ADL300 CiA® 417: Descrizione delle funzioni e lista parametri

ADL300

Manuale utente

Lingua: Italiano

CANopen Lift (CiA® 417)

Informazioni riguardo a questo manuale

Questo manuale contiene informazioni dettagliate delle funzioni e la descrizione dei parametri.

Le informazioni relative all'installazione meccanica, sicurezza, collegamento elettrico e la rapida messa in servizio sono presenti nel manuale ADL300 QS (Guida Rapida).

Potete trovare nel DOWNLOAD CENTER di ADL300 nel sito WEG tutti i manuali in formato elettronico, inclusi quelli delle espansioni e bus di campo:

https://www.weg.net/catalog/weg/IT/en/p/MKT_WDC_GLOBAL_PRODUCT_INVERTER_FOR_ELEVATOR_ADL300

Versione software

Questo manuale è aggiornato alla versione software V 4.x.7..

Variazioni del numero inserito al posto della "X" non hanno influsso sulla funzionalità dell'apparecchio. Il numero di identificazione della versione software (del drive) può essere letto sulla targhetta del drive oppure può essere verificato con il parametro **Ver rel firmware-** PAR 490, menu 2.6.

Versione applicazione (visibile solo in modalità Esperto)

Questo manuale è aggiornato alla versione applicativa DS417 V 2.x.0

Il numero di identificazione della versione dell'applicazione può essere verificata con il parametro **Ver rel applicazione** - PAR 504, menu 2.9 e il tipo dell'applicazione può essere verificato con il parametro **Tipo applicazione** - PAR 506, menu 2.10 (21 = Applicazione CiA 417)

Informazioni generali

<u>Mote I</u> I termini "Inverter", "Regolatore" e "Drive" sono talvolta intercambiati nell'industria. In questo documento verrà utilizzato il termine "Drive".

Prima dell'utilizzo del prodotto, leggere attentamente il capitolo relativo alle istruzioni di sicurezza (nel manuale Guida Rapida).

Durante il suo periodo di funzionamento conservate il manuale in un luogo sicuro e a disposizione del personale tecnico. WEG Automation Europe srl si riserva la facoltà di apportare modifiche e varianti a prodotti, dati, dimensioni, in qualsiasi momento senza obbligo di preavviso.

I dati indicati servono unicamente alla descrizione del prodotto e non devono essere intesi come proprietà assicurate nel senso legale.

Vi ringraziamo per avere scelto questo prodotto WEG.

Saremo lieti di ricevere all'indirizzo e-mail: techdoc@weg.net qualsiasi informazione che possa aiutarci a migliorare questo manuale.

Tutti i diritti riservati.

Sommario

1.	Introduzione4							
2.	Sta	andard di Riferimento	5					
3.	Un protocollo di comunicazione standard6							
4.	Condivisione del Menù Drive							
5.	Lo	gica di Funzionamento	9					
6.	Мо	odalità di Controllo						
6	.1	Controllo in Velocità						
6	.2	Controllo in Posizione						
7.	Arc	chitetture Supportate						
8.	Ар	plication Object e Process Data Object Gestiti	13					
8	.1	Process Data Object						
8	.2	Application Object						
9.	Ма	cchina a stati	14					
10.	Co	nnessione al Drive						
1	0.1	Interfaccia con Master CAN						
1	0.2	Cablaggio						
1	0.3	Realizzazione del Bus						
1	0.4	Bit Rate Supportate						
1	0.5	ID dei Nodi						
11.	Ins	tallazione dell'applicazione						
1	1.1	Generalità						
1	1.2	Requisiti						
1	1.3	Operazioni preliminari						
12.	Me	essa in servizio da tastierino alfanumerico	19					
13.	De	scrizione parametri						
1	3.1	Legenda						

1. INTRODUZIONE

In questo manuale tecnico operativo vengono descritte le informazioni necessarie per la configurazione del drive della serie ADL300 (Release 3.0 e successive), sia dal punto di vista hardware che software, affinché questi possa operare in un sistema lift la cui comunicazione tra i diversi dispositivi di controllo avvenga attraverso una rete CANopen Lift, cioè basata sul profilo DS417.

Nota: Per l'utilizzo del CANopen Lift è necessaria la versione ADL300 con porta CAN. (ADL300B-xxxx-KBL 4-C e ADL300A-xxxx-KBL-4-C).	B-xxxx-KBL-F-
--	---------------

La comunicazione attraverso il profilo DS 417 è realizzata in ambiente MdPlc è quindi da ritenere un'applicazione a tutti gli effetti.

L'applicazione è supportata in tutte le modalità di controllo previste dal drive.

L'utilizzo dell'applicazione prevede il caricamento della stessa seguendo la procedura descritta al capitolo 10.

Il presente manuale è specifico per l'applicazione CANopen Lift, per tutte le altre configurazioni si rimanda ai manuali **ADL300 FP**" Descrizione delle funzioni e Lista parametri" e **ADL300 QS** "Guida rapida all'installazione".

2. STANDARD DI RIFERIMENTO

L'applicazione segue le indicazioni riportate nella specifica CANopen® CiA 417® "Application profile for lift control systems" Versione: 2.0.0 del 2 Febbraio 2011 composta dalle 4 parti:

- Parte 1: Definizioni Generali
- Parte 2: Funzionalità dei dispositivi virtuali
- Parte 3: Specifiche dei PDO predefiniti
- Parte 4: Specifiche degli Oggetti Applicativi

WEG in qualità di azienda associata (*Vendor-ID 01000093*) di *CAN in Automation (CiA)* rimane costantemente aggiornata sulle evoluzioni delle specifiche.

3. UN PROTOCOLLO DI COMUNICAZIONE STANDARD

I sistemi di sollevamento civile sono complessi in termini di logica di funzionamento e di dispositivi in essi presenti. Per realizzare le desiderate funzioni di qualità e di sicurezza, i dispositivi devono poter comunicare scambiandosi informazioni e comandi.

Figura 1: Principali Sistemi di Controllo di un Lift

La comunicazione deve essere performante e basata su un'architettura a Bus. Il CANopen Lift con profilo CiA 417 è un protocollo di comunicazione standard basato su architettura a Bus derivato dalla versione industriale CANopen, che consente la comunicazione attraverso un linguaggio comune, tra i diversi dispositivi (Device) di controllo che compongono il sistema lift.

Figura 2: Architettura a Bus

Focalizzandoci sulla parte di sistema composto da scheda di Controllo, Drive e Motore Elettrico, l'architettura di riferimento può essere così rappresentata:

4. CONDIVISIONE DEL MENÙ DRIVE

L'architettura a Bus consente la comunicazione diretta tra tutti dispositivi che sono su di esso connessi. Il Drive implementa la funzionalità di *Menù Sharing*, questa consente di visualizzare il menù del drive sul Lift Controller. La configurazione del drive è quindi possibile anche dal Lift Controller e in generale da qualsiasi dispositivo presente sul bus che supporti la ricezione delle informazioni attraverso l'AO 6404_{hex} (Modes of Operation Display) / RPDO 260.

Figura 4: Display opzionale e standard (fig. a sx) e display lift controller (fig. a dx)

Nella figura il menù del drive è visualizzato sia sul tastierino opzionale del Drive sia sul display del Lift Controller. A livello di comunicazione vedere la figura seguente.

5. LOGICA DI FUNZIONAMENTO

In un sistema lift le varie funzioni quali gestione delle chiamate, controllo luci, gestione apertura porte, gestione del sovraccarico, controllo motore ecc... sono svolte da dispositivi di controllo dedicati. Nel profilo DS417, per svolgere queste funzioni i dispositivi di controllo utilizzano delle applicazioni disponibili nel dispositivo stesso chiamate Application Object (AO). Nel sistema lift gli Application Object comunicano tra loro via DS 417 con gli "omonimi" Application Object presenti in altri dispositivi. La comunicazione avviene tramite i PDO (Process Data Object), che possono essere sia in Ricezione (RPDO) sia in trasmissione (TPDO), in cui lo specifico application object viene mappato.

