LCD: do inglês "Liquid Crystal Display"; display de cristal líquido.
- LED: do inglês "Light Emitting Diode"; diodo emissor de luz.

- LSB: do inglês "Least Significant Byte/Bit"; byte/bit menos significativo.
- Link CC: circuito em corrente contínua obtido na saída do retificador a tiristor, ao qual também é conectado o banco de bateria.
- LVD: do inglês "Low Voltage Disconnect"; desligamento por tensão baixa das baterias.
- MHL: do inglês "Main Hard Lock"; microcontrolador secundário.
- MPS: do inglês "Main Power Source"; fonte de alimentação principal.
- MSB: do inglês "Most Significant Byte"; byte mais significativo.
- MTTR: do inglês "Mean Time to Repair"; tempo médio de reparo.
- PWM: do inglês "Pulse Width Modulation"; modulação por largura de pulso.
- RMS: do inglês "Root Mean Square"; valor eficaz.
- NA: normalmente aberto.
- NF: normalmente fechado.
- N/A: não aplicável.
- PE: terra de proteção; do inglês "Protective Earth".
- CONAMA: Conselho Nacional do Meio Ambiente.
- PTC: componente cujo valor da resistência em ohms aumenta proporcionalmente com a temperatura.
- NTC: componente cujo valor da resistência em ohms diminui proporcionalmente com o aumento da temperatura; usado como sensor de temperatura em módulos de potência.
- Circuito de Pré-Carga: carrega os capacitores do *Link* CC com corrente limitada.
- Dissipador: peça de metal projetada para dissipar o calor gerado por semicondutores de potência.
- Frequência de Chaveamento: frequência de comutação dos IGBTs, dada normalmente em kHz.
- IHM: interface homem-máquina; dispositivo que permite o controle, visualização e alteração dos parâmetros do Retificador. A IHM do RTDW apresenta teclas para comando, teclas de navegação e display LCD gráfico.
- CTU: controle da UDQ.

3 APRESENTAÇÃO DO PRODUTO

3.1 INTRODUÇÃO

A linha de Retificadores Trifásicos Digitais RTDW possui dupla conversão de energia e controle totalmente digital. Estas inovações admitem ao RTDW melhorias significativas em desempenho, eficiência, operação e confiabilidade frente aos retificadores convencionais.

3.2 CARACTERÍSTICAS GERAIS

3.2.1 Tipos de Saída

O RTDW pode operar com três tipos de configurações de saída, UCQ, UDQ ou Saída Direta. Por padrão, o sistema utilizado é a UCQ, que permite um controle mais preciso e eficaz da tensão do consumidor.

3.2.1.1 Conversor UCQ (Configuração Padrão)

O sistema com UCQ é baseado na utilização de um conversor CC/CC para regulação da tensão de saída. Essa configuração que permite uma regulação estabilizada da tensão do consumidor.

3.2.1.2 Saída com UDQ (Configuração Opcional)

Quando o RTDW é configurado com saída do tipo UDQ, o controle da tensão do consumidor é realizado de forma automática e analógica, por meio do módulo CTU. Esse controle respeita os critérios e faixas de tensão pré-ajustados, conforme o modo de operação do carregador de baterias: flutuação ou recarga. O sistema opera utilizando até quatro estágios de diodos de queda, que são conectados ou desconectados através de contatores:

- Acionamento dos contatores: os diodos são removidos (*bypass*), resultando em uma elevação da tensão na saída;
- Desacionamento dos contatores: os diodos são reintroduzidos em série, causando uma redução da tensão de saída.

Esse controle analógico garante que a tensão de saída permaneça dentro dos limites mínimo e máximo pré-estabelecidos, conforme mostrado na Tabela 3.1 na página 3-1. Para isso, o módulo CTU monitora continuamente a tensão e, sempre que detecta desvios fora da faixa permitida, aciona ou desaciona sequencialmente os contatores, introduzindo ou removendo estágios de diodos no circuito de saída. Esse ajuste ocorre de forma automática, tanto durante o funcionamento normal quanto nas mudanças de modo de operação do carregador (flutuação ou recarga), assegurando a regulação adequada da tensão.

	110 V	125 V
Limite inferior	105 Vcc	120 Vcc
Limite superior	116 Vcc	132 Vcc

Tabela 3.1: Limites da tensão de saída.

3.2.1.3 Saída Direta (Configuração Opcional)

Neste modelo, o retificador é conectado diretamente na saída com o consumidor, a tensão de saída será a mesma da bateria, conforme variações de carga, recarga e descarga.

3.2.2 Composição do Sistema

O sistema do RTDW é robusto e de alta confiabilidade, sendo composto basicamente por três blocos: Retificador a tiristor, o banco de bateria externo ao painel e pelo bloco de saída a escolha do cliente (UCQ, UDQ ou Saída Direta). A Figura 3.1 na página 3-2, Figura 3.2 na página 3-2 e Figura 3.3 na página 3-2 apresentam o esquema do retificador ao utilizar UCQ, UDQ e Saída Direta, respectivamente.

Figura 3.1: Esquema geral do Retificador no modelo com UCQ

Figura 3.2: Esquema geral do Retificador no modelo com UDQ

Figura 3.3: Esquema geral do Retificador no modelo com Saída Direta

3.2.3 Funcionamento

Em modo Normal (rede CA presente), o primeiro conversor (retificador) fornece energia para carregar / manter o banco de baterias e simultaneamente fornece energia para a unidade de conversão UCQ, UDQ ou diretamente para alimentar o consumidor, conforme especificação de projeto. Com falha na rede CA, o consumidor passa a receber energia ininterrupta das baterias. Com o retorno da rede, o retificador volta a operar normalmente fazendo uma recarga no banco de baterias e, caso necessário, alimentando o restante do sistema. Na situação de uma falta da rede CA por tempo prolongado, a bateria se descarrega até um limite mínimo de tensão, quando é iniciado o processo de LVD, explicado na Seção 6.5 LVD - DESCONEXÃO POR TENSÃO BAIXA NAS BATERIAS na página 6-10¹. A Figura 3.1 na página 3-2, Figura 3.2 na página 3-2 e Figura 3.3 na página 3-2 apresentam o funcionamento do retificador ao utilizar UCQ, UDQ e Saída Direta, respectivamente.

O retificador digital possui um circuito dedicado que detecta possíveis correntes de fuga a terra dos terminais positivo e negativo do equipamento ou das cargas, gerando eventos e alarmes em caso de falha.

Obs.: Este circuito é desativado nos modelos RTDW que possuem os terminais positivos ou negativos aterrados.

O RTDW possui uma eletrônica com dupla fonte de alimentação e um sistema supervisório que atuam de forma redundante, garantindo maior proteção à alimentação do consumidor em caso de falha.

3.2.4 Paralelismo com redundância

A operação em paralelo com redundância consiste em conectar dois ou mais equipamentos a um mesmo barramento, onde cada retificador opera de forma autônoma, mas respeitando a prioridade de saída. Neste arranjo, todos os conversores permanecem energizados e prontos para alimentar a carga, mas não há divisão ativa de corrente entre eles. O objetivo principal é garantir redundância: caso um dos retificadores venha a apresentar algum desvio que comprometa o seu funcionamento correto ou seja desligado para manutenção, os demais continuam alimentando o sistema, assegurando a continuidade da operação.

Neste contexto, a família RTDW conta com dois tipos de paralelismo, apresentados na Seção 3.2.4.1 Paralelismo de Saída na página 3-3 e na Seção 3.2.4.2 Paralelismo com divisão do banco de baterias na página 3-4.

3.2.4.1 Paralelismo de Saída

Por padrão, o RTDW com saída UCQ possui o diodo de paralelismo interno que permite a conexão das saídas de consumidor de dois ou mais retificadores, de maneira que todos possam alimentar a carga.

Caso seja desejável determinar como cada retificador funcionará: assumindo a carga total ou permanecendo em *standby*, é possível fazer o ajuste da tensão de saída da UCQ individual em cada RTDW. Para isso, é necessário manter uma diferença de tensão maior que três volts em relação aos demais retificadores em paralelo. O RTDW que estiver com a tensão mais alta assumirá toda a carga ligada no barramento e os demais permanecerão em *standby*.

Caso esse retificador com tensão maior venha a apresentar algum desvio que comprometa o controle correto da tensão de saída, automaticamente os demais retificadores alimentarão a carga. Neste cenário, o consumidor será alimentado com uma tensão mais baixa, sendo necessário ajustar novamente a tensão da saída da UCQ.

¹Nos modelos sem a opção do LVD, com UDQ ou Saída Direta, o consumidor continuará descarregando as baterias até o retorno da rede.

ATENÇÃO!

Modelos com UDQ ou Saída Direta somente poderão operar com este tipo de paralelismo se o projeto contemplar o diodo de paralelismo em sua saída. Nesses dois modelos de saída, não é possível determinar qual dos RTDW irá assumir a carga. Isso ocorrerá conforme a variação da tensão de saída e a dinâmica entre eles.

3.2.4.2 Paralelismo com divisão do banco de baterias

Neste modo de paralelismo é possível conectar até seis equipamentos em paralelo, todos operando com um mesmo banco de baterias. Por meio de um algoritmo avançado de coordenação, os equipamentos determinam automaticamente qual terá prioridade para atuar como *Principal*, responsável pelo controle do processo de recarga do banco de baterias, e quais permanecerão em modo de *Reserva*, mantendo sua corrente de recarga de bateria ajustada automaticamente para zero.

Essa seleção é feita através de um processo de comunicação entre os equipamentos, no qual cada unidade avalia seus próprios critérios operacionais. Ao final dessa análise, o equipamento com a melhor avaliação assume a função de *Principal*. Existe também a possibilidade de forçar um dos RTDW como o *Principal*, podendo ser feito de três formas distintas: através do menu paralelismo; através de um comando de *bypass* manual ou através do acionamento do disjuntor de *bypass*. Neste cenário, caso os RTDW estejam em condições equivalentes de operação, o equipamento "forçado" terá prioridade na coordenação do sistema.

A prioridade do equipamento pode ser verificada de duas maneiras:

- Através do Menu "Status Sistema", conforme mostrado na Tabela 6.15 na página 6-16.
- Diretamente na tela inicial da IHM, quando o paralelismo estiver ativo, ilustrado na Figura 3.4 na página 3-4.

Figura 3.4: Visualização do estado do paralelismo na tela inicial da IHM

A comunicação entre os equipamentos é feita através do borne X3, sendo necessário configurar a chave S7 do módulo de controle na posição "*ON*", conforme apresentado na Figura 3.5 na página 3-4. A configuração do resistor de terminação deve ser feita de acordo com a Seção 6.8.1.1 Resistores de Terminação na página 6-24.

Figura 3.5: Configuração da chave S7

Durante a comunicação entre os equipamentos, diversos parâmetros são compartilhados, incluindo configurações relacionadas à bateria, à saída do consumidor e aos estados de operação. Quando um novo equipamento é inserido na rede de comunicação, ele solicita automaticamente os parâmetros do equipamento *Principal* e realiza uma atualização para sincronizar sua configuração.

Por isso, é fundamental seguir os procedimentos para "Introdução de um novo equipamento em paralelo", ao adicionar um novo dispositivo ao sistema. Caso contrário, pode ocorrer uma inversão de prioridades, em que o equipamento anteriormente *Principal* se torne *Reserva* e passe a solicitar os parâmetros do equipamento recém-adicionado, o que pode resultar na perda das configurações originais do sistema.

A atualização das configurações e comandos relacionados ao carregador de bateria, consumidor, fuga à terra e compensação térmica, só podem ser executados através do equipamento *Principal* e este fará a atualização dos demais equipamentos. A tentativa de atualização através de um *Reserva* irá retornar como erro.

A configuração do paralelismo é feita via IHM, apresentado na Seção 6.10.7 Configuração do Paralelismo na página 6-40.

Introdução de um novo equipamento em paralelo:

Caso seja desejável incluir um novo equipamento em paralelo e manter as configurações feitas no equipamento *Principal*, seguir os passos:

- 1. Manter todos os equipamentos desenergizados.
- 2. Energizar apenas o equipamento *Principal* e, através do menu "[10] PARALELISMO", selecionar em "Prioridade" a opção de "*Principal (forçado)*".
- 3. Energizar os equipamentos Reservas.
- 4. Durante a inicialização dos Reservas será efetuada a sincronização das configurações com o Principal.
- 5. Após a energização de todos os equipamentos, no equipamento *Principal*, retorne para opção Auto na "Prioridade" do menu Paralelismo.
- 6. Partir o RTDW *Principal* e após, proceder com a partida dos demais equipamentos do sistema.

ATENÇÃO!

Quando a configuração de paralelismo de redundância estiver ativa, o equipamento em *Reserva* terá o Sistema Supervisório e a Compensação Térmica desativados.

ATENÇÃO!

Neste modo de paralelismo, caso apenas um dos equipamentos permaneça em funcionamento enquanto os demais estiverem com os disjuntores de saída (do consumidor) ou de bateria desligados, poderá ocorrer o acionamento do alarme de fuga a terra.

3.3 DADOS DA ETIQUETA

A etiqueta de identificação do RTDW está localizada na parte interna da porta do produto e segue o modelo apresentado na Figura 3.6 na página 3-6.

	DADE AUTO	MAÇÃO
TIPO / TYPE / TIPO: RTDW ANO / YEAR / AÑO: NORMA / STANDARD / NORMA: IEC 62040-5-3 DOC: 10010246217	ENTRADA / INF TENSÃO NOMINAL / NOMINAL / VOLTACE / TENSIÓN NOMINAL: 220,0 Vca CORRENTE NOMINAL / NOMINAL CURRENT / CORRIENTE NOMINAL: 263,3 A	PUT / ENTRADA POTÉNCIANOMINAL / NOMINAL POWER / POTENCIANOMINAL: 86,505 kVA FREQUÊNCIA NOMINAL / NOMINAL REPOLIENCY / FRECUENCIA NOMINAL: 60 Hz
N° SERIE: MATERIAL: 17147061 IP: 42 cos φ: 0,85 η: 0,85	SAÍDA / OUT TENSÃO NOMINAL / NOMINAL / VOLTAGE / TENSIÓN NOMINAL: 125,0 VCC CORRENTE NOMINAL / NOMINAL CURRENT / CORRIENTE NOMINAL: 500 A	PUT / SALIDA TENSÃO FLUTUAÇÃO / FLOATING VOLTÃGE / TENSIÓN FLOTACIÓN: 136,0 VCC TENSÃO RECARGA / RECHARGE VOLTAGE / TENSIÓN RECARGA: 145 O.V.cc
WEG, CP420 - 89256-900 JARAGUÁ DO SUL - BRAZIL	POTÉNCIA / POWER / POTENCIA: 62,500 kW	145,0 VCC

Figura 3.6: Exemplo de etiqueta de identificação

3.4 CONEXÕES DOS MÓDULOS

3.4.1 MÓDULO DE CONTROLE (A4)

As informações dos sinais das conexões do módulo de controle são apresentadas nas Tabela 3.2 na página 3-7, Tabela 3.3 na página 3-8, Tabela 3.4 na página 3-9 e a Figura 3.7 na página 3-9 mostra a posição de cada conector na face frontal do módulo.

	Tabel	a 3.2: Tabela de sinais do módulo de controle
Conector	Pino	Descrição
	1	Amostra tensão CA entrada retificador 1 - Fase T
	2	Amostra tensão CA entrada retificador 1 - Fase S
	3	Amostra tensão CA entrada retificador 1 - Fase R
	4	
	5	
XC1	6	Pinos sem atribuição
	7	
	8	Alimentação CA da fonte 1 - Fase S
	9	Alimentação CA da fonte 1 - Fase R
	10	Alimentação CA da fonte 2 - Fase S
	11	Alimentação CA da fonte 2 - Fase R
	12	Amostra de tensão de saída da UCQ - Positivo
	13	Amostra de tensão de bateria pré-contator - Positivo
	14	Amostra de tensão de saída do retificador 1 - Positivo
XC2	15	Amostra de tensão PGND - Negativo
	16	Amostra de tensão após diodo de paralelismo - Positivo
	17	Amostra de tensão de saída do retificador 2 - Positivo
	18	Acionamento ventilador painel teto - NA
	19	Acionamento ventilador painel teto - Contato
	20	Acionamento ventilador painel porta redundante - NA
	21	Acionamento ventilador painel porta redundante - Contato
	22	Acionamento ventilador painel teto redundante - NA
	23	Acionamento ventilador painel teto redundante - Contato
	24	Acionamento módulo desumidificador - NF
XC3	25	Acionamento modulo desumidificador - Contato
	26	Amostra tensao CA entrada retificador 2 - Fase I
	27	Amostra tensão CA entrada retificador 2 - Fase S
	28	Amostra tensao CA entrada retilicador 2 - Fase R
	29	Pino sem atribuição
XC4	1	Amostra tensao CA da rede auxiliar - Fase R
XC4	3	Amostra tensão CA da rede auxiliar - Fase S
	5	Amostra tensão CA da rede auxiliar - Fase T
XC5		
	2	Aternamento (luga a terra)
VCG		Amostra tensão CA da rede principal - Fase R
700	5	Amostra tensão CA da rede principal - Fase S
	5	Alliostra tensão CA da fede principal - Fase T
	2	Beterne atetus ventileder de porta
	2	GND acionamentos status ventilador de teto
	4	Retorno status ventilador de teto
	5	GND acionamentos <i>status</i> ventilador de porta redundante
	6	Retorno status ventilador de porta redundante
	7	GND acionamentos status ventilador de teto redundante
	8	Retorno status ventilador de teto redundante
	9	GND acionamentos status módulo desumidificador
	10	Retorno status módulo desumidificador
	21	GND acionamentos status bimetálico 1
XC14	22	Retorno <i>status</i> bimetálico 1
7014	23	GND acionamentos status bimetálico 2
	24	Retorno status bimetálico 2
	25	GND acionamentos entrada digital programável 1
	26	Retorno entrada digital programável 1
	27	GND acionamentos entrada digital programável 2
	28	Retorno entrada digital programável 2
	29	GND acionamentos Entrada digital programável 3
	30	Retorno entrada digital programável 3

abela 3.2:	Tabela de	sinais do	módulo	de controle

Conector	Pino	Descrição					
Conector	1	CND acionamentos status disjuntor de bateria					
	2	Botorno status disjuntor de bateria					
	2	CND acionamentos status disjuntor de bateria					
	3	Botorno status disjuntor do hungas					
	4	CND acionamentos etatus disjuntor de consumidor					
	5	Botorno status disjuntor de consumidor					
	0	CND esignementes status disjuntor de consumidor					
	/	GND acionamentos status disjuntor de rede auxiliar					
	0	CND ecienementes status disjunter de rede auxiliar					
	9	GND acionamentos status disjuntor de rede principal					
XC15	10	Retorno status disjuntor de rede principal					
	21						
	22						
	23	Saida de contato seco 1 - NA					
	24	Saida de contato seco 2 - NF					
	25	Saída de contato seco 2 - Contato					
	26	Saída de contato seco 2 - NA					
	27	Saida de contato seco 3 - Contato					
	28	Saída de contato seco 3 - NA					
	29	Sistema supervisório - Saída feedback - C					
	30	Sistema supervisório - Saída <i>feedback</i> - NA					
	1	Status acionamento de contator bateria					
	2	GND acionamento de contator bateria					
	3	+24 V acionamento de contator bateria					
	4	GND acionamento de contator rede CA principal					
	5	+24 V acionamento de contator rede CA principal					
	6	Status acionamento de contator rede CA principal					
	7	GND acionamento de contator consumidor					
	8	+24 V acionamento de contator consumidor					
XC16	10	Acionamento ventilador painel porta - NA					
	21	Status acionamento de contator rede CA auxiliar					
	22	GND acionamento de contator rede CA auxiliar					
	23	+24 V acionamento de contator rede CA auxiliar					
	24	Status acionamento de contator pré-carga					
	25	GND acionamento de contator pré-carga					
	26	+24 V acionamento de contator pré-carga					
	27	Status acionamento de contator consumidor					
	30	Acionamento ventilador painel porta - Contato					
	1	Sinal de corrente rede TC Fase R -					
	2	Sinal de corrente rede TC Fase R +					
	3	Sinal de corrente rede TC Fase S -					
	4	Sinal de corrente rede TC Fase S +					
	5	Sinal de corrente rede TC Fase T -					
	6	Sinal de corrente rede TC fase T +					
	7	Sinal de medição temperatura da bateria NTC+					
X017	8	Sinal de medição temperatura da bateria NTC-					
XU17	9	Sinal de medição temperatura ambiente NTC+					
	10	Sinal de medição temperatura ambiente NTC-					
	25	Alimentação GND analógico - Eletrônica					
	26	Alimentação 12 V analógico - Eletrônica					
	27	Alimentação GND digital - Eletrônica					
	28	Alimentação 12 V digital - Eletrônica					
	29	Alimentação GND acionamentos					
	30	Alimentação 24 V acionamentos					

