

Hidrogeneradores

Línea GH11 Sin escobillas – Horizontales

Manual de Instalación, Operación y Mantenimiento

Manual de Instalación, Operación y Mantenimiento

Modelo: GH11

Nº del documento: 13499546

Idioma: Español

Revisión: 05

Marzo 2025

Estimado Cliente,

Gracias por adquirir el generador WEG. Es un producto desarrollado con niveles de calidad y eficiencia que garantizan un excelente desempeño.

La energía eléctrica ejerce un papel de relevante importancia para el confort y bienestar de la humanidad. Siendo el generador responsable por la generación de esta energía, precisa ser identificado y tratado como una máquina eléctrica, cuyas características envuelven determinados cuidados, como los de almacenamiento, instalación y mantenimiento.

Fueron hechos todos los esfuerzos para que las informaciones contenidas en este manual sean fidedignas a las configuraciones y a la utilización del generador.

De esta forma, se recomienda leer atentamente este manual antes de proceder a la instalación, operación o mantenimiento del generador, para asegurar su operación segura y continua, así como para garantizar la seguridad del operador y de las instalaciones. En caso que persistan dudas, solicitamos contactar a WEG.

Mantenga este manual siempre cerca del generador, para que pueda ser consultado siempre que sea necesario.

ATENCIÓN

- Es imprescindible seguir los procedimientos contenidos en este manual para que la garantía tenga validad:
- 2. Los procedimientos de instalación, operación y mantenimiento del generador deberán ser hechos solamente por personas capacitadas.

NOTAS

- 1. La reproducción de las informaciones de este manual, en todo o en parte, está permitida desde que la fuente sea citada;
- 2. En caso de que este manual sea extraviado, podrá ser obtenida una copia en formato PDF, en el sitio web: www.weg.net, o podrá ser solicitada a WEG otra copia impresa.
- 3. Todas las máquinas están equipadas con un código QR exclusivo situado junto a la placa de características de la máquina. Este código QR proporciona un acceso rápido y sencillo a diversos servicios, entre los que se incluyen:
 - Asistencia técnica
 - Piezas de recambio
 - Puesta en servicio
 - Servicios generales y de mantenimiento sobre el terreno y en fábrica

Para utilizar esta función, sólo tiene que escanear el código QR con su dispositivo móvil. Asegúrese de tener este manual a mano para futuras consultas y para garantizar el uso correcto y seguro del motor eléctrico.

WEG EQUIPAMENTOS ELÉTRICOS S.A.

ÍNDICE

1	INTF	RODUCCIÓN		11
	1.1	AVISOS DE S	EGURIDAD EN EL MANUAL	11
2	INST	RUCCIONES	GENERALES	12
	2.1		APACITADAS	
	2.2		NES DE SEGURIDAD	
	2.3		120 02 02 02 02 02 02 02 02 02 02 02 02 0	
			brasileñas	
			internacionales	
	2.4		TICAS DEL AMBIENTE	
	2.5		DE OPERACIÓN	
	2.6	TENSION Y F	RECUENCIA	13
3			NIPULACIÓN Y ALMACENAMIENTO	
	3.1			
	3.2		Ň	
	3.3		IENTOamiento externo	
			namiento externo	
		3.3.2.1	Local de almacenamiento	
			3.3.2.1.1 Almacenamiento interno	15
			3.3.2.1.2 Almacenamiento externo	
		3.3.2.2 3.3.2.3	Piezas separadasResistencia de calentamiento	
		3.3.2.4	Resistencia de calentamiento	
		3.3.2.5	Superficies mecanizadas expuestas	
		3.3.2.6	Cojinetes	
			3.3.2.6.1 Cojinetes de rodamiento	
		3.3.2.7	3.3.2.6.2 Cojinetes de deslizamiento	
		3.3.2.8	Inspecciones y registros durante el almacenamiento	
		3.3.2.9	Plan de mantenimiento durante el almacenamiento	18
		3.3.2.10	Preparación para puesta en operación	
		2 2 2 11	3.3.2.10.1 Limpieza	
		3.3.2.11	Inspección de los cojinetes	
			3.3.2.11.2 Verificación de la resistencia de aislamiento	
			3.3.2.11.3 Otros	19
4	INST	TALACIÓN		20
	4.1		STALACIÓN	_
	4.2		JE	
	4.3		ROTACIÓN	
	4.4		A DE AISLAMIENTO	
			ones de seguridadraciones generales	
			n en los devanados del estator	
			n en los devanados del rotor y de la excitatriz	
			iones adicionales	
			e Polarizaciónión de los valores medidos	
			mínimos recomendados	
	4.5		VES	
			ones térmicas	
		4.5.1.1	Sensores de temperatura	
		4.5.1.2	Límites de temperatura para los devanados	
		4.5.1.3 4.5.1.4	Temperaturas para alarma y apagado Temperatura y resistencia óhmica de las termorresistencias Pt100	23 24
			ones en el tablero	24 24
			icia de calentamiento	
	4.6		:IÓN	
			a del intercambiador de calor aire / aire	
	4.7		LÉCTRICOS	
		4.7.1 Conexio	nes eléctricas	25

				eléctricas principales	
				de los accesorios	
				та	
	4.8				
		4.8.1			
		4.8.2		ntos	_
		4.8.3		creto	
				a	
		4.8.4		a base	_
		4.8.5			
		4.8.6		anclaje	
		4.8.7	Nivelación	,	26
		4.8.8			
		4.8.9			
				o directo	
				o por engranaje	
		1910		o de generadores equipados con cojinetes de deslizamientotes	
				165	
	4.9				
	4.10				
	4.10	OIVID	(D I IIDI (20
5	DDIN	CIDI	DE ELINCIONAL	MIENTO	20
J					
	5.1				
	5.2				
	5.3	REGU	LADOR DE TENSION	N	31
6	COM		AMIENTO		32
	6.1	INSPI	CCIÓN PRELIMINAR	₹	32
	6.2			CARGA	
	6.3				
	0.0	6.3.1		al sistema eléctrico de potencia (Red)	
		6.3.2		erador con la red eléctrica	
		6.3.3			
		6.3.4			
		6.3.5	Cojinetes		34
				nyección de aceite bajo alta presión	
		6.3.6			
	0.4	6.3.7			
	6.4	PARA	JA		34
_			UENTA		<u> </u>
7	WAN	IENI	IIEN I O		35
	7.1	GENE	RAL		35
	7.2				
	7.3	INSP	CCIONES EN LOS I	DEVANADOS	35
	7.4	LIMP		NADOS	
		7.4.1			
		7.4.2			
		7.4.3		iento	
	7.5			STEMA DE REFRIGERACIÓN	
	7.6				
	7.7			A A TIERRA DEL EJE	
	7.8			EXCITATRIZ	
		7.8.1		in a to	
		7.8.2		iento	
		7.8.3		de los diodos	
		7.8.4		ese	
		7.0.4		de los varistores	
	7.9	MAN		S COJINETES	
		, 11 4			
	7.0	7.9.1	Cojinetes de rodamien	ito	37
	7.0	7.9.1		ntos para lubricacións	
	7.0	7.9.1	7.9.1.1 Instrucciones 7.9.1.2 Relubricación	s para lubricaciónn de los rodamientos con dispositivo de cajón para remoción de la grasa	. 37 . 38
	7.0	7.9.1	7.9.1.1 Instrucciones 7.9.1.2 Relubricación 7.9.1.3 Tipo y cantid	s para lubricaciónn de los rodamientos con dispositivo de cajón para remoción de la grasa lad de grasa	. 37 . 38 . 38
	7.0	7.9.1	7.9.1.1 Instrucciones 7.9.1.2 Relubricación 7.9.1.3 Tipo y cantid 7.9.1.4 Compatibilida	s para lubricaciónn de los rodamientos con dispositivo de cajón para remoción de la grasa	. 37 . 38 . 38 . 38

	г
ш	L

			7.9.1.6	Sustitución de los rodamientos:	39
			7.9.1.7	Montaje de los cojinetes	
		7.9.2	Cojinete	s de deslizamiento	40
			7.9.2.1	Datos de los cojinetes	
			7.9.2.2	Instalación y operación de los cojinetes	
			7.9.2.3	Troca de aceite	
			7.9.2.4	Sellados	
			7.9.2.5	Operación de los cojinetes de deslizamiento	
			7.9.2.6	Mantenimiento de los cojinetes de deslizamiento	
		7.9.3	Ajuste d	e las protecciones	41
		7.9.4	Desmon	taje/montaje de los sensores de temperatura Pt100 de lo	s cojinetes41
8	DESI	MON	TAJE Y	MONTAJE DEL GENERADOR	42
	8.1	DESI	MONTAJ	E	42
	8.2				
	8.3			APRIETE	
	8.4			EL ENTREHIERRO	
	8.5				
	0.5	IXLF (JL3103		40
9	PLAN	N DE	MANTI	ENIMIENTO	44
40	ANO			TO CALICAS V COLLICIONES	AE
10	ANU	RIVIA	LIDADI	ES, CAUSAS Y SOLUCIONES	43
11	DEC	LAR/	ACIÓN	DE CONFORMIDAD	47
40	INIEO		CIONE	C AMDIENTAL EC	40
12	INFO			S AMBIENTALES	
	12.1	EMB.	ALAJE		48
	12.2	PRO	DUCTO		48
	12.3	RESI	DUOS P	ELIGROSOS	48
13	ASIS	TEN [°]	TES TÉ	CNICOS	48
			· -		
14	CER.	TIFIC	ADO D	E GARANTÍA	49

INTRODUCCIÓN

Este manual tiene el objetivo de suministrar los procedimientos de instalación, operación y mantenimiento de los hidrogeneradores modelo GH11.

Los generadores son suministrados con documentos específicos (dibujos, esquema de conexión, curvas características etc.). Estos documentos, junto a este manual, deben ser evaluados cuidadosamente antes de proceder a la instalación, operación o mantenimiento del generador.

Todos los procedimientos y normas que constan en este manual deberán ser seguidos para garantizar el buen funcionamiento del generador y la seguridad del personal involucrado en su operación. Seguir estos procedimientos es igualmente importante para asegurar la validad de la garantía del generador. Recomendamos la lectura minuciosa de este manual, antes de la instalación, operación o mantenimiento del generador. En caso de que persista alguna duda, consulte a WEG.

AVISOS DE SEGURIDAD EN EL MANUAL

En este manual son utilizados los siguientes avisos de seguridad:

PELIGRO

La no consideración de los procedimientos recomendados en este aviso puede ocasionar daños materiales considerables, lesiones graves o riesgo de muerte.

ATENCIÓN

La no consideración de los procedimientos recomendados en este aviso puede ocasionar daños materiales.

NOTA

El texto tiene el objetivo de proveer informaciones importantes para el correcto entendimiento y el buen funcionamiento del producto.

INSTRUCCIONES GENERALES

Todos aquellos que trabajan con instalaciones eléctricas, sea en el montaje, en la operación o en el mantenimiento, deberán ser permanentemente informados y estar actualizados sobre las normas y prescripciones de seguridad que rigen el servicio y son aconsejados a observarlas rigurosamente. Antes del inicio de cualquier trabajo, cabe al responsable asegurarse de que todo fue debidamente observado y alertar a su personal sobre los peligros inherentes a la tarea que será ejecutada. Generadores de este tipo, cuando aplicados inadecuadamente o cuando reciben mantenimiento deficiente, o incluso cuando reciben intervención de personas no capacitadas, pueden causar serios daños personales y/o materiales. Así, se recomienda que estos servicios sean ejecutados por personal capacitado.

2.1 PERSONAS CAPACITADAS

Se entiende por personas capacitadas aquellas que, en función de su capacitación, experiencia, nivel de instrucción, conocimientos de las normas pertinentes, especificaciones, normas de seguridad, prevención de accidentes y conocimiento de las condiciones de operación, hayan sido autorizadas por los responsables para la realización de los trabajos necesarios y que puedan reconocer y evitar posibles peligros.

Estas personas capacitadas también deben conocer los procedimientos de primeros auxilios y ser capaces de prestar estos servicios, si fuera necesario. Se presupone que todo trabajo de puesta en funcionamiento, mantenimiento y reparaciones sean hechos únicamente por personas capacitadas.

INSTRUCCIONES DE SEGURIDAD

PELIGRO

Durante la operación, estos equipos poseen partes energizadas o giratorias expuestas, que pueden presentar alta tensión o altas temperaturas. De esta forma, la operación con cajas de conexión abiertas, acoplamientos no protegidos, o manipulación errónea, sin considerar las normas de operación, puede causar graves accidentes personales y materiales.

ATENCIÓN

Cuando se pretende utilizar aparatos y equipos, fuera del ambiente industrial, el usuario deberá garantizar la seguridad del equipo a través de la adopción de las debidas medidas de protección y seguridad durante el montaje (por ejemplo, impedir la aproximación de personas, contacto de niños y otros).

Los responsables por la seguridad de la instalación deberán garantizar que:

- Solamente personas capacitadas efectúen la instalación y operación del equipo;
- Estas personas tengan en manos este manual y demás documentos suministrados con el generador, así como que realicen los trabajos observando rigurosamente las instrucciones de servicio, las normas pertinentes y la documentación específica de los productos.

ATENCIÓN

El no cumplimiento de las normas de instalación y de seguridad podrá anular la garantía del producto.

Los equipos para combate a incendio, así como los avisos sobre primeros auxilios, deberán estar en el local de trabajo, en lugares bien visibles y de fácil acceso.

Deben observar también:

- Todos los datos técnicos en lo que se refiere a las aplicaciones permitidas (condiciones de funcionamiento, conexiones y ambiente de instalación), en la documentación del pedido, en las instrucciones de operación, en los manuales y demás documentaciones;
- Las determinaciones y condiciones específicas para la instalación local;
- El empleo de herramientas y equipos adecuados para manipulación y transporte;
- Que los dispositivos de protección de los componentes individuales sean removidos poco antes de la instalación.

Las piezas individuales deben ser almacenadas en ambientes libres de vibración, evitando caídas y asegurando que estén protegidas contra agentes agresivos o que pongan en riesgo la seguridad de las personas.

2.3 **NORMAS**

Los generadores son especificados, proyectados, fabricados y probados de acuerdo con las normas descritas en los ítems 2.3.1 y 2.3.2. Las normas aplicables son especificadas en el contrato comercial. Dependiendo de la aplicación o del local de la instalación, pueden ser indicar otras normas nacionales o internacionales.

2.3.1 Normas brasileñas

- NBR 15623-2, Maquinas elétricas girantes Dimensões e series de potências para máquinas elétricas girantes -Padronização Parte 2: Designação de carcaças entre 355 a 1000 e flanges entre 1180 a 2360;
- ABNT NBR 5117:2007, Máquina elétrica girante -Máquina Síncrona - Especificação;
- ABNT NBR 5052:1984, Máquina Síncrona Ensaios;
- ABNT NBR 6158:1995, Sistema de tolerância e ajustes;
- ABNT NBR IEC60034-5, Maquinas elétricas girantes -Parte 5: Graus de proteção proporcionados pelo projeto completo de máquinas elétricas girantes (código IP) classificação;
- ABNT NBR IEC60034-6, Maquinas elétricas girantes -Parte 6: Métodos de resfriamento (código IC)
- ABNT NBR IEC60034-7, Maquinas elétricas girantes -Parte 7: Classificação dos tipos de construção, arranjos de montagem e posição da caixa de terminais (código
- ABNT NBR IEC60034-9, Maquinas elétricas girantes -Parte 9: Limites de Ruído.
- ABNT NBR IEC60034-14, Maquinas elétricas girantes -Parte 14: Medição, avaliação e limites da severidade de vibração mecânica de máquinas de altura de eixo igual ou superior a 56mm.

2.3.2 Normas internacionales

- IEC-60072-2, Dimensions and output series for rotating electrical machines - Part 2: Frame numbers 355 to 1000 and flange numbers 1180 to 2360;
- IEC60034-1 Rotating electrical machines Part 1: Rating and performance
- IEC60034-2-1 Rotating electrical machines Part 2-1: Standard methods for determining losses and efficiency from tests (excluding machines for traction
- IEC60034-4 Rotating electrical machines Part 4: Methods for determining synchronous machine quantities from tests
- IEC60034-5 Rotating electrical machines Part 5: Degrees of protection provided by the integral design of rotating electrical machines (IP code) classification
- IEC60034-6 Rotating electrical machines Part 6: Methods of cooling (IC code)
- IEC60034-7 Rotating electrical machines Part 7: Classification of types of construction, mounting arrangements and terminal box position (IM code)
- IEC60034-8 Rotating electrical machines Part 8: Terminal markings and direction of rotation
- IEC60034-9 Rotating electrical machines Part 9: Noise limits
- IEC60034-14 Rotating electrical machines Part 14: Mechanical vibration of certain machines with shaft heights 56mm and higher - Measurement, evaluation and limits of vibration severity
- ISO286-1 Geometrical product specifications (GPS) -ISO code system for tolerances on linear sizes - Part 1: Basis of tolerances, deviations and fits
- ISO286-2 Geometrical product specifications (GPS) ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
- ISO1940-1 Mechanical vibration Balance quality requirements for rotors in a constant (rigid) state -Part 1: Specification and verification of balance tolerances:
- ISO10816-5 Mechanical vibration Evaluation of machine vibration by measurements on non-rotating parts - Part 5: Machine sets in hydraulic power generating and pumping plants.

CARACTERÍSTICAS DEL 2.4 **AMBIENTE**

El generador fue proyectado de acuerdo con las características del ambiente (temperatura y altitud) específicas para su aplicación. Estas características están descritas en la placa de identificación y en la hoja de datos del generador.

CONDICIÓN DE OPERACIÓN 2.5

Para que el certificado de garantía del producto tenga validad, el generador deberá operar de acuerdo con los datos nominales indicados en su placa de identificación, cumpliendo las normas aplicables y las informaciones contenidas en este manual.