Focalizzandoci sul Drive ADL300, cioè al dispositivo che svolge la funzione di controllare la direzione e la velocità del motore per la gestione del movimento della cabina, esso utilizza una serie di application object per gestire il profilo di velocità, il metodo di controllo (in velocità o in posizione) ecc...Tutte queste informazioni vengono scambiate con il sistema di controllo attraverso gli RPDO se in ricezione oppure i TPDO se in trasmissione. Questa comunicazione avviene in modo continuativo con intervalli di 1ms.

Ogni application object viene quindi "mappato" nei PDO (RPDO oppure PDO).

La macchina a stati del Drive è controllata dall'AO 6400hex (controlword). I comandi che il Drive ADL300 riceve dal Lift Controller sono codificati nella parola di controllo.

Si riporta qui come esempio come avviene la comunicazione tra il Lift Controller e il Drive per la gestione della modalità di controllo (in posizione oppure in velocità).

Figura 5: Schema a blocchi comunicazione ADL300 e Lift Controller

Il Lift Controller "comanda" al drive la modalità di controllo attraverso l'AO 6403_{hex}. Per fare questo il Lift Controller mappa l'AO nel Trasmission PDO 259 per poi mandare il comando al Drive attraverso il Bus. Il Drive riceve il comando sull'RPDO "omonimo" 259 e lo passa all'AO "omonimo". Il Drive a questo punto ha ricevuto il comando di lavorare in posizione oppure in velocità in quanto è stato configurato dal Lift Controller.

Affinchè la comunicazione sia possibile, devono essere presenti sul Lift Controller e sul Drive gli stessi Application Object e i relativi PDO.

6. MODALITÀ DI CONTROLLO

6.1 Controllo in Velocità

Nota:

Il controllo in velocità viene configurato dal lift controller attraverso l'AO 6403_{hex}. Il controllo in velocità può avvenire in anello aperto (nessun encoder motore) oppure in anello chiuso (con encoder sul motore).

Il funzionamento avviene con le multi-speed comunicate dal controllore al drive. La partenza è controllata dal lift controller tramite l'AO 6430hex (Target Velocity) che assumerà un valore diverso da zero, la direzione sarà definita dal segno dello stesso AO.

In funzione della velocità target AO 6430hex (che sarà espresso in multipli di mm/s) comunicata al drive e del riferimento di velocità AO 6406hex (Control Effort) che il drive comunica al lift controller, il lift controller è in grado di calcolare e di comunicare al drive il punto in cui attivare il rallentamento per raggiungere il piano di destinazione. Al raggiungimento del piano di destinazione il Lift Controller comunica al drive come nuova velocità target la velocità pari a zero forzando cosi il drive a fermare la cabina. Il drive a sua volta comunicherà al lift controller di aver raggiunto la velocità target attraverso il 10° bit della status word AO 6401hex.

Figura 6: Messaggi di scambio tra Drive e Lift Controller relativi al controllo in velocità

E' possibile avere un arrivo diretto con controllo in velocità usando le stesse sequenze descritte sopra. Questo implica una opportuna configurazione del Lift Controller.

6.2 Controllo in Posizione

Il controllo in posizione viene configurato dal lift controller attraverso l'AO 6403_{hex}. La modalità controllo in posizione può avvenire **solo in anello chiuso** (con encoder sul motore).

Il lift controller comunica al Drive la posizione di arrivo AO 6420_{hex} (Target Position) e la massima velocità che può raggiungere AO 6423_{hex} (Profile Velocity).

In funzione della posizione target AO 6420_{hex}, e della posizione comunicata dal drive AO 6406_{hex} (Control Effort), il Lift Controller calcola il punto di rallentamento per raggiungere la destinazione. Al raggiungimento del piano di destinazione il Lift Controller comunica al drive di fermare la cabina. Il drive a sua volta comunicherà al lift controller di aver raggiunto la posizione target attraverso la status word AO 6401_{hex}.

Figura 7: Messaggi di scambio tra Drive e Lift Controller relativi al controllo in posizione

7. ARCHITETTURE SUPPORTATE

L'implementazione DS417 implementata prevede che il Drive sia in grado di gestire una singola cabina con un solo bus CAN. Di seguito l' architettura supportata:

Single network architecture for a single-shaft lift control system

Figura 8: Architettura di un Bus CAN con singola cabina

Per le architetture riportate sopra è disponibile il controllo sia in velocità sia in posizione. In generale sono possibili architetture in cui è richiesto un solo bus CAN. Architetture in cui sono richiesti più BUS CAN non sono supportate dall'attuale versione di ADL300.

8. APPLICATION OBJECT E PROCESS DATA OBJECT GESTITI

8.1 Process Data Object

L'attuale versione implementata prevede i seguenti PDO supportati dal Drive:

PDO no.	COB-ID	OBj (hex)	Туре
RPDO 259	182	6400 00 6403 00 6430 00	Car Drive Unit
RPDO 261	180	6420 00 6423 00	Car Drive Unit
RPDO 263	18C	6383 01	Car Drive Unit
RPDO 2	501-527	MPDO	Generic
		6401 00	
TPDO 260	183	6404 00	Car Drive Unit
		6433 00	
TPDO 262	181	6406 00	Car Drive Unit
TPDO 2	502	MPDO	Generic

8.2 Application Object

L'attuale versione implementata prevede i seguenti Application Object supportati dal Drive:

Index (hex)	Sub-Index (hex)	Name	Access	
6383		Position value		
6400		Controlword	rw	
6401		Statusword	ro	
6403		Modes of operation	rw	
6404		Modes of operation display	ro	
6406		Control effort	ro	
		Position Conversion		
641F	01	Number of position units	rw	
	02	Total Lenght in Millimeter	-	
6420 (*)	*) Target position		rw	
		Software position limit		
6422 (*)	01	Min position limit	rw	
	02	Max position limit	-	
6423 (*)		Profile velocity	rw	
6430 (**)		Target velocity	rw	
6433 (**)		Velocity actual value	ro	
600.4	1	Virtual Terminal Input	rw	
UUUA	2	Virtual Terminal Output	ro	

(*): Profile Position / (**): Profile Velocity

9. MACCHINA A STATI

Il dispositivo opera secondo la macchina a stati CiA 417 qui sotto riportata:

10. CONNESSIONE AL DRIVE

10.1 Interfaccia con Master CAN

Figura 9: Posizione connettore CAN

Figura 10: Connessioni safety per controllo con un solo contattore

10.2 Cablaggio

La connessione si effettua sul connettore CAN e non necessita di alimentazione. L'interfaccia è dotata di isolamento funzionale (>1kV).

Morsetto Designazione		Funzione	Sezione cavo		
L CAN_L		Linea bus CAN_L (dominante bassa)			
SH	CAN_SHLD	Schermatura CAN	0,2 2,5 mm² AWG 26 12		
н	CAN_H	Linea bus Can_H (dominante alta)			

LED	Significato
CAN (verde)	
Spento	Arresto
Lampeggiante	Stato pre-operativo
Acceso	Stato operativo

Figura 11: Interfaccia CAN

10.3 Realizzazione del Bus

Per il collegamento al Bus deve essere usato un doppino schermato (del tipo indicato dalla specifica CANopen) che deve essere posato separato dai cavi di potenza, con una distanza minima di 20 cm. La schermatura del cavo deve essere connessa a massa alle due estremità. Se le schermature del cavo sono messe a massa in punti diversi del sistema, per ridurre il flusso di corrente tra i Drive e il master CAN bus usare cavi di collegamento equipotenziale.

<u>Nota:</u>

Nota sulle terminazioni: il primo e ultimo partecipante della rete deve avere una resistenza da 120 ohms tra i pin L e H.

Figura 12: Collegamento BUS CAN

La massima lunghezza del cablaggio è 200 metri e 6 metri per i tratti di cavo periferici.

10.4 Bit Rate Supportate

La velocità del BUS CAN è di 250kbit/s come default. E' configurabile anche la velocità di 125kb/s (menu 22 parametro 4004).