Tabela 3.3: Tabela de sinais do módulo de controle

Conector Pino		Descrição				
	1	Alimentação 24 V acionamentos				
	2	Alimentação GND acionamentos				
	3	Alimentação 24 V gate drive				
	4	Alimentação GND gate drive				
	5	Alimentação 12 V analógico - Eletrônica				
	6	Alimentação GND analógico - Eletrônica				
	7	Alimentação 12 V digital - Eletrônica				
	8	Alimentação GND digital - Eletrônica				
	9	Comando contator de bypass				
XC18	10	Sinal OCD sensor de corrente consumidor				
	21	Proteção de sobrecorrente do consumidor				
	22	Comando tiristor de <i>bypass</i>				
	23	Status contator de bypass				
	24	Alimentação 12 V analógico - Eletrônica				
	25	Alimentação GND analógico - Eletrônica				
	26	Alimentação GND digital - Eletrônica				
	27	Alimentação 12 V digital - Eletrônica				
	28	Alimentação GND acionamentos				
	29	Alimentação 24 V acionamentos				
	1	Comando selo fonte (start por bateria/Off fonte)				
	2	Comando selo fonte (<i>start</i> por bateria/Off fonte)				
	3	Digital - eletrônica alimentação 12 V				
	4	Digital - eletrônica alimentação GND				
	5	Controle/IHM - sinal A comunicação				
	6	Controle/IHM - sinal B comunicação				
	8	Comunicação RS485 externa 1 - Sinal A				
	9	Comunicação RS485 externa 1 - Sinal B				
XC19	10	Comunicação RS485 externa 1 - GND				
	23	Comunicação do paralelismo - GND				
	24					
	25	Pinos sem atribuição				
	26	Comunicação do paralelismo - Sinal B				
	27	Comunicação do paralelismo - Sinal A				
	28	Comunicação RS485 externa 2 - Sinal A				
	29	Comunicação RS485 externa 2 - Sinal B				
	30	Comunicação RS485 externa 2 - GND				
	1	Resistores de terminação - Comunicação do paralelismo				
S6	2	Resistores de terminação - Comunicação RS485 externa 1				
	1					
S7	2	Habilita a comunicação do paralelismo				
ח טפט	<u>^</u>	Sinais de comando e comunicação com o módulo UCO				
DRA KE		Sinais de comando e comunicação com o modulo reles				
DB25 RE	= F1	Sinais de comando e comunicação com o módulo retificador 1				
DB25 RET2		Sinais de comando e comunicação com o módulo retificador 2				

	Tabela 3.4:	Tabela de	e sinais	do	módulo	de	controle
--	-------------	-----------	----------	----	--------	----	----------

Figura 3.7: Identificação das conexões do módulo de controle

3.4.2 MÓDULO DE RELÉS (A5)

As informações dos sinais das conexões do módulo de relés são apresentadas na Tabela 3.5 na página 3-10 e a Figura 3.8 na página 3-10 mostra a posição de cada conector na face frontal do módulo. Para expansão do módulo de relés de 8 saídas para 16, é feita a conexão no módulo de relés 1 (A5) do conector XC3 para o conector XC2 do módulo de relés 2 (A6).

Conector	Pino	Relé/Descrição			
XC2	DB9	Sinais d	e comando e comunicação		
XC3	DB9	Co	nexão para expansão		
	1		NF		
XC4	2	Relé 1	Comum		
	3		NA		
	1		NF		
XC5	2	Relé 2	Comum		
	3		NA		
	1		NF		
XC6	2	Relé 3	Comum		
	3		NA		
	1		NF		
XC7	2	Relé 4	Comum		
	3		NA		
	1	Relé 5	NF		
XC8	2		Comum		
	3		NA		
	1		NF		
XC9	2	Relé 6	Comum		
	3		NA		
	1		NF		
XC10	2	Relé 7	Comum		
	3		NA		
	1		NF		
XC11	2	Relé 8	Comum		
	3		NA		

Tabela 3.5: Tabela de sinais módulo Relés

Figura 3.8: Identificação das conexões do módulo de relés

3.4.3 MÓDULO DO RETIFICADOR (A1)

As informações dos sinais das conexões do módulo de retificador são apresentadas na Tabela 3.6 na página 3-11 e a Figura 3.9 na página 3-11 mostra a posição de cada conector na face frontal do módulo.

Conector	Pino	Descrição	
	1	Alimentação 1 18 Vca - Ventilador - Fase	
	2	Alimentação 1 18 Vca - Ventilador - Neutro	
	21	Alimentação 2 18 Vca - Ventilador - Fase	
	22	Alimentação 2 18 Vca - Ventilador - Neutro	
XC3	23	Alimentação 12 V analógico - Eletrônica	
703	24	Alimentação GND analógico - Eletrônica	
	25	Alimentação GND digital - Eletrônica	
	26	Alimentação 12 V digital - Eletrônica	
	27	Alimentação 24 V acionamentos	
	28	Alimentação GND acionamentos	
DB25	5	Sinais de comando e comunicação	
Barra	R	Entrada CA - Fase R	
Barra	S	Entrada CA - Fase S	
Barra T		Entrada CA - Fase T	
Barra S.R.		Saída do retificador (Positivo)	
Barra N		Negativo	
+BAT E		Entrada do <i>link</i> CC	
+BAT S		Saída do link CC para bateria	

Tabela 3.6: Tabela de sinais módulos Retificadores

(a) 100 A

(**b**) 200 A

(**c**) 500 A

3.4.4 MÓDULO DO FILTRO LC (A2)

As informações dos sinais das conexões do módulo de filtro LC e C são apresentadas na Tabela 3.7 na página 3-12 e a Figura 3.10 na página 3-12 mostra a posição de cada conexão na face frontal dos módulos.

Tabela 3.7: Tabela de sinais do módulo do Filtro LC e C

Conector	Descrição		
Barra F.LC Entrada do filtro LC			
Barra E.IND	Entrada do filtro C		
Barra P.C.	Entrada da pré-carga do link CC		
Barra N	Negativo		
Barra UCQ/+BAT Saída do link CC			

Figura 3.10: Identificação das conexões dos módulos Filtro

3.4.5 MÓDULO DA UCQ (A3)

As informações dos sinais das conexões dos módulos UCQ são apresentadas na Tabela 3.8 na página 3-13 e a Figura 3.11 na página 3-13 mostra a posição de cada conector na face frontal do módulo.

Conector	Pino	Descrição			
	1	Proteção de sobrecorrente do consumidor			
	2	Status contator de bypass			
	3	Comando Contator de bypass			
	4	Comando Tiristor de bypass			
	9	Proteção de sobrecorrente do consumidor			
	21	Alimentação 24 V acionamentos			
XC3	22	Alimentação GND acionamentos			
	23	Alimentação GND gate drive			
	24	Alimentação 24 V gate drive			
	25	Alimentação 12 V digital - Eletrônica			
	26	Alimentação 12 V analógica - Eletrônica			
	27	Alimentação GND digital - Eletrônica			
	28	Alimentação GND analógica - Eletrônica			
	30	Amostra de tensão de saída da UCQ			
DB9		Sinais de comando e comunicação			
Barra S.UCQ		Saída estabilizada da UCQ			
Barra E.UCQ		Entrada do <i>link</i> CC da UCQ			
Barra N		Negativo			

Tabela 3.8: Tabela de sinais módulos UCQ

Figura 3.11: Identificação das conexões dos módulos UCQ

3.4.6 MÓDULO IHM

As informações dos sinais das conexões do módulo IHM são apresentadas na Tabela 3.9 na página 3-14 e a Figura 3.12 na página 3-14 mostra a posição do conector na face inferior do módulo.

Tabela 3.9: Tabela de sinais do módulo IHM				
Conector Pino Descrição				
	8	Comunicação controle/IHM - Sinal A		
	9	Comunicação controle/IHM - Sinal B		
XC3	10	Alimentação 12 V digital - Eletrônica		
	11	Alimentação GND digital - Eletrônica		
	13	Sinal/comando tecla DC-Start		
	14	Sinal/comando tecla DC-Start		

Figura 3.12: Identificação das conexões do módulo da IHM

NOTA!

As conexões e tabelas de sinais descritas acima são aplicadas diretamente para os módulos padrão. Para módulos especiais, aplicados a produtos especiais, favor consultar projeto.

4 RECEBIMENTO E ARMAZENAMENTO DO PRODUTO

4.1 TRANSPORTE

Os painéis são preparados na fábrica para o transporte. Todo componente ou barramento que for propenso a balançar ou vibrar durante o transporte deverá ser travado. Para segurança dos equipamentos, o transporte deverá ser realizado preferencialmente em estradas asfaltadas.

4.2 MANUSEIO

Todas as portas dos painéis devem estar trancadas durante o transporte. As unidades de transporte devem ser carregadas e transportadas somente na posição vertical. O carregamento é feito através dos olhais de suspensão dispostos na parte superior dos painéis com o auxílio de uma barra de suspensão com os cabos em seus extremos presos a cada olhal. Os painéis devem ser erguidos pelos olhais de suspensão, com equipamento de capacidade acima de 2000 Kg. Obedeçam sempre às indicações fixadas fora das embalagens, para colocá-las na posição correta. A movimentação vertical deve ser suave, sem choques, sob pena de danos aos componentes internos ou portas, conforme procedimento para manuseio de painéis afixados na parte externa dos painéis.

4.3 DESEMBALAGEM

A desembalagem deve ser feita com os painéis no chão e com auxílio de ferramentas apropriadas. Descarregue o engradado, solte os parafusos e portas e retire proteções plásticas e de papelão. Tome cuidado para não danificar os painéis e/ou equipamentos localizados nas portas durante a desembalagem.

4.4 RECEBIMENTO

Ao abrir a embalagem, faça uma inspeção visual procurando identificar sinais de violação ou pontos que caracterizem algum dano ao equipamento no transporte.

Caso seja detectado algum problema, contate imediatamente a transportadora. Caso o equipamento não seja instalado após a entrega, recomendamos algumas medidas de segurança que deverão ser adotadas para assegurar a integridade e garantia do seu produto durante o armazenamento:

- O ar deve ser isento de substâncias químicas corrosivas.
- Não deve existir infiltração de água ou goteira no local.
- Boa ventilação.
- O painel deve ser mantido sobre a base de madeira (Pallet).
- As embalagens não devem ser retiradas.
- Deve-se evitar a presença de animais roedores e insetos.
- A umidade relativa do ar deve ser baixa.

5 INSTALAÇÃO E CONEXÃO

Este capítulo descreve os procedimentos de instalação elétrica e mecânica do RTDW. As orientações e sugestões devem ser seguidas visando a segurança de pessoas, equipamentos e o correto funcionamento do retificador.

5.1 MONTAGEM DE APARELHOS

- Efetue a montagem e ligação de todos os aparelhos que foram enviados em separado, por motivos de transporte, verificando cuidadosamente a posição e a conexão destes, nos respectivos desenhos.
- Retire dos componentes todos os meios de ancoragem ou travamento instalados para o transporte.
- Verifique a operação mecânica de todos os dispositivos de operação manual tais como seccionadoras, disjuntores, chaves de fim de curso, intertravamento mecânico, contatores auxiliares e seus acionamentos.

5.2 INSTALAÇÃO MECÂNICA

Os painéis devem ser instalados na sala elétrica de acordo com o layout apresentado no projeto. A fixação dos painéis deve ser executada em piso de concreto devidamente nivelado.

Cada unidade de transporte deve, após a colocação no piso, ser fixada (chumbada) ao piso com no mínimo dois parafusos.

Uma canaleta de cabos deve ser prevista abaixo do piso ou acima dos painéis da sala onde eles forem instalados (para entrada/saída de cabos pela porta inferior ou superior).

Após fixar os painéis, faça o acoplamento entre eles.

Quando os painéis estiverem definitivamente fixados à base, retire os suportes internos de transportes se houver.

5.3 CONEXÕES ELÉTRICAS

PERIGO!

As informações a seguir têm a intenção de servir como guia para se obter uma instalação correta. Siga também as normas de instalações elétricas aplicáveis.

PERIGO!

Certifique-se de que a rede de alimentação está desconectada antes de iniciar as ligações.

ATENÇÃO!

Execute uma revisão completa do aperto dos parafusos e das conexões elétricas dos componentes internos, conforme as identificações presentes e com o auxílio do esquema elétrico do projeto que acompanha o RTDW.

5.3.1 Conexões de Potência

Devem-se observar os seguintes cuidados:

- Assegurar-se de que os cabos de alimentação CA e da bateria estejam sem energia e não venham a ser energizados acidentalmente.
- Certifique-se de que os disjuntores de entrada CA, baterias e consumidor estejam desligados.
- Iniciar pela conexão do cabo terra que deverá ser fixado ao borne ou barra correspondente.

- Em seguida, conectar os cabos de alimentação CA, localizados na parte inferior do painel de acordo com diagrama do projeto. É necessário observar a correta sequência de fase da rede CA trifásica (R, S e T) e conectar cada fase no borne indicado.
- Os cabos da bateria devem ser conectados no borne correspondente, atentando à polaridade.
- Por fim, conectar os cabos do consumidor no borne indicado no diagrama elétrico. Para alimentação CA, bateria e consumidor, utilize as bitolas mínimas indicadas na Tabela 5.1 na página 5-2.

Bitola dos Condutores (mm ²)					
Modelo	Ali	mentação CA	Alimentação CC		
RTDW	220 V	380 / 440 / 480 V	Consumidor / Bateria		
15 A	2.5		4.0		
25 A	2,5	25	4,0		
35 A	4,0	2,5	6,0		
50 A	6,0		10,0		
75 A	10,0	4,0	16,0		
100 A	16.0	6,0	25,0		
125 A	10,0	10.0	35,0		
150 A	25,0	10,0	50,0		
200 A	35,0	16,0	70,0		
300 A	70,0	25,0	120,0		
400 A	95,0	50,0	2 x 70,0		
500 A	120,0	70,0	2 x 95,0		

Tabela 5.1: Tabela com a bitola mínima a ser utilizada em cada modelo

5.3.2 Sensor de Temperatura das Baterias

Instale uma extremidade do cabo do sensor de temperatura próximo às baterias, em um ponto que reflita a temperatura ambiente do local de instalação. Recomenda-se que seja instalado em um ponto médio do banco de baterias, não sendo necessário que o sensor esteja encostando na bateria.

5.3.3 Conexão Comunicação RS485

A comunicação RS485 externa é disponibilizada nos bornes de acordo com o diagrama do projeto. Observe a conexão correta dos sinais.

5.3.4 Conexão Comunicação do Paralelismo

Uma vez que a função esteja habilitada, a conexão de comunicação entre os equipamentos deve ser feita através do borne X3, pino-a-pino, com a utilização de cabo do tipo *shield* e com sua blindagem conectada ao pino GND do borne. Caso três ou mais RTDW sejam configurados em paralelo, devem ser conectados em topologia cascata (*daisy chain*), um após o outro. Demais instruções sobre o Paralelismo são apresentadas na Seção 3.2.4.2 Paralelismo com divisão do banco de baterias na página 3-4.

5.3.5 Conexão Comunicação USB

Além da comunicação RS485, a comunicação USB também é disponibilizada. Verifique no projeto a localização do conector USB.

5.3.6 Saídas de Contato Seco e Expansão de Saídas de Contato Seco

O retificador RTDW possui, na configuração padrão, 8 saídas de contato seco, com possibilidade de expansão para 16 saídas.

Essas saídas são configuradas de acordo com o indicado no Seção 6.2.2 Configurações dos Alarmes e das Saídas de Contato Seco na página 6-2.

A Figura 3.8 na página 3-10 mostra o diagrama de conexão das saídas de contato seco. As configurações dos contatos dos relés podem ser visualizadas a partir da Tabela 3.5 na página 3-10.

5.3.7 Alimentação do Módulo Desumidificador

O retificador digital possui um sistema de aquecimento interno para manter o equipamento adequadamente aquecido e livre de umidade. Esse circuito é destinado para utilização durante o processo de armazenamento, instalação ou manutenção do equipamento. Conecte a alimentação do desumidificador de acordo com o indicado nas ligações elétricas do projeto.

NOTA!

O RTDW possui o gerenciamento automático da operação do módulo de desumidificação, permitindo o seu funcionamento apenas quando o equipamento estiver desligado e evitando assim: sobretemperatura, queda da tensão de saída (consumidor), regime acima da temperatura recomendada com danos a componentes internos, entre outros.

6 OPERAÇÃO DO PRODUTO

Este capítulo explica:

- Como inicializar o produto e realizar as configurações iniciais.
- Como colocar o produto em funcionamento.

6.1 INICIALIZANDO O PRODUTO

O Retificador já deve ter sido instalado de acordo com o Capítulo 3 APRESENTAÇÃO DO PRODUTO na página 3-1. Antes de seguir os próximos passos, certifique-se de que todas as ligações estão corretas.

PERIGO!

Sempre desconecte a alimentação geral antes de efetuar quaisquer conexões.

Há duas maneiras de inicializar o produto, ou seja, duas formas de alimentar a eletrônica de controle do produto:

- Alimentação CA da rede: nesta opção, a eletrônica é alimentada através da tensão CA da rede. Para que isso seja possível, é necessário que os disjuntores Q1, Q5 e Q6 estejam ligados; (verifique a função de cada disjuntor no projeto do equipamento).
- Alimentação CC da bateria: esta função é chamada de "DC-Start"; com ela, a eletrônica do produto será alimentada pela tensão CC da bateria. Para essa inicialização, os cabos de alimentação das baterias devem estar conectados ao produto, o disjuntor de bateria Q2 deve estar ligado e a tensão do banco de bateria deve atender os valores mínimos apresentados na Tabela 6.1 na página 6-1. Na IHM, pressione e segure a tecla On por alguns segundos, até que a barra de inicialização esteja totalmente carregada, como mostrado na Figura 6.1 na página 6-1.