TENSIÓN Y FRECUENCIA 2.6

El generador debe ser capaz de desempeñar continuamente su función principal en la Zona A, no obstante, no precisa atender completamente sus características de desempeño en tensión y frecuencia nominales (ver punto de las características nominales en la Figura 2.1), pudiendo presentar algunos desvíos. Las elevaciones de temperatura pueden ser superiores a aquellas en tensión y frecuencia nominales. El generador debe ser capaz de desempeñar su función principal en la Zona B, no obstante, puede presentar desvíos mayores de su desempeño en tensión y frecuencia nominales, que en la Zona A. Las elevaciones de temperatura pueden ser superiores a las verificadas en tensión y frecuencia nominales y, muy probablemente, serán superiores a aquellas de la Zona

No es recomendada la operación prolongada en la periferia de la Zona B.

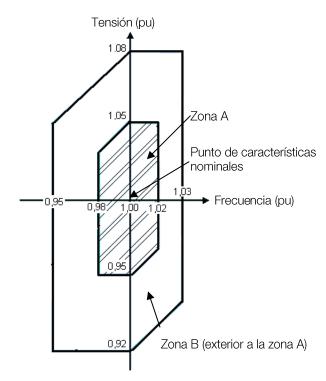


Figura 2.1: Límites de las variaciones de tensión y frecuencia (IEC60034-1)

3 RECEPCIÓN, MANIPULACIÓN Y ALMACENAMIENTO

3.1 RECEPCIÓN

Todos los generadores son probados y están en perfectas condiciones de operación. Las superficies mecanizadas son protegidas contra corrosión. El embalaje deberá ser verificado tras su recepción, para verificar si no sufrió eventuales daños durante el transporte.

ATENCIÓN

Toda avería deberá ser fotografiada, documentada y comunicada inmediatamente a la empresa transportadora, a la aseguradora y a WEG. La no comunicación de esta avería llevará a la pérdida de la garantía.

ATENCIÓN

Las piezas suministradas en embalajes adicionales deben ser verificadas durante la recepción.

- Al levantar el embalaje (o el contenedor), deben ser observados los locales correctos para izamiento, el peso indicado en el embalaje o en la placa de identificación, así como la capacidad y el funcionamiento de los dispositivos de izamiento;
- Los generadores acondicionados en embalaje de madera deben ser levantados siempre por sus propios cáncamos o por apiladora adecuada, nunca por el propio embalaje;
- El embalaje nunca podrá ser dado vuelta. Póngalo en el piso con cuidado (sin causar impactos) para evitar daños a los cojinetes;
- No remover la grasa de protección contra corrosión de la punta del eje, ni las gomas o tapones de cierre de los agujeros de las cajas de conexiones. Estas protecciones deberán permanecer en el local hasta la hora del montaje final.
- Luego de retirar el embalaje se deberá hacer una completa inspección visual del generador;
- El sistema de trabamiento del eje debe ser removido solamente poco antes de la instalación y almacenado, para ser utilizado en un futuro transporte del generador.

3.2 MANIPULACIÓN

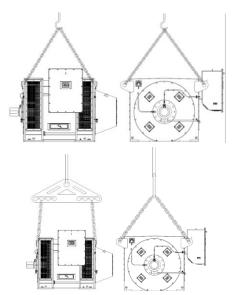


Figura 3.1: Manipulación de los generadores

1

ATENCIÓN

- Observar el peso indicado. No levantar el generador a los "tirones" ni colocarlo bruscamente en el piso, ya que eso podrá causar daños a los cojinetes:
- Los cáncamos en el intercambiador de calor, tapas, cojinetes, radiador, caja de conexión etc., sirven solamente para manipular estos componentes;
- Nunca usar el eje para levantar el generador;
- Para mover el generador, el eje deberá estar trabado con el dispositivo de traba suministrado con éste.

Los cables de acero, manillas y el equipo para izamiento deben tener capacidad para soportar el peso del generador.

3.3 ALMACENAMIENTO

En caso de que el generador no sea instalado inmediatamente después de la recepción, deberá permanecer dentro del embalaje y almacenado en lugar protegido contra humedad, vapores, rápidos cambios de temperatura, roedores e insectos.

Para que los cojinetes no sean dañados, el generador deberá ser almacenado en locales libres de vibración.

ATENCIÓN

Las resistencias de calentamiento deben permanecer encendidas durante el almacenamiento, para así evitar la condensación de agua en el interior del generador. Cualquier daño en la pintura o en las protecciones contra herrumbre de las partes mecanizadas deberá ser retocado.

3.3.1 Almacenamiento externo

El generador debe ser almacenado en local seco, libre de inundaciones y vibraciones.

Reparar todos los eventuales daños causados en el embalaje durante el transporte antes de almacenar el generador, lo que es necesario para asegurar condiciones apropiadas de almacenamiento.

Posicionar el generador sobre estrados o cimientos que garanticen a protección contra la humedad de la tierra y que impidan que se hunda en el suelo. Debe ser asegurada una libre circulación de aire por debajo del generador. El techo utilizado para proteger el generador.

generador. El techo utilizado para proteger el generador contra intemperies no deberá hacer contacto con las superficies de éste. Para asegurar la libre circulación de aire entre el generador y el techo, colocar bloques de madera como espaciadores.

3.3.2 Almacenamiento prolongado

Cuando el generador permanezca almacenado por un largo período (dos meses o más) antes de la puesta en operación, quedará expuesto a influencias externas, como fluctuaciones de temperatura, humedad, agentes agresivos etc. Los espacios vacíos en el interior del generador, como de los cojinetes, caja de conexión y devanados, quedan expuestos a la humedad del aire, que se puede condensar y, dependiendo del tipo y del grado de contaminación del mismo, podrán penetrar sustancias agresivas en estos espacios vacíos.

Como consecuencia, tras períodos prolongados de almacenamiento, la resistencia de aislamiento de los devanados podrá caer a valores por debajo de los admisibles. Los componentes internos como cojinetes podrán oxidarse y el poder de lubricación del agente lubricante en los cojinetes también podrá ser afectado adversamente.

Todas estas influencias aumentan el riesgo de daño antes del arranque del generador.

ATENCIÓN

Para que la garantía del generador tenga validez, se deberá asegurar que todas las medidas preventivas descritas en este manual, como aspectos constructivos, mantenimiento, embalaje, almacenamiento e inspecciones periódicas, sean seguidas y registradas.

Las instrucciones de almacenamiento prolongado son válidas para generadores que permanecen almacenados por largos períodos (dos meses o más) antes de ser puestos en operación, o para generadores ya instalados que estén en parada prolongada, considerando el mismo período.

Local de almacenamiento 3.3.2.1

Para garantizar las mejores condiciones de almacenamiento del generador durante largos períodos, el local escogido debe obedecer rigurosamente los criterios descritos en los ítems 3.3.2.1.1 y 3.3.2.1.2.

3.3.2.1.1 Almacenamiento interno

- El ambiente debe ser cerrado y cubierto;
- El local debe estar protegido contra humedad, vapores, agentes agresivos, roedores e insectos;
- No puede existir presencia de gases corrosivos, como cloro, dióxido de azufre o ácidos;
- El ambiente debe estar libre de vibración;
- El ambiente debe poseer sistema de ventilación con filtro de aire:
- Temperatura ambiente entre 5 °C y 60 °C, no debiendo presentar variación súbita;
- Humedad relativa del aire < 50 %;
- Poseer prevención contra suciedad y depósitos de polvo;
- Poseer sistema de detección de incendio.
- Estar provisto de electricidad para alimentación de las resistencias de calentamiento.

En caso que alguno de estos requisitos no sea atendido en el local del almacenamiento, WEG sugiere que sean incorporadas protecciones adicionales en el embalaje del generador durante el período de almacenamiento, conforme sique:

Caja de madera cerrada, o similar, con instalación eléctrica que permita que las resistencias de calentamiento puedan ser energizadas;

- En caso que exista riesgo de infección y formación de hongos, el embalaje debe ser protegido en el local de almacenamiento, rociándolo o pintándolo con agentes químicos apropiados;
- La preparación del embalaje debe ser hecha con cuidado por una persona experimentada.

3.3.2.1.2 Almacenamiento externo

ATENCIÓN

No es recomendado el almacenamiento externo del generador (a la intemperie).

En caso que el almacenamiento externo no pueda ser evitado, el generador deberá estar acondicionado en embalaje específico para esta condición, conforme

- Para almacenamiento externo (a la intemperie), además del embalaje recomendado para almacenamiento interno, el embalaje debe ser cubierto con una protección contra polvo, humedad y otros materiales extraños, utilizando una lona o plástico resistente:
- Posicione el embalaje sobre plataformas o cimientos que garanticen la protección contra la humedad de la tierra y que impidan que el mismo se hunda en el
- Luego de que el embalaje esté cubierto, deberá ser construido un refugio para protegerlo contra lluvia directa, nieve y calor excesivo del sol.

ATENCIÓN

En caso de que el generador permanezca almacenado por largos períodos (2 meses o más), se recomienda inspeccionarlo regularmente, conforme es especificado en el ítem 3.3.2.9 de este manual.

3.3.2.2 Piezas separadas

- En caso de que hayan sido suministradas piezas separadas (cajas de conexión, tapas etc.), estas piezas deberán ser embaladas conforme es especificado en los ítems 3.3.2.1.1 y 3.3.2.1.2 de este manual:
- La humedad relativa del aire dentro del embalaje no deberá exceder 50%;
- Los rodamientos no deben ser sometidos a golpes, caídas, almacenamiento con vibración o humedad, ya que pueden provocar marcas en las pistas internas o en las esferas, reduciendo su vida útil.

3.3.2.3 Resistencia de calentamiento

ATENCIÓN

Las resistencias de calentamiento deben permanecer energizadas durante todo el período de almacenamiento del generador. para evitar la condensación de la humedad en su interior y asegurar que la resistencia de aislamiento de los devanados permanezca a niveles aceptables.

Resistencia de aislamiento

Durante el período de almacenamiento, la resistencia de aislamiento de los devanados del generador debe ser medida y registrada cada tres meses y antes de la instalación del generador.

Si fueran registradas eventuales caídas del valor de la resistencia de aislamiento, éstas deberán ser investigadas.

3.3.2.5 Superficies mecanizadas expuestas

Todas las superficies mecanizadas expuestas (por ejemplo, punta de eje y bridas) son protegidas en fábrica con un agente protector temporario (inhibidor de herrumbre).

Esta película protectora debe ser reaplicada por lo menos cada seis meses, o cuando sea removida y/o dañada. Producto Recomendado: Aceite protector Anticorit BW, Fabricante: Fuchs

3.3.2.6 Cojinetes

3.3.2.6.1 Cojinetes de rodamiento

Los rodamientos son lubricados en la fábrica para realización de los ensayos en el generador;

ATENCIÓN

Para conservar los cojinetes en buenas condiciones, durante el período de almacenamiento, cada dos meses se debe remover el dispositivo de traba del eje y girar el rotor del generador un mínimo de 10 vueltas completas, a una rotación de 30 rpm, para hacer circular la grasa y conservar las partes internas de los cojinetes.

- Antes de poner el generador en operación, los rodamientos deberán ser relubricados;
- En caso que el generador permanezca almacenado por un período superior a 2 años, los rodamientos deberán ser desmontados, lavados, inspeccionados y relubricados.

3.3.2.6.2 Cojinetes de deslizamiento

Dependiendo de la posición de montaje de la máquina y del tipo de lubricación, ésta puede ser transportada con o sin aceite en los cojinetes.

El almacenamiento de la máquina debe ser hecho en su posición original de funcionamiento y con aceite en los cojinetes, cuando sea especificado.

El nivel del aceite de los coinetes debe ser respetado. permaneciendo en la mitad del visor de nivel. Para conservar los cojinetes en buenas condiciones, durante el período de almacenamiento, los siguientes procedimientos de preservación deben ser ejecutados:

- Cerrar todos los agujeros roscados con plugs;
- Verificar si todas las bridas (ej.: entrada y salida de aceite) están cerradas. En caso de que no lo estén, deberán ser cerradas con tapas ciegas;
- El nivel de aceite debe ser respetado, permaneciendo en la mitad del visor de nivel;
- Cada dos meses, retire el dispositivo de bloqueo el eje, añada entre 100 y 200 ml de aceite lubricante a través de la mirilla en la parte superior del rodamiento y girar el eje que puede hacerse manualmente con la ayuda de una palanca, Dos o tres vueltas completas son suficientes.

NOTAS

Para cojinetes que poseen sistema de inyección de aceite con alta presión (jacking), este sistema debe ser accionado para efectuar el giro del rotor de la máquina. Para los cojinetes sin depósito interno de aceite (cárter seco) y para los rodamientos de empuje y contra-rodamiento, el sistema de circulación de aceite debe ser activado para girar el eje de la máquina.

El giro del eje debe ser hecho siempre en el sentido de rotación de la máquina.

En caso de que no sea posible girar el eje de la máquina, conforme es recomendado, debe ser utilizado el procedimiento a seguir, para proteger el cojinete internamente, así como las superficies de contacto, contra corrosión:

- Cerrar todos los agujeros roscados con plugs;
- Sellar los intersticios entre el eje y el sello del cojinete en el eie, a través de la aplicación de cinta adhesiva a prueba de agua:
- Verificar si todas las bridas (ej.: entrada y salida de aceite) están cerradas. En caso de que no lo estén, deberán ser cerradas con tapas ciegas;
- Retirar el visor superior del cojinete y aplicar el spray anticorrosivo (TECTYL 511 o equivalente) en el interior del cojinete;
- Cerrar el cojinete con el visor superior.

NOTAS

En caso de que el cojinete no posea visor superior, deberá ser desmontada la tapa superior del cojinete, para aplicación del anticorrosivo.

Repetir el procedimiento descrito arriba en cada 6 meses de almacenamiento.

Si el período de almacenamiento es superior a 2 años:

Desmontar el cojinete;

Preservar y almacenar las piezas.

3.3.2.7 Caja de conexión

Cuando la resistencia de aislamiento de los devanados del generador sea medida, se deberá inspeccionar también la caja de conexión principal y las demás cajas de conexiones, observando los siguientes aspectos:

- El interior debe estar seco, limpio y libre de cualquiera deposición de polvo;
- Los elementos de contacto no pueden presentar corrosión;
- Los sellados deben estar en condiciones apropiadas;
- Las entradas de los cables deben estar correctamente selladas.

ATENCIÓN

Si alguno de estos ítems no está en conformidad, se deberá hacer una limpieza o reposición de piezas.

3.3.2.8 Inspecciones y registros durante el almacenamiento

El generador almacenado debe ser inspeccionado periódicamente, debiendo ser archivados los registros de inspección.

Deben ser inspeccionados los siguientes puntos:

- 1. Daños físicos;
- 2. Limpieza;
- 3. Señales de condensación de agua;
- 4. Condiciones del revestimiento protector;
- 5. Condiciones de la pintura;
- 6. Señales de agentes agresivos;
- Operación satisfactoria de las resistencias de calentamiento. Se recomienda que sea instalado un sistema de señalización, o alarma, en el local, para detectar la interrupción de la energía de las resistencias de calentamiento;
- 8. Registrar la temperatura ambiente y la humedad relativa alrededor del generador, la temperatura del devanado (utilizando RTDs), la resistencia de aislamiento y el índice de polarización;
- 9. El local de almacenamiento, para que esté de acuerdo con los criterios descritos en el ítem 3.3.2.1.

3.3.2.9 Plan de mantenimiento durante el almacenamiento

Durante el período de almacenamiento, el mantenimiento del generador deberá ser hecho y registrado de acuerdo con el plan descrito en la Tabla 3.1.

Tabla 3.1: Plan de almacenamiento

	Mensual	2 meses	6 meses	2 años	Antes de entrar en operación	Notas
	LOC	AL DE AL	.MACENA	MIENTO		
Inspeccionar las condiciones de limpieza		x			х	
Inspeccionar las condiciones de humedad		х				
y temperatura Verificar señales de infestaciones de						
insectos		х				
		EME	BALAJE			
Inspeccionar daños físicos			x			
Inspeccionar la humedad relativa en el interior del generador		х				
Cambiar el deshumidificador en el embalaje (si hay)			x			Cuando sea necesario
	RESIS	TENCIA D	E CALEN	AMIEN	то	
Verificar las condiciones de operación	x					
	G	ENERADO	OR COMP	LETO		
Realizar limpieza externa			х		х	
Verificar las condiciones de la pintura			х			
Verificar el inhibidor de oxidación en las partes mecanizadas expuestas			х			
Reponer el inhibidor de oxidación			x			
		DEV	ANADOS			
Medir la resistencia de aislamiento		x			x	
Medir el índice de polarización		x			x	
		CAJAS D	E CONEX	ÓN		
Limpiar el interior de las cajas				х	x	
Inspeccionar retenes y sellados				х	х	
		COJ	INETES	1		
Girar el eje del generador		х				
Relubricar el cojinete			х		x	
Desmontar, limpiar y relubricar los cojinetes						Si el período de almacenaje sea superior a dos años.
	COJI	NETES DI	DESLIZA	MIENT)	
Girar el eje		х				
Aplicar anticorrosivo			x			
Desmontar, limpiar y relubricar los cojinetes					x	
Desmontar y almacenar las piezas						Si el período de almacenamiento es superior a dos años.

3.3.2.10 Preparación para puesta en operación

3.3.2.10.1 Limpieza

- El interior y el exterior del generador deben estar libres de aceite, agua, polvo y suciedad;
- Remover con un paño humedecido en solvente a base de petróleo el inhibidor de herrumbre de las superficies expuestas;
- Asegurarse de que los cojinetes y las cavidades utilizadas para lubricación estén libres de suciedad y que los plugs de las cavidades estén correctamente sellados y apretados. Las oxidaciones y marcas en los asientos de los cojinetes y del eje deben ser cuidadosamente removidas.

3.3.2.11 Inspección de los cojinetes

ATENCIÓN

Si el período de almacenamiento del generador ultrapasar 6 meses, los cojinetes de deslizamiento deben ser desmontados, inspeccionados y limpiados, antes de poner el generador en operación. Montar nuevamente los cojinetes de deslizamiento y proceder la lubricación. Consultar WEG para realización de este procedimiento.

3.3.2.11.1 Lubricación de los cojinetes

Utilizar el lubricante especificado para lubricación de los cojinetes. Las informaciones de los cojinetes y de los lubricantes están indicadas en la placa de identificación de los cojinetes. La lubricación debe ser hecha conforme es descrito en el ítem 7.9 de este manual, considerando siempre tipo de cojinete utilizado.