10.5 ID dei Nodi

Ogni dispositivo attestato sul Bus avrà un suo proprio ID che lo identifica in modo univoco sulla rete. Il Drive avrà di default l' ID uguale a 2, è possibile cambiare tale indirizzo attraverso il parametro 4006 del menù 22).

11. INSTALLAZIONE DELL'APPLICAZIONE

11.1 Generalità

Le operazioni preliminari per la messa in servizio sono descritte nel capitolo 8 del manuale ADL300 QS.

11.2 Requisiti

L'applicazione DS 417 per ADL300 richiede la versione **firmware 3.00** e successive. Per installare l'applicazione è necessario un PC, software WEG GF Express ver. 1.8 o superiore

con Catalog, il cavo di connesione al drive RS-232 e il CD di set-up.

Il CD di installazione dell'applicazione contiene una procedura automatica che copia i file necessari nella cartella specifica del catalog GF Express. Quando l'installazione è completata, la procedura di set-up richiede i files / percorso come indicato di seguito:

Files che contengono Applicazione DS417:

- ADL300Asy_3_7_10_Fw_Lang_DS417_1_5_21_0__A2.fl2 (EPC for Synchronous Motors)
- ADL300Syn_3_7_10_Fw_Lang_DS417_1_5_21_0__ A2.fl2 (EPC for Asynchronous Motors)

11.3 Operazioni preliminari

Il drive è in grado di contenere due applicazioni "Applicazione 1"e "Applicazione 2". E' possible scaricare l'applicazione DS417 in "Applicazione 2".

I file da installare sono:

• ADL300Asy_3_7_10_Fw_Lang_DS417_1_5_21_0__A2.fl2 (EPC for Synchronous Motors) ADL300Syn_3_7_10_Fw_Lang_DS417_1_5_21_0__A2.fl2 (EPC for Asynchronous Motors)

Per selezionare quale appplicazione deve essere eseguita, fare riferimento al parametro menu 4.5 PAR 558 **Sel applicazione**.

Una volta che l'applicazione è installata eseguire la seguente procedura:

- 1) Inviare via WEG_eXpress il comando "Drive reset".
- 2) Eseguire il comando "Load default drive values" per caricare i parametri di default
- 3) Eseguire il comando "Save parameter into target"
- 4) Eseguire il comando di Drive reset.

A questo punto l'applicazione è pronto per essere utilizzata. I parametri sono disponibili nel menu 5 "LIFT".

12. MESSA IN SERVIZIO DA TASTIERINO ALFANUMERICO

La messa in funzione da tastierino può essere eseguita anche con l'applicazione CiA 417.

12.1 Avviamento Guidato Motore Asincrono

Da manuale ADL300 guida rapida installazione pag 48/80 per asincrono e pag 55/80 per brushless

Lo STARTUP GUIDATO è una procedura che serve ad eseguire rapidamente la messa in funzione del Drive, aiutando ad impostare i parametri principali.

È composto da una serie di domande, corrispondenti alla varie sequenze relative all'inserimento ed al calcolo dei parametri necessari al corretto funzionamento del Drive e dell'applicazione lift. L'ordine di tali sequenze è la seguente:

Collegamenti elettrici	Vedere passo 1 (ved. manuale QS)			
Impostazione dati motore	Vedere passo 2 (ved. manuale QS)			
Autoapprendimento a motore fermo o accoppiato al carico	Vedere passo 3 (ved. manuale QS)			
 Impostazione parametri encoder 	Vedere passo 4 (ved. manuale QS)			
Impostazione valore massimo riferimento di velocità e massima velocità impianto				
	Vedere passo 6 (ved. manuale QS)			
 Impostazione peso del sistema 	Vedere passo 7 (ved. manuale QS)			
 Impostazione parametri dell'applicazione 	V <u>edere passo 8</u>			
• Salvataggio parametri	Vedere passo 9			

12.2 Avviamento Guidato Motore Sincrono

Collegamenti elettrici	Vedere passo 1 (ved. manuale QS)
Impostazione dati motore	Vedere passo 2 (ved. manuale QS)
 Autoapprendimento a motore fermo o accoppiato al carico 	Veder passo 3 (ved. manuale QS)
 Impostazione parametri encoder 	Vedere passo 4 (ved. manuale QS)
Fasatura encoder	Vedere passo 5 (ved. manuale QS)
Impostazione valore massimo riferimento di velocità e massima	velocità impianto
	Vedere passo 6 (ved. manuale QS)
 Impostazione peso del sistema 	Vedere passo 7 (ved. manuale QS)
 Impostazione parametri dell'applicazione 	<u>Vedere passo 8</u>
 Salvataggio parametri 	Vedere passo 9

Passo 8 Impostazione parametri dell'applicazione:

... per motore asincrono e sincrono

Passo 9 – Salvataggio parametri

Per salvare le nuove impostazioni dei parametri, in modo che vengano mantenute anche allo spegnimento, eseguire questa procedura:

03 STARTUP GUIDATO Salva parametri?	E	SEQ 01 PAR: 550 Salva parametri? Prem E per eseguire	E	SEQ 01 PAR: 550 Salva parametri? Eseguito	03 STARTUP GUIDATO Fine sequenza
E=Si Giù=Prossimo					Su=Ind. Giù=Uscita
(1)	-	(2)	-	(3)	(4)

- (1) Premere il tasto E per iniziare la procedura di salvataggio parametri
- (2) Confermare con il tasto "E""
- (3) Conclusione della procedura
- (4) Terminato correttamente il salvataggio dei parametri il Drive propone questa schermata a conclusione della procedura di avviamento guidato.

13. DESCRIZIONE PARAMETRI

Nel menu LIFT vengono visualizzati i parametri relativi alla funzione LIFT nella configurazione con CiA 417. Tutte queste funzioni vengono caricate sul drive della famiglia ADL300 come "Applicazione 2". Per abilitare la funzione il parametro **558 Sel Applicazione** deve essere impostato a 2 (vedi capitolo Introduzione).

13.1 Legenda

5 – LIFT	(Menu livello 1)
05.01 – VELOCITA'	(Menu livello 2)

ĺ	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
	5.5.5	11240	Sel conferma porta		ENUM		6000			RW	FVS

Impostazione della sorgente per l'ingresso Retroazione Porte: "LISTA INPUT CIA 417". [*]

(0)	Indicizzazione del menu e	Indicizzazione del menu e parametro						
(1)	Identificativo parametro	Identificativo parametro						
(2)	Descrizione del parametr	Descrizione del parametro						
(3)	UM: Unità di misura	UM: Unità di misura						
(4)	Tipo del parametro BIT Booleano, da modbus visto come 16 bits ENUM Lista di selezione, da modbus visto come 16 bits FLOAT Real, da modbus visto come 32 bits INT16 Intero con segno 16 bits, da modbus visto come 16 bits INT32 Intero con segno 32 bits, da modbus visto come 32 bits ILINK Lista di selezione, da modbus visto come 16 bits LINK Lista di selezione, da modbus visto come 16 bits UINT16 Intero senza segno 16 bits, da modbus visto come 16 bits UINT32 Intero senza segno 32 bits, da modbus visto come 32 bits							
(5)	Formato del dato scambiato sul Fieldbus (16BIT, 32BIT)							
(6)	Valore di default							
(7)	Valore minimo	CALCI Valore calcolato in numero intero						
(8)	Valore massimo							
(9)	Accessibilità : E Expert (esperto) R Read (lettura) S Size (dipende dalla taglia) W Write (scrittura) Z parametri modificabili SOLO con drive disabilitato							
(10)	Disponibile nella modalità di regolazione: V = Controllo V/f (anello aperto) / Sincrono MP S = Vett Flusso OL F = Vett Flusso CL (anello chiuso)							
[*]	Liste di selezione: I parametri formato "Sorgente/Sorg" sono collegati a una lista di selezione. E' possibile selezionare, nella lista indicata, l'origine (sorgente) del segnale che comanderà il parametro. Le liste sono indicate nel capitolo C di questo manuale.							

