

Soft-Starter

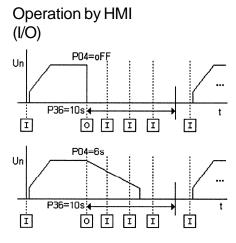
Arrancador Suave

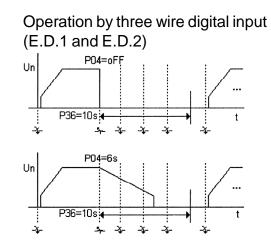
Chave de Partida Soft-Starter

User´s Guide

Guia del Usuario

Manual do usuário

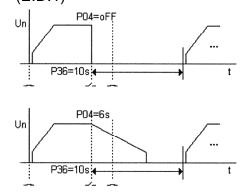

ADDENDUM TO THE MANUAL 0899.5629 E/5 - SSW-04


This addendum refers to the following changes that have been made on the SSW-04 software from Version 4.XX to Version 5.XX.

1. Inclusion of the time interval between starts function.

This protection acts limiting the time minimum interval between starts to avoid excessive starting and stopping according to the time adjusted in parameter P36.

- P36: Time Interval Between Starts (oFF, 1 ... 999s). Factory Standard: "oFF".



Attention:

The SSW controller will not accept a new Start command during the time, adjusted in P36, elapsed after Stop. Identically to serial interface communication.

Operation by two wire digital input (E.D.1)

Attention.:

The SSW controller will not accept a new Start command during the time, adjusted in P36, elapsed after Stop.

NOTE!

- 1) Use this function only if you need to avoid excessive starting and stopping.
- 2) The time counter starts after a Stop command, with or without soft stop.
- 3) The time adjusted in P36 must be greater than the time adjusted in P04 for this function to work properly.
- 4) This function doesn't work for the Jog function.
- 5) During the reversal of the motor direction, the new start of the motor will be only realized after the time adjusted in P36 elapses.

ADDENDUM TO THE MANUAL 0899.5629 E/5 - SSW-04

This addendum refers to the following changes that have been made on the SSW-04 software from Version 3.XX to Version 4.XX

1. Addition of the function Watch Dog of the Serial Communication.

This protection acts when the serial communication between the master and the Soft-Starter is interrupted, causing indication and action as set in parameters P63 and P64.

- P63: Watch Dog Time of the Serial Communication (oFF, 1 ... 5s). Factory Standard: "oFF".
- P64: Action After Watch Dog Time is Elapsed (1, 2 and 3). Factory Standard: 1.
- 1 = Indicates only error E29.
- 2 = Indicates error E29 and disables the motor by ramp, if P04 is programmed different from "oFF" and motor is stopped by inertia if equal "oFF".
- 3 = Indicates error E29 and cause general disabling of the Soft-Starter. Its cats as emergency. The motor is stopped by inertia.

NOTE!

Error E29 is reset when the correct serial communication returned.

NOTE!

Enable this function only if there is cyclic serial communication with a Master.

Set the watch dog time according to the time between telegrams sent by the master.

- 2. Change in the setting range of P15 to: off, 1 ... 200s.
- 3. Addition the following NOTE! in the item 6.3.19 Pump Control.

NOTE!

Before the first start of the Pump, disable the Pump Control function. P45 must be set at "oFF". Set the following parameters:

P01 = 30 (Initial Voltage)

P02 = 15 (Acceleration Ramp Time)

P03 = 80 (Voltage Fall Step during Deceleration)

P04 = 15 (Deceleration Ramp Time)

P11 = OFF (Current Limitation)

After setting the values above start and stop the Pump. Then check the correct direction of rotation, pump flow and the current of the motor.

After the above step you can enable the Pump Control (P45 = "on").

4. Addition the following items 10.2, 10.3 e 10.4 in the accessories chapter.

10.2 - RS-485.

Optionally the SSW-04 can operate in serial interface RS-485 by Weg Interface Module MIW-02.

Module Type	WEG Item
MIW-02	417100543

NOTE!

For more details see MIW-02 Manual (0899.4430).

10.3 - Fieldbus Network.

Optionally the SSW-04 can operate in communication network "FieldBus", by a gateway, Weg Fieldbus Module MFW-01.

Module Type	Protocol	WEG Item
MFW-01/PD	ProfiBus DP	417100540
MFW-01/DN	DeviceNet	417100541
MFW-01/MR	ModBus RTU	417100542

NOTE!

For more details see MFW-01 Manual (0899.4429).

10.4 - SuperDrive.