3.3.2.11.2 Verificación de la resistencia de aislamiento

Antes de poner el generador en operación, se debe medir la resistencia de aislamiento, conforme el ítem 4.4 de este manual.

3.3.2.11.3 Otros

Seguir los demás procedimientos descritos en el ítem 6 de este manual antes de poner el generador en operación.

INSTALACIÓN

LOCAL DE INSTALACIÓN 4.1

El generador debe ser instalado en local de fácil acceso. que permita la realización de inspecciones periódicas. de mantenimientos locales y, si fuera necesario, su remoción para servicios externos.

Deben ser aseguradas las siguientes características ambientales:

- Local limpio y bien ventilado;
- La instalación de otros equipos, o paredes, no deben dificultar u obstruir la ventilación del generador;
- El espacio alrededor y arriba del generador debe ser suficiente para realizar el mantenimiento o la manipulación de éste;
- El ambiente debe estar de acuerdo con el grado de protección del generador.

4.2 TRABA DEL EJE

El generador es suministrado con una traba en el eje para evitar daños a los cojinetes durante el transporte. Esta traba debe ser retirada antes de la instalación del generador.

ATENCIÓN

El dispositivo de trabamiento del eje debe ser instalado siempre que el generador sea removido de su base (desacoplado) para evitar que los cojinetes sufran daños durante el transporte.

La punta de eje es protegida en fábrica con un agente protector temporario (inhibidor de herrumbre). Durante la instalación del generador, se debe remover este producto en el área de la pista de contacto de la escobilla de puesta a tierra (si hay) con el

4.3 SENTIDO DE ROTACIÓN

El sentido de rotación es indicado por una placa fijada en el lado accionado del generador, así como en la documentación específica del generador.

ATENCIÓN

Generadores suministrados con sentido único de rotación no deben operar en sentido contrario al especificado. Para operar el generador en la rotación contraria a lo especificado, consulte a WEG.

RESISTENCIA DE AISLAMIENTO

4.4.1 Instrucciones de seguridad

PELIGRO

Para realizar la medición de la resistencia de aislamiento, el generador debe estar apagado v parado.

El devanado en prueba debe ser conectado a la carcasa y puesto a tierra hasta removerse la carga electrostática residual. Poner a tierra también los condensadores (si hay) antes de desconectar y separar los terminales, para medir la resistencia de aislamiento. El no seguimiento de estos procedimientos puede ocasionar daños personales.

4.4.2 Consideraciones generales

Cuando el generador no sea puesto inmediatamente en operación, deberá ser protegido contra humedad, temperatura elevada y suciedad, evitando así que la resistencia de aislamiento sea afectada.

Antes de poner el generador en operación, deberá ser medida la resistencia de aislamiento del devanado. Si el ambiente es muy húmedo, la resistencia de aislamiento debe ser medida en intervalos periódicos, durante el almacenamiento. Es difícil establecer reglas fijas para el valor real de la resistencia de aislamiento de los devanados, una vez que ésta varía con las condiciones ambientales (temperatura, humedad), condiciones de limpieza del generador (polvo, aceite, grasa, suciedad) y con la calidad y las condiciones del material aislante utilizado.

La evaluación de los registros periódicos de acompañamiento es útil para concluir si el generador está apto para operar.

Medición en los devanados del estator 4.4.3

La resistencia de aislamiento debe ser medida con un megóhmetro. La tensión de la prueba para los devanados debe ser conforme la Tabla 4.1, de acuerdo con la norma IEEE43.

Tabla 4.1: Tensión para prueba de resistencia de aislamiento de los devanados

Prueba de resistencia de aislamiento - tensión continua (V				
500				
500 – 1000				
1000 – 2500				
2500 – 5000				
5000 – 10000				

^{*} Tensión nominal fase-fase

Antes de realizar la medición de la resistencia de aislamiento en el devanado del estator:

- Desconectar todas las conexiones con los terminales del estator;
- Desconectar y aislar todos los TCs y TPs (si hay);
- Poner a tierra la carcasa del generador;
- Medir la temperatura del devanado;
- Poner a tierra todos los sensores de temperatura;
- Verificar la humedad:
- Desconectar el puesta a tierra del neutro;

Asegurar que las barras del generador no estén puestas a tierra.

La medición de la resistencia de aislamiento de los devanados del estator debe ser hecha en la caja de conexión principal. El medidor (megóhmetro) debe ser conectado entre la carcasa del generador y el devanado. La carcasa debe ser puesta a tierra y las tres fases del devanado del estator deben permanecer conectadas al punto neutro, conforme la Figura 4.1.

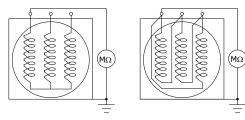


Figura 4.1: Conexión del megóhmetro

Cuando sea posible, cada fase deberá ser aislada y probada separadamente. La prueba separada permite la comparación entre las fases. Cuando una fase es probada, las otras dos fases deben ser puestas a tierra en la misma puesta a tierra de la carcasa, conforme la Figura 4.2.

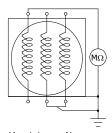


Figura 4.2: Conexión del megóhmetro en fases separadas

Si la medición total del devanado presenta un valor por debajo del recomendado, las conexiones del neutro deben ser abiertas y la resistencia de aislamiento de cada fase debe ser medida separadamente.

ATENCIÓN

Con generadores en operación durante mucho tiempo pueden ser obtenidos frecuentemente valores mucho mayores. La comparación con valores obtenidos en ensayos anteriores con el mismo generador, en condiciones similares de carga, temperatura y humedad, puede auxiliar en la evaluación de las condiciones de aislamiento del devanado, que solamente basarse en el valor obtenido en un único ensayo. Reducciones muy grandes o bruscas son consideradas sospechosas.

4.4.4 Medición en los devanados del rotor y de la excitatriz

Medición en la bobina del rotor:

- Desconectar los cables del rotor del conjunto de diodos y del resistor de descarga (si hay);
- Conectar el medidor de resistencia de aislamiento (megóhmetro) entre el devanado del rotor y el eje del generador. La corriente de la medición no podrá circular por los cojinetes.

Medición del devanado del estator de la excitatriz principal:

- Desconectar los cables de alimentación de la excitatriz:
- Conectar el medidor de resistencia de aislamiento (megóhmetro) entre el devanado del estator de la excitatriz y la carcasa del generador.

Medición en el devanado del rotor de la excitatriz principal:

- Desconectar los cables del rotor de la excitatriz del conjunto de diodos;
- Conectar el medidor de resistencia de aislamiento (megóhmetro) entre el devanado del rotor de la excitatriz y el eje del generador. La corriente de la medición no puede circular por los cojinetes.

Medición del devanado del estator de la excitatriz auxiliar (PMG), si hay:

- Desconectar los cables que conectan la excitatriz auxiliar al regulador de tensión;
- Conectar el medidor de resistencia de aislamiento (megóhmetro) entre el devanado del estator de la excitatriz auxiliar y la carcasa del generador.

Informaciones adicionales 4.4.5

ATENCIÓN

Tras la medición de la resistencia de aislamiento, poner a tierra el devanado probado para descargarlo.

La tensión de prueba para medir la resistencia de aislamiento del rotor y de la resistencia de calentamiento debe ser 500 Vcc y para los demás accesorios 100 Vcc. No es recomendable medir la resistencia de aislamiento de los protectores térmicos.

4.4.6 Índice de Polarización

El índice de polarización es definido por la relación entre la resistencia de aislamiento medida en 10 minutos y la resistencia de aislamiento medida en 1 minuto, medición siempre hecha a una temperatura relativamente constante.

El índice de polarización permite evaluar las condiciones del aislamiento del generador.

PELIGRO

Para evitar accidentes, se debe poner a tierra el devanado inmediatamente después medir la resistencia de aislamiento.

Conversión de los valores medidos

Se debe convertir la resistencia de aislamiento medida en los devanados para 40°C, utilizando el factor de corrección mostrado en la Figura 4.3 (norma IEEE43) y aplicando en la siguiente fórmula:

$Rc = Kt \cdot Rt$

Donde:

R₄₀ = resistencia de aislamiento referida a 40°C Kt= Factor de corrección de resistencia de aislamiento en función de la temperatura, conforme la Figura 4.3. Rt= resistencia de aislamiento medida.

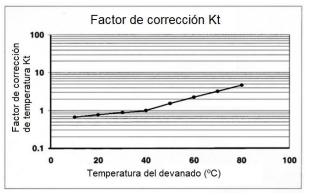


Figura 4.3: Factor de corrección de la resistencia de aislamiento en función de la temperatura

Los valores utilizados para generar la curva de la Figura 4.3 son mostrados en la Tabla 4.2.

Tabla 4.2: Factores de corrección (Kt) en función de la temperatura

t (°C)	Factor de corrección (kt)
10	0,7
20	0,8
30	0,9
40	1,0
50	1,5
60	2,3
70	3,3
80	4,6

4.4.8 Valores mínimos recomendados

Conforme la norma IEEE-43 los valores mínimos recomendados para resistencia de aislamiento (R.I.) v Índice de Polarización (I.P.) de los devanados son mostrados en la Tabla 4.3:

Tabla 4.3: Valores mínimos de R.I. y I.P.

Tensión del devanado	R.I. mínima (referida a 40°C)	I.P. mínimo
Hasta 1000 V	5 ΜΩ	No se aplica
Mayor que 1000 V	100 ΜΩ	2

4.5 **PROTECCIONES**

4.5.1 Protecciones térmicas

Los sensores de medición de temperatura son instalados en el estator principal, en los cojinetes y en los demás componentes que necesitan monitoreo de temperatura y protección térmica. Los terminales de los sensores de temperatura están disponibles en la caja de accesorios.

Estos sensores deben ser conectados a un sistema externo de monitoreo de temperatura y de protección.

4.5.1.1 Sensores de temperatura

Termorresistencias (Pt100) - Son elementos de resistencia calibrada. Su funcionamiento se basa en el principio de que la resistencia eléctrica de un conductor metálico varía linealmente con la temperatura. Los terminales del detector deben ser conectados a un tablero de control que incluye un medidor de temperatura.

NOTA

Las termorresistencias tipo RTD permiten el monitoreo a través de la temperatura absoluta informada por su valor de resistencia instantánea. Con esta Información, el relé podrá efectuar la lectura de la temperatura, así como también la parametrización para alarma y apagado conforme las temperaturas predefinidas.

Termostatos - Son detectores térmicos del tipo bimetálico, con contactos de plata, normalmente cerrados, que se abren a determinada temperatura. Los termostatos son conectados en serie o independientes, conforme el esquema de conexión.

Termistores (tipo PTC o NTC) - Son detectores térmicos, compuestos por semiconductores que varían su resistencia bruscamente al alcanzar una determinada temperatura. Los termistores son conectados en serie o independientes, conforme el esquema de conexión.

NOTA

Los termostatos y los termistores deberán ser conectados a una unidad de control para interrumpir el funcionamiento del generador o accionar un dispositivo de señalización.

4.5.1.2 Límites de temperatura para los devanados

La temperatura del punto más caliente del devanado debe ser mantenida por debajo del límite de la clase térmica del aislamiento. La temperatura total es compuesta por la suma de la temperatura ambiente con la elevación de temperatura (T), más la diferencia que existe entre la temperatura media del devanado y el punto más caliente del devanado. La temperatura ambiente no debe exceder los 40 °C, conforme la norma NBR IEC60034-1. Por encima de esa temperatura, las condiciones de trabajo son consideradas especiales. debiendo ser consultada la documentación específica del generador.

La Tabla 4.4 presenta los valores numéricos y la composición de la temperatura admisible del punto más caliente del devanado.

Tabla 4.4: Clase de aislamiento

Clase de aislamiento (°C)	F	Н
Temperatura Ambiente	40	40
T = elevación de temperatura (método de medición de la temperatura por variación de la resistencia)	105	125
Diferencia entre el punto más caliente y la temperatura media	10	15
Total: temperatura del punto más caliente	155	180

ATENCIÓN

En caso que el generador opere con temperaturas en el devanado por encima de los valores límites de la clase térmica del aislamiento, la vida útil del aislamiento y, consecuentemente, la del generador, será reducida significativamente, pudiendo ocasionar la quema del generador.

4.5.1.3 Temperaturas para alarma y apagado

Las temperaturas de alarma y apagado del generador deben ser parametrizadas al valor más bajo posible. Estas temperaturas pueden ser determinadas con base en las pruebas de fábrica, o a través de la temperatura de operación del generador. La temperatura de alarma puede ser ajustada a 10°C por encima de la temperatura de operación de la máquina en plena carga, considerando siempre la mayor temperatura ambiente del local.

ATENCIÓN

Los valores de alarma y apagado pueden ser definidos en función de la experiencia, no obstante, no deben sobrepasar los valores máximos indicados en el diagrama de conexión del generador.

ATENCIÓN

Los dispositivos de protección del generador están relacionados en el dibujo WEG - diagrama de conexión. La no utilización de estos dispositivos es de total responsabilidad del usuario y, en caso de daños al generador, derivará en la pérdida de la garantía.

4.5.1.4 Temperatura y resistencia óhmica de las termorresistencias Pt100

La Tabla 4.5 muestra los valores de temperatura en función de la resistencia óhmica medida para las termorresistencias tipo Pt 100.

Tabla 4.5: Temperatura x Resistencia (Pt100)

Fórmula: <u>Ω - 100</u> = °C 0,386

۰C	0	1	2	3	4	5	6	7	8	9
0	100.00	100.39	100.78	101.17	101.56	101.95	102.34	102.73	103.12	103.51
10	103.90	104.29	104.68	105.07	105.46	105.95	106.24	106.63	107.02	107.40
20	107.79	108.18	108.57	108.96	109.35	109.73	110.12	110.51	110.90	111.28
30	111.67	112.06	112.45	112.83	113.22	113.61	113.99	114.38	114.77	115.15
40	115.54	115.93	116.31	116.70	117.08	117.47	117.85	118.24	118.62	119.01
50	119.40	119.78	120.16	120.55	120.93	121.32	121.70	122.09	122.47	122.86
60	123.24	123.62	124.01	124.39	124.77	125.16	125.54	125.92	126.31	126.69
70	127.07	127.45	127.84	128.22	128.60	128.98	129.37	129.75	130.13	130.51
80	130.89	131.27	131.66	132.04	132.42	132.80	133.18	133.56	133.94	134.32
90	134.70	135.08	135.46	135.84	136.22	136.60	136.98	137.36	137.74	138.12
100	138.50	138.88	139.26	139.64	140.02	140.39	140.77	141.15	141.53	141.91
110	142.29	142.66	143.04	143.42	143.80	144.17	144.55	144.93	145.31	145.68
120	146.06	146.44	146.81	147.19	147.57	147.94	148.32	148.70	149.07	149.45
130	149.82	150.20	150.57	150.95	151.33	151.70	152.08	152.45	152.83	153.20
140	153.58	153.95	154.32	154.70	155.07	155.45	155.82	156.19	156.57	156.94
150	157.31	157.69	158.06	158.43	158.81	159.18	159.55	159.93	160.30	160.67

4.5.2 Protecciones en el tablero

La Tabla 4.6 relaciona las protecciones generalmente aplicadas en los tableros de accionamientos. Además de estos dispositivos de protección, deberán ser utilizados otros, conforme la necesidad.

Tabla 4.6: Protecciones en el tablero

POTENCIA	PROTECCIONES
Hasta 150 kVA – Baja tensión	50/51 – 52-59
De 150 a 1000 kVA – Baja Tensión	27-49-50-59-50/51
por encima de 1000 kVA – Baja Tensión	27-32-49-50G-51V-52-59
Hasta 3000 kVA – Media Tensión	CP-PR-27-32-49-50G-51V- 52-59
3000 a 7500 kVA – Media Tensión	CP-PR-32-40-46-49-50G- 51V-52-59-87
Por encima de 7500 kVA – Media Tensión	CP-PR-27-32-40-46-49-50G- 51V-52-59-78-81-87

Simbología:

CP - Condensador

PR - Pararrayos

27 - Subtensión

32 - Potencia inversa

40 - Pérdida de campo

46 - Desequilibrio de corriente

49 - Sobrecarga

50G - Sobrecorriente de tierra

50 - Sobrecorriente instantánea

51 - Sobrecorriente temporizada

51V - Sobrecorriente con trabamiento por tensión

52 - Disyuntor

59 - Sobretensión

64 - Tierra en el campo

78 - Ángulo de fase

81 - Frecuencia

86 - Relé de bloqueo

87 - Diferencial

4.5.3 Resistencia de calentamiento

Cuando el generador está equipado con resistencia de calentamiento, para impedir la condensación de agua en su interior, durante largos períodos fuera de operación, se debe asegurar que ésta sea encendida inmediatamente después del apagado del generador y que sea apagada antes de que el generador entre en operación.

Los valores de la tensión de alimentación y de la potencia de la resistencia de calentamiento son informados en el esquema de conexión y en la placa específica fijada en el generador.

4.6 REFRIGERACIÓN

Los generadores de la línea GH11 poseen construcción abierta autoventilada con métodos de enfriamiento IC01 o IC21 conforme la Figura 4.4.

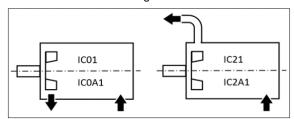


Figura 4.4: Refrigeración

Solamente la correcta instalación del generador y del sistema de refrigeración puede garantizar su funcionamiento continuo y sin sobrecalentamientos.

ATENCIÓN

Las entradas y salidas de aire y/o de agua no deben ser obstruidas, ya que pueden causar sobrecalentamiento e incluso ocasionar la quema del generador. Para más detalles, consultar el dibujo dimensional del generador.

4.6.1 Limpieza del intercambiador de calor aire / aire

Algo de suciedad en la superficie de enfriamiento y la pared del tubo eventualmente ocurrir. Este ensuciamiento reduce la capacidad de enfriamiento. El intercambiador de calor por lo tanto, deben limpiarse a intervalos regulares, que se determinarán a partir de caso a caso, dependiendo de las propiedades del aire de refrigeración.