5 – LIFT

Nel menu LIFT vengono visualizzati i parametri relativi alla funzione LIFT nella configurazione con CIA 417. Tutte queste funzioni vengono caricate sul drive della famiglia ADL300 come "Applicazione 2". Per abilitare la funzione il parametro **558 Sel Applicazione** deve essere impostato a 2 (vedi capitolo Introduzione).

05.01 – VELOCITA'

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.1.1	12210	Multivelocita in usc	m/s	FLOAT					R	FVS

Visualizzazione della velocità della cabina in m/s.

05.02 - RAMPE

Per il funzionamento lift è prevista una rampa ad "S" con la possibilità di impostazione di 4 jerk indipendenti e di coefficienti lineari di accelerazione e decelerazione, come da profilo standard illustrato nella figura seguente.

I valori di Jerk iniziale acc, Accelerazione e Jerk finale acc con i quali viene eseguita la rampa di accelerazione sono calcolati moltiplicando i parametri corrispondenti per il fattore di rampa di accelerazione (Fattore percent acc), mentre i valori di Jerk iniziale dec, Decelerazione e Jerk finale dec con i quali viene eseguita la rampa di decelerazione sono calcolati moltiplicando i parametri corrispondenti per il fattore di rampa di decelerazione (Fattore percent dec, PAR 11056).

Quando si tolglie il comando **Start**, la velocità di riferimento va a zero indipendentemente dal riferimento selezionato nelle multivelocità.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.1	11040	Acc ini jerk	m/s3	FLOAT		0.500	0.001	20	RW	FVS

Impostazione del valore di jerk per la parte iniziale dell'accelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.2	11042	Accelerazione	m/s2	FLOAT		0.600	0.001	10	RW	FVS

Impostazione del valore massimo dell'accelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.3	11044	Acc end jerk	m/s3	FLOAT		1.400	0.001	20	RW	FVS

Impostazione del valore di jerk per la parte finale dell'accelerazione.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.2.4	11046	Jerk iniziale decele	m/s3	FLOAT		1.400	0.001	20	RW	FVS

Impostazione del valore di jerk per la parte iniziale della decelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.2.5	11048	Decelerazione	m/s2	FLOAT		0.600	0.001	10	RW	FVS

Impostazione del valore massimo della decelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.6	11050	Jerk finale decelera	m/s3	FLOAT		0.500	0.001	20	RW	FVS

Impostazione del valore di jerk per la parte finale della decelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.7	11054	PercAccFactor	Perc	FLOAT		100.0	0.0	1000.0	RW	FVS

Impostazione del moltiplicatore dei coefficienti dell'accelerazione.

Se viene impostato il valore 100 la rampa utilizza i coefficienti inseriti nei parametri.

Se viene impostato un valore inferiore a 100 l'ascensore tenderà ad accelerare in uno spazio maggiore.

Se viene impostato un valore maggiore di 100 l'ascensore tenderà ad accelerare in uno spazio minore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.8	11056	PercDecFactor	Perc	FLOAT		100.0	0.0	1000.0	RW	FVS

Impostazione del moltiplicatore dei coefficienti della decelerazione.

Se viene impostato il valore 100 la rampa utilizza i coefficienti inseriti nei parametri.

Se viene impostato un valore inferiore a 100 l'ascensore tenderà ad decelerare in uno spazio maggiore.

Se viene impostato un valore maggiore di 100 l'ascensore tenderà ad decelerare in uno spazio minore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.2.9	11258	Max End Jerk	m/s3	FLOAT		2	0.004	30.000	RW	FVS

E' il massimo valore di jerk durante la fase di decelerazione che si può configurare. Il parametro 11256 Comp Enable deve essere abilitato.

05.03 – SEQUENZE

In questo menu vengono illustrati i parametri utilizzati per la gestione e la definizione della corsa dell'ascensore in funzione dello stato degli ingressi e degli allarmi. Di seguito viene riassunta la struttura delle sequenze lift nel caso di comando di floor call, una volta ricevuto il comando e memorizzato il numero del piano da raggiungere, parte il posizionatore interno che automaticamente esegue la traiettoria fino al raggiungimento del piano di arrivo con arrivo diretto al piano.

Nel caso di marcia Jog la sequenza di decelerazione parte al momento della caduta del comando di jog.

Sequenza di partenza:

1 Lettura dell'ingresso di Abilitazione hardware e verifica della presenza di allarmi (in caso di allarme viene interrotta l'abilitazione)

2 Viene rilevato il comando di Master come impostato con B0

3 Esaurito il tempo impostato con **Rit chius contattore** viene attivato il segnale interno **Abilitazione e** viene comunicata al drive la **velocità di partenza** impostato come B1.

4 Si attende dal drive il segnale di magnetizzazione (Azionamento pronto)

5 Al termine della magnetizzazione viene attivato il segnale per lo sblocco del freno

6 Si attende il tempo per l'apertura del freno (Rit apertura freno)

7 Passato il ritardo all'apertura del freno viene comandato il comando di Avvio lift ed il movimento viene abilitato.

Sequenza di movimento:

- 1 Il motore viene avviato con i valori in mostrati nella rampa. La movimentazione segue multivelocità e la rampa ad "S" impostate nel controllo di posizione interno.
- 2 Superata la velocità settata è possibile verificare che il freno si sia effettivamente aperto con il segnale d'uscita Monitor freno 2
- 3 Il controllo di posizione interno esegue la traiettoria stabilita e inizia la rampa di decelerazione nel momento opportuno.

Sequenza di arresto:

- 1 Al raggiungimento della velocità zero viene abilitato il comando per la fermata
- 2 Si attende il tempo necessario Speed 0 Delay PAR 11080 e si comanda la chiusura dei freni 1-2
- 3 Si attende il tempo necessario per la chiusura dei freni (**Rit chiusura freno**), e nel caso si voglia che la corrente venga abbassata in rampa, si attende che il limite di corrente sia portato a zero, a questo punto vengono abbassati i segnali dell'abilitazione in terna lift (**Enable lift**), della zona di arrivo e della frenata in corrente continua
- 4 Si attende il tempo impostato nel parametro **Rit apert contattore** e viene controllato che la corrente erogata sia zero,prima di comandare l'apertura dei contattori.

E' di fondamentale importanza prevedere che in qualsiasi momento che il drive possa andare in allarme o possa essere disabilitato, in tal caso si deve fermare il drive stesso e comandare l'apertura dei contattori.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.1	11000	Landing Zone	m	FLOAT		0	***	***	RW	FVS

Il parametro definisce l'inizio della landing zone. Viene espressa in metri la distanza tra l'inizio della landing zone e il livello di arrivo al piano.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.2	11016	Final Adjust		FLOAT		OFF	***	***	RW	FVS

Questo parametro definisce un offset che viene sommato alla punto di arrivo calcolato dal protocollo.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.3.3	11018	Final Adjustment		BIT		OFF	***	***	RW	FVS

Abilitando (ON) questo parametro l'andamento nella landing zone assume un andamento rettilineo. Se tale valore è OFF viene utilizzata la curva di arrivo calcolata dal protocollo.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.4	11060	Seq start mode		ENUM		0	0	1	RW	FVS

Impostazione della modalità di inizio della sequenza di comando del contattore.

- 0 Marcia Av/Ind
- 1 Abilitazione

Impostando 0 è possibile attivare le sequenze del contattore senza il comando Abilita (Enable è richiesto solo per il funzionamento del motore). Il segnale Enable può essere dato da un contatto ausiliario dei contattori d'uscita. Impostando 1 è possibile attivare le sequenze del contattore solo se il comando Enable è attivo.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.3.5	11062	Rit chius contattore	ms	INT32		200	0	10000	RW	FVS

Impostazione del tempo di ritardo per la chiusura del contattore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.6	11064	Rit apertura freno	ms	INT32		200	0	10000	RW	FVS

Impostazione del tempo di ritardo per la apertura del freno.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.7	11068	Rit chiusura freno	ms	INT32		200	0	10000	RW	FVS

Impostazione del tempo di ritardo per la chiusura del freno.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.8	11070	Ritardo per discesa	ms	INT32		0	0	10000	RW	FVS

Impostazione del tempo necessario per abbassare la coppia dal valore del limite attivo durante la corsa a 0. Esso definisce l'inclinazione della rampa di discesa nella funzione "Rampa dimin corrente". Scopo della funzione è di evitare che dopo la chiusura del freno la coppia del motore venga tolta istantaneamente, causando una fastidiosa sollecitazione all'interno della cabina.