Tabela 6.1: Tensão mínima do banco de bateria para realizar o DC-St	art
---	-----

Modelo do RTDW	Tensão Mínima do Banco de Baterias	
110 V	77 Vcc	
125 V 86 Vcc		

Figura 6.1: Barra de inicialização da eletrônica do produto

6.2 CONFIGURAÇÕES INICIAIS

6.2.1 Configurações de Data e Hora

Para configurar a data e a hora do produto, utilize as teclas "baixo", "cima" e "enter" para navegar pelo menu principal da IHM (Figura 6.2 na página 6-2), selecione a opção "[5] CONFIGURACOES", em seguida selecione "[4] DATA E HORA". O menu de ajuste de data e hora (Figura 6.3 na página 6-2) será mostrado no *display* da IHM. Selecione em sequência o ano, mês e dia, em seguida faça o ajuste da hora conforme mostrado na Figura 6.4 na página 6-2.

Figura 6.2: Tela do menu principal

Figura 6.4: Menu de ajuste de hora

6.2.2 Configurações dos Alarmes e das Saídas de Contato Seco

Na Tabela 6.19 na página 6-23 são apresentadas as descrições dos 24 alarmes críticos do RTDW que, quando ativos, geram um sinal sonoro de curta duração. O usuário também pode configurar mais 50 alarmes de acordo com os eventos apresentados na Tabela 6.17 na página 6-21.

O RTDW possui por padrão 8 saídas de contatos secos e permite expansão para 16 (sob consulta). As saídas são acionadas conforme os eventos configurados na Tabela 6.2 na página 6-3.

NOTA!

Para produtos especiais, verifique no projeto a configuração adotada em cada contato seco.

	15 A a 100 A e 300 A a 500 A - UCQ		125 A a 200 A - UCQ		UDQ / Saída Direta	
Evento	Relé Conector	Alarme	Relé Conector	Alarme	Relé Conector	Alarme
Sobretensão AVG - Saída consumidor		1		1		1
Subtensão AVG - Saída consumidor	Relé 1 XC4	2	Relé 1 XC4	2	Relé 1 XC4	2
Sobrecorrente AVG - consumidor		3		3		3
Sobretensão AVG - Saída bateria		4		4		4
Subtensão AVG - Saída bateria	Relé 2 XC5	5	Relé 2 XC5	5	Relé 2 XC5	5
Sobrecorrente recarga bateria	705	6	705	6	700	6
Queda de energia na rede		7		7		7
Sobretensão RMS - Entrada		8		8		8
Subtensão RMS - Entrada	Relé 3	9	Relé 3	9	Relé 3	9
Sobrefrequência - Entrada	XC6	10	XC6	10	XC6	10
Subfrequência - Entrada	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	700	11	7.00	11
Falta de fase na rede		12		12		12
Falha na sequência de fases do retificador 1		13		13		13
Disjuntor aberto - Rede		14		14	14 15 16 XC7 18	14
Disjuntor aberto - Bateria	Rolá /	15	Rolá 1	15		15
Disjuntor aberto - Consumidor	YC7	16	5 XC7	16		16
Disjuntor de fechado - bypass		17		17		17
Disjuntor da ventilação aberto - Porta		18		18		18
Corrente de fuga a terra positiva	Relé 5	19	Relé 5	19	Relé 5 XC8	19
Corrente de fuga a terra negativa	XC8	20	XC8	20	Relé 6 XC9	20
Falha ventilador 1 - Retificador		21		21	Relé 7	21
Falha ventilador 2 - Retificador	Relé 6 XC9	22		Não aplicável	XC10	22
Falha ventilador 1 - UCQ		23	Relé 6	22		
Falha ventilador 2 - UCQ		24	XC9	Não aplicável	Niëli	- (]
Falha ventilador indutor - UCQ		25		23	Nao apilo	cavei
Sobretemperatura AVG - Painel	Relé 7 XC10	26		24		23
Sobretemperatura AVG - UCQ		27		25		Não aplicável
Sobretemperatura AVG - Retificador		28	Relé 7 XC10	26	Relé 8 XC11	24
Sobretemperatura AVG - Bateria		29		27		25
<i>Bypass</i> via sistema supervisório	Relé 8 XC11	30	Relé 8 XC11	28	Não aplie	cável

Tabela 6.2: Configuração padrão dos relés de contato seco

Os alarmes e os relés podem ser configurados a partir do *software* WPS (WEG *Programming Suite*), disponível no site **www.weg.net**. Para configurar um alarme, selecione a aba "Alarmes". Em seguida, siga os passos abaixo:

- Clique em (1) "Seleção de Alarme" e defina um número de alarme disponível para a configuração.
- Clique em (2) "Associar um Evento" e selecione o evento desejado.
- Em (3) "Associar Saídas", selecione a saída de contato seco que deve atuar quando o evento selecionado ocorrer.
- Clique em (4) "Gravar" para salvar a configuração.
- No final do processo de configuração, clique em (5) "Atualizar". A configuração é mostrada na área "Configuração Atual dos Alarmes".

Figura 6.5: Tela de configurações de alarmes via software WPS

Para apagar a configuração do alarme:

Selecione o alarme, clique em (6) "Limpar Tudo" e depois em (4) "Gravar".

6.2.3 Sistema de *bootloader*

O RTDW conta com um sistema de *bootloader* que permite a atualização automática do *firmware* do produto. Sempre que for detectado, durante a inicialização, que algum dos módulos está com o *firmware* desatualizado, uma solicitação de confirmação será apresentada.

As opções "Aceitar" ou "Rejeitar" serão apresentadas ao usuário. Caso aceite, o processo será iniciado automaticamente.

Recomenda-se realizar esse procedimento com a bateria conectada ao sistema, garantindo a alimentação ininterrupta do equipamento durante toda a atualização. A ausência da bateria pode resultar em falhas causadas por falta de energia, comprometendo o processo.

ATENÇÃO!

É imprescindível aguardar a conclusão total do processo, que pode levar alguns minutos e inclui a reinicialização automática do equipamento. Interrupções durante a atualização podem comprometer a integridade do *firmware* e afetar o funcionamento do sistema, tornando necessária uma nova tentativa de atualização.

O processo de atualização pode ser acompanhado monitorando os sinais sonoros emitidos pelo produto, conforme a Tabela 6.3 na página 6-5.

Sequência	Módulo	Sinalização
1	IHM	2 bips
2	Retificador	3 bips
3	UCQ	5 bips
4	Relé 1	6 bips
5	Relé 2 ¹	7 bips
6	Supervisório	8 bips
7	Expansão	9 bips

Tabela 6	5.3:	Atualização	dos	módulos
----------	------	-------------	-----	---------

(1) Quando presente.

6.3 OPERAÇÃO DO RTDW

Neste tópico, são apresentados os passos necessários para ligar os módulos retificador e UCQ do produto.

NOTA!

 \checkmark

Para operação e funcionamento correto do produto descritos a seguir, é indispensável a inicialização descrita no Capítulo 5 INSTALAÇÃO E CONEXÃO na página 5-1

6.3.1 Acionamento e Desligamento do Sistema via Menu Comandos

O acionamento completo do sistema pode ser feito via IHM através do menu de comandos (Figura 6.2 na página 6-2).

No menu principal, selecione a opção "[1] COMANDOS" e em seguida a opção "[1] SISTEMA" (Figura 6.8 na página 6-8). A tela apresentada na Figura 6.9 na página 6-8 é mostrada na IHM. Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "LIGAR". A tela do menu de confirmação de ajuste é apresentada (Figura 6.10 na página 6-8), selecione a opção "SIM" e pressione a tecla "Enter" para confirmar.

Desta forma, o retificador, a bateria e a UCQ são acionados e o produto entra em funcionamento.

Para desligar o sistema por completo, siga os passos citados acima, selecione a opção "DESLIGAR" e confirme o comando. O sinóptico entra em funcionamento de acordo com os *status* descritos na Tabela 6.11 na página 6-14.

6.3.2 Acionamento do Sistema via Tecla On

É possível realizar o acionamento do sistema completo (retificador, bateria e UCQ) através da tecla **On** da IHM.

Nesta opção, a partida dos módulos que compõem o sistema será feita de forma automática.

Para realizar esta operação, com o produto já inicializado (ver Seção 6.1 INICIALIZANDO O PRODUTO na página 6-1), pressione e segure a tecla **On** da IHM por alguns segundos.

6.3.3 Acionamento e Desligamento do Retificador

O acionamento do retificador pode ser feito via IHM através do menu de comandos (Figura 6.2 na página 6-2).

No menu principal, selecione a opção "[1] COMANDOS" e em seguida a opção "[2] RETIFICADOR" (Figura 6.8 na página 6-8). A tela apresentada na Figura 6.9 na página 6-8 é mostrada na IHM. Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "LIGAR". A tela do menu de confirmação de ajuste é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "SIM".

Para desabilitar o retificador, siga os passos citados acima, selecione a opção "Desligar" e confirme o comando. O sinóptico do produto entra em funcionamento de acordo com os *status* descritos na Tabela 6.11 na página 6-14.

6.3.4 Acionamento e Desligamento da UCQ

O acionamento da UCQ pode ser feito via IHM através do menu de comandos (Figura 6.2 na página 6-2).

No menu principal, selecione a opção "[1] COMANDOS" e em seguida a opção "[4] CONSUMIDOR" (Figura 6.8 na página 6-8). A tela apresentada na Figura 6.9 na página 6-8 é mostrada na IHM. Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "LIGAR". A tela do menu de confirmação de ajuste é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "SIM".

Para desabilitar a UCQ, siga os passos citados acima, selecione a opção "Desligar" e confirme o comando. O sinóptico do produto entra em funcionamento de acordo com os *status* descritos na Tabela 6.11 na página 6-14.

6.3.5 Acionamento e Desligamento do Bypass

O acionamento do Bypass pode ser feito via IHM através do menu de comandos (Figura 6.2 na página 6-2).

No menu principal, selecione a opção "[1] COMANDOS" e em seguida a opção "[5] BYPASS" (Figura 6.8 na página 6-8). A tela apresentada na Figura 6.9 na página 6-8 é mostrada na IHM. Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "LIGAR". A tela do menu de confirmação de ajuste é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "SIM". A contatora de *Bypass* é acionada e o sinóptico do produto entra em funcionamento de acordo com os *status* descritos na Tabela 6.11 na página 6-14.

Para desabilitar o *Bypass*, siga os passos citados acima, selecione a opção "Desligar" e confirme o comando.

NOTA! O coma

O comando "Desligar" o *Bypass* pode ser usado também quando a UCQ está em modo *Bypass* automático e faz a reposição do equipamento às condições normais de operação.

NOTA!

A função de acionamento e desligamento da bateria só é válida para os produtos que possuem o contator de baterias (K2).

NOTA!

A função de acionamento do Bypass via IHM só é possível nos produtos que possuem UCQ.

6.4 MODOS DE OPERAÇÃO DO CARREGADOR DE BATERIA

A seleção do modo de operação do carregador de bateria é feita no menu de comandos (Figura 6.2 na página 6-2). No menu principal, selecione a opção "[1] COMANDOS" e em seguida a opção "[4] BATERIA" Figura 6.8 na página 6-8). Escolha o modo de operação do carregador entre:

- "CARGA RAPIDA": esse modo irá executar um ciclo de recarga no banco de baterias com limite de corrente próprio e configurável (Tabela 7.2 na página 7-1). Após o término do ciclo, o equipamento retornará para o modo anterior de operação (flutuação automática ou manual).
- "FLUTUACAO MAN.": o carregador irá manter o banco de baterias em flutuação indefinidamente, até que uma alteração seja feita manualmente no modo de operação.
- "EQUALIZACAO MAN.": esse modo irá executar um ciclo de equalização no banco de baterias. Após o término do ciclo, o equipamento retornará para o modo anterior de operação (flutuação automática ou manual).
- "RECARGA MAN.": quando selecionado, esse modo irá executar um ciclo de recarga no banco de baterias. Após, o equipamento irá para o modo flutuação automática ou manual, conforme estava anteriormente ao comando de recarga manual.
- "AUTOMATICO" (padrão de fábrica): o equipamento irá manter o banco de baterias em flutuação e, sempre que detectada uma descarga significativa nas baterias, um ciclo de recarga será executado logo após a normalização da situação que ocasionou o evento de descarga.

Figura 6.6: Ciclo de carga das baterias

As correntes do módulo retificador e da capacidade de carga da bateria estarão diretamente relacionadas com o nível de carga aplicada ao produto. O gráfico (Figura 6.7 na página 6-8) ilustra esse comportamento, onde observamos a ausência de reservas da capacidade do produto.

O gráfico exemplifica o comportamento do RTDW em diferentes condições de carga, com destaque para a região de sobrecarga. Para uma carga abaixo de 80 % o retificador consegue atender plenamente o sistema, para uma corrente de limitação de carga da bateria ajustada em 20 % de In. À medida que a carga aumenta progressivamente, o retificador acompanha esse aumento até atingir seu limite máximo de corrente (100 %). Quando a carga ultrapassa esse ponto, entrando na faixa de sobrecarga, o sistema mantém a corrente de saída do retificador limitada, e a corrente da bateria é reduzida até níveis negativos, indicando uma descarga em função do excedente² drenado pela carga.

Ao final do ciclo exemplificado, com a redução da carga, a corrente do retificador diminui e a corrente da bateria volta ser positiva, restabelecendo o equilíbrio do sistema e a limitação de carga da bateria. Esse

²Nesta condição, o equipamento estará operando acima dos limites recomendados, o que pode resultar no acionamento da proteção do disjuntor do consumidor, de acordo com a curva térmica correspondente.
comportamento demonstra o gerenciamento inteligente entre as fontes de energia (retificador e bateria) para garantir o fornecimento contínuo à carga mesmo em condições críticas.

Figura 6.7: Dinâmica das correntes do sistema

Após selecionar o modo de operação, a tela do menu de confirmação de ajuste é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "SIM".

As configurações como corrente de recarga, tensões e tempo em cada modo podem ser ajustadas via WPS. Recomenda-se o ajuste desses parâmetros conforme o manual da bateria utilizada.

Figura 6.8: Menu de comandos - Modo UCQ e Modo UDQ/Saída Direta

Figura 6.9: Menu de escolha de operação

Figura 6.10: Menu de confirmação de operação

As diferenças entre os modos de operação do carregador de bateria, são apresentados na Tabela 6.4 na página 6-9.

	rascia e.4. modes de operação do canegador de satema		
	Tempo máximo	Tempo finalização	Limitação de corrente (A)
Recarga	720 min	5 min	0,1 C ₁₀ ^{(1) (2)}
Carga Rápida	720 11111	5 11111	0.15 C (1)(2)
Equalização 1440 min		180 min	$0, 10 C_{10}$

Tabela 6.4: Modos de operação do carregador de bateria

(1) Ou vide a recomendação do fabricante.

(2) O valor ajustado não limita a saída do consumidor, que continua como prioritária na operação (sem reservas).

O RTDW possui um sensor de temperatura dedicado que deve ser instalado junto ao banco de baterias. Esse sensor indica ao controle do sistema os níveis adequados de *compensação térmica* a ser aplicada na tensão de flutuação do banco de baterias, conforme os parâmetros de projeto/fabricante indicados na Tabela 6.5 na página 6-9 e configuráveis através do Modbus.

	110 V	125 V
Temperatura de Operação	25	°C
Coeficiente Negativo	-0,16 V/°C	-0,18 V/°C
Coeficiente Positivo	0,16 V/°C	0,18 V/°C
Temperatura Mínima	10 °C	
Temperatura Máxima	38 °C	
Tensão Mínima	108 Vcc	120 Vcc
Tensão Máxima	126 Vcc	140 Vcc

Tabela 6.5: Parâmetros da Compensação Térmica

Como forma de garantir eficiência, integridade e vida útil, prevenindo o sobreaquecimento e degradação do banco de baterias, o sistema utiliza os parâmetros para estabelecer uma curva característica no comportamento da tensão do retificador (Figura 6.11 na página 6-9).

Figura 6.11: Curva de atuação da Compensação Térmica

A partir de um ponto central de *Temperatura de Operação* e o valor ajustado para *Tensão de Flutuação*, o Controle aplica os *Coeficientes Negativos* ou *Positivos* até que o primeiro dos limites mínimos ou máximos de *Temperatura* ou *Tensão* sejam atingidos.

Caso seja desejável, a *Compensação Térmica* pode ser ativada/desativada a partir da IHM do produto. No menu principal, selecione a opção "[5] CONFIGURACOES" e em seguida a opção "[7] COMP. TERMICA" (Figura 6.26 na página 6-36). A tela apresentada na Figura 6.12 na página 6-10 é mostrada na IHM. Use as teclas "baixo" ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou [DESLIGAR]. A tela do menu de confirmação é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou "DESLIGAR]. A tela do menu de confirmação é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou "cima" e pressione a tecla "ENTER" na opção desejada [LIGAR] ou "DESLIGAR]. A tela do menu de confirmação é apresentada (Figura 6.10 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "ENTER".

Figura 6.12: Menu de configuração

NOTA!

A Compensação Térmica é aplicada somente quando o Retificador estiver nos modos de operação "Flutuação Manual" ou "Automático".

6.5 LVD - DESCONEXÃO POR TENSÃO BAIXA NAS BATERIAS

O LVD é um sistema de proteção que, visando a vida útil do banco de baterias, impede descargas profundas e previne contra danos irreversíveis. Composto por um contator que conecta/desconecta as baterias de acordo com parâmetros pré-estabelecidos e configuráveis.

Uma vez que o Retificador esteja ligado (veja a Seção 6.3.3 Acionamento e Desligamento do Retificador na página 6-5), o disjuntor de bateria esteja fechado, a tensão da rede esteja dentro dos limites de operação (Tabela 7.1 na página 7-1) e a tensão do banco de baterias esteja entre 77 V e 133,2 V nos modelos 110 V e entre 87,5 V e 148 V nos modelos 125 V (valores padrão, podem variar de acordo com o especificado/ajustado no projeto), o sistema acionará o contator conectando as baterias ao *Link* CC do produto e iniciará o processo de carregamento, descritos na Seção 6.4 Modos de Operação do Carregador de Bateria na página 6-7.

Essa conexão também ocorre automaticamente, sempre que o produto é iniciado através da função "*DC-Start*", explicada no Seção 6.1 INICIALIZANDO O PRODUTO na página 6-1, desde que a UCQ esteja ligada, conforme descrito na Seção 6.3.4 Acionamento e Desligamento da UCQ na página 6-5.

Após entrar em funcionamento e independente do modo de operação, sempre que o RTDW detectar que as baterias estão em processo de descarga, ao se atingir o limite mínimo de tensão estabelecido na Tabela 6.6 na página 6-10, será iniciado o *processo de desligamento por bateria baixa*, de acordo com a sinalização e evento vistos na Tabela 6.11 na página 6-14 e na Tabela 6.17 na página 6-21.

Após o término do *tempo de desconexão* ou ao atingir a *tensão de desligamento*, inicia-se uma contagem de 1 minuto. Em seguida, o contator será aberto imediatamente. Se não houver alimentação da rede, o RTDW será desligado completamente, incluindo toda a eletrônica, e permanecerá nessa condição até que a rede seja restabelecida. Nesse caso, o sistema iniciará automaticamente um novo processo de carregamento do banco de baterias. Caso contrário, se a rede não estiver presente, o produto poderá ser religado manualmente através da função "*DC-Start*".

Tabela 6.6: Parâmetros do LVD			
	110 V	125 V	
Tensão de Desconexão ¹	96 V	107 V	
Tempo para Desconexão ¹	5 minutos		

(1) Configurável via Modbus (Tabela 6.41 na página 6-34).

6.6 SISTEMA SUPERVISÓRIO

É um sistema de proteção redundante, que monitora as tensões da bateria e do consumidor, garantindo a tensão correta nas cargas ligadas ao RTDW.