Programming software for microcomputer PC, for windows environment. Permits parameter programming, command and monitoring of the Soft-Starter SSW-04. It edits parameters "on-line", directly to the Soft-Starter or it edits parameters files "off-line", saving in the microcomputer. The communication between Soft-Starter and Microcomputer is by serial interface RS232 (Point to Point) or RS485 (Network Line).

Product	WEG Item
Super Drive	417102505

SOFT-STARTER MANUAL

SSW-04 Series

Software: version 5.XX

0899.5629 E/5

NOTE!

It is very important to check if the Soft-Starter Software is the same as the above.

SUMMARY

QUICK PARAMETER REFERENCES, ERROR MESSAGES AND STATUS MESSAGES	1 2 3	Parameters Error Messages Soft-Starter Status	09 12 12
1			
SAFETY NOTICE 2	1.1 1.2 1.3	Safety Notices in the Manual Safety Notices on the Product Preliminary Recommendations	13 13 13
INTRODUCTION	2.1 2.2 2.3 2.4	About this Manual	15 15 16 16 16
	2.5 2.6	SSW-04	18 19 20 20
3			
INSTALLATION	3.1 3.2 3.3	Mechanical Installation 3.1.1 Environment 3.1.2 Location/Mounting Electrical Installation 3.2.1 Power/grounding connections 3.2.2 Location of the Power/grounding/fans connections 3.2.3 Signal and control connections 3.2.4 Fan connections 3.2.5 Combination Drive "A"operation by HMI-3P 3.2.6 Combination Drive "B"operation through terminals Installation of Optional Devices 3.3.1 HMI-3P on the Panel Door 3.3.1.1 Mechanical Installation 3.3.1.2 Electrical Installation	21 21 22 23 23 26 27 29 30 32 34 34 34 35
4			
POWER UP/ COMMISSIONING	4.1 4.2 4.3	Power-up preparations	36 37 37 38

SUMMARY_

		4.3.2 Commissioning and Operation via HMI-3P	38
		Terminals	39
	4.4	Settings during the Commissioning	40
5			
USE OF THE HMI	5.1	Description of the HMI-3P Interface	42
	5.2	Use of the HMI-3P	43
		5.2.1 Use of the HMI-3P for operation 5.2.2 Signalling / Indications of the HMI-3P (display)	43 44
	5.3	Parameter changing	47
	3.3	5.3.1 Selection/changing parameters	48
6			
DETAILED	6.1	Standard parameter set at factory	50
PARAMETER	6.2	Read Parameters - P71P77, P81, P82,	
		P96P99	51
DESCRIPTION		6.2.1 P71 - Software Version	51
		6.2.2 P72 - Motor Current %IN	51
		6.2.3 P73 - Motor Current(A)	51
		6.2.4 P74 - Active Power	51
		6.2.5 P75 - Apparent Power	51
		6.2.6 P76 - Load power factor	51
		6.2.7 P77 - Output voltage	51
		6.2.8 P81 - Heatsink temperature	51
		6.2.9 P82 - Motor thermal protection status	51
	6.2	6.2.10 Last errors	52
	6.3	Regulation Parameters P00P15,	F 2
		P22P42,P45, P47	52 52
		6.3.2 PO1 - Initial Voltage	
		6.3.3 PO2 - Time of the acceleration ramp	52 53
		6.3.4 PO3 - Voltage steps during deceleration	53
		6.3.5 PO4 - Time of deceleration ramp	54
		6.3.6 P11 - Current limitation	54
		6.3.7 P12 - Immediate overcurrent	56
		6.3.8 P14 - Immediate undercurrent	57
		6.3.9 P13 - Immediate overcurrent time	58
		6.3.10P15 - Immediate undercurrent time	58
		6.3.11 P22 - Rated current of the Soft-Starter	58
		6.3.12 P23 - Rated voltage of the Soft-Starter	59
		6.3.13 P31 - Phase rotation	59
		6.3.14P33 - Voltage level of the JOG function	59
		6.3.15 P34 - DC braking time (s)	60
		6.3.16P35 - DC braking voltage level (%UN)	60
		6.3.17 P41 - Voltage pulse time at the start	60