Durante el período inicial de funcionamiento, el intercambiador de calor debe inspeccionado con frecuencia. Sople el intercambiador de calor con aire comprimido o límpielo con un cepillo adecuado. No utilice un cepillo de acero en tubos de aluminio, ya que puede dañar los tubos;

En su lugar, se puede utilizar un cepillo de alambre de latón redondo suave.

4.7 ASPECTOS ELÉCTRICOS

4.7.1 Conexiones eléctricas

ATENCIÓN

Analizar cuidadosamente el esquema eléctrico de conexión suministrado con el generador, antes de iniciar la conexión de los cables de fuerza, de puesta a tierra y de los accesorios. Para la conexión eléctrica de los equipos auxiliares, consultar sus respectivos manuales específicos.

4.7.1.1 Conexiones eléctricas principales

La localización de las cajas de conexión de fuerza, del neutro y del rotor, está identificada en el dibujo dimensional específico del generador. La identificación de los terminales del estator y del rotor, así como su correspondiente conexión, son indicadas en el esquema de conexión específico del generador. Asegúrese de que la sección y el aislamiento de los cables de conexión sean apropiadas para la corriente y la tensión del generador. El generador debe girar en el sentido de rotación especificado en la placa de identificación y/o en la placa fijada en el lado accionado del generador.

NOTA

El sentido de rotación es determinado mirando hacia la punta del eje del lado accionado del generador.

Los generadores con sentido único de rotación deben girar solamente en el sentido indicado, ya que los ventiladores y otros dispositivos son unidireccionales. Para operar el generador en el sentido de rotación contrario al indicado, consulte a WFG.

ATENCIÓN

Antes de realizar las conexiones entre el generador y la red de energía eléctrica, es necesario que sea hecha una medición cuidadosa de la resistencia de aislamiento de los devanados.

Para conectar los cables principales del generador, desatornillar la tapa de la caja de conexión del estator, cortar los anillos de sellado (generadores normales sin prensacables) conforme los diámetros de los cables a ser utilizados e insertar los cables dentro de los anillos de sellado. Cortar los cables de alimentación con la longitud necesaria, pelar las extremidades y colocar los terminales a ser utilizados.

4.7.1.2 Conexiones de los accesorios

La localización de las cajas de conexión de los accesorios es mostrada en el dimensional específico del generador.

La identificación de los terminales de los accesorios y la conexión eléctrica son mostradas en el diagrama de conexión específico del generador.

4.7.1.3 Puesta a tierra

La carcasa del generador y la caja de conexión principal deben ser puestas a tierra antes de conectar el generador a la red eléctrica.

Conectar el revestimiento metálico de los cables (si hay) al conductor de puesta a tierra común. Cortar el conductor de puesta a tierra con la longitud adecuada y conectarlo al terminal existente en la caja de conexión y/o el existente en la carcasa.

Fijar firmemente todas las conexiones.

ATENCIÓN

No utilizar tuercas de acero u otro material de baja conductividad eléctrica para la fijación de los terminales.

4.8 **ASPECTOS MECÁNICOS**

4.8.1 Cimientos

- Los cimientos, o la estructura donde el generador será instalado, deberán ser suficientemente rígidos, planos, exentos de vibración externa y capaces de resistir a los esfuerzos mecánicos a los que serán sometidos:
- Si el dimensionamiento de los cimientos no es criteriosamente ejecutado, se podrá ocasionar vibración en la base, en el generador y en la turbina;
- El dimensionamiento estructural de los cimientos debe ser realizado con base en el dibujo dimensional, en las informaciones referentes a los esfuerzos mecánicos sobre los cimientos y en la forma de fijación del generador.
- El cliente es responsable del diseño y la construcción de los cimientos según los requisitos descritos en Frecuencia natural de la base.

ATENCIÓN

Colocar calces de diferentes espesores entre las superficies de apoyo del generador y de los cimientos para permitir una alineación precisa.

NOTA

El usuario es responsable por el dimensionamiento y construcción de los cimientos donde el generador será instalado.

Esfuerzos en los cimientos

Los esfuerzos sobre los cimientos son informados en la documentación del generador.

Tipos de bases 4.8.3

4.8.3.1 Base de concreto

Las bases de concreto son las más usadas para la instalación de generadores eléctricos.

El tipo y tamaño de los cimientos, tornillos y placas de anclaje dependen del tamaño y del tipo de generador.

4.8.3.2 Base metálica

El generador debe estar apoyado uniformemente sobre la base metálica, para así evitar deformaciones en la carcasa. Eventuales errores de altura de la superficie de apoyo del generador pueden ser corregidos con chapas de compensación (calces).

No remover el generador de la base común para hacer la alineación. La base debe ser nivelada en los propios cimientos, usando instrumentos de nivelación.

Cuando es utilizada una base metálica, para ajustar la altura de la punta de eje del generador con la punta de eje de la máquina acoplada, ésta debe ser nivelada en la base de concreto.

Luego de que la base sea nivelada, los pernos de anclaje apretados y los acoplamientos verificados, la base metálica y los pernos de anclaje podrán ser concretados.

4.8.4 Frecuencia natural de la base

Para garantizar una operación segura, el generador debe estar precisamente alineado con el equipo acoplado y ambos deben estar debidamente balanceados. Como requisito, la base de instalación del generador debe ser plana y cumplir los requisitos de la norma DIN 4024-1.

Para verificar si los criterios de la norma están siendo respetados, se deben evaluar las siguientes frecuencias potenciales de excitación de vibración generadas por el generador y por la máquina acoplada:

- La frecuencia de giro del generador;
- El doble de la frecuencia de giro;
- El doble de la frecuencia eléctrica del generador.

De acuerdo con la norma DIN 4024-1, las frecuencias naturales de la base o de los cimientos, deben mantener un alejamiento de estas frecuencias potenciales de excitación, conforme es especificado a seguir:

- La primera frecuencia natural de la base o del cimiento (frecuencia natural de 1ª orden de la base) debe estar fuera del rango comprendido entre 0.8 y 1.25 veces cualquiera de las frecuencias potenciales de excitación de arriba:
- Las demás frecuencias naturales de la base o del cimiento deben estar fuera del rango comprendido entre 0.9 y 1.1 veces cualquiera de las frecuencias potenciales de excitación de arriba.

4.8.5 **Montaje**

ATENCIÓN

Montar el generador de forma segura y alinearlo correctamente. Un montaje inadecuado puede causar vibración excesiva, ocasionando el desgaste prematuro de los cojinetes y pudiendo causar la ruptura del eje.

4.8.6 Conjunto de placa de anclaje

El conjunto placa de anclaje, cuando es aplicado, está compuesto por placa de anclaje, tornillos de nivelación, calces para nivelación, tornillos para alineación y pernos de anclaje.

NOTAS

Cuando WEG suministra la placa de anclaie para fijación v alineación del generador, los detalles dimensionales y de instalación del conjunto de placa de anclaje son suministrados en el dibujo dimensional específico del generador. El montaje, nivelación y grout de las placas de anclaje son de responsabilidad del usuario (salvo acuerdo comercial específico en contrario).

Los pernos de anclaje deben ser apretados de acuerdo con la Tabla 4.7.

Tabla 4.7: Torque de apriete en los pernos de anclaje

Tipo Ø	Torque de apriete a Seco [Nm]	Torque de apriete con Molycote [Nm]
M30	710	470
M36	1230	820
M42	1970	1300
M48	2960	1950
M56	3500	2300

Luego del posicionamiento del generador, realizar la nivelación final, utilizando los tornillos de nivelación vertical y las chapas de nivelación.

ATENCIÓN

Proteger todos los agujeros roscados para evitar que el grout penetre en las roscas, durante el procedimiento de grout de la placa de anclaje y de los pernos de anclaje.

4.8.7 Nivelación

El generador debe estar apoyado sobre superficie con planicidad de hasta 0,08 mm/m.

Verificar si el generador está perfectamente alineado al plano vertical y horizontal. Realizar los ajustes adecuados colocando calces debajo del generador. La nivelación del generador deberá ser verificada con un equipo adecuado.

Durante el montaje del generador, deberán ser insertados placas de nivelación entre el generador y la placa de anclaje, de forma que el procedimiento de alineación comience con la siguiente cantidad de calces:

- 3 mm de chapas de acero inoxidable (2 mm + 1 mm) o
- 5,40 mm de chapas de acero galvanizado (2,7 mm + 2,7 mm)

Las demás chapas mostradas en la Tabla 4.8, quedarán de repuestos para que puedan ser utilizadas en combinaciones, de forma de obtener diferentes arreglos con los espesores de chapas en función de la nivelación necesaria.

El espesor máximo de los calces de nivelación no deberá sobrepasar los 4,5 mm.

La Tabla 4.8 muestra la cantidad de calces de acero inoxidable o de acero galvanizado para cada región de apoyo del generador en la placa de anclaje.

Tabla 4.8: Calces de acero inoxidable

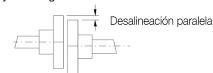
Acero in	oxidable	Acero galvanizado		
Cantidad (un.)	Espesor (mm)	Cuantidad (un.)	Espesor (mm)	
2	0,1	2	0,43	
2	0,2	2	0,50	
2	0,5	1	0,65	
2	1	1	0,80	
1	2	1	1,95	
-	-	2	2,70	

4.8.7.1 Apoyo

NOTA

El mínimo 75% del área de las superficies de apoyo de las patas del generador deben quedar apoyadas sobre la base.

4.8.8 Alineación


El generador debe ser alineado correctamente con la máquina acoplada.

ATENCIÓN

Una alineación incorrecta puede resultar en daños en los cojinetes, generar excesivas vibraciones, e incluso llevar a la ruptura del

La alineación debe ser hecha de acuerdo con las recomendaciones del fabricante del acoplamiento. Los ejes del generador y de la máquina acoplada deben ser alineados axial y radialmente, conforme es mostrado en la Figura 4.5 y en la Figura 4.6.

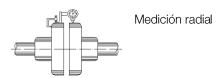


Figura 4.5: Alineación paralela

La Figura 4.5 muestra la desalineación paralela de las dos puntas de eje, así como la forma práctica de medición, utilizando relojes comparadores adecuados.

La medición es hecha en 4 puntos desplazados 90º entre sí, con los dos medio-acoplamientos girando juntos para eliminar los efectos debido a irregularidades de la superficie de apoyo de la punta del reloj comparador. Eligiendo el punto vertical superior 0º, la mitad de la diferencia de la medición del reloj comparador en los puntos en 0º y 180º representa el error coaxial vertical. En caso de desvío, éste deberá ser corregido, agregando o removiendo calces de montaje. La mitad de la diferencia de la medición del reloj comparador en los puntos en 90º y 270º representa el error coaxial horizontal.

Esta medición indica cuando es necesario levantar o abaiar el generador, o moverlo hacia la derecha o hacia la izquierda, en el lado accionado, para eliminar el error coaxial.

La mitad de la diferencia máxima de la medición del reloj comparador en una rotación completa representa la máxima excentricidad encontrada.

La desalineación en una vuelta completa del eje, acoplamiento rígido o semiflexible, no puede ser superior a 0,03 mm.

Cuando sean utilizados acoplamientos flexibles, serán aceptados valores mayores a los indicados arriba, desde que no excedan el valor permitido por el fabricante del acoplamiento.

Se recomienda mantener un margen de seguridad para estos valores.

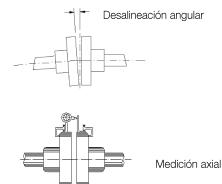


Figura 4.6: Alineación angular

La Figura 4.6 muestra la desalineación angular y la forma práctica de realizar esta medición.

La medición es hecha en 4 puntos desplazados 90º entre sí, con los dos medio-acoplamientos girando juntos para eliminar los efectos debido a irregularidades de la superficie de apoyo de la punta del reloj comparador. Eligiendo el punto vertical superior 0º, la mitad de la diferencia de la medición del reloj comparador, en los puntos en 0º y 180º, representa la desalineación vertical. En caso de desvío, éstos deberán ser corregidos, agregando o removiendo calces de montaje debajo de las patas del generador.

La mitad de la diferencia de la medición del reloj comparador en los puntos en 90º y 270º representa la desalineación horizontal, debiendo ser corregida adecuadamente con el desplazamiento lateral/angular del generador.

La mitad de la diferencia máxima de la medición del reloj comparador, en una rotación completa, representa la máxima desalineación angular encontrada.

La desalineación en una vuelta completa del eje, con acoplamiento rígido o semiflexible, no puede ser superior a 0,03 mm.

Cuando sean utilizados acoplamientos flexibles, serán aceptados valores mayores a los indicados arriba, desde que no excedan el valor permitido por el fabricante del acoplamiento.

Se recomienda mantener un margen de seguridad para estos valores.

En la alineación/nivelación se debe considerar la influencia de la temperatura sobre el generador y sobre la máquina acoplada. Dilataciones distintas de los componentes pueden alterar el estado de la alineamiento/nivelación durante la operación.

ATENCIÓN

Luego de la alineación del conjunto y de haberse asegurado la perfecta alineación (tanto a frío como a caliente), se debe hacer la sujeción del generador en la placa de anclaje o en la base, conforme las informaciones del dibujo dimensional del generador.

Acoplamientos

Solamente deben ser utilizados acoplamientos apropiados que transmitan únicamente el torque, sin generar fuerzas transversales.

Tanto para los acoplamientos elásticos como para los rígidos, los centros de los ejes de las máquinas acopladas deben estar en una única línea.

El acoplamiento elástico permite amenizar los efectos de desalineación residuales y evitar la transferencia de vibración entre las máquinas acopladas, lo que no ocurre cuando son usados acoplamientos rígidos.

El acoplamiento siempre debe ser montado o retirado con la ayuda de dispositivos adecuados, nunca por medio de dispositivos rústicos como martillo, almádena etc. Siga las instrucciones del fabricante al montar o desmontar los acoplamientos u otros elementos de accionamiento y cúbralos con una protección contra contactos. Para el funcionamiento de prueba en estado desacoplado, bloquee o retire la chaveta del extremo del eje. Evite las cargas radiales y axiales excesivas en los rodamientos (tenga en cuenta la documentación del fabricante). El equilibrio de la máquina se indica como H= media chaveta y F= chaveta completa. En los casos de media chaveta, el acoplamiento debe estar equilibrado sin chaveta. En caso de que sobresalga una parte visible de la chaveta del extremo del eje, establecer el equilibrio mecánico.

ATENCIÓN

Los pernos, tuercas, arandelas y calces para nivelación pueden ser suministrados con el generador, cuando son solicitados por el cliente en el pedido de compra.

NOTAS

El usuario es responsable por la instalación del generador (salvo acuerdo comercial específico contrario).

WEG no se responsabiliza por daños en el generador, equipos asociados e instalación, ocurridos debido a:

- Transmisión de vibración excesiva;
- Instalaciones precarias;
- Fallas en la alineación:
- Condiciones inadecuadas de almacenamiento:
- No seguimiento de las instrucciones antes del arranque;
- Conexiones eléctricas incorrectas.

4.8.9.1 Acoplamiento directo

Por cuestiones de costo, ahorro de espacio, ausencia de deslizamiento de las correas, así como mayor seguridad contra accidentes, siempre que sea posible, utilice acoplamiento directo. También en caso de transmisión por engranaje reductor, debe ser dada preferencia al acoplamiento directo.

ATENCIÓN

Alinear cuidadosamente las puntas de eje y, siempre que sea posible, usar acoplamiento flexible, dejando una holgura (E) mínima de 3 mm entre los acoplamientos, conforme es mostrado en la Figura 4.7.

Figura 4.7: Holgura axial del acoplamiento (E)

4.8.9.2 Acoplamiento por engranaje

Acoplamientos por engranajes mal alineados generan vibración en la propia transmisión, así como en el generador. Por lo tanto, se debe cuidar que los ejes estén perfectamente alineados, rigurosamente paralelos en el caso de transmisiones por engranajes rectos y en ángulo correctamente ajustado, en el caso de transmisiones por engranajes cónicos o helicoidales. El encaje de los dientes podrá ser controlado con inserción de una tira de papel, en la cual aparecerá, tras una vuelta del engranaje, el calcado de todos los dientes.

Acoplamiento de generadores 4.8.9.3 equipados con cojinetes de deslizamiento

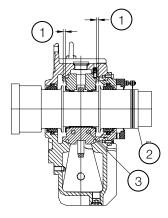


Figura 4.8: Cojinete de deslizamiento

Detalle de la Figura 4.8:

- 1. Holgura axial
- 2.Eje
- 3. Ćasquillo

ATENCIÓN

Los generadores equipados con cojinetes de deslizamiento deben operar con acoplamiento directo a la máquina accionante, o por medio de un reductor. Este tipo de cojinete no permite el acoplamiento a través de poleas y correas.

4.8.10 Esfuerzos en los cojinetes

Los datos referentes a los esfuerzos radiales y axiales (Fa y Fr) en los cojinetes para las condiciones de arranque, rotación nominal, rotación de disparo y rechazo de carga del hidrogenerador, son calculados de acuerdo con los datos mecánicos de la turbina e informados en el plano dimensional específico del hidrogenerador.

ATENCIÓN

Generadores equipados con cojinete de empuje, permiten esfuerzo continuo, conforme especificado en el plano dimensional del generador. Generadores equipados con cojinetes de deslizamiento que permiten desplazamiento axial no soportan esfuerzo axial constante, de manera que, bajo hipótesis ninguna, el generador podrá operar continuamente con esfuerzo axial sobre el cojinete.

4.8.11 Centro magnético

Generadores que permiten desplazamiento axial del eje (cojinetes sin empuje), poseen tres marcas en la punta de eje, donde la marca central (pintada de rojo) es la indicación del centro magnético y las dos marcas externas indican los límites permitidos para el movimiento axial del rotor conforme mostrado en la Figura 4.9.

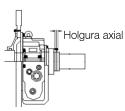


Figura 4.9: Marcación del centro magnético

Para el acoplamiento del generador deben ser considerados los siguientes factores:

- Holgura axial del cojinete;
- El desplazamiento axial de la máquina accionante (si
- La holgura axial máxima permitida por el acoplamiento.

ATENCIÓN

- Desplazar el eje totalmente hacia adelante, y de esta forma realizar la medición correcta de la holgura axial;
- Alinear cuidadosamente las puntas de ejes y, siempre que sea posible, usar acoplamiento flexible, dejando una holgura mínima de 3 a 4 mm entre los acoplamientos.