Obs.: Sistema Supervisório somente é disponível nos modelos com UCQ.

Funcionamento

Quando é gerado um evento que venha a comprometer a tensão de saída especificada, o RTDW aciona o Bypass e conecta o retificador/bateria na saída da UCQ. O Sistema Supervisório é composto por dois níveis de proteção da tensão de saída, o primeiro através do próprio controle e o segundo através de um circuito dedicado, garantindo uma robustez ainda maior ao RTDW.

1° Nível - *Bypass via controle:* o *firmware* aciona o *Bypass* do sistema, atuando de acordo com os eventos apresentados na Tabela 6.7 na página 6-11. Após o restabelecimento da condição que gerou o acionamento do *Bypass*, o equipamento retorna ao modo normal de operação no final da contagem do tempo de retorno.

Obs.: caso ocorra descarga das baterias durante o processo, elas entrarão em modo recarga ao retornar.

2° Nível - *Bypass via circuito dedicado:* da mesma forma, esse circuito monitora as tensões de bateria e da UCQ, acionando o *Bypass* quando necessário.

Nivol	ivel Evente		Níveis	Tompo para Atuação	Tompo do Potorno	
NIVEI	Evento	110 V	125 V	Tempo para Atuação	Tempo de Retorno	
	Falta de rede			5 s ¹		
	Sobrecorrente na saída	Vide especificações técnicas		3 s	5 s ²	
1°	Sobretensão na saída					
	Sobretemperatura			1 min	30 s	
		< 99 V	< 110 V		5 s ³	
					Seguir instruções:	
2°	Falha na saída	< 04 5 V		Imediato	Operação para	
		< 94,5 V < 105 V		RETORNAR		
					Bypass por 2° nível	

Tabela 6.7: Condições de Bypass

(1) O Bypass atua em caso de falta de rede após 5 segundos quando a tensão no banco de baterias estiver baixa.

(2) O retorno de *Bypass* ocorre após 5 segundos quando a tensão de bateria for superior à referência de tensão da UCQ.
(3) Duas tentativas de retorno em 30 segundos. Após, somente via comando de *reset*/desligar *Bypass*.

) Duas tentativas de retorno em 50 segundos. Apos, somente vía comando de reset/desigar Bypass.

Protocão	Tensão Mínima		Tensão Máxima	
Floteção	110 V	125 V	110 V	125 V
1° Nível - Controle	94 5 V	105 V	115 V	128 V
2° Nível - Circuito dedicado	07,0 V	100 V	115 V	120 V

Tabela 6.8: Tensões de saída em modo bypass

Tensão mínima: abaixo desse valor, o equipamento se desligará para garantir a integridade das baterias.

Tensão máxima: caso o equipamento esteja em sobrecarga, este valor de tensão será proporcionalmente igual à tensão da bateria.

Sinalização e tensões de trabalho do circuito dedicado

O circuito dedicado trabalha com diferentes níveis de tensões de bateria e da UCQ, sinalizando as condições de operação através do painel sinóptico da IHM, do menu *Status* Sistema e de um contato seco disponível.

Para que o circuito dedicado entre em funcionamento, é necessário que o RTDW esteja ligado, em operação normal e que as tensões de bateria e da UCQ sejam maiores que o indicado na Tabela 6.9 na página 6-11. Uma vez que as tensões ultrapassarem os valores citados, o circuito será ativado e passará a supervisionar a tensão de saída, acionando o sistema de *Bypass* quando a tensão atingir o valor mínimo de disparo, representados na Tabela 6.7 na página 6-11.

Drotooão	Tensões		Condioão
FIOleçau	110 V	125 V	Condição
V _{Bateria}	< 94,5 V	< 105 V	DESLIGADO
Vo	> 99 V	> 110 V	SUPERVISIONANDO
 Consumidor 	< 94,5 V	< 105 V	TENSÃO DE DISPARO

Tabela 6.9: Tensões de referência - Circuito dedicado

Operação para RETORNAR Bypass por 2° Nível - Circuito dedicado

Esta instrução informa a maneira correta e segura para retornar ao modo normal de operação, após um possível acionamento do Sistema Supervisório através do circuito dedicado:

- 1. Desligue o disjuntor da REDE CA (Q1).
- 2. Ligue o disjuntor de BYPASS MANUAL (Q4).
- 3. Desligue o disjuntor da BATERIA (Q2) e o disjuntor do CONSUMIDOR (Q3).
- 4. Realize o reparo ou verificação necessária.
- 5. Ligue o disjuntor de REDE (Q1).
- 6. Aguarde a verificação e inicialização do sistema.
- 7. Navegue pelos menus do display para ajustar as configurações se necessário.
- 8. Navegue pelo menu COMANDOS e ligue o SISTEMA.
- 9. Verifique a tensão do Retificador, que deverá ser igual à ajustada no parâmetro flutuação.
- 10. Verifique a tensão da UCQ, que deverá ser igual à ajustada no parâmetro de referência.
- 11. Ligue o disjuntor de BATERIA (Q2) e verifique o carregamento da bateria.
- 12. Ligue o disjuntor do CONSUMIDOR (Q3).
- 13. Navegue pelo menu STATUS SISTEMA e verifique o Retificador, a UCQ e o Sistema Supervisório ativos.
- 14. Desligue o disjuntor do BYPASS MANUAL (Q4).

6.7 IHM

Neste capítulo estão descritas as seguintes informações:

- Teclas da IHM e funções.
- Indicações no display.
- Sinalizações luminosas na IHM.

RTDW WEG DRIVES & CONTROLS 01/01/19 00:00:00	
	٢

Figura 6.13: Imagem frontal da IHM

6.7.1 Teclas de Comando

A IHM do retificador RTDW possui quatro teclas para navegação entre as telas e uma tecla adicional **On**, além de um *buzzer* interno para alarmes sonoros. As teclas assumem as funções mostradas na Tabela 6.10 na página 6-13.

Tabela 6.10: Descrição das teclas de navegação			
Tecla	Descrição		
MENU ESC	Menu/ESC: pode assumir duas funções distintas: ESC: utilizada para retroceder nos níveis do menu MENU: permite entrar no menu principal, partindo da tela inicial		
	Cima: permite avançar ou deslocar o cursor para cima nas telas do menu. É possível ainda alternar entre "SIM" e "NAO" nas telas de confirmação de ações e configurações		
	Baixo: permite retroceder ou deslocar o cursor para baixo nas telas do menu. É possível ainda alternar entre "SIM" e "NAO" nas telas de confirmação de ações e configurações		
ENTER	Enter: permite entrar nos subníveis do menu selecionado pelas teclas CIMA e BAIXO, permite também confirmar comandos selecionados		
C	On: destina-se a ligar o equipamento e executar a partida por bateria (<i>DC-Start</i>), energizando a fonte de alimentação da eletrônica do equipamento		

6.7.2 Painel Sinóptico

Está localizado na parte central do painel frontal e exibe em tempo real o *status* dos principais blocos do produto. Na Tabela 6.11 na página 6-14 são descritas as principais sinalizações exibidas pelo Painel Sinóptico. Além das cores dos ícones (Vermelho, Verde ou Laranja), deve-se considerar também a frequência de alternância dos ícones, de acordo como descrito a seguir.

Frequência de alternância do ícone:

Constante.

- Lenta: pisca 1 vez por segundo.
- Normal: pisca 2,5 vezes por segundo.
- Rápida: pisca 5 vezes por segundo.

Sinalização	Cor/Alternância	Status
	Apagado	Rede não disponível
	Verde/Constante	Rede disponível e dentro da faixa de operação
	Laranja/Constante	Tensão da rede dentro da faixa, mas fora da frequência de operação
	Vermelho/Constante	Tensão da rede fora da faixa de operação
Rede de entrada	Verde/Normal	Aguarda retorno da rede (10s)
	Verde/Vermelho	Falha na sequência de fases
	Apagado	Retificador desligado
	Verde/Constante	Retificador operando
	Vermelho/Constante	Sobrecarga/limitação de corrente
	Verde/Lento	Retificador em standby
Retificador	Verde/Normal	Partida em rampa
	Vermelho/Normal	Falha no retificador
	Apagado	Conversor desligado
/	Verde/Constante	Conversor operando normalmente
	Vermelho/Constante	Sobrecarga/limitação de corrente
	Verde/Normal	Conversor em modo <i>bypass</i>
Conversor CC-CC	Vermelho/Normal	Falha no conversor
	Verde/Constante	Bateria com tensão normal
	Laranja/Constante	Bateria com tensão parcial
	Vermelho/Constante	Bateria com tensão em alerta
l (emb)	Verde/Rápido	Pré-carga do <i>link</i> CC
		Bateria conectada com a polaridade invertida
Baterias	Vermelho/Lento	Bateria desconectada
		Sobretensão nas baterias
	Laranja/Normal	Em processo de LVD ¹
	Apagado	Bypass desligado
	Vermelho/Constante	Bypass automático ligado
	Vermelho/Normal	Bypass manual ligado
Bypass	Vermelho/Rápido	Bypass automático pelo sistema supervisório
	Apagado	Saída da UCQ desligada
	Verde/Constante	Tensão dentro da faixa de operação e carga < 80 %
	Laranja/Constante	Tensão dentro da faixa de operação e carga > 80 % e < 100 %
	Vermelho/Constante	Tensão fora da faixa de operação ou carga > 100 %
	Verde/Normal	Tensão dentro da faixa de operação e carga < 80 % (operando pelo <i>bypass</i>) ²
UCQ/Consumidor	Vermelho/Normal	Tensão dentro da faixa de operação ou carga > 100 % (operando pelo <i>bypass</i>) ²
	Laranja/Normal	Tensão dentro da faixa de operação e carga entre 80 % e 100 % (operando pelo <i>bypass</i>) ²
	Apagado	Sem fuga a terra
Aterramento	Vermelho/Normal	Com fuga a terra
	Apagado	Sem alarmes
	Vermelho/Constante	Alarmes ativos/presentes
Alarme	Vermelho/Lento	Alarme ocorrido ³

Tabela 6.11: Status exibidos no Painel Sinóptico

(1) Caso possua função LVD.

(2) Para equipamentos com UCQ

(3) Para visualizar, é necessário acessar o Menu de Eventos Seção 6.7.5 Registro de Eventos na página 6-20 .

6.7.3 Menus do Display

Neste capítulo, são apresentados os menus de operação, visualização e configuração do RTDW, suas funções e informações. É possível verificar na Figura 6.14 na página 6-15 a estrutura de telas de menus da IHM.

Figura 6.14: Menus do display

6.7.3.1 Menu Comandos

Neste menu, é possível realizar comandos para operação do produto. Estão disponíveis as funções de ligar: todo o sistema, retificador, UCQ, bateria e o acionamento do *Bypass* manual. As etapas que descrevem os comandos deste menu estão na Seção 6.3 OPERAÇÃO DO RTDW na página 6-5 deste manual.

6.7.3.2 Menu Medidas

As principais medidas do produto são apresentadas neste menu. A variáveis apresentadas nesta tela são as descritas no Seção 6.7.4 Medições na página 6-17 neste documento.

6.7.3.3 Menu Status Sistema

São mostrados os *status* do: retificador, UCQ, sistema supervisório, paralelismo, *buzzer* da IHM (alarme sonoro) e painel sinóptico.

IHM	Descrição
OFF	Energizado/desligado
ATIVO	Supervisionando
BYPASS	Bypass ativado
DESATIV	Inibido pelo controle

Tabela 6.12: Status do Supervisório

IHM	Descrição
OFF	Desligado
RAMPA	Rampa de tensão
FLUTUA	Flutuação
RECARGA	Recarga
FL.MAN	Flutuação manual
RE.MAN	Recarga manual
EQ.MAN	Equalização manual
C.RAP	Carregamento rápido
STANDBY	Standby
T. BYP	Tensão de <i>bypass</i>
FALHA	Falha

Tabela 6.13: Status do Retificador

Tabela 6.14: Status da UCQ

IHM	Descrição
OFF	Desligado
NORMAL	Normal
BYPASS	Bypass
BP.MAN.	Bypass manual
FALTA	Falha

Tabela 6.15: Status do Paralelismo

IHM	Descrição
DESATIV	Paralelismo desativado
PRINCIP	Principal do paralelismo
RESERVA	<i>Reserva</i> do paralelismo

Tabela 6.16: Status do Buzzer e Sinóptico

IHM	Descrição
[X]	Ligado
[]	Desligado

6.7.3.4 Menu Status Alarmes

São mostrados os *status* dos alarmes internos (fixos) e os configuráveis pelos usuários (Seção 6.7.6 *Status* dos Alarmes Internos e Configurados na página 6-22).

6.7.3.5 Menu Configurações

Através deste menu, é possível configurar as funções listadas abaixo. As etapas de configuração de cada função são apresentadas nos itens mostrados em parênteses:

- Alarme sonoro e sinóptico (Seção 6.10.1 Configurações do Alarme Sonoro e do Sinóptico na página 6-34).
- Comunicação Modbus (Seção 6.9.6.2 Configurações da Comunicação Modbus USB na página 6-33 e Seção 6.9.6.3 Configurações da Comunicação Modbus RS485 na página 6-33).
- Data e hora (Seção 6.2.1 Configurações de Data e Hora na página 6-1).
- Consumidor (Seção 6.10.2 Configurações do Consumidor na página 6-36)).
- Bateria (Seção 6.10.3 Configurações do Carregador de Bateria na página 6-37).
- Compensação Térmica (Seção 6.4 Modos de Operação do Carregador de Bateria na página 6-7).
- Entrada (Seção 6.10.4 Configurações da Rede de Entrada CA na página 6-38).
- **Fuga a Terra** (Seção 6.10.5 Configuração do Alarme de Corrente de Fuga a Terra na página 6-39).
- Paralelismo (Seção 6.10.7 Configuração do Paralelismo na página 6-40).
- Idioma (Seção 6.10.6 Configuração do Idioma na página 6-40).
- Padrão de Fábrica (Seção 8.1 RESET DOS PARÂMETROS PADRÃO DE FÁBRICA na página 8-1).

6.7.3.6 Menu Registro de Eventos

Apresenta a lista de eventos gerados durante o funcionamento do produto. As condições e os motivos são descritos na Seção 6.7.5 Registro de Eventos na página 6-20.

6.7.3.7 Menu Informações

As versões de firmware, modelo e capacidade do produto são mostradas nesse menu.

6.7.4 Medições

Para acessar o menu das medições, selecione "[2] MEDIDAS" no menu principal. Para navegar entre as telas das variáveis mostradas, utilize as teclas "baixo" e "cima". As medições apresentadas na IHM do RTDW são as seguintes:

Entrada Rede CA (Figura 6.15 na página 6-18):

- Tensão Rede CA True rms das 3 fases (V).
- Corrente Rede CA True rms das 3 fases (A).
- Frequência Rede CA (Hz).
- Potência Aparente Rede CA (kVA).
- Potência Ativa Rede CA (kW).

Retificador (Figura 6.16 na página 6-19)

- Tensão CA do retificador True rms das 3 fases (V).
- Corrente CA do retificador True rms das 3 fases (A).
- Tensão CC do retificador (V).
- Corrente CC do retificador (A).
- Status do retificador.
- Status da compensação térmica.

Baterias (Figura 6.17 na página 6-19):

- Tensão CC de bateria (V).
- Corrente CC de carga (sinal +) e descarga (sinal -) da bateria (A).

Saída CC consumidor (Figura 6.18 na página 6-19):

- Tensão CC de saída (V).
- Corrente CC de saída (A).
- Potência Ativa de saída (kW).

Temperatura (Figura 6.19 na página 6-19):

- Temperatura interna do Painel (°C).
- Temperatura das Baterias (°C).
- Temperatura do Retificador (°C).
- Temperatura da UCQ (°C).

NOTA!

Devido à tolerância dos transdutores e outros componentes empregados nos sistemas de medição, as leituras podem apresentar um desvio se comparadas com as aferidas em outros equipamentos.

Figura 6.15: Menus de medidas da rede CA

Figura 6.16: Menu de medidas do retificador

Figura 6.17: Menu de medidas da bateria

Figura 6.18: Menu de medidas do consumidor

Figura 6.19: Menu de medidas de temperatura

6.7.5 Registro de Eventos

Para visualizar a lista de registro de eventos, selecione no menu principal a opção "[6] REG DE EVENTOS" e pressione "ENTER" para confirmar. Utilize as teclas "baixo" e "cima" para navegar pelo menu. Serão mostrados a data, a hora em que foi gerado e o número do evento. As Tabela 6.17 na página 6-21 e Tabela 6.18 na página 6-22 identificam cada evento disponível.

Para buscar eventos mais antigos de maneira mais rápida, pressione e segure uma das teclas ("baixo" ou "cima") por alguns segundos. Uma tela de submenu é mostrada (Figura 6.21 na página 6-20), sendo possível selecionar eventos antigos de maneira mais rápida.