SUMMARY

		6.3.18 P42 - Voltage pulse level at the start	0.1
		6.3.19 P45 - Pump control	61
		6.3.20 P47 - Auto-reset time	63
	6.4	Configuration parameters P43, P44, P46,	
		P50P55,P61, P62	64
		6.4.1 P43 - By-pass relay	64
		6.4.2 P44 - Energy save	64
		6.4.3 P46 - Default values (it loads factory	
		parameters)	65
		6.4.4 P50 - Function of the relay RL3	65
		6.4.5 P51 - Function of the relay RL1	66
		6.4.6 P52 - Function of the relay RL2	67
		6.4.7 P53 - Programming of the digital input 2	68
		6.4.8 P54 - Programming of the digital	
		input 3	69
		6.4.9 P55 - Programming of the digital	60
		input 46.4.10 P61 - Control enabling	69 70
		6.4.11 P62 - Address of the Soft-Starter at	/ 0
		the communication network	71
	6.5	Motor Parameters - P21, P25, P26, P27	71 72
	0.5	6.5.1 P21 - Motor current setting	12
		(%In of the switch)	72
		6.5.2 P25 - Thermal class of the	12
		motor protection	73
		6.5.3 P26 - Motor service factor	78
		6.5.4 P27 - Auto-reset of the thermal	70
_		motor image	78
7		motor image	70
MAINTENANCE			
MAINTENANGE	7.1	Error and possible causes	80
	, , _	7.1.1 Programming error (E24)	80
		7.1.2 Serial Communication Error	80
		7.1.3 Hardware errors (EOX)	80
	7.2	Preventive maintenance	84
	, ,2	7.2.1 Cleaning instructions	85
	7.3	Changing supply fuse	85
8	7.4	Spare part list	86
TECHNICAL			
CHARACTERISTICS	8.1	Power Data	87
	8.2	Power / current table	87
	8.3	Mechanical data	87
9	8.4	Electronics data / general	88
APPENDIX			
	9.1	Comformity	89
		9.1.1 EMC and LVD directives	89
		9.1.2 Requirements for conforming	
		installations	89
		9.1.3 Filter installation	91

SUMMARY_

9.2	Recommended application with terminals for wire control	two 92
9.3	Recommended application with terminals for	
	three wire control	93
9.4	Recommended application with terminals for t	hree
	wire control and power isolation contactor	94
9.5	Recommended application with terminals for	
	three wire control and by-pass contactor	95
9.6	Recommended application with terminals for	
	three wire control and DC braking	96
9.7	Recommended application with terminals for	
	three wire control and motor speed reversal	97
9.8	Recommended application with PC or PLC	
	command	98
9.9	Recommended application with terminals for	
	three wire control for several motors	99
9.10	Symbols	101

Software:	V5.XX		
Application:			
Туре:			
Serial Numb	er:		
Responsable	:	Date:	/ / .

1. Parameters

Para-	Function	Adjustable	Factory	User's	Page
meter		Range	Setting	Setting	
P00	Permits parameter changing	OFF, ON	OFF		52
	Regulation Parameter				
P01	Initial Voltage	2590% Un	30%Un		52
P02	Acceleration ramp time	1240 s	20s		53
P03	Voltage ramp during deceleration	100 40%Un	100%Un		53
P04	Ramp time during deceleration	OFF,2240s	OFF		54
P11	Current limit during starting	OFF, 150500%ln	OFF		54
P12	Immediate over current	32200%In	120%ln		56
P13	Immediate over current time	OFF, 120s	OFF		58
P14	Immediate undercurrent	20190%In	70%ln		57
P15	Immediate undercurrent time	OFF, 130s	OFF		58
	Motor Parameter				
P21	Motor current setting	OFF, 30.0200.00%In	OFF		72
P25	Overload class	5, 10, 15, 20, 25, 30	30		73
P26	Service factor	0.801.50	1.00		78
P27	Auto-reset of the thermal memory	OFF, 1600s	OFF		78

Para- meter	Function	Adjustable Range	Factory Setting	User's Setting	Page
	Regulation Parameter		I. 11		
P22	Rated current	16, 30, 45, 60, 85A	According to the Model		58
P23	Rated mains voltage	220, 230, 240, 380, 400, 415, 440, 460, 480, 525, 575V	380V		59
P31	Phase rotation	OFF, ON	OFF		59
P33	Voltage jog level	2550%Un	25%Un		59
P34	DC braking time	OFF, 110s	OFF		60
P35	DC braking voltage level	3050%Un	30%Un		60
P41	Voltage pulse at start (kick start)	OFF; 0.22s	OFF		60
P42	Voltage pulse level during starting	7090%Un	70%Un		61
P45	Pump control	OFF, ON	OFF		61
P47	Errors auto-reset	OFF, 10600s	OFF		63
	Configuration Paramet	er			
P43	By-Pass relay	OFF, ON	OFF		64
P44	Energy save	OFF, ON	OFF		64
P46	Default values	OFF, ON	OFF		65
P50	Programming of the Relay RL3	1- disables with fault 2- enables with fault	1		65
P51	Function of the RL1 relay	1, 2, 3	1		66
P52	Function of the RL2 relay	1, 2, 3	2		67
P53	Digital input 2 program	OFF, 14	1		68
P54	Digital input 3 program	OFF, 14	2		69
P55	Digital input 4 program	OFF, 14	OFF		69
P61	Set the command through HMI/Serial or digital inputs	OFF, ON	ON		70
P62	Soft-Starter address in the comunication NET	130	1		71
	Reading Parameters				
P71	Switch Software version				51
P72	Indication of the %In motor current of the switch	XXX %ln			51