NOTA

En caso de que no sea posible mover el eje, se deberán considerar la posición del eje, el desplazamiento del eje hacia adelante (conforme las marcaciones en el eje) y la holgura axial recomendada para el acoplamiento.

- Antes de ponerlo en operación, se deberá verificar si el eje del generador permite el libre movimiento axial dentro de las condiciones de holgura mencionadas;
- En operación, la flecha deberá estar posicionada sobre la marca central (roja), que indica que el rotor se encuentra en su centro magnético;

Durante el arranque, o incluso durante la operación, el generador podrá moverse libremente entre las dos marcaciones externas límites.

FRENO

Para más informaciones sobre la instalación, operación y mantenimiento del freno (si hay), se debe consultar el dibujo dimensional del generador y el manual específico de este equipo.

4.10 UNIDAD HIDRÁULICA

Para más informaciones sobre la instalación, operación y mantenimiento de la unidad hidráulica (si hay), se debe consultar el dibujo dimensional del generador y el manual específico de este equipo.

El mínimo desnivel recomendado para instalación de la unidad hidráulica está mostrado en la Figura 4.10.

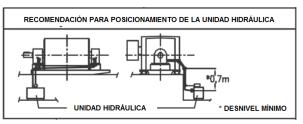


Figura 4.10: Unidad hidráulica

ATENCIÓN

La instalación de la Unidad Hidráulica debe garantizar el flujo y presión y presión de aceite solicitada para los cojinetes, considerando la pérdida de carga en la tubería entre la bomba de aceite y la entrada de aceite de los cojinetes.

PRINCIPIO DE FUNCIONAMIENTO

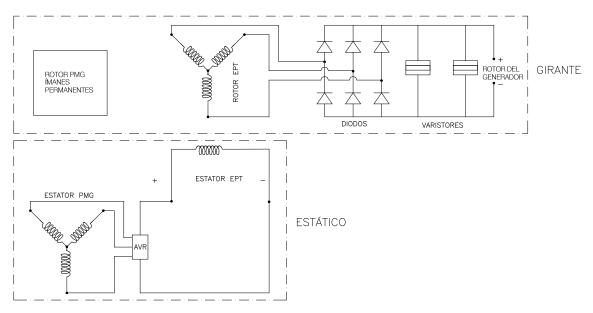


Figura 5.1: Circuitos eléctricos internos del generador con excitatriz auxiliar (PMG)

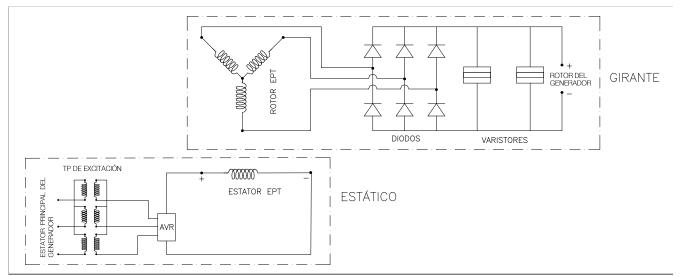


Figura 5.2: Circuitos eléctricos internos del generador sin PMG

5.1 **EXCITACIÓN**

Excitación PMG

Al ser accionado por la máquina primaria, y cuando alcance la rotación nominal, se iniciará en el generador el proceso de excitación, donde la tensión generada por la excitatriz auxiliar alimentará el circuito de potencia del regulador de tensión.

Al ser habilitado, el regulador de tensión rectifica esta tensión y alimenta el estator de la excitatriz trifásica principal del generador en corriente continua.

La tensión alternada generada por el rotor de la excitatriz principal es rectificada a través de los diodos rotativos y alimenta los polos del rotor principal.

La tensión del generador aumenta desde el valor residual hasta la tensión nominal preestablecida y es regulada a través del monitoreo de la tensión de referencia en el regulador electrónico de tensión.

La tensión de referencia para el regulador de tensión debe ser obtenida a través de TPs de referencia, los que deberán ser conectados a los terminales principales del generador.

Excitación sin PMG

Al ser accionado por la máquina primaria, y cuando alcance la rotación nominal, se iniciará en el generador el proceso de excitación donde la tensión generada en el estator principal del generador, a través del magnetismo residual, será rebajada por el transformador de excitación y alimentará el circuito de potencia del regulador de tensión. Al ser habilitado, el regulador de tensión rectifica esta tensión y alimenta el estator de la excitatriz principal del generador en corriente continua.

La tensión alternada generada por el rotor de la excitatriz principal es rectificada a través de los diodos rotativos y alimenta los polos del rotor principal del generador. La tensión del generador aumenta automáticamente en rampa desde el valor residual hasta la tensión nominal preestablecida y regulada a través del monitoreo de la tensión de referencia en el regulador electrónico de tensión. La tensión de referencia para el regulador de tensión debe ser obtenida a través de TPs de referencia, los que deberán ser conectados a los terminales principales del generador.

ATENCIÓN

Para iniciar el proceso de excitación de los generadores shunt, puede ser necesaria la utilización de un circuito de precebado externo (fuente CC), ya que el magnetismo residual del generador puede no ser suficiente para el cebado.

Verifique en el manual del regulador de tensión el procedimiento para habilitar esta función durante el proceso de excitación.

PELIGRO

Operando en vacío, en la rotación nominal y sin tensión de excitación, el generador presentará, en sus terminales, una tensión residual debido al magnetismo residual presente en el núcleo magnético de la excitatriz. Estos niveles de tensión pueden causar accidentes graves, e incluso riesgo de muerte. No es aconsejable la manipulación del generador mientras el rotor esté en movimiento.

- Generadores con tensión nominal de 440 V pueden presentar 180 V de tensión residual;
- Los generadores con tensión nominal de 13800V pueden presentar 1000 V de tensión residual;

5.2 DESEXCITACIÓN

La desexcitación completa del generador es hecha por la parada del generador, o por el apagado del regulador de tensión.

Al apagar el regulador de tensión, la desexcitación del generador será realizada a través de un circuito de rueda libre instalado en el tablero del regulador de tensión. Para ejecutar los servicios de mantenimiento, el generador precisará estar parado, ya que solamente la desexcitación no bastará.

5.3 REGULADOR DE TENSIÓN

El regulador de tensión debe ser parametrizado de acuerdo con las informaciones del manual de este equipo.

COMISIONAMIENTO

Cuando el generador es accionado por primera vez, o tras una parada prolongada, deben ser considerados varios aspectos, además de los procedimientos normales de operación.

ATENCIÓN

- Evitar cualquier contacto con circuitos eléctricos:
- Los circuitos de baja tensión también pueden ofrecer peligro de vida;
- Podrán ocurrir sobretensiones en cualquier circuito electromagnético, en ciertas condiciones de operación;
- No abrir repentinamente un circuito electromagnético, ya que la presencia de una tensión de descarga inductiva podrá perforar el aislamiento o herir al operador;
- Para la apertura de estos circuitos deben ser utilizadas llaves de accionamiento o disyuntores.

INSPECCIÓN PRELIMINAR 6.1

Antes de la operación inicial del generador, o tras un largo período sin operación, deberán ser verificados los siguientes ítems:

- Verificar si el generador está correctamente alineado: 1.
- Verificar si las patas del generador fueron fijadas con 2. los torques de apriete recomendados en este manual. El generador debe estar sujeto a la base:
- Verificar si el generador está limpio y si fueron removidos los embalajes, instrumentos de medición y dispositivos de alineación del área de trabajo del generador;
- 4. Verificar si el generador está debidamente puesto a tierra
- 5. Medir la resistencia de aislamiento de los devanados. asegurándose de que esté dentro del valor prescrito;
- Verificar si las partes de conexión del acoplamiento 6. están en perfectas condiciones de operación, debidamente apretadas y engrasadas, cuando sea
- Verificar que los cojinetes no estén dañados, que 7. estén correctamente fijados y alineados;
- Verificar que los cojinetes estén debidamente 8. lubricados. El lubricante usado debe ser del tipo especificado en la placa de identificación. Verificar el nivel de aceite de los cojinetes lubricados a aceite. Los coiinetes con lubricación forzada deben tener flujo y presión de aceite conforme es especificado en su placa de identificación;
- Verificar si las conexiones de los cables de conexión del generador y de los accesorios fueron realizadas conforme el esquema de conexión y si el sistema de protección/excitación del generador está funcionando correctamente en el tablero de control;
- 10. Verificar si el regulador de tensión está debidamente parametrizado y opera conforme su manual de instalación;
- 11. Verificar si el relé de protección está parametrizado y funcionando de acuerdo con el estudio de selectividad:
- 12. Verificar si los cables de la red están correctamente conectados a los bornes principales del generador y asegurarse de que estén correctamente apretados y que la posibilidad de cortocircuito sea evitada;
- 13. Las entradas y salidas de aire del generador deben estar desobstruidas:
- 14. Las partes móviles del generador deben ser protegidas para evitar accidentes;
- Las tapas de las cajas de conexión deben estar fijadas correctamente:
- Probar el funcionamiento del sistema de inyección de aceite bajo alta presión (si hay), asegurando su correcto funcionamiento;

- 17. Verificar si el freno (si hay) está correctamente fijado y ajustado. Verificar el funcionamiento del tablero de comando del freno;
- 18. Probar el funcionamiento de la unidad hidráulica (si hay), asegurando su correcto funcionamiento;
- 19. Al girar el rotor del generador, verificar que no presente ruidos extraños.

OPERACIÓN INICIAL SIN CARGA 6.2

Luego de haber sido hechas todas las inspecciones preliminares, proceder de acuerdo con las orientaciones a seguir, para efectuar la operación inicial del generador:

- Apagar la resistencia de calentamiento;
- Ajustar las protecciones en el tablero de protección/excitación del generador;
- 3. En cojinetes lubricados a aceite, verificar el nivel de aceite;
- En cojinetes con lubricación forzada, encender el sistema de circulación de aceite y verificar el nivel, el flujo y la presión de aceite, asegurándose de que estén de acuerdo con los datos indicados en la placa;
- En caso de que el sistema cuente con equipo para detección de flujo de aceite, se deberá aguardar la señal de retorno de flujo de aceite del sistema de circulación de ambos cojinetes, lo que garantizará que el aceite llegó a los cojinetes;
- Encender el sistema de invección de aceite baio alta presión (si hay), éste debe permanecer encendido conforme es informado en la documentación técnica del generador, hasta que los cojinetes obtengan la lubricación por autobombeo;
- 7. Abrir el desvío (by-pass) de la válvula mariposa de la tubería de alimentación de agua de la turbina para ecualización de la presión de agua;
- Liberar los frenos del generador (si hay);
- Accionar la turbina;
- 10. Aumentar la rotación del generador a un valor situado entre un tercio y la mitad de la rotación nominal. Mantener el generador en esta rotación y anotar los valores de las temperaturas en los cojinetes a intervalos de 1 minuto, hasta que se estabilicen. Cualquier aumento rápido o continuo de la temperatura del cojinete indica anormalidades en la lubricación o en su superficie de roce;
- 11. Monitorear la temperatura, el nivel de aceite de los cojinetes y los niveles de vibración. En caso de que haya una variación significativa de algún valor, interrumpir el arranque del generador, detectar las posibles causas y realizar la debida corrección;
- 12. Cuando las temperaturas de los cojinetes se estabilicen a esta rotación reducida, la rotación del generador podrá ser aumentada gradualmente hasta su valor nominal;
- 13. Luego de estos procedimientos, el generador podrá ser excitado;

- 14. Cuando el generador esté en la rotación nominal, encender el regulador de tensión en el modo manual y, utilizando una fuente externa de tensión (conforme recomienda el manual del regulador de tensión), realizar la excitación gradualmente hasta que el generador alcance la tensión nominal;
- 15. Verificar el valor de tensión de salida, el funcionamiento de todos los instrumentos y la secuencia de las fases del generador;
- 16. Todos los instrumentos de medición y control deben ser monitoreados permanentemente para que eventuales alteraciones puedan ser detectadas inmediatamente y para que sus causas sean corregidas antes de continuar con la operación.

ATENCIÓN

Luego de la realización de la operación inicial y de garantizar el perfecto funcionamiento del generador, se podrá continuar con la operación normal del generador para conexión con carga o a la red. Para operar el generador en modo de operación automático (operación normal), se lo debe apagar y se debe hacer la conexión de los terminales del secundario del TP de excitación al circuito de potencia del regulador electrónico de tensión.

6.3 **OPERACIÓN**

Para colocar o gerador em operação, proceder de acordo com as orientações a seguir:

- Desligar a resistência de aquecimento;
- Ajustar as proteções no painel de controle;
- Ligar a unidade hidráulica (se houver);
- Ligar o sistema de circulação de óleo dos mancais (se houver). Verificar o nível, a vazão e a pressão do óleo, certificando-se de que estão de acordo com os dados de placa;
- Aguardar o sinal de retorno da pressão ou do fluxo de óleo do sistema de circulação que assegura que o óleo chegou aos mancais;
- Ligar o sistema de injeção de óleo sob alta pressão (se houver), este deve permanecer ligado conforme informado na documentação técnica do gerador, até que os mancais consigam a lubrificação por auto bombeamento:
- 7. Abrir o desvio (by-pass) da válvula borboleta da tubulação de alimentação de água da turbina para equalização da pressão de água;
- Liberar os freios do gerador (se houver);
- Acionar a turbina hidráulica ajustando a rotação nominal do gerador;
- 10. Ajustar o regulador de tensão para o modo automático ajustando a tensão de referência para o valor da tensão nominal do gerador;
- 11. Quando o gerador atingir a rotação nominal, ligar o regulador de tensão. Este deve fazer a excitação do gerador até que o mesmo atinja a tensão nominal.

ATENCIÓN

Todos los instrumentos de medición y control deben ser monitoreados permanentemente para que eventuales alteraciones puedan ser detectadas inmediatamente y para que sus causas sean corregidas antes de continuar con la operación.

6.3.1 Conexión a la carga o al sistema eléctrico de potencia (Red)

Verifique la secuencia de fases del generador: **Sentido Antihorario** Sentido Horario

> (Visto del lado accionado) V W L1 L2 L3

Figura 6.1: Secuencia de fases (IEC60034-8)

- Para conectar el generador a la carga en modo individual (sencillo), éste debe estar con la misma tensión nominal y la misma secuencia de fases de la carga;
- Cuando el generador trabaje conectado al sistema eléctrico de potencia (red de la concesionaria), antes de hacerse la conexión, las tensiones del generador y de la red deben estar con la misma secuencia de fases y en sincronismo.

ATENCIÓN

Los terminales del generador solamente deben ser conectados al sistema eléctrico de potencia, cuando las señales de tensión estén sincronizadas y las secuencias de fases sean iguales.

6.3.2 Sincronización del generador con la red eléctrica

Para sincronizar el generador con la red eléctrica:

- Colocar el regulador de tensión en servicio y dejar controlar la tensión del generador;
- Ajustar la tensión del generador hasta que se torne igual a la tensión de la red;
- Variar la velocidad del generador hasta que la tensión de la red y la tensión del generador estén en fase;
- Con las tensiones del generador y de la red iguales y en fase, cerrar el disyuntor de conexión del generador con la red.

Datos recomendados para sincronización:

- $\Delta U = +4\% \text{ y} 2\%$
- $\Delta f = + 0.18 Hz y 0.10 Hz$
- Angulo de fase menor a 8°

Los valores máximos ΔU = 5 %, Δf = 2 % no deben ser excedidos.

6.3.3 Registro de datos

Los siguientes datos deben ser colectados y registrados periódicamente durante la operación del generador:

- Temperatura de los cojinetes;
- Temperatura del devanado estator;
- Temperatura de entrada y salida de aire;
- Nivel de vibración;
- Tensión y corriente del estator y del campo.

Al inicio de la operación, los valores deben ser verificados a cada 15 minutos. Tras algunas horas de funcionamiento, verificar estos valores a cada hora. Luego de algún tiempo, estos intervalos podrán ser aumentados progresivamente, no obstante, estos valores deberán ser registrados diariamente durante un período de 5 a 6 semanas.

Temperaturas

- Las temperaturas de los cojinetes, del devanado del estator y del aire de ventilación (si hay) deben ser monitoreadas mientras el generador esté en operación.
- Las temperaturas de los cojinetes y del devanado del estator se estabilizarán en un período entre 4 a 8 horas de funcionamiento;
- La temperatura del devanado del estator dependerá de la condición de carga del generador. Por eso, sus datos de operación (tensiones, corrientes, frecuencia) deberán ser monitoreados durante la operación del generador.

6.3.5 Cojinetes

El arranque del sistema, así como las primeras horas de operación, deben ser monitoreados cuidadosamente.

Antes de poner el generador en operación, verificar:

- Si el sistema de inyección de aceite bajo alta presión (si hay) está encendido;
- Que el sistema de lubricación externa (si hay) esté encendido;
- Que el lubricante utilizado esté de acuerdo con el especificado;
- Las características del lubricante;
- El nivel de aceite (cojinetes lubricados a aceite);
- Si las temperaturas de alarma y apagado están ajustadas para los cojinetes;

Durante el primer arranque se debe prestar atención a vibraciones o ruidos anormales.

En caso de que el cojinete no trabaje de manera silenciosa y uniforme, el generador deberá ser apagado inmediatamente.

En caso de que ocurra una sobreelevación de temperatura, el generador deberá ser apagado inmediatamente para inspeccionar los cojinetes y sensores de temperatura, corrigiendo las eventuales

El generador deberá operar durante algunas horas hasta que la temperatura de los cojinetes se estabilice dentro de los límites especificados.

Luego de la estabilización de las temperaturas de los cojinetes, verificar si no hay pérdida por los plugs, por las juntas o por la punta del eje.

Sistema de inyección de aceite bajo 6.3.5.1 alta presión

En los cojinetes que poseen la opción de levantamiento del eje en el arranque, o en la parada, a través de presión de aceite, el accionamiento de este sistema es hecho a través de una bomba de aceite externa al generador, debiendo ser seguido el siguiente procedimiento:

ATENCIÓN

Se debe encender el sistema de invección de aceite bajo alta presión antes de poner el generador en operación y durante el su parada, conforme es informado en la documentación técnica del generador.