EVENTOS	XXX/XXX
\rightarrow XX/XX/XX	XX:XX XXXX
-> XX/XX/XX	XX:XX XXXX
\rightarrow XX/XX/XX	XXXX XXXX

Figura 6.20: Menu de eventos

Figura 6.21: Menu de seleção rápida de eventos

ID	Descrição do Evento
301	Sobretensão RMS - Entrada principal
302	Sobretensão RMS - Entrada auxiliar
303	Sobretensão RMS - Entrada retificador
311	Sobretensão AVG - Saída consumidor
312	Sobretensão AVG - Saída bateria
313	Sobretensão AVG - Saída retificador
341	Sobretensão instantânea - Entrada
342	Sobretensão instantânea - Entrada auxiliar
343	Sobretensão instantânea - Entrada retificador
344	Sobretensão instantânea - Saída retificador
345	Sobretensão instantânea - Bateria
346	Sobretensão instantânea - Consumidor
391	Sobrefrequência - Entrada principal
392	Sobrefrequência - Entrada auxiliar
393	Sobrefrequência - Entrada retificador
701	Subtensão RMS - Entrada principal
702	Subtensão RMS - Entrada auxiliar
703	Subtensão RMS - Entrada retificador
711	Subtensão AVG - Saída consumidor
712	Subtensão AVG - Saída bateria
713	Subtensão AVG - Saída retificador
741	Subtensão instantânea - Entrada
742	Subtensão instantânea - Entrada auxiliar
743	Subtensão instantânea - Entrada retificador
744	Subtensão instantânea - Saída retificador
745	Subtensão instantânea - Banco de baterias
746	Subtensão instantânea - consumidor
791	Subfrequência - Entrada principal
792	Subfrequencia - Entrada auxiliar
793	Subtrequencia - Entrada retificador
011	Subtemperatura AVG - Painei
01Z 913	Subtemperatura AVG - UDQ
814	Subtemperatura AVG - ODQ
815	Subtemperatura AVG - Rateria
820	Subtemperatura AVG
1101	Sobrecorrente RMS - Entrada auxiliar
1102	Sobrecorrente RMS - Entrada principal
1103	Sobrecorrente RMS - Entrada retificador
1111	Sobrecorrente AVG - Saída retificador
1112	Sobrecorrente recarga bateria
1113	Sobrecorrente AVG - Consumidor
1141	Sobrecorrente instantânea - Entrada
1142	Sobrecorrente instantânea - Entrada auxiliar
1143	Sobrecorrente instantânea - Entrada retificador
1144	Sobrecorrente instantânea - Banco de baterias
1145	Sobrecorrente instantânea - Consumidor
1151	Sobrecorrente hardware - Retificador
1152	Sobrecorrente nardware - Bateria
1201	Corrente de fuga a terra positiva
1202	Sobrocargo consumidor
1901	Sobrecarga consumuor
2011	Sobretemperatura AV/G - Painel
2012	Sobretemperatura AVG - UCQ
2013	Sobretemperatura AVG - UDO
2014	Sobretemperatura AVG - Retificador
2015	Sobretemperatura AVG - Bateria
2115	Polaridade invertida - Baterias
3012	Disjuntor aberto - Bateria

Tabela	6.17:	Identificação	dos	eventos

ID	Descrição do Evento
3013	Disjuntor aberto - Rede
3014	Disjuntor aberto - Consumidor
3015	Disjuntor de fechado - <i>Bvpass</i>
3016	Disjuntor da ventilação aberto - Porta
3017	Disjuntor da ventilação aberto - Teto
3018	Disjuntor da ventilação redundante aberto - Porta
3010	Disjuntor da ventilação redundante aberto - Teto
3101	Queda de energia na rede principal
3102	Restabelecimento da rede principal
3103	Queda de energia na rede auxiliar
3104	Restabelecimento da rede auxiliar
3201	
3202	
3203	UCO em <i>bypass</i> manual
3204	Reposição do bypass na LICO
3207	Rypass via sistema supervisório
3208	LICO em Bynass automático por paralelismo
3200	LICO em falha
3210	
3211	
3231	l og de eventos inicializado
3232	Padrão de fábrica restabelecido
3250	Carregador de bateria modo flutuação automática
3251	Carregador de bateria modo recarga automática
3252	Carregador de bateria modo flutuação manual
3252	Carregador de bateria modo recarga manual
3254	Carregador de bateria modo equalização manual
3255	Carregador de bateria modo carregamento rápido
2255	Carregador de bateria modo carregamento rapido
3250	Carregador de bateria em falha
3260	
3261	Carregador de bateria ligado
3300	Alteração pos parâmetros da comunicação modhus LISB
3301	Alteração nos parâmetros da comunicação modulos COM
3307	Alteração nos parâmetros da consumidar
3302	Alteração nos parâmetros de bateria
3304	Alteração nos parâmetros da entrada
3310	Alteração de a parâmetros
3410	Limitando corrente no retificador
3410	Limitando corrente na bateria
3/12	
3510	Iniciado processo de desligamento por hateria haixa
3511	Desligamento por bateria baixa
3720	Falha na Ventilação
3721	Falha ventilador 1 - Retificador
3722	Falha ventilador 2 - Retificador
3723	Falha ventilador 1 redundante - Retificador
3724	Falha ventilador 2 redundante - Retificador
3725	Falha ventilador 1 - UCO
3726	Falha ventilador 2 - LICO
3727	Falha ventilador indutor - UCO
3728	Falha ventilador 1 redundante - UCO
3720	Falha ventilador 2 redundante - UCO
3730	Falha ventilador indutor redundante - UCO
3731	Falha ventilador 3 - UCO
3732	Falha ventilador 3 redundante - LICO
3733	Falha ventilador 3 - retificador
3734	Falha ventilador 3 redundante - retificador
3742	Falha na sequência de fases do retificador 1
3743	Falha na sequência de fases do retificador 7
	- and na sequencia de lases de relificador 2

ID	Descrição do Evento
3760	Falha na identificação dos módulos de potência
3761	Falha na identificação do módulo - Retificador 1
3762	Falha na identificação do módulo - Retificador 2
3763	Falha na identificação do módulo - UCQ
3764	Falha na identificação do módulo - Relés 1
3765	Falha na identificação do módulo - Relés 2
3767	Falha na identificação do módulo - Sistema Supervisório
3770	Falha na comunicação com os módulos
3771	Falha na comunicação com o módulo - Retificador 1
3772	Falha na comunicação com o módulo - Retificador 2
3773	Falha na comunicação com o módulo - UCQ
3774	Falha na comunicação com o módulo - Relés 1
3775	Falha na comunicação com o módulo - Relés 2
3776	Falha na comunicação com o módulo - MHL
3777	Falha na comunicação com o módulo - Supervisório
3780	Falha no acionamento dos contatores
3781	Falha no acionamento do contator da rede principal
3782	Falha no acionamento do contator da rede auxiliar
3783	Falha no acionamento do contator da bateria
3784	Falha no acionamento do contator da bypass

Tabela 6.18: Identificação dos eventos

ID	Descrição do Evento
3785	Falha no acionamento do contator do consumidor
3786	Falha no acionamento do contator da pré-carga
3811	Falta de fase na rede
3821	Falta de fase na rede auxiliar
3851	Falha de pulso do tiristor do retificador 1
3861	Falha de pulso do tiristor do retificador 2
4001	Sistema energizado
4002	Buffers de comunicação redefinidos
4500	Leitura da corrente de fuga a terra desligada
4501	Leitura da corrente de fuga a terra ligada
4510	Atualização de firmware autorizada pelo usuário
4511	Atualização de firmware negada pelo usuário
7000	Paralelismo de redundância ativado
7001	Paralelismo desativado
7004	Comunicação do paralelismo estabelecida
7005	Falha de comunicação do paralelismo
7006	Prioridade do paralelismo definida pelo usuário
7010	Reserva do paralelismo
7011	Principal do paralelismo

6.7.6 Status dos Alarmes Internos e Configurados

Neste menu, são apresentados os *status* dos alarmes internos fixos (conforme a Tabela 6.19 na página 6-23) e os configuráveis pelo usuário (veja a Seção 6.2.2 Configurações dos Alarmes e das Saídas de Contato Seco na página 6-2). São visualizáveis conforme exemplo das Figura 6.22 na página 6-22 e Figura 6.23 na página 6-23, respectivamente.

O sistema é composto por 30 alarmes fixos gerados por eventos críticos e mais 50 alarmes configuráveis conforme definição em projeto.

Os status dos alarmes são representados pelos símbolos:

- X Símbolo de alarme não configurado.
- Símbolo de alarme configurado e inativo.
- Símbolo de alarme configurado e ativo.

Figura 6.22: Menu de status dos alarmes internos

Figura 6.23: Menu de status dos alarmes configurados pelo usuário

Posição	ID	Descrição do Evento			
1	3259	Carregador de bateria em falha			
2	3760	Falha na identificação dos módulos de potência			
3	3770	Falha na comunicação com os módulos de potência			
4	3811	Falha de falta da fase			
5	3742	Falha na sequência de fases			
6	3851	Falha de pulso do tiristor do retificador 1			
7	312	Sobretensão AVG - Saída bateria			
8	1112	Sobrecorrente recarga bateria			
9	2012	Sobretemperatura AVG - UCQ			
10	2013	Sobretemperatura AVG - UDQ			
11	2014	Sobretemperatura AVG - Retificador			
12	2015	Sobretemperatura AVG - Bateria			
13	2011	Sobretemperatura AVG - Painel			
14	3720	Falha na ventilação			
15	3015	Disjuntor fechado - Bypass			
16	3012	Disjuntor aberto - Bateria			
17	3013	Disjuntor aberto - Rede			
18	3014	Disjuntor aberto - Consumidor			
19	3016	Disjuntor da ventilação aberto - Porta			
20	3017	Disjuntor da ventilação aberto - Teto			
21	3018	Disjuntor da ventilação redundante aberto - Porta			
22	3019	Disjuntor da ventilação redundante aberto - Teto			
23	3511	Desligamento por bateria baixa			
24	3510	Iniciando processo de desligamento por bateria baixa			
25	2115	Bateria conectada com a polaridade invertida			
26	311	Sobretensão na saída do consumidor			
27	711	Subtensão na saída do consumidor			
28	3780	Falha no acionamento dos contatores			
29	820	Subtemperatura nos módulos			
30	7005	Falha de comunicação do paralelismo			

Tabela 6.19: Descrição dos eventos críticos que geram alarmes

6.8 COMUNICAÇÃO MODBUS-RTU

O protocolo Modbus foi inicialmente desenvolvido em 1979. Atualmente, é um protocolo aberto amplamente difundido, utilizado por vários fabricantes em diversos equipamentos. A comunicação Modbus-RTU do RTDW foi desenvolvida com base nos seguintes documentos:

- MODBUS Application Protocol Specification.
- MODBUS Over Serial Line.

Nesses documentos, estão definidos os formatos das mensagens utilizados pelos elementos que fazem parte

da rede Modbus, os serviços (ou funções) que podem ser disponibilizados via rede e como estes elementos trocam dados na rede. Esses documentos estão disponíveis em **www.modbus.org**.

O RTDW padrão dispõe de duas interfaces físicas distintas: USB e RS485. A interface USB apresenta um conector padrão USB tipo B e está localizada na parte interna do produto, na face do módulo de controle (veja a Figura 3.7 na página 3-9). Essa interface permite a comunicação local com o equipamento. A interface RS485 está acessível via bornes de acordo com o projeto. Essa interface permite a criação de uma rede com mais dispositivos compatíveis com Modbus-RTU.

6.8.1 Configurações dos Parâmetros da Comunicação

No menu principal da IHM, selecione a opção "[5] CONFIGURACOES" (Figura 6.10 na página 6-8) e em seguida selecione a opção "[3] MODBUS". A tela apresentada na Figura 6.24 na página 6-24 é mostrada na IHM. A comunicação Modbus-RTU do RTDW opera com as taxas de 9600, 19200, 38400, 57600 ou 76800 bps, com paridade (par, ímpar ou sem) e 1 ou 2 *stop bit*. Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" para selecionar os parâmetros desejados. Selecione a opção "SALVAR ALTERAÇÕES" para gravar as modificações feitas.

Figura 6.24: Menu de ajuste dos parâmetros da comunicação modbus

6.8.1.1 Resistores de Terminação

Para cada segmento da rede Modbus-RTU que utilize RS485, é necessário habilitar um resistor de terminação nos pontos extremos do barramento principal. Vale destacar que, para que seja possível desconectar o elemento da rede sem prejudicar o barramento, é interessante a colocação de terminações ativas, que são elementos que fazem apenas o papel da terminação.

Desta forma, qualquer equipamento na rede pode ser desconectado do barramento sem que a terminação seja prejudicada. O Retificador Digital possui resistores para terminação que podem ser ligados e desligados através da chave S6, localizada na face do módulo de controle (veja a Figura 3.7 na página 3-9).

Os resistores de terminação das comunicações de *Paralelismo* e do *RS485* padrão são conectados no circuito, respectivamente, através dos pinos 1 e 2 na posição "*ON*" da chave S6 (veja a Figura 6.25 na página 6-24), como apresentado da Tabela 6.20 na página 6-24.

		6	
6	1	2	

Figura 6.25: Exemplo de configuração da chave S6.

Tabela 6	6.20:	Identificac	ão dos	resistores	de	terminacâ	io na	chave	<u>S6</u>
1 4 2 2 1 4 2		laoninioay	40 400	1001010100	u u	con na va va	10 //u	0,10,00	~~

Pino	Descrição
1	Resistores de terminação - Comunicação paralelismo
2	Resistores de terminação - Comunicação 1 RS485

6.9 PARÂMETROS DE LEITURA E ESCRITA

Para o Retificador Digital, todos os parâmetros foram organizados como *Input Registers*. Esses registros podem ser lidos pela função *Read Input Registers* (código 04). Para manter compatibilidade com sistemas legados, esses mesmos registradores podem ser acessados como *Holding Registers*, através da função *Read Holding Registers* (código 03). A escrita dos parâmetros pode ser feita através da função *Write Single Register* (código 06).

O Retificador Digital conta ainda com suporte à função Read Device Identification (código 43).

Essa função permite a leitura de 3 *strings* que representam o nome do fabricante, o nome do produto e a versão de *software* do produto. A Tabela 6.21 na página 6-25 apresenta os parâmetros disponíveis no Retificador Digital. A coluna "Acesso" identifica se o parâmetro é de leitura / escrita (R/W), somente leitura (R) ou somente escrita (W).

6.9.1 Informações do Modelo do RTDW

Registrador	Acesso	Descrição	Observação
4127	R	Versão do <i>firmware</i> MCLI principal	
4125	R	Versão do firmware MCLL expansão	
4164	R	Versão do firmware MCLI sistema supervisório	Bit 0: Identificador de versão beta e versão final
4128	R	Versão do <i>firmware</i> MCLI retificador	Bits 1 - 7: Identificador de versão do firmware
4167	R	Versão do <i>firmware</i> MCU retificador 2	Bits 8 - 11: Identificador de revisão da PCB para
4129	R	Versão do firmware MCU UCO	gual o <i>firmware</i> é funcional
4165	R	Versão do <i>firmware</i> MCU relés 1	Bits 12 - 15: Identificador de <i>firmware</i> especial
4166	R	Versão do firmware MCU relés 2	
4126	R	Versão do <i>firmware</i> MCU IHM	
4132	R	Tensão nominal de saída	Cada unidade equivale a 1.0 V
4133	R	Corrente nominal de saída	Cada unidade equivale a 1.0 A
4135	R	Frequência nominal de entrada	Cada unidade equivale a 1,0 Hz
4140	R	Configuração geral do sistema	Bit 0: Configuração com entrada CA auxiliar Bit 1: Configuração com contator na entrada CA Bit 2: Configuração com contator na entrada CA auxiliar Bit 3: Configuração com contator na bateria Bit 4: Configuração com contator no consumidor Bit 5: Reservado Bit 6: Configuração com segundo retificador (12 pulsos) Bit 7: Reservado Bit 8: Configuração com UCQ Bit 9: Configuração com UDQ Bit 10: Desconexão de bateria por tensão baixa Bit 11: Habilita desligamento da UCQ Bit 12: Religamento automático Bit 13: Religamento após LVD Bit 14: Configuração com disjuntor da ventilação do painel

Tabela 6.21: Parâmetros modbus das informações do modelo

6.9.2 Registro de Eventos

Quando necessário, os eventos armazenados na memória do equipamento podem ser requisitados manualmente por meio da comunicação Modbus, utilizando os parâmetros especificados na Tabela 6.22 na página 6-26. Para realizar essa operação, siga os passos abaixo:

- 1. Consulte a posição zero da lista de eventos e a quantidade de eventos salvos na memória.
- 2. Escreva a posição do evento desejado no parâmetro 8000.
- 3. O parâmetro 8009 retornará a posição do evento solicitado, permitindo verificar se a posição requisitada corresponde ao evento que está sendo lido.
- 4. Os parâmetros 8001 a 8009 retornam os dados completos do evento.

Registrador	Acesso	Descrição
4150	R	Quantidade máxima
4151	R	Quantidade salvo na memória
4152	R	Posição zero da lista
8000	W	Posição que se deseja ler
8001	R	Dia
8002	R	Mês
8003	R	Ano
8004	R	Hora
8005	R	Minutos
8006	R	Segundos
8008	R	ID
8009	R	Posição

Tabela 6.22: Parâmetros modbus da lista de eventos registrados no equipamento

6.9.3 Comandos

Registrador	Acesso	Descrição	Observação
			11: Ligar o RTDW de modo geral (retificador e conversor de saída)
			255: Desligar o RTDW de modo geral (retificador e conversor de saída)
			21: Ligar o retificador
			22: Desligar o retificador
			31: Ligar UCQ
			32: Desligar UCQ
			35: Ativar o <i>bypass</i> manual
			36: Desativar o <i>bypass</i> manual
			37: Reposição do <i>bypass</i> na UCQ
			50: Carga de bateria: modo automático
			51: Carga de bateria: flutuação manual
			52: Carga de bateria: recarga manual
			53: Carga de bateria: equalização manual
			54: Carga de bateria: carregamento rápido
5000	R/W	Solicitação de comando	57: Habilita compensação térmica
			58: Desabilita compensação térmica
			128: Ativar sinalização sonora
			129: Desativar sinalização sonora
			130: Ativar sinóptico na IHM
			131: Desativar sinóptico na IHM
			150: Atualizar configuração da corrente de fuga
			160: Atualizar configurações do modbus (USB serial)
			161: Atualizar configurações do modbus (RS485)
			170: Atualizar configurações da UCQ
			180: Atualizar configurações da bateria
			190: Atualizar configurações de entrada
			200: Ativar sistema supervisório
			210: Desativar sistema supervisório
			240: Restaurar padrão de fábrica

Tabela 6.23: Parâmetros modbus dos comandos

6.9.4 Medições

6.9.4.1 Medidas das Tensões de Entrada CA

Registrador	Acesso	Descrição	Observação
1001	R	Tensão CA eficaz da rede (R-S)	
1101	R	Tensão CA eficaz da rede (S-T)	
1201	R	Tensão CA eficaz da rede (T-R)	
1002	R	Tensão CA eficaz da rede auxiliar (R-S)	
1102	R	Tensão CA eficaz da rede auxiliar (S-T)	Cada unidade equivale a 0,1 V
1202	R	Tensão CA eficaz da rede auxiliar (T-R)	
1004	R	Tensão CA eficaz na entrada do retificador (R-S)	
1104	R	Tensão CA eficaz na entrada do retificador (S-T)	
1204	R	Tensão CA eficaz na entrada do retificador (T-R)	

Tabela 6.24: Parâmetros modbus das medidas de tensão da entrada CA

6.9.4.2 Medidas das Tensões CC

Tabela 6.25:	Parametros	modbus	das	medidas	de	tensão CC

Registrador	Acesso	Descrição	Observação
54	R	Tensão CC média na saída do retificador	
56	R	Tensão CC média na saída do consumidor	
59	R	Tensão CC média no banco de baterias	Cada unidade equivale a 0.1 V
66	R	Tensão CC média na saída do consumidor medida pelo supervisório	
69	R	Tensão CC média no banco de baterias medida pela supervisório	
89	R	Tensão CC média na saída do consumidor após o diodo de paralelismo	

6.9.4.3 Medidas das Tensões da Alimentação da Eletrônica

Tabela 6.26: Parâmetros modbus das medidas das tensões da alimentação da eletrônica

Registrador	Acesso	Descrição	Observação
77	R	Tensão CC média da fonte principal (12 V) - Controle	
76	R	Tensão CC média da fonte redundante (12 V) - Controle	
85	R	Tensão CC média da fonte principal (12 V) - supervisório	
86	R	Tensão CC média da fonte redundante (12 V) - supervisório	
82	R	Tensão CC média de alimentação (12 V) - Retificador	
83	R	Tensão CC de referência do sensor hall (2,5 V) - Retificador	Cada unidade equivale a 0,1 V
78	R	Tensão CC média de alimentação (12 V) - UCQ	
79	R	Tensão CC média de alimentação (5 V) - UCQ	
80	R	Tensão CC de referência do sensor hall (2,5 V) - UCQ	
90	R	Tensão CC média de alimentação (12 V) - Relés 1	
91	R	Tensão CC média de alimentação (12 V) - Relés 2	

6.9.4.4 Medidas das Correntes da Entrada CA

Tabela 6.27: Parâmetros modbus das medidas das correntes da entrada CA

Registrador	Acesso	Descrição	Observação
301	R	Corrente CA eficaz da rede (R)	
401	R	Corrente CA eficaz da rede (S)	
501	R	Corrente CA eficaz da rede (T)	Cada unidade equivale a 0.1 A
304	R	Corrente CA eficaz na entrada do retificador (R)	
404	R	Corrente CA eficaz na entrada do retificador (S)	
504	R	Corrente CA eficaz na entrada do retificador (T)	

6.9.4.5 Medidas das Correntes CC

Registrador	Acesso	Descrição	Observação
354	R	Corrente CC média na saída do retificador	
356	R	Corrente CC média na saída do consumidor	Cada unidade equivale a 0,1 A
359	R	Corrente CC média no banco de baterias	
357	R	Corrente CC média de fuga a terra	Cada unidade equivale a 0,1 mA