Para-	Function	Adjustable	Factory	User's	Page
meter		Range	Setting	Setting	
P73	Motor current indica- tion (A)	0.0999.9A			51
P74	Active power indication supplied to the load (KW)	0.0999.9kW			51
P75	Apparent power indica- tion supplied to the load (KVA)	0.0999.9kVA			51
P76	Load power factor	0.000.99			51
P77	Soft-Starter output voltage indication % Un	0100% Un			51
P81	Heatsink Temperature (°C)	10110°C			51
P82	Indication of motor Thermal Protection Status	0250%			51
P96	Last hardware error	18			52
P97	Second hardware error	18			52
P98	Third hardware error	18			52
P99	Fourth hardware error	18			52

2. Error Messages

Display	Meaning
E01	Phase failure or thyristor fault or motor not connected
E02	At the end of time of the programmed acceleration time, the voltage does not reach 100% Un due to the current limit.
E03	Overtemperature at the thyristors and in the heatsink
E04	Motor overload
E05	Undercurrent (applicable to pumps)
E06	Immediate overcurrent
E07	Phase rotation
E08	External fault
E24	Programming error
E2X	Serial communication error

3. Soft-Starter Status

Display	Definition		
rdy	Soft-Starter is ready to be enabled		
PuP	Loading pump control parameters		
EEP	Loading "Default" values		
On	Function enabled		
OFF	Function disabled		

SAFETY NOTICE

This Manual contains all necessary information for the correct installation and operation of the SSW-04 Soft-Starter.

This Manual has been written for qualified personnel with suitable training or technical qualifications to operate this type of equipment.

1.1 SAFETY NOTICES IN THE MANUAL

The following Safety Notices will be used in this Manual:

DANGER!

If the recommended Safety Instructions are not strictly observed, it can lead to serious or fatal injuries of personnel and/or equipment damage.

ATTENTION!

Failure to observe the recommended Safety Procedures can lead to material damage.

NOTE!

The content of this Manual supplies important information for the correct understanding of operation and proper performance of the equipment.

1.2 SAFETY NOTICES ON THE PRODUCT

The following symbols may be attached to the product, serving as Safety Notice:

High Voltages

Components are sensitive to electrostatic discharge. Do not touch them without following proper grounding procedures.

Mandatory connection to ground protection (PE)

Shield connection to ground

1.3 PRELIMINARY RECOMMENDATIONS

DANGER!

Only qualified personnel should plan or implement the installation, startup, operation and maintenance of this equipment.

Personnel must review this entire Manual before attempting to install, operate or troubleshoot the SSW-04. These personnel must follow all safety instructions included in this Manual and/or defined by local regulations.

Failure to comply with these instructions may result in personnel injury and/or equipment damage.

NOTE!

In this Manual, qualified personnel are defined as people that are trained to:

- 1. Install, ground, power up and operate the SSW-04 according to this manual and the local required safety procedures;
- 2. Use of safety equipment according to the local regulations;
- 3. Administer Cardio Pulmonary Resuscitation (CPR) and First Aid.

DANGER!

Always disconnect the supply voltage before touching any electrical component inside the Soft-Starter.

Many components are charged with high voltages, even after the incoming AC power supply has been disconnected or switched OFF. Wait at least 3 minutes for the total discharge of the power capacitors.

Always connect the frame of the equipment to the ground (PE) at the suitable connection point.

ATTENTION!

All electronic boards have components that are sensitive to electrostatic discharges. Never touch any of the electrical components or connectors without following proper grounding procedures. If necessary to do so, touch the properly grounded metallic frame or use a suitable ground strap.

Do not apply High Voltage (High Pot) Test on the Soft-Starter! If this test is necessary, contact the Manufacturer.

NOTE!

Read this entire Manual carefully and completely before installing or operating the SSW-04.

2.1 - ABOUT THIS MANUAL

This Manual describes how to install, start-up, operate and identify the problems of the SSW-04 Soft-Starters series.