6.3.6 Vibración

Los niveles de vibración admisibles para el funcionamiento del generador deben ser obtenidos directamente en la norma indicada en la Tabla 6.1.

Tabla 6.1: Normas de vibración en generador acoplado

Aplicación	Medición en las partes no girantes	Medición en la parte girante
Hidrogeneradores	ISO 10816-5	ISO 7919-5 VDI2059-5

6.3.7 Causas de vibración

Las causas de vibración más frecuentes son:

- Desalineación entre el generador y el equipo;
- Fijación inadecuada del generador a la base, con "calces sueltos" debajo de una o más patas del generador, o tornillos de fijación mal apretados;
- Base inadecuada o con falta de rigidez;
- Vibraciones externas provenientes de otros equipos.

ATENCIÓN

Operar el generador con valores de vibración por encima de los descritos en la norma puede perjudicar su vida útil y/o su desempeño.

6.4 **PARADA**

Para efectuar la parada del generador, proceder conforme sigue:

- Reducir la entrada de agua en la turbina hasta que la potencia (kW) de salida del generador se torne nula;
- Abrir el disyuntor de la armadura del generador;
- Apagar el regulador de tensión;
- Cerrar completamente el distribuidor de la turbina;
- Encender el sistema de inyección de aceite bajo alta presión (si hay), cuando el generador alcance la rotación especificada en la documentación técnica;
- Aplicar los frenos conforme es informado en la documentación técnica del generador.

Después de que el generador pare completamente:

- Apagar el sistema de inyección de aceite bajo alta presión (si hay);
- Apagar el sistema de circulación de aceite de los cojinetes (si hay);
- Apagar la unidad hidráulica (si hay);
- Encender las resistencias de calentamiento. Éstas deben ser mantenidas encendidas hasta la próxima operación del generador.

PELIGRO

Incluso después de la desexcitación, aún podrá existir tensión en el generador. Por eso, es permitido realizar cualquier trabajo solamente después de la parada total del equipo. El no seguimiento de los puntos arriba descritos representa peligro de vida.

7 MANTENIMIENTO

7.1 GENERAL

Un programa adecuado de mantenimiento incluye las siguientes recomendaciones:

- Mantener el generador y los equipos asociados limpios:
- Medir periódicamente la resistencia de aislamiento de los devanados:
- Medir periódicamente la temperatura de los devanados y cojinetes;
- Verificar eventuales desgastes, funcionamiento del sistema de lubricación y la vida útil de los cojinetes;
- Relubrificar los cojinetes obedeciendo los intervalos de lubrificación;
- Medir los niveles de vibración del generador;
- Inspeccionar los equipos asociados;
- inspeccionar todos los accesorios, protecciones y conexiones del generador, asegurando su correcto funcionamiento.

ATENCIÓN

Las resistencias deben estar sin tensión antes de abrir la tapa de la caja de connexiones, siempre que se realicen tareas de mantenimiento.

ATENCIÓN

El no seguimiento de las recomendaciones mencionadas en el ítem 7.1 puede resultar en paradas no deseadas del equipo.

La frecuencia con que estas inspecciones deben ser hechas depende de las condiciones locales de aplicación.

Siempre que sea necesario transportar el generador, se debe cuidar que el eje esté debidamente trabado para no dañar los cojinetes. Para el trabamiento del eje, utilizar el dispositivo suministrado con el generador. Cuando sea necesario reacondicionar el generador o alguna pieza dañada, consultar a WEG.

7.2 LIMPIEZA GENERAL

- Mantener la carcasa limpia, sin acumulación de aceite o polvo en su parte externa, para así facilitar el intercambio de calor con el medio:
- El interior del generador también debe ser mantenido limpio, exento de polvo, residuos y aceites;
- Para la limpieza utilizar escobillas o paños limpios de algodón. Si el polvo no es abrasivo, la limpieza deberá ser hecha con un aspirador de polvo industrial, "aspirando" la suciedad de la tapa deflectora y todo el polvo acumulado en las palas del ventilador y en la carcasa;
- El compartimiento de la escobilla de puesta a tierra (si hay) debe ser mantenido limpio, sin acumulación de
- Los residuos impregnados con aceite o humedad pueden ser removidos con un paño impregnado en un solvente adecuado:
- Efectuar la limpieza de las cajas de conexión, cuando sea necesario. Los bornes y conectores deben ser mantenidos limpios, sin oxidación y en perfectas condiciones de operación. Evite la presencia de grasa o pátina en los componentes de conexión.

7.3 INSPECCIONES EN LOS **DEVANADOS**

Anualmente, los devanados deberán ser sometidos a inspección visual completa, anotando y reparando cualquier daño y defecto observados, e intervalos de tiempo recomendados en el plan de mantenimiento Tabla 9.1, como sique:

- Las mediciones de la resistencia de aislamiento de los devanados deben ser realizadas a intervalos regulares, principalmente durante tiempos húmedos o después de prolongadas paradas del generador.
- Valores bajos o variaciones bruscas de la resistencia del aislamiento deben ser investigados.
- Los devanados deberán ser sometidos a inspecciones visuales completas a intervalos frecuentes, anotando y reparando todo daño o defecto observado.
- La resistencia de aislamiento podrá ser aumentada hasta un valor adecuado en los puntos en los que esté baja (como consecuencia de polvo o humedad excesiva) por medio de la remoción del polvo y el secado de la humedad del devanado.

LIMPIEZA DE LOS DEVANADOS

Para obtenerse una operación más satisfactoria, así como una vida más prolongada de los devanados aislados, se recomienda mantenerlos libres de suciedad, aceite, polvo metálico, contaminantes etc.

Para eso, es necesario inspeccionar y limpiar los devanados periódicamente, conforme las recomendaciones del "Plan de Mantenimiento" de este manual. Si existe necesidad de reimpregnación, consulte a WEG.

Los devanados podrán ser limpiados con una aspiradora de polvo industrial, con puntera fina no metálica, o solamente con un paño seco.

Para condiciones extremas de suciedad, podrá haber la necesidad de la limpieza con un solvente líquido apropiado. Esta limpieza deberá ser hecha rápidamente para no exponer los devanados por mucho tiempo a la acción de los solventes.

Tras la limpieza con solvente, los devanados deberán ser secados completamente.

Medir la resistencia del aislamiento y el índice de polarización para evaluar las condiciones de aislamiento de los devanados.

El tiempo requerido para secado de los devanados, luego de la limpieza, varía de acuerdo a las condiciones del tiempo, como temperatura, humedad etc.

PELIGRO

La mayoría de los solventes actualmente usados son altamente tóxicos y/o inflamables.

Los solventes no deben ser aplicados en las partes rectas de las bobinas de los generadores de alta tensión, ya que pueden afectar la protección contra efecto corona.

Inspecciones

Luego de la limpieza cuidadosa de los devanados deberán ser ejecutadas las siguientes inspecciones:

- Verificar los aislamientos de los devanados y de las conexiones:
- Verificar las fijaciones de los espaciadores, amarres. cuñas de ranuras, vendajes y soportes;
- Verificar si no ocurrieron rupturas, si no hay soldaduras deficientes, cortocircuito entre espiras, así como contra la masa en las bobinas y en las conexiones. En caso de detectar alguna irregularidad, consultar a WEG;
- Asegurarse de que los cables eléctricos estén conectados adecuadamente y que los elementos de fijación de los terminales estén firmemente apretados. En caso necesario, reapretarlos.

7.4.2 Reimpregnación

En caso de que alguna camada de la resina de los devanados haya sido dañada durante la limpieza o las inspecciones, tales partes deberán ser retocadas con material adecuado (en este caso, consulte a WEG).

7.4.3 Resistencia de aislamiento

La resistencia de aislamiento deberá ser medida cuando todos los procedimientos de mantenimiento estén concluidos.

ATENCIÓN

Antes de poner nuevamente el generador en operación, es imprescindible medir la resistencia de aislamiento de los devanados y asegurar que los valores medidos respeten los especificados.

7.5 MANTENIMIENTO DEL SISTEMA DE REFRIGERACIÓN

Las entradas y salidas de aire del generador no deben ser obstruidas:

En caso de que el generador posea filtros en la entrada y/o salida de aire, éstos deberán ser limpiados con aire comprimido:

En caso de que el polvo sea de difícil remoción, lavar el filtro con agua fría y detergente neutro y secarlo en posición horizontal:

En caso de que el filtro esté impregnado con polvo conteniendo grasa, será necesario lavarlo con gasolina, querosene u otro solvente de petróleo, o agua caliente con aditivo P3;

Todos los filtros deben ser secados después de su limpieza. Evitar torcerlos:

Realizar el cambio del filtro si es necesario.

VIBRACIÓN

Cualquier evidencia de aumento de desbalanceo o vibración del generador deberá ser investigada inmediatamente.

ATENCIÓN

Después de apretar o desmontar cualquier tornillo de máquina, es necesario aplicar Loctite.

DISPOSITIVO DE PUESTA A TIERRA DEL EJE

La tapa trasera del generador GH11 es eléctricamente aislada. Este aislamiento en la tapa trasera, combinado con el dispositivo de puesta a tierra del eje, impide la circulación de corriente del rotor a través de los cojinetes, evitando que haya falla prematura en los cojinetes debido a desgaste causados por descargas eléctricas.

La escobilla de puesta a tierra del eje (si hay) evita la circulación de corriente eléctrica por los cojinetes, lo que es perjudicial para su funcionamiento. La escobilla es colocada en contacto con el eje y conectada a través de un cable a la carcasa del generador que debe estar puesta a tierra. Asegurarse de que la fijación del portaescobillas y su conexión con la carcasa hayan sido hechas correctamente.

Figura 7.1: Escobilla para puesta a tierra del eje

Para proteger el eje del generador contra herrumbre, durante el transporte, éste es protegido con un aceite secante. Para asegurar el funcionamiento de la escobilla de puesta a tierra, este aceite, así como cualquier residuo entre el eje y la escobilla, debe ser removido antes de arrancar el generador. La escobilla de puesta a tierra deberá ser monitoreada constantemente durante su funcionamiento y, al llegar al fin de su vida útil, deberá ser sustituida por otra de igual dimensión y calidad (granulación).

7.8 MANTENIMIENTO DE LA **EXCITATRIZ**

7.8.1 **Excitatriz**

Para el buen desempeño de sus componentes, el compartimiento de la excitatriz del generador debe ser mantenido limpio. Efectuar la limpieza periódica en los devanados, siguiendo los procedimientos descritos en el ítem 7.2 de este manual.

7.8.2 Resistencia de aislamiento

Verificar la resistencia de aislamiento de los devanados de la excitatriz principal y de la excitatriz auxiliar periódicamente para determinar sus condiciones de aislamiento, siguiendo los procedimientos descritos en el ítem 4.4.4 de este manual.

Pruebas de los diodos

Los diodos son componentes que poseen una gran durabilidad y no exigen pruebas frecuentes. En caso de que el generador presente algún defecto que indique falla en los diodos, a través del regulador de tensión, o un aumento de la corriente de campo para una misma condición de carga, los diodos deberán ser probados conforme el procedimiento a seguir:

NOTA

Cuando se prueben los diodos, observar la polaridad de los terminales de prueba con relación a la polaridad del diodo.

- Soltar los cables flexibles de los 6 diodos:
- 2. Con un ohmímetro, medir la resistencia de cada diodo en ambas direcciones.

El diodo es considerado bueno cuando presenta baja resistencia óhmica (hasta ± 100 Ω) en su dirección directa, y alta resistencia (aproximadamente 1 M Ω) en la dirección contraria. Diodos defectuosos tendrán resistencia óhmica de 0 Ω o mayor que 1 M Ω en ambas direcciones medidas. En la mayoría de los casos, el método con ohmímetro para probar los diodos es suficiente para identificar fallas en los diodos. No obstante, en algunos casos extremos podrá ser necesaria la aplicación de la tensión nominal de bloqueo v/o circulación de corriente para detectar falla en los diodos. Debido a los esfuerzos requeridos para estas pruebas, en caso de duda, se recomienda realizar el cambio de los diodos.

7.8.3.1 Sustitución de los diodos

Para sustituir cualquiera de los diodos, proceder de acuerdo con las siguientes orientaciones:

- 1. Sustituir los diodos dañados por diodos nuevos idénticos a los originales, respetando la posición de cada diodo ánodo y de cada diodo cátodo;
- 2. Los diodos ya son suministrados con cable de conexión aislado y terminal de conexión;
- 3. Limpiar completamente el disco disipador alrededor del agujero de montaje del diodo.
- 4. Verificar si la rosca del diodo está limpia y libre de rebarbas;
- 5. Pasar pasta térmica en los contactos;
- 6. Instalar el diodo en su posición correcta, utilizando una llave de torque, respetando los torques de apriete recomendados en la Tabla 7.1.

Tabla 7.1: Torque de apriete de los diodos

Rosca de la base del diodo (mm)	Llave del torquímetro (mm)	Torque de apriete (Nm)
M12	24	10
M16	32	30
M24	41	60

ATENCIÓN

Es de fundamental importancia que sea respetado el torque de apriete para no dañar los diodos durante el montaje.

7. Después de fijar los diodos, efectuar la conexión de sus cables.

NOTA

La polaridad del diodo es indicada por una flecha en su carcasa. Al sustituir los diodos, asegurarse que los mismos sean instalados en cada parte del disco disipador en la polaridad correcta.

La conducción de corriente debe ocurrir solamente en sentido ánodo-cátodo, o sea, en la condición de polarización directa.

7.8.4 Prueba en los varistores

Los varistores son dispositivos instalados entre las dos mitades del disco del puente rectificador donde están instalados los diodos, teniendo la finalidad de proteger los diodos contra sobretensión.

En caso de falla de estos componentes, éstos deberán ser sustituidos.

Para probar las condiciones de funcionamiento de los varistores puede ser utilizado un ohmímetro. La resistencia de un varistor debe ser muy alta (±20.000 ohms). En caso de daños verificados en el varistor, o si su resistencia está muy baja, éste deberá ser sustituido.

Sustitución de los varistores

Para sustituir cualquiera de los varistores, proceder de acuerdo con las orientaciones a seguir:

- 1. Sustituir los varistores dañados por varistores nuevos idénticos a los originales, de acuerdo con la especificación del fabricante del generador;
- 2. Para sustituir el varistor, soltar el tornillo que lo fija al disco disipador y el tornillo que fija el puente de conexión del varistor al disco disipador contrario;
- 3. Al remover el varistor, observar atentamente cómo los componentes fueron montados para que el nuevo varistor sea instalado de la misma forma;
- 4. Antes de montar el nuevo varistor, asegurarse de que todas las superficies de contacto de los componentes (discos disipadores, calces, aisladores y varistor) estén niveladas y lisas, para así asegurar un perfecto contacto entre ellas;
- 5. Fijar el nuevo varistor apretando el tornillo que lo sujeta al disco disipador, solamente lo suficiente para hacer una buena conexión eléctrica. Un apriete excesivo puede rajar o dañar el varistor;
- 6. Apretar también el tornillo que fija el puente de conexión del varistor al disco disipador.

7.9 MANTENIMIENTO DE LOS COJINETES

La aplicación de los hidrogeneradores de la línea GH-11 se caracteriza en la utilización de cojinetes de rodamiento lubricados a grasa o cojinetes de deslizamiento.

NOTA

Os dados dos mancais, quantidade e tipo de lubrificante e intervalos de lubrificação são informados em uma placa de identificação dos mancais, fixada no gerador. Verifique estas informações antes de fazer a lubrificação.

7.9.1 Cojinetes de rodamiento

7.9.1.1 Instrucciones para lubricación

El sistema de lubricación fue proyectado de tal modo que durante la lubricación de los rodamientos, toda la grasa vieja sea removida de las pistas de los rodamientos y expelida a través de un drenaje que permite su salida e impide la entrada de polvo u otros contaminantes nocivos dentro del rodamiento. Este drenaje también evita la damnificación de los rodamientos por el conocido problema de lubricación

Es aconsejable realizar la lubricación con el generador en operación, para así asegurar la renovación de la grasa en el alojamiento del rodamiento.

Si eso no es posible, debido a la presencia de piezas girantes cerca de la engrasadora (poleas etc.) que pueden poner en riesgo la integridad física del operador, proceder de la siguiente manera:

- Con el generador parado, invectar aproximadamente la mitad de la cantidad total de la grasa prevista y operar el generador durante aproximadamente 1 minuto en rotación nominal:
- Parar el generador e inyectar el restante de la grasa.

ATENCIÓN

La inyección de toda la grasa con el generador parado puede causar la penetración de parte del lubricante en el interior del generador, a través del sellado interno de la caja del rodamiento. Es importante limpiar las graseras antes de la lubricación, para así evitar que sean arrastrados materiales extraños hacia dentro del rodamiento. Para lubricación, use exclusivamente engrasadora manual.

- Los intervalos de lubricación informados en la placa consideran una temperatura de trabajo del rodamiento de 70 °C;
- Basándose en los rangos de temperatura de operación relacionadas en la Tabla 7.2, aplicar los siguientes factores de corrección para los intervalos de lubricación de los rodamientos:

Tabla 7.2: Factor de reducción para intervalos de lubricación

Temperatura de trabajo del cojinete	Factor de reducción
Por debajo de 60 °C	1,59
Entre 70 y 80 °C	0,63
Entre 80 y 90 °C	0,40
Entre 90 y 100 °C	0,25
Entre 100 y 110 °C	0,16

7.9.1.2 Relubricación de los rodamientos con dispositivo de cajón para remoción de la grasa

Para efectuar la relubricación de los cojinetes, la remoción de la grasa vieja es hecha por el dispositivo con cajón instalado en cada cojinete.

Procedimientos para lubricación:

- 1. Antes de iniciar la lubricación del cojinete, limpiar la grasera con un paño de algodón;
- 2. Retirar la varilla con cajón para la remoción de la grasa vieja, limpiar el cajón y colocarlo nuevamente;
- 3. Con el generador en funcionamiento, inyectar la cantidad de grasa especificada en la placa de identificación de los rodamientos, por medio de engrasadora manual;
- 4. El exceso de grasa saldrá por el dreno inferior del cojinete y se depositará en el cajón;
- 5. Mantener el generador en funcionamiento durante el tiempo suficiente para que escurra todo el exceso de grasa;
- 6. Remover el exceso de grasa, tirando la varilla del cajón y limpiándolo. Este procedimiento debe ser repetido tantas veces como sea necesario hasta que el cajón no retenga más grasa;
- 7. Inspeccionar la temperatura del cojinete para garantizar que no hubo ninguna alteración significativa.