Tabela 6.28: Parâmetros modbus das medidas das correntes CC

6.9.4.6 Medidas das Potências

Tabela 6.29: Parâmetros modbus das medidas de	e potência
---	------------

Registrador	Acesso	Descrição	Observação
1601	R	Potência VA rede principal	
1602	R	Potência VA rede auxiliar	Cada unidade equivale a 0,1 kVA
1604	R	Potência VA retificador	
1651	R	Potência W rede principal	
1652	R	Potência W rede auxiliar	Cada unidade equivale a 0.1 kW
1654	R	Potência W retificador	
656	R	Potência W consumidor	
1901	R	Percentual de carga	Cada unidade equivale a 0,1 %

6.9.4.7 Medidas das Temperaturas

Tabela 6.30:	Parâmetros	modbus das	medidas d	le temperatura
1 4 9 9 4 9 1 9 9 1	, a, a, , , o , o o	11100000000000	moundad c	

Registrador	Acesso	Descrição	Observação
902	R	Temperatura no painel	
901	R	Temperatura na bateria	
903	R	Temperatura módulo - retificador	
904	R	Temperatura dissipador - retificador	
905	R	Temperatura módulo - UCQ	
906	R	Temperatura no dissipador 1 da UCQ - diodo de saída	
907	R	Temperatura no dissipador 2 da UCQ - IGBT	Cada unidade equivale a 0,1°C
908	R	Temperatura indutor - UCQ	
910	R	Entrada analógica de temperatura 1 - módulo relés 1	
911	R	Entrada analógica de temperatura 2 - módulo relés 1	
912	R	Entrada analógica de temperatura 1 - módulo relés 2	1
913	R	Entrada analógica de temperatura 2 - módulo relés 2	

6.9.4.8 Medidas das Frequências

Tabela 6.31: Parametros moduls das medidas de frequencia	Tabela 6.31:	Parâmetros	modbus das	medidas de	e frequências
--	--------------	------------	------------	------------	---------------

Registrador	Acesso	Descrição	Observação
951	R	Frequência da rede	
952	R	Frequência da rede auxiliar	Cada unidade equivale a 0,1 Hz
954	R	Frequência na entrada do retificador	

6.9.4.9 Medidas das Velocidades dos Ventiladores

Tahola 6 32.	Parâmetros	Modhus	las medidas	de velocidade	dos ventiladores
	r ai ai ii cu us i	woubus c	ias iliculuas	ue velociuaue	uus venillauures

Registrador	Acesso	Descrição	Observação
3300	R	RPM ventilador 1 - retificador 1	
3301	R	RPM ventilador 2 - retificador 1	1
3302	R	RPM ventilador 3 - retificador 1	
3303	R	RPM ventilador 1 redundante - retificador 1	
3304	R	RPM ventilador 2 redundante - retificador 1	
3305	R	RPM ventilador 3 redundante - retificador 1	
3306	R	RPM ventilador 1 - retificador 2	
3307	R	RPM ventilador 2 - retificador 2	
3308	R	RPM ventilador 3 - retificador 2	
3309	R	RPM ventilador 1 redundante - retificador 2	Cada unidade equivale a 1.0 rpm
3310	R	RPM ventilador 2 redundante - retificador 2	
3311	R	RPM ventilador 3 redundante - retificador 2	
3320	R	RPM ventilador 1 - UCQ	
3321	R	RPM ventilador 2 - UCQ	
3322	R	RPM ventilador 3 - UCQ	
3323	R	RPM ventilador indutor - UCQ	
3324	R	RPM ventilador 1 redundante - UCQ	
3325	R	RPM ventilador 2 redundante - UCQ	
3326	R	RPM ventilador 3 redundante - UCQ	
3327	R	RPM ventilador indutor redundante - UCQ	1

6.9.5 Estados

6.9.5.1 Estados Físicos

Registrador	Acesso	Descrição	Observação
			Bit 0: Disjuntor da rede CA
			Bit 1: Disjuntor da rede CA auxiliar
			Bit 2: Disiuntor de bateria
			Bit 3: Disjuntor de consumidor
3201	R	Estado dos disiuntores	Bit 4 [.] Disjuntor de <i>bypass</i>
0201			Bit 5: Disjuntor da ventilação - Porta
			Bit 6: Disjuntor da ventilação - Teto
			Bit 7: Disjuntor da ventilação redundante - Porta
			Bit 8: Disjuntor da ventilação redundante - Teto
			Bit 0: Contator da rede CA
			Bit 1: Contator da rede CA auxiliar
			Bit 2: Contator de bateria
3200	R	Estado dos contatores ¹	Bit 2: Contator de pré-carga
			Bit 4: Contator de consumidor
			Bit 5: Contator de bynass
			Bit 0: Ventilador da parta
			Bit 0. Ventilador da porta Bit 1: Ventilador da toto
			Bit 1. Ventilador do teto Bit 2: Ventilador redundante Dorta
			Bit 2: Ventilador redundante - Folta
			Bit 3. Ventilador 1. Botificador
			Bit 4. Ventilador 1 - Retificador
		R	Bit 5. Ventilador z - Retilicador
			Bit 6. Ventilador redundante 1 - Retificador
3202	R		Bit 7. Ventilador 1. Botificador 2
			Bit 6. Ventilador 1 - Retificador 2
		Estado da ventilação	Bit 9: Ventilador 2 - Retilicador 2 Dit 40: Ventilador radumdanta 4. Datificador 2
			Bit 10: Ventilador redundante 1 - Retificador 2 Bit 11: Ventilador redundante 2 - Detificador 2
			Bit 11: Ventilador redundante 2 - Retificador 2
			Bit 12: Ventilador 1 - UCQ
			Bit 14: Ventilador redundante 1 - UCQ
			Bit 15: Ventilador redundante 2 - UCQ
			Bit 0: Ventilador do Indutor - UCQ
			Bit 1: Ventilador redundante do Indutor - UCQ
			Bit 2: Ventilador 3 - UCQ
3212	R		Bit 4: Ventilador redundante 3 - UCQ
			Bit 4: Ventilador 3 - Retificador
			Bit 5: Ventilador redundante 3 - Retificador
			Bit 6: Ventilador 3 - Retificador 2
			Bit 7: Ventilador redundante 3 - Retificador 2
			Bit 0: Saida digital - 1
			Bit 1: Saída digital - 2
			Bit 2: Saída digital - 3
3210	R	Estados de comando dos relés de	Bit 3: Saida digital - 4
		sinalização	Bit 4: Saida digital - 5
			Bit 5: Saida digital - 6
			Bit 6: Saida digital - 7
			Bit 7: Saida digital - 8
			Bit 0: Saída digital - 1
			Bit 1: Saída digital - 2
			Bit 2: Saída digital - 3
3211	R	Estados de comando dos relés de	Bit 3: Saída digital - 4
		sinalizaçao - Expansão	Bit 4: Saída digital - 5
			Bit 5: Saída digital - 6
			Bit 6: Saída digital - 7
			Bit 7: Saída digital - 8
3206	P	Estado do módulo desumidificador	0 - Desligado
5200			1 - Ligado

(1) Possui lógica invertida (1 - aberto; 0 - fechado)

6.9.5.2 Estados de Operação

Registrador	Acesso	Descrição	Observação	
			0: Desligado	
			1: Rampa de tensão	
			2: Flutuação	
			3: Recarga	
			4: Flutuação manual	
3511	R	Modo de operação do retificador	5: Recarga manual	
			6: Equalização manual	
			7: Carregamento rápido	
			8: Standby	
			9: Tensão de <i>bypass</i>	
			10: Falha	
			0: Modo desligado	
3208	3208 R	R Estado do retificador	1: Modo ligado	
0200			2: Modo standby	
			3: Modo falha	
		Modo de operação da UCQ	0: Desligado	
			1: Normal	
3611	R		2: Bypass	
			3: <i>Bypass</i> manual	
			4: Falha	
			0: Modo desligado	
3209	R	R Estado da UCQ	1: Modo ligado	
0200			2: Modo <i>standby</i>	
			3: Modo falha	
			0: Status de inibição do sistema supervisório	
			1: Sistema supervisório energizado (microcontrolador)	
			2: Sistema supervisório monitorando (condições de trigger	
3350	R	R Status do sistema supervisório	atendidas)	
			3: Status de bypass pelo sistema supervisório ativo	
			4: Status da detecção das condições de desligamento pelo	
				sistema supervisório

 Tabela 6.34:
 Parâmetros modbus das medidas de estado de operação

6.9.5.3 Estados das Medições

Registrador	Acesso	Descrição	Observação
2056	R	Estado da tensão CC no consumidor	Bit 0: Ausente
2054	R	Estado da tensão CC no retificador	Bit 1: Valor médio acima do limite máximo
2059	R	Estado da tensão CC no banco de baterias	Bit 2: Valor médio abaixo do limite mínimo
2074	R	Estado da tensão CC de pré-Carga	Bit 3: Valor dentro dos limites de operação
2356	R	Estado da corrente CC no consumidor	Bit 0: Ausente Bit 1: Valor médio da corrente acima do valor máximo
2354	R	Estado da corrente CC no retificador	Bit 2: Limitação de corrente
2359	R	Estado da corrente CC no banco de baterias - retificador	Bit 3: Linnação da corrente via <i>nardware</i> Bit 4: Valor dentro dos limites de operação
2854	R	Estado da corrente CC de carregamento da bateria	Bit 0: Bateria necessita recarga Bit 1: Carga finalizada
12901	R	Estado da tensão CA rede principal	
12001	R	Estado da tensão CA rede principal (R-S)	
12011	R	Estado da tensão CA rede principal (S-T)	Rit 0: Augente
12021	R	Estado da tensão CA rede principal (T-R)	Dit 0. Ausente Bit 1: Subfroquâncio
12902	R	Estado da tensão CA rede auxiliar	Bit 2: Sobrofroquência
12002	R	Estado da tensão CA rede auxiliar (R-S)	Bit 2: Valor PMS acima do limito máximo
12012	R	Estado da tensão CA rede auxiliar (S-T)	Bit 4: Valor RMS abaixo do limite máximo
12022	R	Estado da tensão CA rede auxiliar (T-R)	Bit 5: Tensão média CC fora dos limites
12904	R	Estado da tensão CA retificador	Bit 6: Valor dentro dos limites de operação
12004	R	Estado da tensão CA retificador (R-S)	Dit 0. Valor dentro dos innites de operação
12014	R	Estado da tensão CA retificador (S-T)	
12024	R	Estado da tensão CA retificador (T-R)	
12931	R	Estado da corrente CA rede	
2301	R	Estado da corrente CA na rede (R)	
2401	R	Estado da corrente CA na rede (S)	
2501	R	Estado da corrente CA na rede (T)	Bit 0: Valor nulo de corrente
12934	R	Estado da corrente CA retificador	Bit 1: Valor RMS de corrente acima do valor máximo
2304	R	Estado da corrente CA na entrada do	Bit 2: Valor RMS de corrente abaixo do valor mínimo
2004		retificador (R)	Bit 3: Corrente CC fora dos limites
2404	R	Estado da corrente CA na entrada do retificador (S)	Bit 4: Valor dentro dos limites de operação
2504	R	Estado da corrente CA na entrada do retificador (T)	

Tabela 6.35: Parâmetros modbus das medidas de estado de medição

6.9.6 Configurações

6.9.6.1 Configurações do Relógio

Registrador	Acesso	Descrição	
4017	R/W	Ajuste do ano	
4016	R/W	Ajuste do mês	
4015	R/W	Ajuste do dia	
4014	R/W	Ajuste da hora	
4013	R/W	Ajuste de minutos	
4007	R	Ano	
4006	R	Mês	
4005	R	Dia	
4004	R	Hora	
4003	R	Minutos	
4002	R	Segundos	

Tabela 6.36: Parâmetros modbus das configurações do relógio

6.9.6.2 Configurações da Comunicação Modbus USB

Registrador	Acesso	Descrição	Observação
4900	R/W	Endereço (USB serial)	De 1 a 246
			0: 9600 bps
			1: 19200 bps
4901	R/W	Taxa de comunicação (USB serial)	2: 38400 bps
			3: 57600 bps
			4: 76800 bps
			0: Sem paridade
4902	R/W	W Paridade (USB serial)	1: Paridade par
			2: Paridade ímpar
4903	4903 R/W Stop bits (USB serial)	Stop bits (LISB serial)	1: Um stop bit
			2: Dois stop bits

 Tabela 6.37: Parâmetros das configurações da comunicação Modbus USB

6.9.6.3 Configurações da Comunicação Modbus RS485

Registrador	Acesso	Descrição	Observação
4910	R/W	Endereço (RS485)	De 1 a 246
		Taxa de comunicação (RS485)	0: 9600 bps
			1: 19200 bps
4911	R/W		2: 38400 bps
			3: 57600 bps
			4: 76800 bps
			0: Sem paridade
4912	R/W	Paridade (RS485)	1: Paridade par
			2: Paridade ímpar
4913		Stop hits (PS185)	1: Um stop bit
	F\$7.00	Stop bits (R3463)	2: Dois stop bits

Tabela 6.38:	Parâmetros das	configurações da	a comunicação Modbu	s RS485
--------------	----------------	------------------	---------------------	---------

6.9.6.4 Configurações das Referências

Tabela 6.39:	Parâmetros	modbus	das	medidas	de	configurações d	das	referências
--------------	------------	--------	-----	---------	----	-----------------	-----	-------------

Registrador	Acesso	Descrição	Observação
6015	R/W	Tempo máximo de recarga	
6016	R/W	Tempo máximo de equalização	Cada unidade equivale a 1.0 min
6017	R/W	Tempo em corrente constante para finalizar recarga	
6018	R/W	Tempo em corrente constante para finalizar equalização	
6200	R/W	Referência de tensão de flutuação	Cada unidade equivale a 0.1 V
6202	R/W	Referência de tensão de equalização	
6204 / 6205	R/W	Referência de tensão de flutuação com compensação térmica	Valor com representação de ponto flutuante (32 <i>bits</i>). Devem ser lidos simultaneamente os dois endereços para obtenção do valor. Via WPS o valor é convertido automaticamente
6206	R/W	Temperatura de operação da bateria	Cada unidade equivale a 0,1 °C
6207	R/W	Coeficiente de compensação de temperatura (+)	
6208	R/W	Coeficiente de compensação de temperatura (-)	
6209	R/W	Temperatura máxima para compensação térmica	Cada unidada aquivala a 0.1 °C
6210	R/W	Temperatura mínima para compensação térmica	
6211	R/W	Tensão máxima para compensação térmica	
6213	R/W	Tensão mínima para compensação térmica	Cada unidade equivale a 0,1 V
6300	R/W	Referência de tensão no consumidor	
4580	R/W	Referência de RPM mínimo para alarme da ventilação	Cada unidade equivale a 1,0 rpm

6.9.6.5 Configurações dos Limites

Registrador	Acesso	Descrição	Observação
23301	R/W	Limite superior da corrente média - Entrada	
23304	R/W	Limite superior da corrente média - Retificador	
23354	R/W	Limite superior da corrente média - Saída retificador	Cada unidade equivale a 0,1 A
23356	R/W	Limite superior da corrente média - Consumidor	
23357	R/W	Limite superior da corrente de fuga a terra positiva e negativa	Cada unidade equivale a 0,1 mA
23359	R/W	Limite superior da corrente média - Bateria	
23459	R/W	Limite superior da corrente média - Recarga rápida	Cada unidade equivale a 0,1 A
23859	R/W	Corrente para entrada em modo recarga	
24054	R/W	Limite inferior da tensão média - Retificador	
24056	R/W	Limite inferior da tensão média - Consumidor	Cada unidade equivale a 0,1 V
24059	R/W	Limite inferior da tensão média - Bateria	
24301	R/W	Limite inferior da corrente média - Entrada	
24304	R/W	Limite inferior da corrente média - Retificador	Cada unidade equivale a 0,1 A
24859	R/W	Corrente para retorno ao modo flutuação (recarga finalizada)	
26054	R/W	Limite superior da tensão média - Retificador	
26056	R/W	Limite superior da tensão média - Consumidor	
26059	R/W	Limite superior da tensão média - Bateria	
33001	R/W	Limite superior da tensão eficaz de linha - MPS	
33002	R/W	Limite superior da tensão eficaz de linha - BPS	Cada unidade equivale a 0,1 V
33004	R/W	Limite superior da tensão eficaz de linha - Retificador	
34001	R/W	Limite inferior da tensão eficaz de linha - MPS	
34002	R/W	Limite inferior da tensão eficaz de linha - BPS	
34004	R/W	Limite inferior da tensão eficaz de linha - Retificador	

Tabela 6.40: Parâmetros modbus das medidas de configurações dos limites

6.9.6.6 Configuração dos Limites de LVD

Registrador	Acesso	Descrição	Observação
4147	R/W	Configuração do tempo de desligamento do sistema por baixa tensão da bateria	Cada unidade equivale a 1 min
22059	R/W	Tensão para desconexão de bateria por tensão baixa (LVD)	Cada unidade equivale a 0,1 V

6.10 CONFIGURAÇÕES ADICIONAIS

6.10.1 Configurações do Alarme Sonoro e do Sinóptico

No menu de configurações do RTDW, é possível habilitar/desabilitar o sinóptico e o alarme sonoro. Ambos os parâmetros vêm habilitados de fábrica. Para realizar a alteração desse *status*, no menu principal da IHM (Figura 6.2 na página 6-2), selecione a opção "[5] CONFIGURACOES" (Figura 6.26 na página 6-36) e em seguida a opção "[1] ALARME SONORO" ou "[2] SINOPTICO".

Na configuração do alarme ou sinóptico, é mostrada na IHM a tela da Figura 6.27 na página 6-36 ou a da Figura 6.28 na página 6-36, respectivamente, e, usando as teclas "baixo", "cima" e "Enter", é possível selecionar a opção desejada. Em seguida, utilize as teclas de navegação para confirmar o comando (Figura 6.29 na página 6-36).

A intermitência do alarme sonoro define a criticidade do evento, conforme abaixo:

Graves: contínuo. **Necessitam de atenção:** 1 por segundo ou 3 bipes a cada 30 segundos. **Avisos:** 1 ou 3 bipes.

Toques ¹	Eventos					
	Disjuntor aberto - Rede					
	Disjuntor fechado - Bypass					
	Disjuntor aberto - Bateria					
	Disjuntor aberto - Consumidor					
	UCQ em <i>bypass</i> manual					
1	UCQ em <i>bypass</i> automático					
	UCQ em bypass pelo supervisório					
	Falha no acionamento dos contatores					
	Disjuntor da ventilação aberto - Porta					
	Disjuntor da ventilação aberto - Teto					
	Disjuntor da ventilação redundante aberto - Porta					
	Disjuntor da ventilação redundante aberto - Teto					
	Sobretemperatura AVG - UCQ					
	Sobretemperatura AVG - UDQ					
	Sobretemperatura AVG - Retificador					
3	Sobretemperatura AVG - Bateria					
	Sobretemperatura AVG - Painel					
	Subtemperatura nos módulos					
	Falha na ventilação					
	Sobretensão AVG - Saída consumidor					
	Subtensão AVG - Saída consumidor					
	Sobretensão AVG - Bateria					
	Sobrecorrente recarga bateria					
	UCQ em falha					
3 a cada 30 segundos	Falha de falta de fase					
	Falha na sequência de fases					
	Falha no pulso do tiristor					
	Desligamento por bateria baixa					
	Polaridade invertida - Baterias					
	Iniciado processo de desligamento por bateria baixa					
	Falha de comunicação do paralelismo					
1 por segundo	Falha na identificação dos módulos de potência					
	Falha na comunicação com os módulos de potência					
Contínuo	Falha no carregador de bateria					

Tabela 6.42: Legenda do alarme sonoro

(1) Ao pressionar a tecla MENU/ESC, o alarme será silenciado até que ocorra um novo evento.