Should you require any training or further info, please contact WEG.

This Manual is divided into 9 Chapters, providing information to the user on how to receive, install, start-up and operate the SSW-04:

Chapter 1- Safety Notices;

Chapter 2 - Introduction;

Chapter 3 - Installation;

Chapter 4 - Power-up / Commissioning;

Chapter 5 - Use of the HMI;

Chapter 6 - Detailed Parameter Description;

Chapter 7 - Maintenance;

Chapter 8 - Technical Characteristics;

Chapter 9 - Appendix.

This Manual provides information for the correct use of the SSW-04. The SSW-04 is very flexible and allows for the operation in many different modes as described in this manual.

As the SSW-04 can be applied in several ways, it is impossible to describe here all of the application possibilities. WEG does not accept any responsibility when the SSW-04 is not used according to this Manual.

No part of this Manual may be reproduced in any form, without the written permission of WEG.

2.2 VERSION OF SOFTWARE

It is important to note the Software Version installed in the Version SSW-04, since it defines the functions and the programming parameters of the Soft-Starter.

This Manual refers to the Software version indicated on the inside cover. For example, the Version 1.XX applies to versions 1.00 to 1.99, where "X" is a variable that will change due to minor software revisions. The operation of the SSW-04 with these software revisions are still covered by this version of the Manual.

The Software Version can be read in the Parameter P71.

2.3 - ABBREVIATIONS USED

HMI - Human machine interface (keypad + display)

HMI-3P - Keypad + Display interface - Linked via parallel cable

RLX - Relay output No X

DIX - Digital input No X

In - Soft-Starter nominal output current

Un - Rated mains voltage

LED - Light Emitting Diode

2.4 - ABOUT THE SSW-04

The SSW-04 series is a totally microprocessor controlled Soft-Starter series which controls the starting current of three-phase induction motors. In this way mechanical inmpacts on the load and current peaks on the supply network are prevented.

2.4.1 - Introduction

This series includes models from 16 to 85A, being supplied from 220V, 230V, 240V, 380V, 400V, 415V, 440V, 460V, 480V, 525V or 575V. (The available types are listed in Section 8).

The models up to 45A are with natural cooling and isolated heatsink (thyristor-thyristor modules). The models from 60A and 85A have forced cooling and isolated heatsink (Thyristor-Thyristor Modules).

The electronic control circuit uses a 16 bit microprocessor with high performance, allowing settings and displaying by means of the interface (keypad + display) of all needed parameters.

Depending on the power, this series (SSW-04) has 2 different construction forms, as shown in Figure 2.1.

MEC	Rated Current	Width L mm (in)	Depth P mm (in)	Height H mm (in)	Weight kg (lb)
1	16A 30A 45A	140 (5.51)	199 (7.83)	275 (10.83)	5.2 (11.46)
2	60A 85A	140 (5.51)	283 (11.06)	275 (10.83)	9.0 (19.84)

SIDE VIEW FRONT VIEW FRONT VIEW

Figure 2.1 - Construction forms

2.4.2 - Simplified Block Diagram of the SSW-04

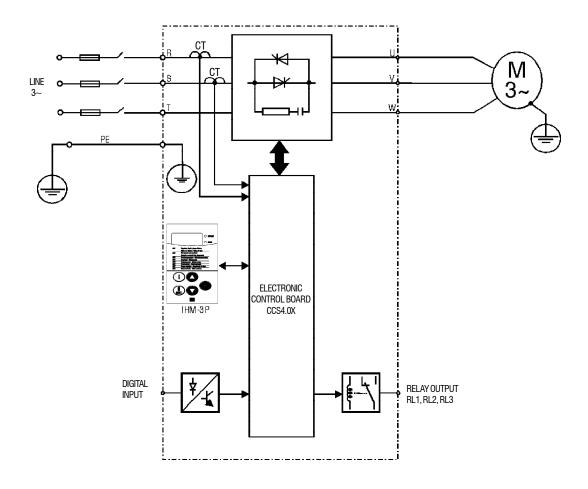


Figure 2.2 - Simplified Block Diagram of the SSW-04

In the power stage, the line voltage is controlled by means of 6 SCR's that allow the variation of the conduction angle of the voltage supplied to the motor.

For the internal supply of the electronics, a switched source is used with several voltages, fed independently of the power supply.

The control board contains the circuits responsible for the control, monitoring and protection of the power components. This board also contains the control and signalling circuit to be used by the user according to its application as a relay output.

All parameters or controls for the operation of the Soft-Starter can be displayed or changed through the HMI.