Per evitare questo fenomeno dopo la chiusura del freno i limiti di corrente vengono portati al valore di corrente in uso e poi vengono abbassati in rampa.

La funzione viene abilitata impostando il PAR 11070 Ritardo per discesa corrente ad un valore diverso da zero.

Questo è possibile solo se **Sel lim corr coppia** ha valore diverso da "OFF" altrimenti PAR 11070 **Ritardo per discesa** viene forzato a zero.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.9	11072	Rit apertura contattore	ms	INT32		200	0	10000	RW	FVS

Impostazione del tempo di ritardo per la apertura del contattore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.10	11078	Speed 0 threshold	rpm	INT16		1			RW	FVS

Impostazione della soglia di velocità zero, sotto la quale si attiva il segnale di velocità zero

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.11	11080	Speed 0 Delay	ms	UINT16		400	0	10000	RW	FVS

Impostazione del ritardo di velocità zero. Dopo la segnalazione di velocità zero e trascorso il tempo impostato in questo parametro viene abilitato il segnale di velocità zero. Questi parametri sono utilizzati per conoscere la fermata della cabina.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.12	11086	Vel porta aperta	m/s	FLOAT		0.0010			RW	FVS

Impostazione della velocità di porta aperta. Questa funzione permette il controllo anticipato della porta aperta prima dell'arrivo al piano della cabina. Il segnale di apertura porta può essere portato su un'uscita digitale quando la velocità è inferiore alla soglia impostabile. La funzione deve essere abilitata dall'ingresso digitale. Lo stato di esecuzione del comando di controllo della velocità per l'apertura della porta può essere verificato fornendo la retroazione dal meccanismo di apertura della porta verso l'ingresso digitale del drive.

E' possibile generare un allarme se il comando e la retroazione non coincidono.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.13	11088	Contactorless Enable		BIT		OFF			RW	FVS

Va configurato nel caso si desideri la modalità contactorless. Abilitando questo parametro, il comando di fast enable viene portato al digital Input 7 e il drive attraverso l'uscita digitale 4 segnala al controller il funzionamento in modalità contactorless (vedere Figura 7.3.2.8-A sul manuale di installazione ADL300 QS).

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.14	11140	Delay Acq Time	ms	INT		15	0	1000	RW	FVS

Tempo di acquisizione della posizione assoluta da parte del CIA 417 master.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.3.15	11256	Compensation Enable		BIT					RW	FVS

Abilita la compensazione durante la fase di decelerazione. Questo parametro cambia il jerk finale per ottenere l'arrivo nella corretta posizione (ottenuto con i parametri 11252 e 11254).

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.3.16	12014	Trip Number		INT		0			R	FVS

Visualizza il numero di viaggi.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.3.17	12016	Actual lift state		ENUM					R	FVS

Visualizzazione dello stato delle sequenze ascensore

- 0 Idle
- 1 Cont close
- 2 Azionamento pronto
- 3 Brake open
- 4 Smooth start
- 5 Multispeed
- 6 Waiting 0 spd
- 7 Zero speed
- 8 Chiusura freno

- 9 Cont open
- 10 Not drive ok

05.04 – DATI MECCANICI

I parametri descritti in questo menu sono utilizzati per definire le caratteristiche meccaniche e fisiche dell'impianto.

Costanti meccaniche

La costante meccanica è definisce il legame tra i giri del motore e lo spazio percorso dalla cabina. Esistono 2 modi di calcolare la **ConstMech** in base al metodo di trasformazione adottato.

- Modo diretto: Costante meccanica = Velocità impianto /(Full scale speed/60)
- Dati meccanici: Costante meccanica = (π * Diametro puleggia)/ Rapporto riduttore

La costante meccanica viene calcolata all'accensione del drive e viene ricalcolata tutte le volte che si modifica uno dei parametri che la determinano (Modo calc mecc pol, Fondo scala velocità, Velocità impianto, Diametro puleggia, Rapporto riduttore).

La selezione della modalità di calcolo della costante meccanica è indipendente sia dal tipo di controllo scelto (V/f, Flux vector OL, Flux vector CL, Sincrono) sia dall'unità di misura che si vuole utilizzare.

Pesi e inerzie

L'inserimento delle caratteristiche meccaniche dell'impianto consente il calcolo dell'inerzia totale applicata al motore.

Dopo la modifica di questi parametri il valore dell'inerzia calcolato viene memorizzato automaticamente nel parametro **Comp inerzia** per eseguire una corretta compensazione dell'inerzia.

Mentre viene visualizzato il valore dell'inerzia che può essere inserito nel parametro **Inerzia** nel menù GUAD REG VELOCITA' per un calcolo dei parametri dell'anello di velocità più accurato. Abilitando il PAR **11162 Calc guad reg vel** questa operazione viene eseguita in modo automatico.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.1	11006	Velocità impianto	m/s	FLOAT	16/32	1	0.000	10.000	RW	FVS

Velocità cabina alla frequenza Base. Rappresenta la velocità dell'impianto. Viene anche utilizzata per il calcolo della costante meccanica. Associando la velocità della cabina in m/s al fondo scala velocità (PAR 628) si ottiene in coefficiente di trasformazione (mt/giro).

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.2	11008	Mechanical calc mode		ENUM		0			ERW	FVS

Impostazione del metodo di calcolo dell'unità di misura, in base alla velocità della cabina e del motore (Modo diretto) o in funzione dei rapporti meccanici (Modo dati meccanici).

- 0 Modo diretto
- 1 Dati meccanici

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.3	11010	Rapporto riduttore		FLOAT	16/32	450.000	***	***	RW	FVS

Rapporto tra la velocità del motore e della puleggia.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.4	11012	Diametro puleggia	m	FLOAT		0.6	-10000	10000	RW	FVS

Impostazione del diametro della puleggia.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.5	11074	Risoluzione Encoder Assoluto		INT		1024	1	10000	RW	FVS

Viene impostata la risoluzione dell'encoder presente sul motore.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
		Distanza Lineare per Giro								
5.4.6	11076	Encoder	mm	NUM		458	1	10000	RW	FVS

Viene impostata la distanza (in millimetri) percorsa dalla cabina per ogni giro di encoder del motore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.7	11150	Peso della cabina	kg	FLOAT		0.0	0	10000	RW	FVS

Impostazione del peso della cabina.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.8	11152	Peso contrappeso	kg	FLOAT		0.0	0	100000	R/W	FVS

Impostazione del peso del contrappeso.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.9	11154	Peso carico massimo	kg	FLOAT		0.0	0	100000	RW	FVS

Impostazione del Peso del carico massimo.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.10	11156	Peso fune	kg	FLOAT		0.0	0	100000	RW	FVS

Impostazione del peso della fune.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.11	11158	GearboxInertia	Kgm2	FLOAT		0.000	0	1000	RW	FVS

Impostazione inerzia riduttore meccanico.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.12	11160	Inerzia motore	Kgm2	FLOAT		0.000	0	1000	RW	FVS

Impostazione dell'inerzia del motore.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.13	11162	Calc guad reg vel			BIT	0	0	1	RW	FVS

Abilita la scrittura dell'inerzia calcolata nel regolatore di velocità (PAR 2240)

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.4.14	12020	Inerzia Calcolata	Kgm2	FLOAT		0.0110			R	FVS

Visualizzazione dell'inerzia dell'impianto con mezzo carico riportata al motore. Questo valore può essere inserito nel parametro Inerzia nel menù GUAD REG VELOCITA'.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.4.15	12022	Max Linear Speed	m/s	FLOAT					RW	FVS

Velocità lineare quando il motore è alla massima velocità.