\bigcirc

NOTA!

O Alarme Sonoro se caracteriza por toques com intervalos conforme a Tabela 6.42 na página 6-35. Para consultar e diferenciar a falha ocorrida, deve-se observar os *status* indicados no Painel Sinóptico.

NOTA!

O Painel Sinóptico, mesmo desabilitado, acende temporariamente quando qualquer tecla é pressionada, apagando-se novamente após 35 segundos.

Figura 6.26: Menu de configuração

Figura 6.27: Menu de configuração do alarme sonoro

Figura 6.28: Menu de configuração do sinóptico

Figura 6.29: Menu de confirmação de comando

6.10.2 Configurações do Consumidor

Neste menu, é possível configurar os valores de tensão de saída, limitação de corrente no consumidor e de sub/sobretensão, que serão utilizados nos alarmes e *Bypass*.

Por padrão, essas variáveis estão ajustadas conforme especificações do projeto. Para visualização dos valores, no menu principal da IHM, selecione a opção "[5] CONFIGURACOES" (Figura 6.26 na página 6-36) e em seguida selecione a opção "[5] CONSUMIDOR". A tela mostrada na Figura 6.30 na página 6-38 é mostrada na IHM.

Para configurar o valor da tensão no consumidor, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "REF.TENSAO". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[5] CONSUMIDOR" (Figura 6.30 na página 6-38) e selecione a opção "SALVAR ALTERAÇÕES".

Para configurar o valor de limitação de corrente no consumidor, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "LIM CORRENTE". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a corrente desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[5] CONSUMIDOR" (Figura 6.30 na página 6-38) e selecione a opção "SALVAR ALTERAÇÕES".

Para alterar o valor de subtensão no consumidor, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "SUBTENSAO". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[5] CONSUMIDOR" (Figura 6.30 na página 6-38) e selecione a opção "SALVAR ALTERAÇÕES".

Para alterar o valor de sobretensão no consumidor, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "SOBRETENSAO". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[5] CONSUMIDOR" (Figura 6.30 na página 6-38) e selecione a opção "SALVAR ALTERAÇÕES".

NOTA!

Quando o produto estiver configurado com "**Paralelismo com divisão do banco de baterias**" e em *Reserva*, os ajustes das "**Configurações do Consumidor**" serão bloqueados. Caso seja necessário realizar o ajuste, a ação deverá ser executada através do equipamento em modo *Principal*.

6.10.3 Configurações do Carregador de Bateria

Os parâmetros ajustáveis do carregador de bateria são: tensão de flutuação, tensão de carga das baterias e corrente de carga das baterias. Para visualização dos valores, acesse o menu principal da IHM, selecione a opção "[5] CONFIGURACOES" (Figura 6.26 na página 6-36) e em seguida a opção "[6] BATERIAS". A tela mostrada na Figura 6.32 na página 6-39 é mostrada na IHM.

Para alterar o valor tensão de flutuação da bateria, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "REF.FLUT.". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[6] BATERIAS" (Figura 6.32 na página 6-39) e selecione a opção "SALVAR ALTERAÇÕES".

Para alterar o valor da tensão de recarga da bateria, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "REF.CARGA.". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[6] BATERIAS" (Figura 6.32 na página 6-39) e selecione a opção "SALVAR ALTERAÇÕES".

Para configurar a corrente de recarga da bateria, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "CORR.CARGA". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a corrente de carga desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[6] BATERIAS" (Figura 6.32 na página 6-39) e selecione a opção "SALVAR ALTERAÇÕES".

NOTA!

Recomenda-se ajustar a corrente de carga ou carga rápida conforme o manual da bateria utilizada. Por exemplo, para baterias de 100 Ah, a corrente de recarga recomendada é de 10 A. (Tabela 7.2 na página 7-1)

NOTA!

Quando o produto estiver configurado com "**Paralelismo com divisão do banco de baterias**" e em *Reserva*, os ajustes das "**Configurações do Carregador de Bateria**" serão bloqueados. Caso seja necessário realizar o ajuste, a ação deverá ser executada através do equipamento em modo *Principal*.

6.10.4 Configurações da Rede de Entrada CA

Os parâmetros ajustáveis da rede de entrada CA são os valores de sub e sobretensão, utilizados nos alarmes. Para visualização dos valores, acesse no menu principal da IHM, selecione a opção "[5] CONFIGURACOES" (Figura 6.26 na página 6-36) e em seguida a opção "[8] ENTRADA". A tela mostrada na Figura 6.33 na página 6-39 é mostrada na IHM.

Para alterar o valor de subtensão na entrada CA, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "SUBTENSAO". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e confirme com "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[8] ENTRADA" (Figura 6.33 na página 6-39) e selecione a opção "SALVAR ALTERAÇÕES".

Para alterar o valor de sobretensão na entrada CA, use as teclas "baixo", "cima" e "Enter" para navegar e escolha a opção "SOBRETENSAO". A tela do modo de ajuste é apresentada (Figura 6.31 na página 6-38). Selecione a tensão desejada e pressione "Enter". Para salvar as alterações feitas, pressione a tecla "Menu/ESC" retornando para tela de configuração "[8] ENTRADA" (Figura 6.33 na página 6-39) e selecione a opção "SALVAR ALTERAÇÕES".

Figura 6.30: Menu de ajuste dos parâmetros do consumidor

Figura 6.31: Menu de ajuste de tensão/corrente

Figura 6.32: Menu de ajuste dos parâmetros do carregador de bateria

	ENTRADA	
-> SOBRI	ETENSAO	XXXV.
SUBT	ENSAO	XXXV.
SALV	AR ALTERA	IÇOES

Figura 6.33: Menu de ajuste dos parâmetros da rede CA de entrada

6.10.5 Configuração do Alarme de Corrente de Fuga a Terra

O RTDW conta com um sistema de leitura de corrente de fuga a terra, que possui uma sinalização visual no sinóptico. Por padrão, o produto está configurado para indicar quando a corrente de fuga ultrapassa 10 mA, mas esse limite pode ser ajustado tanto via IHM quanto por comunicação Modbus.

Para configuração via IHM, acesse "[9] FUGA TERRA" no menu "[5] CONFIGURACOES". Nesta opção, é possível habilitar ou desabilitar o monitoramento da corrente de fuga a terra, além de ajustar o limite desejado. Utilize as teclas "baixo", "cima" e "Enter" para navegar até a opção "AJUSTE DO LIMITE". Em seguida, selecione o menu "REF. CORR.", escolha a corrente desejada e confirme com "Enter". Após definir o valor, selecione "SALVAR ALTERAÇÕES". Para habilitar ou desabilitar a leitura, escolha "ATIVAR / DESATIVAR", selecione a configuração desejada e pressione "Enter" novamente para confirmar.

A configuração via comunicação Modbus (Seção 6.9.6.5 Configurações dos Limites na página 6-34) é feita através do registrador 23357. Nesse endereço é possível "escrever" o valor de corrente de fuga a terra desejado, multiplicado por 10.

Por exemplo, se o valor desejado for de 25 mA, o valor que deve ser "escrito" é 250. Os valores mínimo e máximo que podem ser configurados são apresentados na Tabela 6.43 na página 6-39.

Modelo do RTDW	Valor Mínimo	Valor Máximo
110 V	5 mA	75 mA
125 V		

Tabela 6.43:	Valores	mínimo	e máximo	de leitura	de co	rrente de	e fuga a terra
--------------	---------	--------	----------	------------	-------	-----------	----------------

\frown	

NOTA!

Quando o produto estiver configurado com **"Paralelismo com divisão do banco de baterias**" e em *Reserva*, os ajustes das **"Configurações de Corrente de Fuga a Terra**" serão bloqueados. Caso seja necessário realizar o ajuste, a ação deverá ser executada através do equipamento em modo *Principal*.

NOTA!

Quando o produto estiver configurado com "**Paralelismo com divisão do banco de baterias**", caso apenas um dos equipamentos permaneça em funcionamento enquanto os demais estiverem com os disjuntores de saída (do consumidor) ou de bateria desligados, poderá ocorrer o acionamento do alarme de fuga a terra.

6.10.6 Configuração do Idioma

A IHM do RTDW possui tradução completa para três idiomas (português, espanhol e inglês), que podem ser alternados durante a utilização do produto a qualquer momento através do menu de configurações.

Para alterar o idioma, no menu principal da IHM, selecione a opção "[5] CONFIGURACOES" (Figura 6.26 na página 6-36) e em seguida selecione a opção "[11] IDIOMA". A tela mostrada na Figura 6.34 na página 6-40 é mostrada na IHM. Para selecionar um dos idiomas, use as teclas "baixo", "cima" e "Enter" para navegar e escolher a opção desejada.

Figura 6.34: Menu de idiomas

6.10.7 Configuração do Paralelismo

Para configurar o paralelismo, no menu principal, selecione a opção "[5] CONFIGURACOES" e navegue até o menu "[10] PARALELISMO". Nesta tela é possível ativar ou desativar o paralelismo, selecionar o ID³ do dispositivo e escolher entre as opções de "*Principal (forçado)*" ou "*Auto*".

Figura 6.35: Menu de configuração do paralelismo

³Cada equipamento na rede de comunicação deve possuir um identificador (ID) exclusivo. A duplicidade de IDs causará falha na comunicação de paralelismo entre os dispositivos e poderá comprometer a estabilidade da operação do sistema.

6.11 MONITORAÇÃO VIA SOFTWARE WPS - WEG PROGRAMMING SUITE

O RTDW utiliza o *software* WPS para a monitoração e parametrização local via comunicação serial padrão do produto¹. A configuração do *software* para a monitoração do equipamento é apresentada nas seções a seguir.

O Software WPS está disponível para download no site www.weg.net.

(1) Protocolo Modbus-RTU no padrão RS485.

NOTA!

6.11.1 Configuração do WPS

Após a realização do *download* e instalação do *software* WPS, é necessário realizar a configuração para a monitoração do RTDW. Ao iniciar o *software* WPS, a tela inicial de apresentação está indicada na Figura 6.36 na página 6-41.

Figura 6.36: Tela inicial do software WPS

Os procedimentos para a configuração do RTDW estão descritos a seguir.

- Na aba da opção "Arquivo", selecione a opção "Nova Configuração".
- Na Figura 6.37 na página 6-42, são apresentados os campos a serem preenchidos referentes à primeira etapa da configuração.

OPERAÇÃO DO PRODUTO

👐 Nova Configuração		×	(
Etapas	Nome		
Etapas 1. Nome 2. Configuração da comunicação 3. Seleção do dispositivo	Nome da configuração: Caminho da configuração: Nome do recurso:	RTDW C:/Users/Itheodoro/WPS 3.00 Configurations Monitoramento	
		< Voltar Próximo > Finalizar Cancelar Ajuda	

Figura 6.37: Configuração dos parâmetros iniciais

Preencha os Campos "Nome da configuração", "Nome do recurso", defina o local onde as informações serão salvas e siga para a próxima etapa, conforme mostra a Figura 6.38 na página 6-43.

👐 Nova Configuração		×
Etapas 1. Nome 2. Configuração da comunicação 3. Seleção do dispositivo	Configuração da comunicação Host: localhost Porta: 34502 Dispositivo Predefinido: Predefinido: RTDW Camada física: O USB Serial (over USB) Ethernet Conexões configuradas Configuração Fempos [ms] Porta: COM1 Atraso transmissão: 0 Taxa de transferência: 9600 Atraso resposta: 0 Bits de dados: 8 Imeout: 1000 Imanho telegrama: 40 Paridade: None 40 Imanho telegrama: 40	
	Conexão atual: Serial/COM1/Modbus-RTU/@64#9600#8#1#NONE#0#0#1000#40 Testar Status: Gerenciador de comunicação online.	
	< Voltar Próximo > Finalizar Cancelar Ajuda	

Figura 6.38: Configuração dos parâmetros de comunicação

- Na lista "Dispositivo / Predefinido" busque a opção "RTDW".
- Os parâmetros iniciais serão preenchidos com valores pré-definidos.
- Verifique o endereço da Porta COM e ID da unidade conforme a sua aplicação.
- Na opção "Tempos [ms]", os seguintes parâmetros devem ser utilizados:
 - Atraso transmissão: 5
 - Atraso resposta: 10
 - *Timeout*: 1000
- Conecte o RTDW ao microcomputador².
- Verifique a comunicação com o produto pressionando o botão "Testar".
- Avance para a próxima tela de seleção do dispositivo, conforme mostra a Figura 6.39 na página 6-44.
OPERAÇÃO DO PRODUTO

wes Nova Configuração		×
Etapas	Seleção do dispositivo	
Etapas 1. Nome 2. Configuração da comunicação 3. Seleção do dispositivo	Seleção do dispositivo Tipo: RTDW Versão: 1.1X Identificar Di	spositivo Características: Retificador Trifásico com controle digital de tensões e correntes, com possibilidade de dupla conversão de energia.
	< Voltar	Próximo > Finalizar Cancelar Ajuda

Figura 6.39: Configuração do dispositivo

(2) Para maiores informações, consulte a Seção 5.3.3 Conexão Comunicação RS485 na página 5-2 ou Seção 5.3.5 Conexão Comunicação USB na página 5-2.

- Na lista "Tipo", busque a opção "RTDW".
- O botão "Identificar Dispositivo" pode ser pressionado para verificar o nome do equipamento e a sua respectiva versão de *firmware*.
- Pressione "Finalizar" para concluir o processo de configuração do sistema de monitoração.

6.11.2 Calibração das Leituras

Após concluir a configuração do sistema, se necessário, é possível realizar a calibração de todas as grandezas disponíveis de tensão e corrente.

Na aba "Configurações" aberta na lateral esquerda, conforme Figura 6.40 na página 6-45, localize e com um duplo clique abra a opção Assistentes.

Figura 6.40: Assistentes disponíveis

Com um clique duplo, abra o assistente Calibração, Figura 6.41 na página 6-46. Através dele é possível realizar as calibrações de offset e ganho de tensões e correntes disponíveis no RTDW, além de retornar para os valores originais (*Reset*).

OPERAÇÃO DO PRODUTO

wes WEG Programming Suite 3.00			– 🗆 X
Arquivo Editar Online Ferramentas J	Janela Ajuda		
1 1 1 C	🖹 🖯 台 🌖 🕨 🔲 🖁 🍁		
Configurações × —	Calibração ×		$\longleftrightarrow \bullet \bullet \blacksquare$
	Calibração de Sensores		
Parâmetro			
Diagnóstico	Tensões Correntes Outros		
Estados	Tensões CC	Tensões CA Offset Ganho Reset	
Calibração	Tensão Retificador	Tensão CA eficaz da rede (R-S)	
, usines	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Tensão UCQ	Tensão CA eficaz da rede (S-T)	
	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Tensão Bateria	Tensão CA eficaz da rede (T-R)	
	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Tensão Consumidor	Tensão CA eficaz na entrada do retificador (R-S)	
	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Tensão UCQ Supervisor	Tensão CA eficaz na entrada do retificador (S-T)	
	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Tensão Bateria Supervisor	Tensão CA eficaz na entrada do retificador (T-R)	
	0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar	
	Instruções		
	*Legenda:	ñ	
	Descrição da medida		
	Leitura [X] Valor Desejado [X] ENVIAR	U	
	*Atenção: Os valores informados devem ser multiplica	ados por 10 (ex: Desejado: 12,5V - Informar: 125V)	
		×	
			۹ ا

Figura 6.41: Assistente calibração

- Para realizar a calibração, selecione a aba da grandeza a ser ajustada, tensão ou corrente, conforme Figura 6.42 na página 6-46 e Figura 6.43 na página 6-47.
- O primeiro campo de cada grandeza é referente ao valor lido (*online*) pelo RTDW, o segundo é o novo valor¹ de calibração que será enviado.

Calibração de Sensores	
Tensões Correntes Outros	
Tensões CC	Tensões CA Offset Ganho Reset
Tensão Retificador	Tensão CA eficaz da rede (R-S)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar
Tensão UCQ	Tensão CA eficaz da rede (S-T)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar
Tensão Bateria	Tensão CA eficaz da rede (T-R)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar
Tensão Consumidor	Tensão CA eficaz na entrada do retificador (R-S)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar
Tensão UCQ Supervisor	Tensão CA eficaz na entrada do retificador (S-T)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar
Tensão Bateria Supervisor	Tensão CA eficaz na entrada do retificador (T-R)
0 V 0 V (x10) Enviar	0 V 0 V (x10) Enviar

Figura 6.42: Calibração das leituras das tensões

Calibração de Sensores	
Tensões Correntes Outros	
Correntes CC	Correntes CA Offset Ganho Reset
Corrente Retificador	Corrente CA eficaz da rede (R)
0 A 0 A (x10) Enviar	0 A 0 A (x10) Enviar
Corrente UCQ	Corrente CA eficaz da rede (S)
0 A 0 A (x10) Enviar	0 A 0 A (x10) Enviar
Corrente Bateria	Corrente CA eficaz da rede (T)
0 A 0 A (x10) Enviar	0 A 0 A (x10) Enviar
	Corrente CA eficaz na entrada do retificador (R)
Fuga Terra	0 A 0 A (x10) Enviar
Corrente de Fuga Terra	Corrente CA eficaz na entrada do retificador (S)
0 mA 0 mA (x10) Enviar	0 A 0 A (x10) Enviar
	Corrente CA eficaz na entrada do retificador (T)
	0 A 0 A (x10) Enviar

Figura 6.43: Calibração das leituras das correntes

Recomendações para calibração de Offset:

- ORTDW deve ser energizado pela rede ou bateria.
- O Retificador e UCQ devem estar no estado Desligado.
- Selecione o marcador "Offset".
- Digite o novo *offset*¹ a ser descontado/acrescido.
- Clique no botão Enviar.
- Aguarde a atualização do valor.

Recomendações para calibração de Ganho:

- Ligue o RTDW em operação nominal² (todo o sistema).
- Selecione o marcador "Ganho".
- Digite o novo valor¹ a ser gravado (leitura do multímetro).
- Clique no botão Enviar. O ganho é calculado automaticamente.
- Aguarde a atualização do valor.

Recomendações para reset das calibrações existentes:

- Selecione o marcador "Reset".
- Digite o valor "0" e clique no botão Enviar.
- Aguarde a atualização do valor.

(1) Valores digitados devem ser multiplicados por 10 (ex.: para -1.0 V digitar -10 ou para 0.3 V digitar 3).
(2) Para maior precisão na calibração, é imperativo que o equipamento esteja em condições nominais de operação.

6.11.3 Monitoração do RTDW via WPS

A monitoração do equipamento pode ser realizada através da sua tabela de parâmetros ou do assistente *Estados*. Essas informações podem ser acessadas conforme o procedimento apresentado a seguir.

6.11.3.1 Monitoração via Parâmetros

Na aba "Configurações" na lateral esquerda da tela, clique e abra a pasta "Parâmetros" conforme mostra a Figura 6.44 na página 6-48.