2.4.3 - Description of the control board - CCS 4.00 or CCS 4.01

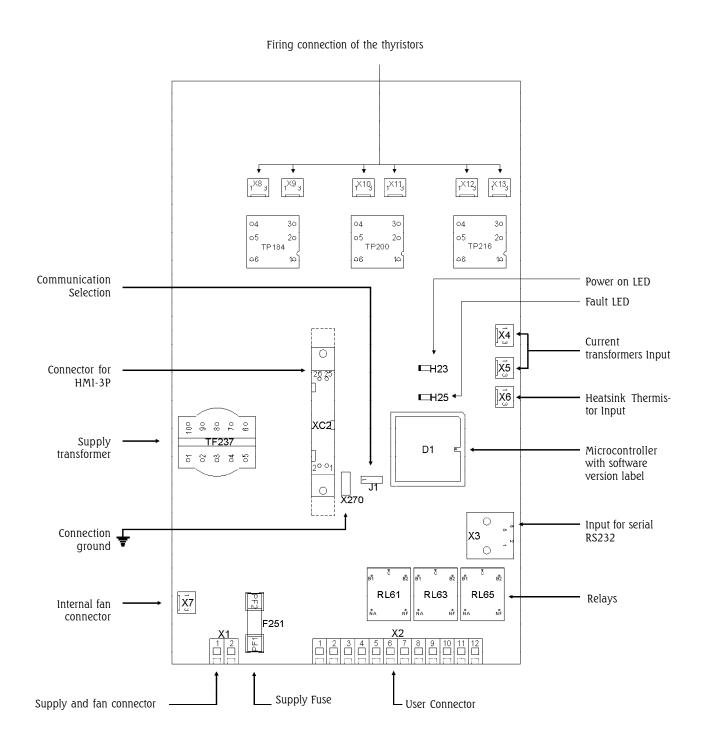
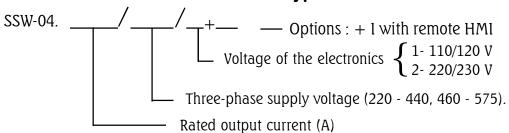



Figure. 2.3 - Layout of the electronic control board CCS 4.00 or CCS4.01

2.5 - PRODUCT IDENTIFICATION

Soft-Starter Type

Max. Cont.: It's the maximum current that the Soft-Starter can have in continuous duty. For this current the Soft-Starter can only have 1 start per hour.

EXTERN HMI

HMI-3P.1: HMI with LEDs, 1 m (3.28ft) cable HMI-3P.2: HMI with LEDs, 2 m (6.56ft) cable HMI-3P.3: HMI with LEDs, 3 m (9.84ft) cable

2.6 - RECEIVING

The SSW-04 is supplied in cardboard boxes.

The outside of the packing container has a nameplate that is the identical to that on the SSW-04. Please check if the SSW-04 is the one you ordered.

Open the box, remove the foam and then remove the SSW-04.

✓ SSW-04 nameplate data matches the purchase order;
 The equipment has not been damaged during transport.
 ✓ If any problem is detected, contact the carrier immediately.

If the SSW-04 is not to be installed immediately, store it in a clean and dry room (Storage temperatures between - 25°C and 60°C). Cover it to prevent dust, dirt or other contamination of the drive.

3.1 - MECHANICAL INSTALLATION

The location of the SSW-04 installation is a determinaning factor for obtaining a good performance and a normal useful life of its components.

Regarding the installation of the Soft-Starter we make the following recommendations:

3.1.1 - Environment

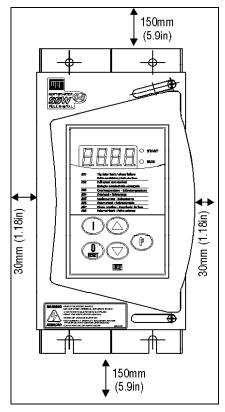
- ☑ Avoid direct exposure to sunlight, rain, high moisture and sea air.
- ☑ Avoid exposure to gases or explosive or corrosive liquids;
- Avoid exposure to excessive vibration, dust, oil or any (conductive particles or materials).

Environmental Conditions:

- **Temperature:** 32...104° F (0 ... 40° C) nominal conditions. 104...131° F (40 ... 55° C) see table 8.2.
- ☑ **Relative Air Humidity:** 5% to 90%, non-condensing.
- Maximum Altitude: 3,300 ft (1000m) nominal conditions. 3,300 ... 13,200 ft (1000 ... 4000m) with 10% current reduction for each 3,300 ft (1000m) above 3,300 ft (1000m).