05.05 – INGR/USC LIFT

I comandi e gli ingresso dell'applicativo lift CiA 417 possono essere collegati a un segnale tramite un selettore che permette di scegliere tra una serie di possibilità elencate nella lista di selezione. Tramite la lista di selezione, per ogni singolo comando è possibile scegliere tra:

I segnali di ingresso dell'applicativo CiA 417 possono essere collegati tramite un selettore che permette di scegliere tra una serie di possibilità elencati nella lista di selezione.

Tramite la lista di selezione, per ogni singolo ingresso è possibile scegliere tra:

- Null o One
- Ingressi Digitali della espansione I/O
- Alcuni segnali interni (Es. "Mon com freno" ..)
- Ad un bit selezionabile della "LiftDecomp1" (Es "Lift decom1 B0")
- PAD15

Nella configurazione I/O vengono connessi a Ingressi digitali Nella configurazione CanOpen vengono connessi alla LiftDecomp connessa a sua volta ad esempio tramite la variabile **Control word 1** ad un canale di processo fieldbus es. **PDC FieldBus M->S1.**

La variabile **Control word 1** può in generale essere connessa a un altro canale di processo fieldbus o al parametro drive **Wcomp** o al **PAD16**.

La seguente tabella mostra la configurazione di fabbrica:

Ingresso	Descrizione	Sorgente di default
Enable	Comando Abilitazione	Ingresso digitale Enable
Battery - Mode	Comando Battery Mode	Ing digitale 3X
Input Contactor Feedback	Ingresso retroazione contattore	Run Cont Mon
Input Brake Feedback	Ingresso retroazione freno	Brake cont Mon
Input Door Open	Ingresso apertura porte	Door Open Mon
Input Door Feedback	Ingresso retroazione porte	Null

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.5.1	11220	Enable cmd sel		ENUM		1110			RW	FVS

Impostazione della sorgente per il comando di abilitazione:

"LISTA INPUT CIA 417"

1110	Mon ing digitale E
1210	Mon ing digitale 1X
1212	Mon ing digitale 2X
1214	Mon ing digitale 3X
1216	Mon ing digitale 4X
1218	Mon ing digitale 5X
1220	Mon ing digitale 6X
1222	Mon ing digitale 7X
1224	Mon ing digitale 8X
1226	Mon ing digitale 9X
1228	Mon ing digitale 10X
1230	Mon ing digitale 11X
1232	Mon ing digitale 12X
3702	Mon com contattore
3706	Mon contatt discesa

3708	Mon com freno
3714	Mon porta aperta
3728	Var in ingresso
6000	Zero
6002	Uno
12250	Lift decom B0
12252	Lift decom B1
12254	Lift decom B2
12256	Lift decom B3
12258	Lift decom B4
12260	Lift decom B5
12262	Lift decom B6
12264	Lift decom B7
12266	Lift decom B8
12268	Lift decom B9
12270	Lift decom B10
12272	Lift decom B11
12274	Lift decom B12
12276	Lift decom B13
12278	Lift decom B14
12280	Lift decom B15

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.2	11232	Sel conferma contat		ENUM		16			RW	FVS

Impostazione della sorgente per l'ingresso retroazione contatore: "LISTA INPUT CIA 417".

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.3	11236	Sel conferma freno		ENUM		17			RW	FVS

Impostazione della sorgente per l'ingresso retroazione freno: "LISTA INPUT CIA 417".

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.4	11238	Sel porta aperta		ENUM		18			RW	FVS

Impostazione della sorgente per l'ingresso Door Open: "LISTA INPUT CIA 417".

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.5	11240	Sel conferma porta		ENUM		6000			RW	FVS

Impostazione della sorgente per l'ingresso Retroazione Porte: "LISTA INPUT CIA 417".

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.5.6	11242	Sel funzione di emerg		ENUM		1210			RW	FVS

Impostazione della sorgente per il comando di Battery Mode: "LISTA INPUT CIA 417".

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.7	11264	SelBrakeFbkA3		ENUM		6000			RW	FVS

Selezione dell'allarme "Freno fuori servizio". La funzione di allarme è di default disabilitata.

Lista di selezione della sorgente di abilitazione:

6000	Null
6002	Uno
12250	BO Lift decomp
12252	B1 Lift decomp
12254	B2 Lift decomp
12256	B3 Lift decomp
12258	B4 Lift decomp
12260	B5 Lift decomp
12262	B6 Lift decomp
12264	B7 Lift decomp
12266	B8 Lift decomp
12268	B9 Lift decomp
12270	B10 Lift decomp
12272	B11 Lift decomp
12274	B12 Lift decomp
12276	B13 Lift decomp
12278	B14 Lift decomp
12280	B15 Lift decomp
1110	Digit input E
1210	Digit input 1X
1212	Digit input 2X
1214	Digit input 3X
1216	Digit input 4X
1218	Digit input 5X
1220	Digit input 6X
1222	Digit input 7X
1224	Digit input 8X
1226	Digit input 9X
1228	Digit input 10X
1230	Digit input 11X
1232	Digit input 12X
3702	Run cont mon
3706	Down cont mon
3708	Brake cont mon
3714	Door open mon

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.8	11272	Fast Enable sel		ENUM		6002			RW	FVS

Questo parametro abilita il comando Fast Enable all'ingresso Digitale 7. L'Ingresso Digitale 7 deve essere controllato dal sistema. Questa funzione deve essere Abilitata nel caso sia utilizzata la Modalità di funzionamento contactorless.

6000	Null
6002	Uno
12250	BO Lift decomp
12252	B1 Lift decomp
12254	B2 Lift decomp
12256	B3 Lift decomp
12258	B4 Lift decomp
12260	B5 Lift decomp
12262	B6 Lift decomp
12264	B7 Lift decomp
12266	B8 Lift decomp
12268	B9 Lift decomp
12270	B10 Lift decomp
12272	B11 Lift decomp
12274	B12 Lift decomp
12276	B13 Lift decomp

B14 Lift decomp
B15 Lift decomp
Digit input E
Digit input 1X
Digit input 2X
Digit input 3X
Digit input 4X
Digit input 5X
Digit input 6X
Digit input 7X
Digit input 8X
Digit input 9X
Digit input 10X
Digit input 11X
Digit input 12X
Run cont mon
Down cont mon
Brake cont mon
Door open mon

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.9	12102	Mon comandi ingresso		UINT32		0			R	FVS

Visualizzazione in esadecimale dello stato degli ingressi, vedi descrizione "lift control word" per il significato dei singoli bit

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.5.10	12104	Mon comandi uscita		UINT32		0			R	FVS

Visualizzazione in esadecimale dello stato degli ingressi, vedi descrizione "lift status word" per il significato dei singoli bit.

WDecompOut(PAD 8):

Bit	Descrizione	Note
0	Floor Command	Comando di chiamata piano in esecuzione
1	Null	
2	Null	
3	Null	
4	Null	
5	PosReady	Posizionatore pronto
6	Battery Sel	Battery fwd
7	Null	
8	Null	
9	Null	
10	Null	
11	Null	
12	Null	
13	UpContMon	
14	DownContMon	
15	DoorOpenMon	

05.06 - FUN-EMERGENZA

In caso di mancanza di alimentazione dalla rete elettrica, il drive può funzionare con alimentazione da modulo di emergenza EMS oppure da UPS.

La segnalazione del funzionamento in emergenza deve essere collegata all'ingresso del comando **Modo Emergenza** (ingresso digitale di default DI3).

Funzionamento con Emergency Module Supplier (EMS)

Se l'ingresso digitale 3 DI3 è attivo, l'allarme di **Sottotensione (UV)** fa riferimento al valore configurato al parametro 448 (menù 4) permettendo al drive di funzionare alimentato sul DC link. Per il collegamento vedere Manuale Quick Start paragrafo 7.3.3 e il manuale EMS.

Funzionamento con Uninterruptible Power Supply (UPS) Monofase

Attivata l'emergenza da ingresso digitale DI3, è possibile alimentare il Drive con UPS monofase a 230V. Per il collegamento vedere Manuale Quick Start paragrafo 7.3.3.