Figura 6.44: Configurações disponíveis

Com um clique duplo na opção "Parâmetros", visualize a tabela de parâmetros disponíveis para a monitoração do RTDW, conforme mostra a Figura 6.45 na página 6-48.

we WEG Programming Suite 3.00 — 🗆 🗙						×				
Arquivo Editar Online Ferram	entas Janela Ajuda									
) (" 🖹 🖨 🖨 🌒		*							
Configurações × –	Parâmetros ×									• • •
	Parâmetros									
BTDW (RTDW v1.0X)	Todos os Parâmetros								_	
	Modelo	Parâ	Descrição	Offline	Online	Mínimo	Máximo	Ajus		😣
Parâmetros	Medidas	P00054	Tensão CC média na saída do retificador	0.0		0.0	1000.0	0.0	v	
		P00056	Tensão CC média na saída do consumidor	0.0		0.0	1000.0	0.0	V	UINT
		P00059	Tensão CC média no banco de baterias	0.0		-1000.0	1000.0	0.0	٧	INT
🗄 🛃 Assistentes		P00066	Tensão CC média na saída do consumidor medida pela supervisora	0.0		0.0	1000.0	0.0	٧	UINT
	Comandos	P00069	Tensão CC média no banco de baterias medida pela supervisora	0.0		0.0	1000.0	0.0	٧	UINT
		P00076	Tensão CC média da fonte redundante (12V) - Controle	0.0		0.0	1000.0	0.0	٧	UINT
		P00077	Tensão CC média da fonte principal (12V) - Controle	0.0		0.0	1000.0	0.0	٧	UINT
		P00078	Tensão CC média de alimentação (12V) - UCQ	0.0		0.0	6553.5	0.0	۷	UINT
		P00079	Tensão CC média de alimentação (5V) - UCQ	0.0		0.0	6553.5	0.0	٧	UINT
		P00082	Tensão CC média de alimentação (12V) - Retificador	0.0		0.0	6553.5	0.0	٧	UINT
		P00085	Tensão CC média da fonte principal (12V) - Supervisora	0.0		0.0	6553.5	0.0	٧	UINT
		P00086	Tensão CC média da fonte redundante (12V) - Supervisora	0.0		0.0	6553.5	0.0	۷	UINT
		P00089	Tensão CC média na saída do consumidor após o diodo de paralelismo	0.0		0.0	6553.5	0.0	٧	UINT
		P00090	Tensão CC média de alimentação (12V) - Relés 1	0.0		0.0	6553.5	0.0	۷	UINT
		P00091	Tensão CC média de alimentação (12V) - Relés 2	0.0		0.0	6553.5	0.0	۷	UINT
		P00301	Corrente CA eficaz da rede (R)	0.0		0.0	3000.0	0.0	Α	UINT
		P00304	Corrente CA eficaz na entrada do retificador (R)	0.0		0.0	3000.0	0.0	Α	UINT
		P00354	Corrente CC média na saída do retificador	0.0		0.0	3000.0	0.0	Α	UINT
		P00356	Corrente CC média na saída do consumidor	0.0		0.0	3000.0	0.0	Α	UINT
		P00357	Corrente CC média de fuga terra	0.0		-3000.0	3000.0	0.0	mA	INT
		P00359	Corrente CC média no banco de baterias	0.0		-3000.0	3000.0	0.0	Α	INT
		P00401	Corrente CA eficaz da rede (S)	0.0		0.0	3000.0	0.0	Α	UINT
		P00404	Corrente CA eficaz na entrada do retificador (S)	0.0		0.0	3000.0	0.0	Α	UINT
		P00501	Corrente CA eficaz da rede (T)	0.0		0.0	3000.0	0.0	Α	UINT
		P00504	Corrente CA eficaz na entrada do retificador (T)	0.0		0.0	3000.0	0.0	Α	UINT
		P00656	Potência média - Consumidor	0.0		0.0	3000.0	0.0	kW	UINT
		P00901	Temperatura na bateria	0.0		-273.2	300.0	0.0	°C	INT
	1	P00902	Temperatura no painel	0.0		-273.2	300.0	0.0	°C	INT
	1	P00903	Temperatura módulo - Retificador	0.0		-273.2	300.0	0.0	°C	INT
		P00904	Temperatura dissinador - Retificador	0.0		-273.2	300.0	0.0	۹۲	INT Y
							1		1	

Figura 6.45: Tabela de parâmetros

- Para atualização dos valores, na aba "Online" acesse a opção "Conectar Dispositivo" ou pressione a tecla F9.
- Nesse momento, todos os parâmetros disponíveis para a monitoração do RTDW passam a ser atualizados constantemente.

6.11.3.2 Monitoração via Assistente Estados

- Na aba "Configurações" aberta na lateral esquerda, conforme Figura 6.40 na página 6-45, localize e com um duplo clique abra a opção Assistentes.
- Com um clique duplo, abra o assistente Estados. Através dele é possível monitorar e comandar toda a operação do RTDW, conforme mostra a Figura 6.46 na página 6-49.

Figura 6.46: Assistente Estados – Sinóptico

NOTA!

Para informações adicionais relativas à configuração, operação e recursos disponíveis no WPS, consulte o manual do *software* disponível no site **www.weg.net.**

7 ESPECIFICAÇÕES TÉCNICAS

Este capítulo descreve as especificações técnicas (elétricas e mecânicas) do RTDW.

7.1 DADOS DA POTÊNCIA

Tabela 7.1: Dados do produto							
Modelo	15 A a 35 A 50 A 75 A e 100 A 125 A a 200 A 300 A a 500 A						
Tensão de alimentação		220 / 380 / 440 / 480 V ± 10 % ¹ (Outra sob consulta)					
Frequência		60 Hz ou 50 Hz ± 5 %					
Sistema de alimentação			Trifásico				
Desequilíbrio da corrente		< 5 %					
Rendimento ³	≥ 85 % ≥ 88 % ≥ 90 %						
Filtro	Filtro de harmônicos ²						
Corrente de entrada	Pode ser calculada através da expressão: $\frac{V_{modelo} \cdot I_{modelo}}{FP \cdot \eta \cdot \sqrt{3} \cdot V_{rede}}$						
THD (corrente)	< 40 % em 100 % de In (< 20 % no modelo 12 pulsos - consultar)						
Proteção/seccionamento	Disjuntor/contator						
Isolação	> 5 Mega ohms						
Fator de potência		≥ 85 % (oadrão) ou ≥ 92 % (c	onsultar)			

(1) Retificador em flutuação.

(2) Elemento responsável pelo filtro de harmônicos gerados pelo RTDW.

(3) Em corrente nominal.

Tabela 7.2: Dados da saída do retificador

	110 V	125 V			
Tensão de flutuação	122,5 V	136 V			
Ripple	≤ 2 % sem bateria e ≤ 1 % com bateria				
Tensão de recarga	130,5 V 145 V				
Tensão de descarga	108 V 120 V				
	0,1 C ₁₀ (A) ou conforme recomendação do fabricante				
Carga da bateria ¹ Corrente: ajustável entre 1 % (mínimo 1 A) até 50 % de In Carga rápida: ajustável entre 1 % (mínimo 1 A) até 75 % de In					

(1) O valor ajustado não limita a saída do consumidor, que continua como prioritária na operação (sem reservas).

Tabela 7.3: Dados da saída da UCQ

Tensão nominal	110 V 125 V			
Corrente nominal	15 A até 500 A			
Ripple ¹	≤ 2 % sem bateria e ≤ 1 % com bateria			
Limitação corrente de saída ¹	Ajustável entre 50 % a 100 % de In			
Regulação estática ¹	≤ ± 1 % para variações de 10 % a 105 % In			
Regulação dinâmica ²	2 % em 50 ms e 1 % em 100 ms @ ± 15 % sobressinal para degrau de carga de 10 % a 100 % In			

(1) Especificação para equipamento padrão com UCQ.

(2) Com bateria

7.2 DADOS GERAIS

Modelo	15 A a 35 A 50 A a 100 A 125 A a 200 A 300 A a 500						
Regime de operação		Contínuo					
Faixa de temperatura		0 a 4	0 °C				
Umidade relativa		0 a 95 % sem	condensação				
Altitude		Até 1000 m do nível do mar ¹					
Ventilação Forçada com ventilador ²							
Ventilação	Natural (sob consulta)						
Ventilação redundante	Forçada com ventilador (sob consulta)						
Nível de ruído	65 dBA	65 dBA 70 dBA 75 dBA 65 dBA					
Fuga a terra	5 a 75 mA						

Tabela 7.4: Condição de operação

(1) De 1000 m até 4000 m (3.300 ft até 13.200 ft) considerar um *derating* de 1 % na corrente do consumidor para cada 100 m acima de 1000 m de altitude. (2) Para os ventiladores internos aos módulos, ocorrerá alarme de falha de ventilação se a velocidade for inferior a 3000 RPM.

Tabela 7.5: Ajustes de temperaturas

Sobretemperatura na bateria	45,0 °C
Sobretemperatura no painel	80,0 °C
Sobretemperatura no retificador	95,0 °C
Sobretemperatura na UCQ	100,0 °C
Temperatura para ligar o ventilador do painel ¹	40,0 °C
Temperatura para ligar os ventiladores do retificador ¹	55,0 °C
Temperatura para ligar os ventiladores da UCQ ¹	60,0 °C

(1) Ao atingir 80 % da corrente nominal de saída, todos os ventiladores serão acionados automaticamente, independentemente da temperatura medida.

Tabela 7.6: Proteções disponíveis

Disjuntores	Rede CA, bateria, consumidor, bypass manual, fontes e ventilação do painel
Contator (padrão)	Rede CA, pré-carga e bateria
Contator (sob consulta)	Rede CA auxiliar e consumidor
Limitações ^{1,2}	Corrente de saída retificador, corrente da UCQ, corrente de carga e descarga de bateria
Outros	Proteção de hardware contra sobrecorrente e sobretensão na UCQ e na saída do retificador

(1) Quando o bypass é ativado, apenas as limitações da bateria e disjuntor permanecem.

(2) Limitação de corrente para o consumidor está disponível apenas em equipamentos com UCQ.

Tabela 7.7: Interface remota

	Comunicação USB com protocolo modbus-RTU ¹
	Interface RS485 com protocolo modbus-RTU ¹
Padrão	8 contatos secos NA e NF
	Capacidade: 10 A / 277 Vca ou 7 A / 30 Vcc
	Conexão: bitola máxima 2,5 mm²
Opcional	8 contatos secos extras. (idem acima)

(1) Formato do dado: 8 data bits, paridade configurável, stop bits configurável, LSB-first bit order, big-endian byte order.

7.3 DADOS MECÂNICOS

Tabela 7.8: Dados construtivos

Painel	Autossustentado com estrutura para fixação no piso e olhais de içamento						
Pintura	Resina epóxi com aplicação eletrostática a pó						
Cor	RAL 7035						
Grau de proteção	IP42						
Espessura das chapas	12 USG (2,65 mm) base						
	14 USG (1,90 mm) moldura, estrutura, suporte moldura e lateral e placa frontal e de montagem						
	16 USG (1,50 mm) moldura, lateral, teto, reforço vertical da porta e suporte para amarrar cabos						
	20 USG (0,90 mm) fechamento posterior e fundo						

Tabela	7.9:	Dimensões	do	produto
--------	------	-----------	----	---------

Modelo (A)	15	25	35	50	75	100	125	150	200	300	400	500
A (mm)		1718			2118		2118			2218	2561	
L (mm)		600						800			1000 1200	
P (mm)		650							850			

Obs.: As dimensões apresentadas acima são para os produtos padrão com UCQ. Para equipamentos especiais, consulte o projeto.

Tabela 7.10: Dissipação térmica

Modelo (A)	15	25	35	50	75	100	125	150	200	300	400	500
Dissipação térmica (W)	331	551	772	1103	1654	2206	2757	3309	4412	6618	8824	11029

NOTA!

 \checkmark

Os valores informados de Dimensões, Peso e Dissipação Térmica são aplicáveis somente aos modelos padrão com UCQ. Para modelos com UDQ, os valores tendem a ser maiores, conforme especificado em projeto.

7.4 NORMAS

Tabela 7.11: Normas aplicáveis

	IEC 62040-1	
Normas aplicáveis	IEC 62040-3	Uninterruptible Power Systems (UPS)
	IEC 62040-5-3	

8 MANUTENÇÃO PREVENTIVA

Para garantir o funcionamento do equipamento e estender sua vida útil, é recomendada a realização de manutenções preventivas periódicas a cada 6 meses. Os procedimentos para as revisões descritos abaixo deverão ser realizados por técnico treinado e autorizado:

- Desobstrução das entradas de ar do produto.
- Verificação do sistema de ventilação.
- Verificação das conexões mecânicas.
- Medição do banco de baterias.
- Verificação das conexões de entrada, saída e aterramento.
- Verificação do registro de eventos e demais parâmetros do equipamento.

NOTA!

Está disponível na Central de *Downloads*, ao final da página do produto no site **www.weg.net**, o "*Checklist* de *startup* e manutenção preventiva" que serve como orientação durante as manutenções preventivas no RTDW.

ATENÇÃO!

Verifique, antes de iniciar os serviços de manutenção, se não há tensão nos terminais e barramentos.

8.1 RESET DOS PARÂMETROS PADRÃO DE FÁBRICA

O RTDW possui uma funcionalidade que faz com que todos os valores de configuração retornem ao seu valor original de fábrica. Para realizar o *reset*, utilize as teclas "baixo", "cima" e "enter" para navegar pelo menu principal da IHM (Figura 6.2 na página 6-2), selecione a opção "[5] CONFIGURACOES", em seguida selecione "[12] PADRAO FABRICA". A tela do menu de confirmação de ajuste é apresentada (Figura 6.9 na página 6-8). Use as teclas "baixo" ou "cima" e pressione a tecla "Enter" na opção "SIM".

O *reset* de fábrica também pode ser realizado remotamente, via comunicação Modbus. Através da interface de comunicação, envie a "senha" 7139 para o endereço 5550, em seguida envie o comando 240 para o endereço 5001.

8.2 OPERAÇÃO PARA ENTRAR NO MODO MANUTENÇÃO (BYPASS MANUAL)

ATENÇÃO!

Durante esta operação o consumidor será alimentado pelas baterias, portanto verifique suas condições.

Para realizar a manutenção do equipamento e manter o consumidor alimentado, siga as instruções a seguir:

- 1. Desligue o disjuntor da REDE CA (Q1).
- 2. Ligue o disjuntor de BYPASS MANUAL (Q4).
- 3. Desligue o disjuntor da BATERIA (Q2) e o disjuntor do CONSUMIDOR (Q3).
- 4. Verifique a tensão do *Link* CC e descarregue-o de maneira adequada em caso de os capacitores estarem carregados.
- 5. Realize a manutenção.

PERIGO!

Meça a tensão no *Link* CC antes de realizar a manutenção do equipamento. Caso os capacitores ainda estejam carregados, descarregue-os de maneira correta.

8.3 OPERAÇÃO PARA SAIR DO MODO MANUTENÇÃO (BYPASS MANUAL)

Após a manutenção ser realizada, verifique se todas os conectores e barras estão fixados de maneira correta. Para reinicializar o produto:

- 1. LIGUE o disjuntor de REDE CA (Q1).
- Ajuste o relógio de acordo com o apresentado na Seção 6.2.1 Configurações de Data e Hora na página 6-1.
- 3. Verifique e ajuste as configurações adicionais se necessário (Seção 6.10 CONFIGURAÇÕES ADICIONAIS na página 6-34).
- 4. LIGUE o retificador com os comandos descritos na Seção 6.3.3 Acionamento e Desligamento do Retificador na página 6-5.
- 5. Verifique se a tensão na saída do retificador está correta.
- 6. LIGUE o disjuntor de BATERIA (Q2). Caso o produto tenha contator de BATERIA (K2), siga o procedimento descrito na Seção 6.4 Modos de Operação do Carregador de Bateria na página 6-7.
- 7. Verifique o carregamento da bateria (corrente e tensão) através do menu medidas da IHM.
- 8. LIGUE a UCQ com os comandos descritos na Seção 6.3 OPERAÇÃO DO RTDW na página 6-5 e Seção 6.3.4 Acionamento e Desligamento da UCQ na página 6-5.
- 9. Verifique na IHM se a tensão da UCQ está correta.
- 10. LIGUE o disjuntor do CONSUMIDOR (Q3).
- 11. DESLIGUE o disjuntor de BYPASS MANUAL (Q4).

8.4 MANUTENÇÃO DAS BATERIAS

O banco de baterias é o componente vital para o correto funcionamento do equipamento. Recomenda-se seguir criteriosamente as orientações de manutenção de acordo com o manual do fabricante da bateria adquirida.

ATENÇÃO!

Além do equipamento, as baterias também requerem manutenções periódicas. Consulte o manual do fabricante das baterias para mais detalhes sobre os procedimentos e períodos de manutenção.

Sempre que houver manutenção preventiva/corretiva no equipamento, é importante:

- Verificar o torque dos terminais de todas as baterias do sistema.
- Verificar a integridade do encapsulamento das baterias.
- Verificar a tensão de cada uma das baterias do sistema.
- Verificar a tensão total do banco de baterias.

ATENÇÃO!

Para resguardar o desempenho e a garantia das baterias, não mantenha o equipamento desligado por um período superior a 4 meses. Se for necessário manter o equipamento por um longo período sem uso, no máximo a cada 4 meses, ligue o equipamento com as baterias conectadas. Dessa forma elas serão recarregadas, não comprometendo a sua vida útil.

PERIGO!

Desconecte imediatamente o banco de baterias do equipamento ao detectar uma falha ou comportamento anormal, como por exemplo: oscilações de tensão, baterias com tensão muito baixa ou muito alta (10 % acima ou abaixo da média geral dos demais elementos do banco), baterias estufadas, fumaça ou indício de chamas, alarmes repetitivos/constantes de bateria baixa ou alta ou repetidas falhas no teste do banco de baterias.

Para realizar a desconexão do banco de baterias, siga o procedimento descrito a seguir:

- DESLIGUE o sistema completo utilizando o menu de comandos (Seção 6.3.1 Acionamento e Desligamento do Sistema via Menu Comandos na página 6-5).
- DESLIGUE o disjuntor de BATERIA (Q2).
- DESLIGUE o disjuntor de BYPASS MANUAL (Q4).
- DESLIGUE disjuntor localizado no banco de baterias.
- Desconecte os cabos que interligam o RTDW ao banco de baterias.

Mesmo que a falha tenha cessado, não religue o produto e entre em contato com a assistência técnica.

ATENÇÃO!

DESCARTE DAS BATERIAS. Ao final da vida útil, não deposite a bateria em lixo comum doméstico, comercial ou industrial. As baterias contêm eletrólito tóxico e nocivo ao meio ambiente e ao ser humano. Descarte as baterias em conformidade com a Resolução CONAMA 401/08. Verifique no manual da bateria como realizar o seu descarte ao final da sua vida útil. Em caso de dúvidas, envie-a para nossa rede de serviço autorizado ou entre em contato com a WEG.

A APÊNDICE

A.1 VISTAS

Figura A.1: Módulo de controle (A4)

Figura A.2: Módulo de relés (A5)

Figura A.3: Módulo da IHM

0

......

e

6) 6

(a) 100 A

(**b**) 200 A

(c) 500 A Figura A.4: Módulos do retificador (A1)

(**c**) 500 A

Figura A.5: Módulos dos filtros LC e C (A2)

(c) 500 A Figura A.6: Módulos da UCQ (A3)

WEG Drives & Controls - Automação LTDA. Jaraguá do Sul - SC - Brasil Fone 55 (47) 3276-4000 - Fax 55 (47) 3276-4020 São Paulo - SP - Brasil Fone 55 (11) 5053-2300 - Fax 55 (11) 5052-4212 automacao@weg.net www.weg.net