Pollution Degree: 2 (according to EN50178 and UL508) (It is not allowed to have water, condensation or conductive dust/particles in the air)

NOTE!


When Soft-Starter is installed in panels or closed metallic boxes, adequate cooling is required to ensure that the temperature around the Soft-Starter will not exceed the maximum allowed temperature. See Dissipated Power in Section 8.2.

Please meet the minimum recommended panel dimensions and its cooling requirements:

SSW-04	Panel Dimensions			Blower
type	Width	Height	Depth	CFM
16A	600 (23.62)	1000 (39.37)	400 (15.75)	-
30A	600 (23.62)	1200 (47.24)	400 (15.75)	-
45A and 60A	600 (23.62)	1200 (47.24)	400 (15.75)	226
85A	600 (23.62)	1500 (59.05)	400 (15.75)	226

All dimensions in mm (inches)

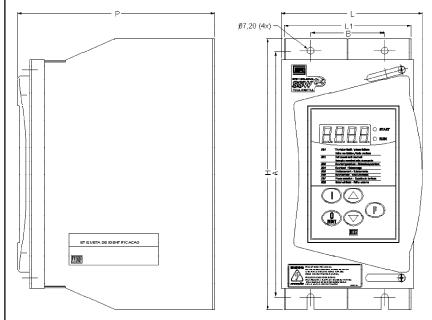

3.1.2 - Location / Mounting

Figure 3.1 - Free space for ventilation

Install the Soft-Starter in Vertical Position:

- ✓ Allow for free space around the SSW-04, as shown in Fig. 3.1.
- ☑ Install the Soft-Starter on a flat surface.
- ☑ External dimensions, fastenings drillings, etc. according to Figure 3.2.
- ☑ First install and partially tighten the mounting bolts, then install the Soft-Starter and tighten the mounting bolts.
- ☑ Provide independent conduits for physical separation for signal conductors, control and power conductors (See Electrical Installation).

Figure 3.2 - External dimensions for the SSW-04 and its screwing drillings

L1	L	Height H mm (in)	Depth P mm (in)	A	В	bolt	Weight kg (lb)	Degree Protect.
128	140 (5.51)	275 (10.83)	199 (7.83)	250 (0.84)	75 (2.05)	(1/4")	5.2	IP20
(3.0)	(3.31)	(10.03)	(7.03)	(9.04)	(2.93)	110	(11.40)	
128	140	275	283	250	75	(1/4")	9.0	IP20
(5.0)	(5.51)	(10.83)	(11.06)	(9.84)	(2.95)	M6	(19.84)	
	L1 mm (in) 128 (5.0)	L1 L mm (in) 128 140 (5.0) (5.51)	L1 L H mm (in) mm (in) 275 (5.0) (5.51) (10.83)	L1 mm (in) mm (in) mm (in) mm (in) H mm (in) mm (in) mm (in) 128	L1 mm (in) P mm (in) mm (in) mm (in) mm (in) 128 (5.0) (5.51) (10.83) (7.83) (9.84) 128 140 275 283 250	L1 L H P A mm (in) mm (in) mm (in) mm (in) mm (in) mm (in) B mm (in) mm (in) mm (in) mm (in) 128 140 275 199 250 75 (5.0) (5.51) (10.83) (7.83) (9.84) (2.95) 128 140 275 283 250 75	L1 L H P mm (in) B mm (in) mm (in) mm (in) mm (in) mm (in) bolt mm (in) mm (in) mm (in) mm (in) mm (in) 128 140 275 199 250 75 (1/4") (5.0) (5.51) (10.83) (7.83) (9.84) (2.95) M6 128 140 275 283 250 75 (1/4")	L1 L H P A mm (in) B mm (in) mm (in) mm (in) mm (in) bolt kg (lb) 128 140 275 199 250 75 (1/4") 5.2 (5.0) (5.51) (10.83) (7.83) (9.84) (2.95) M6 (11.46) 128 140 275 283 250 75 (1/4") 9.0

3.2 - ELECTRICAL INSTALLATION

3.2.1 - POWER/ GROUNDING CONNECTIONS

DANGER!

AC input disconnect: provide an AC input disconnecting switch to switch OFF input power to the Soft-Starter.