Gestione dell'arrivo al piano in Emergenza

Sia per configurazioni sia in anello chiuso che anello aperto, la gestione dell'arrivo al piano in emergenza è realizzata cercando di ottimizzare la richiesta di corrente ai moduli di emergenza.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.6.1	11278	Em dc Brk		FLOAT		75.0	0	150	RW	FVS

Il parametro permette di impostare il valore di corrente per la frenatura attraverso l'iniezione di corrente continua negli avvolgimenti del motore. E' possibile limitare tale valore evitando di sovraccaricare le batterie di emergenza.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.6.2	11284	Detection Limit	PERC	LONG		50	0	100	RW	FVS

E' il valore di corrente erogata dal drive (espresso in percentuale della corrente nominale) che il drive utilizza come soglia per scegliere direzione di marcia più favorevole.

In particolare se il drive prima dell'emergenza era in fase rigenerativa allora manterrà la stessa direzione di marcia anche in emergenza, se il drive non era in fase rigenerativa ma stava erogando corrente il cui valore è inferiore al valore impostato la direzione di marcia verrà mantenuta, altrimenti il drive cambierà direzione di marcia considerando quella che aveva sfavorevole.

Nota: la direzione è imposta dal controllore, il drive con questo parametro fa solo una valutazione di quale sarebbe la migliore direzione di marcia in funzione delle correnti erogate. Tale valutazione potrebbe essere utilizzata dal controllore per imporre la direzione consigliata dal drive.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.6.3	12282	ChosenDirection		INT		0	***	***	R	FVS

Indica la direzione selezionata dal drive durante l'emergenza.

- 0 Nessuna direzione selezionata
- 1 Forward

2 Reverse

L'associazione Forward/Reverse e Up/Down dipende da come è stato realizzato il collegamento al motore.

05.07 – PRE-COPPIA

La funzione Pre-coppia aiuta ad assicurare un avvio lineare senza alcuna accelerazione iniziale. Ciò è possibile impostando la coppia ad un valore che corrisponda al carico prima di aprire il freno. Il valore della coppia iniziale applicato al motore così come la direzione della coppia applicata può essere fornito montando una cella di carico sulla cabina dell'ascensore. Il segnale della cella di carico viene acquisito tramite l'ingresso analogico e scalato in modo appropriato nel caso di utilizzo della Pre-coppia.

Se la cella di carico non è disponibile, è possibile lavorare con un valore di coppia fisso e fornire solo la direzione di coppia. In questo caso il valore di coppia fisso viene ottimizzato solo per una condizione di carico.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.1	11166	Abilitazione pre-cop		BIT		0	0	1	RW	F

Abilitazione della funzione di pre-coppia.

- 0 Spento
- 1 Acceso

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.7.2	11168	Sorgente pre-coppia		ENUM		11170			RW	F

Selezione dell'origine (sorgente) del segnale utilizzato per la fruizione di pre-coppia.

11170 Init pretorque 1600 AnalogInp1 1650 AnalogInp2 4034 FieldbusM->S2 4044 FieldbusM->S3 4054 FieldbusM->S4 FieldbusM->S5 4064 4074 FieldbusM->S6 FieldbusM->S7 4084 FiledbusM->S8 4094 FieldbusM->S9 4104 FieldbusM->S10 4114 FieldbusM->S11 4124 FieldbusM->S12 4134 FieldbusM->S13 4144 FieldbusM->S14 4154 FieldbusM->S15 4164 FieldbusM->S16 4174

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.3	11170	Valore pre-coppia	perc	INT32		0	-100	100	RW	F

Impostazione del valore di riferimento utilizzato nella funzione di pre-coppia solo se il parametro **Sorg pre-coppia** è impostato a 0. Il valore impostato in questo parametro permette l'ottimizzazione della funzione di pre-coppia solo per una condizione di carico. Utilizzando il bus di campo per modificare l'impostazione di questo parametro è possibile ottimizzare la funzione di pre-coppia anche per situazioni di carico diverse.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.4	11172	Tempo sal pre-coppia	ms	INT32		0	0	60000	RW	F

Impostazione del tempo di rampa per la salita del valore di coppia (prima dell'apertura del freno): nel caso in cui questo parametro venga impostato a zero viene mantenuto il valore di coppia di feed-forward costante durante la corsa.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.5	11174	PreTorque Ramp down	ms	INT32		0	0	60000	RW	F

Impostazione del tempo di rampa per la discesa del valore di coppia: nel caso in cui questo parametro venga impostato a zero viene mantenuto il valore di coppia di feed-forward costante durante la corsa.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.7.6	11176	Offset pre-coppia		FLOAT		0.00	-100.00	100.00	RW	F

Impostazione del valore di offset applicato al riferimento d'ingresso della funzione pre-coppia.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.7	11178	Guadagno pre-coppia		FLOAT		1.00	-100.00	100.00	RW	F

Impostazione del valore di guadagno utilizzato per convertire il valore applicato all'ingresso analogico nel valore di coppia da utilizzare nella funzione. Questo valore di guadagno viene calcolato automaticamente in base ai pesi e alle inerzie inserite. Per ottenere un funzionamento ottimale si deve tarare il riferimento in modo tale che il valore minimo corrisponda alla cabina vuota e il valore massimo corrisponda al pieno carico.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.8	12040	Ingresso pre-coppia	perc	INT32					ER	F

Visualizzazione del valore di riferimento campionato alla partenza.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.9	12056	Uscita pre-coppia	perc	INT32					ER	F

Visualizzazione del valore della coppia di feew forward in uscita dalla funzione di pre-coppia.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.10	12058	Riferimento coppia	perc	INT32					ER	F

Visualizzazione del valore di riferimento di coppia, dato dalla sommatoria tra l'uscita dell'anello di velocità ed il feed forward di coppia.

05.08 – ALLARMI

PLC	Codice	Messaggio Visualizzato	Descrizione	Possibile Causa	Soluzione
PLC 1	33	Cont Feedback	Alarm contactor feedback	Guasto elettromeccanico	Sostituzione parte
PLC 2	34	Brake Feedback	Alarm brake feedback	del componente.	elettromeccanica.
PLC 3	35	Door Feedback	Alarm Door Feedback	Errore di cablaggio.	Controllo cablaggi.
PLC 4	37	PLC Calc Alarm	Internal Error	***	Resettare il drive e se ricompare riptere l'installazione dell'applicazione da scratch.

L'applicativo MdPlc per ADL300 gestisce e genera i seguenti allarmi:

Tutti gli allarmi prevedono un parametro con il quale si configura l'azione eseguita dopo l'attivazione dell'allarme. Attività: permette di impostare l'azione da eseguire dopo l'intervento dell'allarme come segue.

Azione	
Ignora	L'allarme non viene inserito nella lista allarmi, non viene inserito nello storico allarmi, non viene segnalato sulle uscite digitali, non vengono modificati i comandi al drive.
Avvisa	L' allarme viene inserito nella lista allarmi, viene inserito nello storico allarmi, viene segnalato sulle uscite digitali, viene aggiornata l'informazione Primo allarme , viene aggiornata l'informazione Allarme attivo , non vengono modificati i comandi al drive.
Disabilita	L' allarme viene inserito nella lista allarmi, viene inserito nello storico allarmi, viene segnalato sulle uscite digitali, viene aggiornata l'informazione Primo allarme, viene aggiornata l'informazione Allarme attivo , viene comandato arresto con disabilitazione del motore, il quale si ferma per inerzia.
Arresto	L'allarme viene inserito nella lista allarmi, viene inserito nello storico allarmi, viene segnalato sulle uscite digitali, viene aggiornata l'informazione Primo allarme , viene aggiornata l'informazione Allarme attivo , viene comandato l'arresto con il comando di Arresto. L'azionamento si porta a velocità zero con la massima corrente possibile; quando la segnalazione Ritardo velocità 0 si attiva il drive viene disabilitato.
Arresto rapido	L'allarme viene inserito nella lista allarmi, viene inserito nello storico allarmi, viene segnalato sulle uscite digitali, viene aggiornata l'informazione Primo allarme , viene aggiornata l'informazione Allarme attivo, viene comandato l'arresto con il comando di Arresto . L'azionamento si porta a velocità zero con la massima corrente possibile; quando la segnalazione Ritardo velocità 0 si attiva il drive viene disabilitato.
Arresto lift	L'azionamento si porta a velocità zero con il tempo di rampa impostato; quando la velocità raggiunge zero il drive viene disabilitato. Una volta che il drive è stato disabilitato l'allarme viene inserito nella lista allarmi, viene segnalato sulle uscite digitali.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.1	11200	Attività Contattori		ENUM		1	0	5	RW	FVS