7.9.1.3 Tipo y cantidad de grasa

La relubricación de los cojinetes debe ser realizada siempre con la grasa original especificada en la placa de características de los cojinetes, así como en la documentación del generador.

ATENCIÓN

WEG no recomienda la utilización de grasa diferente de la grasa original del generador.

Es importante efectuar una lubricación correcta, es decir, aplicar la grasa correcta y en cantidad adecuada, ya que tanto una lubricación deficiente, así como una lubricación excesiva, causan daños a los rodamientos. Una lubricación en exceso lleva a la elevación de la temperatura debido a la gran resistencia que ofrece al movimiento de las partes rotativas y, principalmente, debido a la pulsación de la grasa que acaba por perder completamente sus características de lubricación.

7.9.1.4 Compatibilidad de grasas

Se puede decir que las grasas son compatibles cuando las propiedades de la mezcla se encuentran dentro de los rangos de propiedades de las grasas individualmente.

En general, grasas con el mismo tipo de jabón son compatibles entre sí, no obstante, dependiendo de la proporción de mezcla, podrá haber incompatibilidad. De esta forma, no es recomendada la mezcla de diferentes tipos de grasa sin antes consultar al proveedor de la grasa o a WEG.

Algunos espesantes y aceites básicos no pueden ser mezclados entre sí, ya que no forma una mezcla no homogénea. En este caso, no se puede descartar una tendencia de endurecimiento o, contrariamente, un ablandamiento de la grasa o la caída del punto de gota de la mezcla resultante.

ATENCIÓN

Grasas con diferentes tipos de base nunca deberán ser mezcladas.

Ejemplo: Grasas a base de Litio nunca deben ser mezcladas con otras que tengan base de sodio o calcio.

7.9.1.5 Desmontaje de los cojinetes

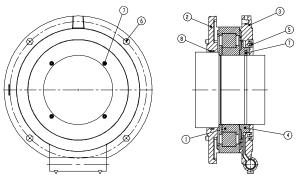


Figura 7.2: Partes del cojinete

Detalle de la Figura 7.2:

- Rodamiento
- Anillo de fijación interno 2.
- 3 Anillo de fijación externo
- Centrifugador de grasa
- Anillo con laberinto
- Tornillo sextavado 6.
- 7. Tornillo sextavado interno
- 8. Fieltro
- Tornillo sextavado interno s/ cabeza

Antes de desmontar el cojinete delantero:

- Retirar los tubos de prolongamiento de la entrada y salida de grasa;
- Limpiar completamente la parte externa del cojinete;
- Retirar la escobilla de puesta a tierra;
- Retirar los sensores de temperatura del cojinete;
- Desmontar la brida delantera.

Antes de desmontar el cojinete trasero:

- Retirar los tubos de prolongamiento de la entrada y salida de grasa;
- Limpiar completamente la parte externa del cojinete;
- Retirar los sensores de temperatura del cojinete;
- Retirar la tapa del compartimento de la excitatriz, desmontar la excitatriz e la rueda de diodos.

Desmontaje del cojinete

Para desmontar el cojinete, proceder de acuerdo con las siguientes orientaciones:

- Retirar los tornillos que fijan el anillo con laberinto (5) e retirarlo:
- Retirar los tornillos que fijan los anillos de fijación interno y externo (2 y 3);
- Retirar el anillo de fijación externo (3); 3
- Retirar el tornillo (7) que fija el centrifugador de grasa (8) y retirarlo;
- Retirar la tapa del generador;
- Retirar el rodamiento (1):
- Retirar el anillo de fijación interno (2), si necesario.

ATENCIÓN

Durante el desmontaje de los cojinetes se debe tener cuidado de no causar daños a las esferas, rodillos, o a la superficie del eje;

Guardar las piezas desmontadas en local seguro y limpio.

7.9.1.6 Sustitución de los rodamientos:

- El desmontaie de los rodamientos debe ser hecho siempre con herramienta adecuada (extractor de rodamientos).
- Las garras del extractor deberán ser aplicadas sobre la cara lateral del anillo interno a ser desmontado o sobre una pieza adyacente.

Figura 7.3: Dispositivo para extraer el rodamiento

7.9.1.7 Montaje de los cojinetes

- Limpiar los cojinetes completamente e inspeccionar las piezas desmontadas, así como el interior de los anillos de fijación;
- Asegurarse de que las superficies del rodamiento, eje y anillos de fijación estén perfectamente lisas;
- Llenar ¾ del depósito de los anillos de fijación interno y externo con la grasa recomendada (Figura 7.4) y lubricar el rodamiento con la cantidad suficiente de grasa antes de montarlo;
- Antes de montar el rodamiento en el eje, calentarlo a una temperatura entre 50 °C y 100 °C;
- Para el montaje completo del cojinete, siga las instrucciones para desmontaje en orden inverso.
- La eficacia de sellado contra Taconita vendrá dada por el relleno de grasa entre los salientes del sello laberíntico y el anillo exterior (cuando exista)

Figura 7.4: Anillo de fijación externo del cojinete

ATENCIÓN

Cuando el cojinete sea abierto, inyectar la grasa nueva a través de la grasera para expeler la grasa vieja que se encuentra en el tubo de entrada de la grasa y aplicar la grasa nueva en el rodamiento, en el anillo interno y en el anillo externo, llenando 3/4 de los espacios vacíos, conforme es mostrado en la Figura 7.4. En el caso de los cojinetes dobles (esfera + rodillo), llenar también 3/4 de los espacios vacíos entre los anillos intermediarios;

Nunca limpiar el rodamiento con paños a base de algodón, ya que pueden soltar partículas que actúan como partículas sólidas.

NOTA

WEG no se responsabiliza por el cambio de la grasa ni por eventuales daños procedentes de tal procedimiento.

7.9.2 Cojinetes de deslizamiento

7.9.2.1 Datos de los cojinetes

Los rodamientos de cárter seco o los que utilizan dos salidas de aceite por rodamiento no disponen de mirilla de nivel de aceite. Por lo tanto, no es necesario comprobar el nivel de aceite.

Los datos característicos como tipo, cantidad y flujo de aceite, son indicados en la placa de identificación de los cojinetes y deben ser seguidos rigurosamente bajo pena de sobrecalentamiento y daños a los cojinetes.

La instalación hidráulica (para cojinetes con lubricación forzada) y la alimentación de aceite para los cojinetes del generador son de responsabilidad del usuario.

7.9.2.2 Instalación y operación de los coiinetes

Para información sobre la relación de las piezas, instrucciones para montaje y desmontaje, así como para detalles de mantenimiento, consulte el manual de instalación y operación específico de los cojinetes.

7.9.2.3 Troca de aceite

Cojinetes auto lubricables:

El cambio del aceite de los cojinetes debe ser hecho obedeciendo los intervalos en función de la temperatura de trabajo del cojinete, mostrados en la Tabla 7.3:

Tabla 7.3: Intervalos para cambio de aceite

Temperatura de trabajo del cojinete	Intervalo para cambio de aceite del cojinete
Abajo de 75 °C	20.000 horas
Entre 75 y 80 °C	16.000 horas
Entre 80 y 85 °C	12.000 horas
Entre 85 y 90 °C	8.000 horas
Entre 90 y 95 °C	6.000 horas
Entre 95 y 100 °C	4.000 horas

Cojinetes con circulación de aceite (externa):

El cambio del aceite de los cojinetes debe ser hecho a cada 20.000 horas de trabajo, o siempre que el lubricante presente alteraciones en sus características. La viscosidad y el pH del aceite deben ser verificados periódicamente.

NOTA

El nivel de aceite debe ser verificado diariamente, debiendo permanecer en el medio del visor de nivel de aceite.

Los cojinetes deben ser lubricados con el aceite especificado, respetando los valores de flujo informados en su placa de identificación.

Todos los orificios roscados no usados deben estar cerrados por plugs y ninguna conexión podrá presentar pérdida.

El nivel de aceite es alcanzado cuando el lubricante puede ser visto aproximadamente en el medio del visor de nivel. El uso de mayor cantidad de aceite no perjudica el cojinete, no obstante, puede causar pérdidas a través de los sellados del eje.

El nivel de aceite debe estar dentro de un intervalo especificado, como indica la mirilla. El nivel mínimo de aceite es un cuarto de la distancia desde la parte inferior de la mirilla, y el nivel máximo de aceite es tres cuartos de la distancia desde la parte superior de la mirilla. Si el equipo no dispone de tubos de salida de aceite, póngase en contacto con WEG para que le indiquen cómo garantizar el nivel de aceite adecuado en la salida.

ATENCIÓN

Los cuidados tenidos en cuenta con la lubricación, determinarán la vida útil de los cojinetes, así como la seguridad en el funcionamiento del generador. Por eso, se deben observar las siguientes recomendaciones:

- El aceite lubricante seleccionado deberá ser el que tenga la viscosidad adecuada para la temperatura de trabajo de los cojinetes. Eso debe ser observado en cada cambio de aceite o durante los mantenimientos periódicos.
- Nunca usar o mezclar aceite hidráulico con el aceite lubricante de los cojinetes;
- Cantidad insuficiente de lubricante, debido a llenado incompleto o falta de seguimiento del nivel, puede dañar los casquillos;
- El nivel mínimo de aceite es alcanzado cuando el lubricante puede ser visto en la parte inferior del visor de nivel, con el generador parado.

7.9.2.4 Sellados

Realizar inspección visual de los sellados, verificando que las marcas de arrastre del sello de sellado en el eje no comprometan su integridad, ni haya grietas o partes quebradas. Piezas agrietadas o quebradas deben ser sustituidas.

En el caso del mantenimiento del cojinete, para montar el sello de sellado, se debe limpiar cuidadosamente las caras de contacto del sello y de su alojamiento y recubrir los sellados con un componente no endurecible (Ej. sellante Curil T). Las dos mitades del anillo laberinto de sellado deben ser unidas por un resorte circular. Los orificios de drenaje localizados en la mitad inferior del anillo, deben ser mantenidos limpios y desobstruidos.

Una instalación incorrecta puede dañar el sellado y causar pérdida de aceite.

ATENCIÓN

Para mayores detalles sobre el desmontaje y montaje de los sellos de sellado de los cojinetes de deslizamiento, consultar el manual específico de estos equipos.

7.9.2.5 Operación de los cojinetes de deslizamiento

El arranque del sistema, así como las primeras horas de operación, deben ser monitoreados cuidadosamente.

Verificar antes del arranque:

- Que los tubos de entrada y salida de aceite (si existen) estén limpios. Limpiar los tubos por decapado, si fuera necesario;
- Que el aceite utilizado esté de acuerdo con el especificado en la placa de características;
- Las características del lubricante;
- El nivel de aceite;
- Las temperaturas de alarma y apagado ajustadas para el cojinete.

Durante el primer arrangue se debe prestar atención a eventuales vibraciones o ruidos. En caso de que el cojinete no trabaje de manera silenciosa y uniforme, el generador deberá ser apagado inmediatamente. El generador debe operar durante algunas horas hasta que se estabilice la temperatura de los cojinetes. En caso de que ocurra una sobreelevación de temperatura de los cojinetes, el generador deberá ser apagado y deberán ser verificados los cojinetes y sensores de temperatura. Verificar que no haya pérdida de aceite por los plugs, juntas, o por la punta de eje.

7.9.2.6 Mantenimiento de los cojinetes de deslizamiento

El mantenimiento de cojinetes de deslizamiento incluye:

- Verificación periódica del nivel de aceite y de las condiciones del lubricante;
- Verificación de los niveles de ruido y de vibraciones del cojinete;
- Monitoreo de la temperatura de trabajo y reapriete de los tornillos de fijación y de montaje;
- Para facilitar el intercambio de calor con el medio, la carcasa debe ser mantenida limpia, sin acumulación de aceite o polvo en su parte externa;
- El cojinete trasero es aislado eléctricamente. Las superficies esféricas de asiento del casquillo, en la carcasa, son forradas con un material aislante. Nunca remueva el dicho forro;
- El perno anti rotación también es aislado, y los sellos de sellado son hechos de material no conductor:

Los instrumentos de control de la temperatura que estén en contacto con el casquillo también deben ser debidamente aislados.

7.9.3 Ajuste de las protecciones

ATENCIÓN

Las siguientes temperaturas deben ser ajustadas en el sistema de protección de los cojinetes:

ALARMA: 110 °C APAGADO: 120 °C

La temperatura de alarma deberá ser ajustada a 10 °C por encima de la temperatura de régimen de trabajo, no sobrepasando el límite de 110 °C.

7.9.4 Desmontaje/montaje de los sensores de temperatura Pt100 de los cojinetes

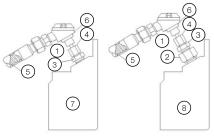


Figura 7.5: Pt100 en los cojinetes

Detalle de la Figura 7.5:

- 1. Niple de reducción
- 2 Adaptador aislante
- 3.Contratuerca
- 4 Bulbo
- 5. Tubo flexible
- 6. Sensor de Temperatura Pt-100
- 7.Cojinete no aislado
- 8. Cojinete aislado

Instrucciones para desmontaje:

En caso de que sea necesario retirar el Pt100 para mantenimiento del cojinete, proceder de acuerdo con las siguientes orientaciones:

- Retirar el Pt100 con cuidado, trabando la contratuerca (3) y desenroscando solamente el Pt100 del ajuste del bulbo (4);
- Las piezas (2) y (3) no deben ser desmontadas.

Instrucciones para montaje:

ATENCIÓN

Antes de efectuar el montaje del Pt100 en el cojinete, verificar que no presente marcas de golpes u otras averías que puedan comprometer su funcionamiento.

- Insertar el Pt100 en el cojinete;
- Trabar la contratuerca (3) con una llave;
- Roscar el bulbo (4), ajustándolo para que la extremidad del Pt100 se apoye en la superficie de contacto del cojinete.

NOTAS

- El montaje del Pt100 en cojinetes no aislados debe ser hecho directamente en el cojinete, sin el adaptador aislante (2);
- El torque de apriete para montaje del Pt100 y de los adaptadores no debe ser superior a 10 Nm.

DESMONTAJE Y MONTAJE DEL GENERADOR

ATENCIÓN

Todos los servicios referentes a reparaciones, desmontaje y montaje, deben ser ejecutados solamente por profesionales debidamente capacitados, bajo pena de ocasionar daños al equipo o daños personales. En caso de dudas consulte a WEG.

La secuencia para desmontaje y montaje depende del modelo del generador.

Utilizar siempre herramientas y dispositivos adecuados. Cualquier pieza dañada (grietas, amasadura de partes mecanizadas, roscas defectuosas), debe ser sustituida, evitando su recuperación.

8.1 **DESMONTAJE**

Cuando sea hecho el desmontaje del generador eléctrico, se debe tener en cuenta los siguientes cuidados:

- Utilizar siempre herramientas y dispositivos 1. adecuados para desmontaje del generador;
- Antes de desmontar el generador, desconectar los tubos de agua de refrigeración y de lubricación (si existen):
- Desconectar las conexiones eléctricas y de los accesorios;
- Retirar los sensores de temperatura de los cojinetes y la escobilla de puesta a tierra:
- Para prevenir daños al rotor, apoyar el eje en los lados delantero y trasero sobre soportes;
- Para desmontaje de los cojinetes siga los procedimientos descritos en este manual;
- La retirada del rotor del interior del generador debe ser hecha con un dispositivo adecuado y con el máximo de cuidado para que el rotor no se arrastre en el paquete de chapas del estator o en las cabezas de bobina, evitando daños.

8.2 **MONTAJE**

Para montaje del generador, adoptar el procedimiento de desmontaje en orden inverso;

NOTA

Utilizar siempre herramientas y dispositivos adecuados para montaje del generador;

Cualquier pieza dañada (grietas, amasadura de partes mecanizadas, roscas defectuosas), debe ser sustituida, evitando siempre su recuperación.

8.3 **TORQUE DE APRIETE**

La Tabla 8.1 y la Tabla 8. presentan los torques de apriete recomendados para los tornillos de montaje del generador o de sus piezas.

Tabla 8.1: Torque de apriete de los tornillos para piezas metal / metal

res	il / Clase de istencia ón de drenaje	Acero carbono / 8.8 o superior 70%		Acero inox / A2 - 70 o superior 70%		
Lub	rificante	Seco Molycote		Seco	Molycote 1000	
Diám.	Paso (mm)	То	rque de aprie	te en tornillos (Nm)		
M4	0,7	2,1	1,8	1,8	1,3	
M5	0,8	4,2	3,6	3,6	2,7	
M6	1	8	6	6,2	4,5	
M8	1,25	19,5	15	15	11	
M10	1,5	40	29	30	22	
M12	1,75	68	51	52	38	
M14	2	108	81	84	61	
M16	2	168	126	130	94	
M18	2,5	240	174	180	130	
M20	2,5	340	245	255	184	
M22	2,5	470	335	350	251	
M24	3	590	424	440	318	
M27	3	940	621	700	466	
M30	3,5	1170	843	880	632	
M33	3,5	1730	1147	1300	860	
M36	4	2060	1473	1540	1105	
M42	4,5	3300	2359	2470	1770	
M48	5	5400	3543	4050	2657	

Tabla 8.2: Torque de apriete de los tornillos para piezas metal / aislante

	II / Clase de istencia	Acero carbono / 8.8 o superior		Acero inox / A2 – 70 o superior		
% Tensió	n de drenaje	40%		40%		
Lub	rificante	Seco Molycote		Seco	Molycote 1000	
Diám.	Paso (mm)	То	rque de aprie	te en tornil	los (Nm)	
M4	0,7	1	1	1	1,3	
M5	0,8	2	2	1,7	2,7	
M6	1	4,4	3	3,4	4,5	
M8	1,25	10,7	7,5	8,3	11	
M10	1,5	21	15	16,5	22	
M12	1,75	37	26	28	38	
M14	2	60	42	46	61	
M16	2	92	65	72	94	
M18	2,5	132	90	100	130	
M20	2,5	187	126	140	184	
M22	2,5	260	172	190	251	
M24	3	330	218	240	318	
M27	3	510	320	390	466	
M30	3,5	640	433	480	632	
M33	3,5	950	590	710	860	
M36	4	1130	758	840	1105	
M42	4,5	1800	1213	1360	1770	
M48	5	2970	1822	2230	2657	

NOTA

La clase de resistencia normalmente está indicada en la cabeza de los tornillos sextavados.