Impostazione del comportamento del drive nel caso si presenti l'allarme **Retroaz contattore**. Questo allarme indica che non è stata ricevuta la retroazione a conferma dell'avvenuta chiusura del contattore.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 FastStop
- 5 Arresto Lift

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.2	11202	Mantenimento cont	ms	INT16		1000	0	60000	RW	FVS

Impostazione del tempo di ritardo tra la segnalazione della situazione dell'allarme **Retroaz contattore** e l'attivazione dell'allarme stesso. Se si verifica una condizione d'allarme, il drive attenderà che il tempo impostato sia trascorso prima di effettuarne l'attivazione. Se, entro il tempo impostato in questo parametro, l' allarme dovesse rientrare, il drive non ne effettuerà l'attivazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.3	11204	Attività Freno		INT16		1	0	5	RW	FVS

Impostazione del comportamento del drive nel caso si presenti l'allarme Retroaz freno. Questo allarme indica che non è stata ricevuta la retroazione a conferma dell'avvenuta apertura/chiusura del freno.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 FastStop
- 5 Arresto Lift

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.4	11206	Manten freno	ms	INT16		1000	0	60000	RW	FVS

Impostazione del tempo di ritardo tra la segnalazione della situazione dell'allarme **Retroaz freno** e l'attivazione dell'allarme stesso. Se si verifica una condizione d'allarme, il drive attenderà che il tempo impostato sia trascorso prima di effettuarne l'attivazione. Se, entro il tempo impostato in questo parametro, l'allarme dovesse rientrare, il drive non ne effettuerà l'attivazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.5	11208	Manten freno marcia		INT16		1	0	1	RW	FVS

Impostazione del comportamento del drive al rilevamento del possibile allarme di Retroaz freno.

- 0 Disabilita
- 1 Abilita

Se viene impostato 0 l'allarme di retroazione del freno viene indicato immediatamente.

Se viene impostato 1 il possibile allarme di retroazione del freno viene indicato al termine della corsa: questo permette alla cabina di raggiungere il piano nel caso in cui il segnale di stato del freno sia difettoso.

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Max	Acc	Mod
5.7.6	11210	Attività Porta		ENUM		0	0	5	RW	FVS

Impostazione del comportamento del drive nel caso si presenti l'allarme **Retroaz porta**. Questo allarme indica che non è stata ricevuta la retroazione a conferma dell'avvenuta apertura della porta.

- 0 Ignora
- 1 Avvisa
- 2 Disabilita
- 3 Arresto
- 4 FastStop
- 5 Arresto Lift

Nota:	Se le porte sono comandate dal controller questo valore deve essere configurato come "Ignora"
<u>NOLA.</u>	(Valore 0)

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.7	11212	Mantenimento porta	ms	INT16		1000	0	60000	RW	FVS

Impostazione del tempo di ritardo tra la segnalazione della situazione dell'allarme **Retroaz porta** e l'attivazione dell'allarme stesso. Se si verifica una condizione d'allarme, il drive attenderà che il tempo impostato sia trascorso prima di effettuarne l'attivazione. Se, entro il tempo impostato in questo parametro, l'allarme dovesse rientrare, il drive non ne effettuerà l'attivazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.7.8	11268	Reset Brake Alarm		SHORT		0			RW	FVS

Questo commando è il reset di Allarme Freno. Procedura per il reset:

1. Nel menù 5.9 ALLARMI LIFT, controllare se il parametro Allarme Freno è ON.

2. Entrare nel PAR 11268 Reset Brake Alarm (default 0).

- 3. Il sistema richiede un codice per sbloccare l'allarme: inserire 5313.
- 4. Nel menù 5.9 ALLARMI LIFT, controllare che il parametro Allarme Freno sia OFF.

05.09 – SERVICE

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.1	11004	TLanding	-	INT		0	0	3	R	FVS

Guadagno integrale anello di posizione utilizzato nello spazio di landing.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.2	11014	K Landing	-	UDINT		0	-	-	R	FVS

Guadagno proporzionale anello di posizione utilizzato nello spazio di landing

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.3	11036	Polinom	-	BOOL		0	0	1	R	FVS

La velocità è calcolata secondo polinomio di quinto grado per ottenere traiettorie continue anche in accelerazione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.4	11038	EnableTrack	-	BOOL		0	0	1	R	FVS

Abilitazioe funzione Track, questa funzione permette di fissare la velocità di arrivo al piano.

Se la funzione è abilitata, la velocità attuale è inferiore al parametro Track thr (IPA 11052) la posizione attuale è nella soglia di Tracking zone (IPA 11066), e la differenza tra la distanza rimanente al piano e la posizione attuale è maggiore di zero, allora la velocità viene fissata a Track Value (IPA 11058).

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.5	11052	Track thr		DINT		0	-	-	R	FVS

Valore di soglia per l'attivazione della Tack function, espressa in m/s.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.6	11058	Track Value		DINT		0	-	-	R	FVS

Velocità fissa di arrivo al piano, utilizzata dalla funzione Track.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.7	11066	Tracking zone		DINT		0	-	-	R	FVS

Zona di tracking.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.8	11252	K prop		DINT		0	-	-	R	FVS

Guadagno proporzionale anello di posizione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.9	11254	K Integr		DINT		0	-	-	R	FVS

Guadagno integrale anello di posizione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.10	11280	FastCalPosLoop		BOOL		Disable	-	-	R	FVS

Attivazione Macro utilizzata per la configurazione dei parametri dell'anello di posizione, i parametri variano in funzione della modalità di controllo attivata (asincrono oppure sincrono).

Il parametro una volta eseguito il comando ritorna al valore iniziale di Disable.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Max	Acc	Mod
5.9.11	12000	Speed 0	m/s	DINT		0	-	-	R	FVS

Soglia velocità zero in m/s.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.12	12006	ActualError	m	DINT		0	-	-	R	FVS

L'errore attuale è la differenza tra la distanza rimanente per il raggiungimento del piano e lo spazio calcolato dal profilo per la fermata.

L'errore deve essere prossimo a zero, risultato ottenibile solo attraverso un indonea taratura dei guadagni di posizione. L'errore rimane a zero fino a che il profilo non raggiunge la fase di decelerazione (settore in uso > 4).

Menu	Par	Descrizione	UM	Tipo	FB BIT	Def	Min	Мах	Acc	Mod
5.9.13	12008	CompSpeed	m/s	DINT		0	-	-	R	FVS

È il contributo sommato al riferimento di velocità, dato dalla correzione dell'anello di posizione.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.14	12012	ActualSector	-	INT		0	-	-	R	FVS

Il profilo di posizione è diviso in settori, il parametro espone il settore attivo.

Menu	Par	Descrizione	UM	Тіро	FB BIT	Def	Min	Мах	Acc	Mod
5.9.15	12018	DeltaPos		DINT		0	-	-	R	FVS

Questa variabile è composta dalla sommatoria tra il parametro 11016 (FinalAdjust) e la differenza ra la posizione target (IPA 12030) e la posizione attuale della cabina (12032).

Manuale Utente

Serie: ADL300 DS417 Revisione: 0.2 Data: 18-1-2023 Cod.: 1S9DSIT WEG Automation Europe S.r.l. Via Giosuè Carducci, 24 21040 Gerenzano (VA) · Italy

www.weg.net

Driving efficiency and sustainability