ATENCIÓN

El montaie del volante de inercia, si existe. deberá ser hecho conforme el manual de montaje del generador. En caso que persista alguna duda, consulte a WEG.

8.4 MEDICIÓN DEL ENTREHIERRO

Luego del desmontaje y montaje del motor, será necesario medir el entrehierro para verificar la concentricidad del rotor.

Medir el entrehierro entre el soporte metálico del sello del eje los motores, medir el eje en cuatro puntos equidistantes del eje (45°, 135°, 225° y 315°). La diferencia entre las mediciones del entrehierro en dos puntos diametralmente opuestos debe ser inferior al 10% del entrehierro medio

ATENCIÓN

El rodamiento solo puede cerrarse después de haber realizado la alineación y la medición del entrefierro

Para un solo cojinete:

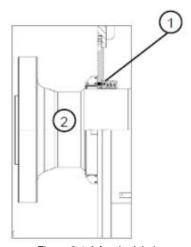


Figura 8.1: LA selo del eje

Legenda de la Figura 8.1:

- LA sello del eje
- Sello del motor 2.

REPUESTOS

WEG recomienda que sean mantenidas en stock los siguientes repuestos:

- Casquillo para cojinete delantero;
- Casquillo para cojinete trasero;
- Sello laberinto fluctuante para cojinete delantero;
- Sello laberinto fluctuante para cojinete trasero;
- Rodamiento delantero y trasero;
- Sensor de temperatura para cojinete delantero;
- Sensor de temperatura para cojinete trasero;
- Resistencia de calentamiento;
- Fieltro para filtro (si hay);
- Conjunto de diodos rectificadores:
- Conjunto de varistores;
- Lubricante para los cojinetes;
- Pastillas de freno;
- Escobilla de puesta a tierra del eje.

Los repuestos deben ser almacenadas en ambientes limpios, secos y ventilados y, si es posible, a una temperatura constante.

^{*}Cojinetes de deslizamiento

^{**}Cojinetes de rodamiento

PLAN DE MANTENIMIENTO

El plan de mantenimiento descrito en la Tabla 9.1 es orientativo, ya que los intervalos entre cada intervención de mantenimiento pueden variar con las condiciones y el local de funcionamiento del generador.

Para los equipos asociados, como unidad de suministro de agua o sistema de mando y protección, se deben consultar también sus respectivos manuales.

Tabla 9.1: Plan de mantenimiento

		1: Plan de	3	6		3	
EQUIPO	Semanal	Mensual	meses	meses	Anual	años	Observación
		ESTAT	OR				I
Inspección visual del estator.					X		
Control de la limpieza.					х		
Inspección de las cuñas de las ranuras.						х	
Verificación de la fijación de los terminales del estator.					х		
Medición de la resistencia de aislamiento del					x		
devanado.		ROTO)R				
Inspección visual.					х		
Control de la limpieza.					х		
Inspección del eje (desgaste, incrustaciones).						х	
mispecolori dei ojo (deogaste, mordstadionos).		EXCITA	TRI7				
Control de la limpieza.		LXGIIX		х			
Prueba de los diodos, tiristores y varistores.					х		
inspección de los devanados.					X		
•	OJINET	ES DE E		IENTO	Χ		
Control del ruido, vibración, pérdidas y	JOSHNET		CODAIN	LINIO			
temperatura.	X						
Control de la calidad del lubricante.					x		
Cambio del lubricante.							Intervalo indicado en la placa de identificación del cojinete.
	COJINETE	S DE DE	SLIZAM	IIENTO			
Control del ruido, vibración, flujo de aceite, pérdidas y temperatura.	х						
Control de la calidad del lubricante.					x		
Inspección de los casquillos y de la pista del eje						x	
Cambio del lubricante.							Intervalo indicado en la placa de identificación del cojinete.
CAJAS DE CON	EXIÓN Y	TERMI	NALES	DE PU	STA T	IERRA	\
Limpieza del interior de las cajas de conexión.					х		
Reapriete de los tornillos.					х		
	OS DE F	ROTEC	CIÓN Y	CONTI	ROL		
Prueba de funcionamiento.					х		
Registro de los valores.	х						
Desmontaje y prueba de funcionamiento.						х	
. , ,	AC	OPLAN	IIENTO	1			I.
Inspección de la alineación.					х		Verificar tras la primera
Inspección de la fijación.					х		semana de funcionamiento.
opeooden de la njacien.	GENER	ADOR	COMPL	FTO			Tuncionamiento.
Inspección de ruido y vibración.	X		COM L				
Drenaje del agua condensada.			x				
Reapriete de los tornillos.					х		
Limpieza de las cajas de conexión.					X		
Reapriete de las conexiones eléctricas y de la							
puesta a tierra.					Х		
		FREN	10				
Verificación del desgaste de las pastillas.							Conforme manual del
Control funcional.				1			equipo

10 ANORMALIDADES, CAUSAS Y SOLUCIONES

NOTA

Las instrucciones en la Tabla 10.1 presentan solamente una relación básica de anormalidades, causas y medidas correctivas. En caso de duda consulte a WEG.

Tabla 10.1: Relación básica de anormalidades, causas y acciones correctivas

ANORMALIDAD	POSIBLES CAUSAS	CORRECCIÓN
	Protección actuada.	 Verificar en el tablero principal y en los módulos de los reguladores la señalización de protección actuada.
	 La llave de excitación, en caso que exista, no está funcionando. 	Verificar la llave de excitación.
	 Interrupción en el circuito de alimentación de potencia del regulador de tensión. 	Verificar el circuito de alimentación de potencia del regulador de tensión.
	La velocidad de accionamiento no está	Medir la rotación del generador y hacer, eventualmente, un nuevo ajuste.
	correcta.	 Verificar si la protección de subfrecuencia no está actuada.
El generador no se excita o no ceba	Interrupción en el circuito de excitación	 Hacer mediciones en todos los diodos girantes; cambiar diodos defectuosos o cambiar todo el conjunto.
	principal.	 Verificar la conexión entre el rotor principal y el disco de diodos.
	Relé u otro componente del regulador	Pasar al modo manual.
	con defecto.	Cambiar el regulador de tensión.
	 Referencia de tensión parametrizada en valor bajo. 	Reajustar la parametrización.
	 El varistor de protección de los diodos está defectuoso. 	 En caso de que esté defectuoso, deberá ser cambiado. Si no hay repuesto, retirarlo temporariamente.
	Rectificadores girantes defectuosos.	 Hacer la medición individual en todos los diodos girantes, cambiar los diodos defectuosos y cambiar, eventualmente, todo el conjunto.
		 Verificar si la función U/F del regulador de tensión está actuando.
	 Velocidad por abajo del ajuste parametrizado para función U/F del regulador de tensión. 	 Si la función U/F está parametrizada por encima de la frecuencia nominal, reajustar para –5% abajo.
El generador no se excita hasta la tensión nominal		Medir la velocidad y regularla.
	 Referencia de tensión parametrizada en valor bajo. 	 Reajustar la parametrización de la referencia de tensión.
	 Ajuste remoto de la tensión por debajo de la nominal. 	 Reajustar en las botoneras remotas el valor correcto.
	 Tensión de alimentación de potencia del regulador de tensión por debajo de la tensión deseada, resultando una tensión de salida menor que la necesaria. 	 Verificar si las conexiones están de acuerdo con el Manual de Regulador de Tensión.
En vacío, el generador se excita hasta la tensión nominal, no obstante, entra en colapso con la carga	Los diodos girantes están defectuosos.	 Hacer mediciones individuales en todos los diodos girantes; cambiar los diodos defectuosos; cambiar, eventualmente todo el conjunto.
	 Actuación de protección: Sobrecorriente, sobreexcitación, sobretensión. 	 Verificar si las parametrizaciones no están ajustadas de tal modo que actúen en condiciones normales de operación.
	Actuación de la función de límite de corriente de excitación.	 Verificar las grandezas ajustadas para la actuación de las protecciones , así como las parametrizaciones.
	 Fuerte caída de velocidad, con actuación, o no, de la función U/F. 	 Verificar el control de velocidad de la turbina. Verificar la parametrización de la
		función U/F.

ANORMALIDAD	POSIBLES CAUSAS	CORRECCIÓN
	 Para sobretensión momentánea con apagado inmediato: apertura del circuito del transformador de señal. 	Verificar fusibles y cables de conexión.
	 En modo remoto: Error en el ajuste a través de las botoneras remotas, con apagado tras cierto tiempo (ajustado también en la parametrización). 	 Reajustar el valor de la tensión de referencia.
El generador, en vacío, se excita a través de sobretensión	 En modo manual: Error en la parametrización de la tensión de referencia: no habrá actuación de la protección. 	 Reajustar el valor de la tensión de referencia.
	 En modo local: Error en la parametrización de la tensión de referencia, con apagado tras cierto tiempo (ajustado también en la parametrización). 	 Reajustar el valor de la tensión de referencia.
	Modo Manual: Estabilidad mal ajustada.	 Ajustar la parametrización del regulador de tensión.
Oscilaciones en la tensión del generador	 Modo automático: Estabilidad mal ajustada. 	 Ajustar la parametrización del regulador de tensión.
	Oscilaciones de la carga.	Verificar la causa de las oscilaciones.
	 Oscilaciones en la rotación de la turbina. 	 Verificar el control de velocidad de la turbina.

11 DECLARACIÓN DE CONFORMIDAD

Declaración UE de Conformidad

WEG (Nantong) Electric Motor Manufacturing CO., LTD.

Persona de contacto: Luís Filipe Oliveira Silva Castro Araújo

Representante Autorizado en la Unión Europea

No. 128# - Xinkai South Road, Nantong Economic & Technical Development

Zone, Nantong, Jiangsu Province - China

WEGeuro - Industria Electrica S.A.

(Punto Unificado de Contacto)

Rua Eng Frederico Ulrich, 4470-605 - Maia - Porto - Portugal

www.weg.net/cn

www.weg.net/pt

WEG Equipamentos Elétricos S.A. Av. Prefeito Waldemar Grubba, 3000 89256-900 - Jaraguá do Sul - SC - Brazil www.weg.net

WEG Industrie (India) PVT. LTD.

Plot n° E-20 (North), SIPCOT Industrial Complex Phase II - Expansion II. Mornapalli Village, Hosur 635 109 Tamil Nadu - India www.weg.net/in

WEG MEXICO, S.A. DE C.V

Carretera Jorobas - Tula Km 3.5, Manzana 5, Lote 1, Fraccionamiento Parque Industrial Huehuetoca, Municipio de Huehuetoca, C.P. 54680, CD. de Mexico y Área Metropolitana - Mexico www.weg.net/mx

El fabricante, declara bajo su responsabilidad que:

Los motores WEG síncronos y asíncronos, generadores y los componentes empleados para las siguientes líneas:

M..., W60, WGM, G...S y AN10

cuando se instalen, mantengan y utilicen en las aplicaciones para las cuales fueron proyectados, y cuando se sigan las debidas normas de instalación e instrucciones del fabricante, los mismos cumplen los requisitos de las siguientes normativas de armonización de la Unión Europea, cuando sean de aplicación:

Directiva de Baja Tensión 2014/35/UE* Directiva de Máquinas 2006/42/CE**

Directiva de Compatibilidad Electromagnética 2014/30/CE (los motores eléctricos son considerados intrínsecamente no perjudiciales en términos de compatibilidad electromagnética)

El cumplimiento de los objetivos de seguridad de la legislación pertinente de armonización de la Unión Europea ha sido demostrado por la conformidad de las siguientes normativas, donde sean de aplicación:

EN 60034-1:2010 + AC:2010/ EN 60034-3:2008 / EN 60034-5:2001 + A1:2007/ EN 60034-6:1993/ EN 60034-7:1993 + A1:2001/ EN 60034-8:2007 + A1: 2014/ EN 60034-9:2005 + A1:2007/ EN 60034-11:2004/ EN 60034-12:2002 + A1:2007/ EN 60034-14:2004 + A1:2007/ EN 60204-1:2018 y EN IEC 60204-11:2019

Marcado CE: 1998

Los motores eléctricos diseñados para su uso a una tensión superior a los 1000V no están incluidos en el alcance de este documento.

** Los motores eléctricos de baja tensión no están incluidos en el alcance, y los que estén diseñados para su uso con una

tensión superior a los 1000V, serán considerados como maquina parcialmente terminada, y serán suministrados con una

Declaración de Incorporación:

Los productos anteriores no pueden ser puestos en servicio mientras la máquina final donde se incorporen haya sido declarada en conformidad con la Directiva de Máquinas.

Documentación técnica para los productos anteriores está recopilada de acuerdo con el apartado B anexo VII de la Directiva de Máquinas 2006/42/CE.

Nosotros nos comprometemos a transmitir, en respuesta a un requerimiento debidamente motivado de las autoridades nacionales, la información pertinente relativa a la máquina parcialmente terminada identificada anteriormente, mediante los representantes autorizados de WEG establecidos en la Unión Europea. El método de transmisión será electrónico o físico, y no deberá perjudicar los derechos de propiedad intelectual del fabricante

> Firmado por e en nombre del fabricante: **Rodrigo Fumo Fernandes** Director de ingenieria

Jaraguá do Sul, 14 de Abril de 2022

12 INFORMACIONES **AMBIENTALES**

12.1 EMBALAJE

Los generadores eléctricos son suministrados en embalajes de cartón, polímeros, madera o material metálico. Estos materiales son reciclables o reutilizables, debiendo recibir el destino correcto, conforme las normas vigentes de cada país. Toda la madera utilizada en los embalajes de los generadores WEG proviene de reforestación y recibe tratamiento de antihongos.

12.2 PRODUCTO

Los generadores eléctricos, bajo el aspecto constructivo, son fabricados esencialmente con metales ferrosos (acero, hierro fundido), metales no ferrosos (cobre, aluminio) y plástico.

El generador eléctrico, de manera general, es un producto que tiene vida útil larga, no obstante, cuando sea necesario su descarte, WEG recomienda que los materiales del embalaje y del producto sean debidamente separados y enviados para reciclaje. Los materiales no reciclables deben, como lo determina la legislación ambiental, ser dispuestos de forma adecuada.

o sea, en vertederos de residuos industriales, tratados en hornos de cemento o incinerados. Los prestadores de servicios de reciclaje, disposición en vertedero industrial, tratamiento o incineración de residuos deben estar debidamente licenciados por el órgano ambiental de cada estado para realizar estas actividades.

12.3 RESIDUOS PELIGROSOS

Los residuos de grasa y aceite utilizados para lubricación de los cojinetes deben ser eliminados, de acuerdo con las instrucciones de los organismos ambientales pertinentes, pues su disposición inadecuada puede causar impactos al medio ambiente.

13 ASISTENTES TÉCNICOS

Para consultar la red de Asistentes Técnicos Autorizados, visite el sitio web www.weg.net.

14 CERTIFICADO DE GARANTÍA

Estos productos, cuando son operados en las condiciones estipuladas por WEG en los manuales de operación de cada producto, tienen garantía contra defectos de fabricación y de materiales por un período de doce (12) meses contados a partir del comienzo de operación o dieciocho (18) meses la fecha de fabricación, lo que primero ocurrir.

Entretanto, esta garantía no es aplicada para ningún producto que haya sido sometido a mal uso, mal empleo, negligencia (incluyendo sin limitación, mantenimiento inadecuado, accidente, instalación inadecuada, modificaciones, adaptaciones, reparaciones o cualquier otro caso originado por aplicaciones inadecuadas).

La garantía no será responsable por cualquier/gasto incurrido en la instalación del comprador, desensamblaje, gastos como perjuicios financieros, transporte y de locomoción, bien como hospedaje y alimentación de los técnicos cuando solicitados por el comprador.

Las reparaciones y/o reemplazo de piezas o componentes, cuando efectuados a criterio de WEG durante el periodo de garantía, no postergará el plazo de garantía original, a menos que sea expresado por escrito por WEG.

Esto constituye la única garantía de WEG con relación a esta venta y la misma substituye todas las demás garantías, expresas o implícitas, escritas o verbales.

No existe ninguna garantía implícita de negociación o conveniencia para una finalidad específica que sea aplicada a esta venta.

Ningún empleado, representante, revendedor u otra persona está autorizado para dar cualquier garantía en nombre de WEG o para asumir por WEG cualquier otra responsabilidad en relación con cualquiera de sus

En caso de que esto ocurra, sin la autorización de WEG, la garantía estará automáticamente anulada.

RESPONSABILIDADES

Excepto lo especificado en el parágrafo anterior denominado "Términos de Garantía Para Productos de Ingeniería", la empresa no tendrá ninguna obligación o responsabilidad para con el comprador, incluyendo, sin limitación, cualquier reclamo con referencia a daños consecuentes o gastos con mano de obra por razón de cualquier violación de la garantía expresa descripta en este fascículo.

El comprador también concuerda en indemnizar y mantener la Compañía libre de daños consecuentes de cualquier causa de acción (excepto gastos de reposición y reparación de productos defectuosos, conforme lo especificado en el parágrafo anterior denominado "Términos de Garantía Para Productos de Ingeniería", consecuente directa o indirectamente de los actos, de negligencia u omisión del comprador con relación a/o proveniente de pruebas, uso, operación, reposición o reparación de cualquier producto descrito en esta cotización y vendido o suministrado por la Compañía al comprador.

WEG Equipamentos Elétricos S.A. International Division Av. Prefeito Waldemar Grubba, 3000 89256-900 - Jaraguá do Sul - SC - Brazil Phone: 55 (47) 3276-4002

Fax: 55 (47) 3276-4060 www.weg.net

+55 47 3276.4000

energia@weg.net

Jaraguá do Sul - SC - Brazil