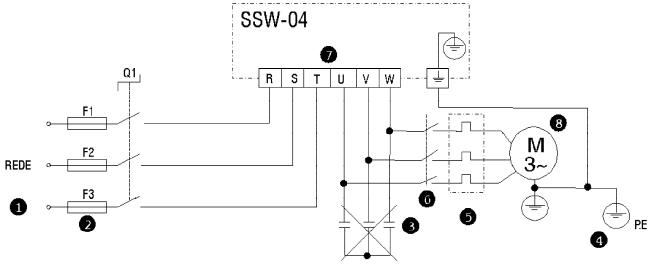
This device shall disconnect the Soft-Starter from the AC input supply when required (e.g. during maintenance services).

DANGER!

The AC input disconnect cannot be used as an emergency stop device.

DANGER!

Be sure that the AC input power is disconnected before making any terminal connection.

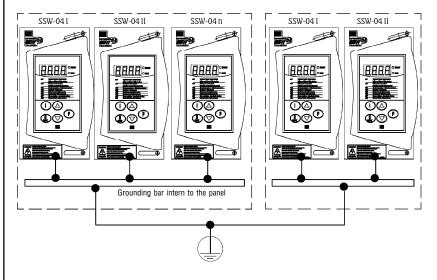

DANGER!

The information below will be a guide to achieve a proper installation. Follow also all applicable local standards for electrical installations.

ATTENTION!

Provide at least 10 in (0.25m) spacing between low voltage wiring and the Soft-Starter, line or load reactors, AC input power, and AC motor cables.

Figure 3.3 - Power and Grounding Connections



- The line voltage must be compatible with the rated voltage of the Soft-Starter.
- For installation use the cable cross sections and the fuses recommended in Table 3.1, maximum torque as indicated in table 3.2
- **3** Power factor correction capacitors most never be installed on the Soft-Starter output.
- The Soft-Starters must be grounded. For this purpose use a cable with a cross section as indicated in Table 3.1.

Connect it to a specific grounding bar or to the general grounding point (resistance ≤ 10 ohms).

Do not share the grounding wiring with other equipment which operate at high currents (for instance, high voltage motors, welding machines, etc.).

If several Soft-Starters are used together, see Figure 3.4.

Figure 3.4 - Grounding connection for more than one Soft-Starter

Do not use the neutral conductor for grounding purpose.

• The Soft-Starter is fitted with electronic protection against motor overloads. This protection must be set according to the specific motor.

When several motors are connected to the same Soft-Starter, use individual overload relays for each motor.

• If a isolating switch or a contactor is inserted in the motor supply, do not operate them with running motor or when the Soft-Starter is enabled.

Table 3.1 - Recommended Cables/Fuses - Use 75°C Copper Wire Only

Rated	Power	Grounding	Ultra fast acting	l ² t of
current of	Wiring	Wiring	Fuse for SCR's	SCR
the SSW-04	mm² (AWG)	mm² (AWG)	protection	(A ² S)
16A	2.5mm ² (12)	6mm² (8)	50A	1,150
30A	6mm ² (8)	6mm² (8)	80A	8,000
45A	8mm² (8)	6mm² (8)	125A	15,000
60A	16mm² (4)	8mm² (8)	160A	15,000
85A	25mm² (3)	10mm² (6)	200A	125,000

The cross sections indicated in Table 3.1 are orientative values only. For correct cables dimensioning consider the installation condition and the maximum allowable voltage drop.

The recommended fuse connected at the input side must be a ultra rapid type (UR) with I²t smaller than 75% of the value indicated in Table 3.1 (I²t of the SCR).

When a short circuit occurs the ultra rapid fuse protects the SCR.

Normal fuses can also be used, in that case the installation is protected against short circuit, but the SCR isn't protected.

• Recommended torque on the power terminals:

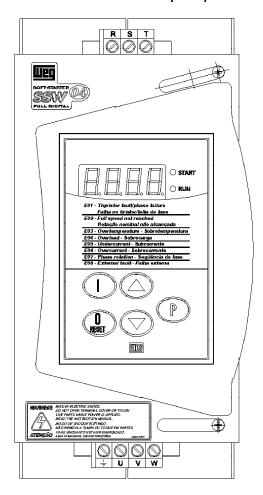
Table 3.2 - Maximum torque

Soft-Starter Type	Grounding wiring N _m (Lb.in)	Power wiring N _m (Lb.in)
16A 30A 45A	1.2 - 1.4 (10.6-12.3)	1.2 - 1.4 (10.6 - 12.3)
60A 85A	5.0 (43.9)	2.5 - 3.0 (21.8 - 26.1)

8 It is Recommended to use motors with load above 30% rated motor load.

NOTE!

The rated motor current shall not be less than 30% of the softstarter rated current, in order that the overload protection works properly.



The SSW-04 is suitable for use on a circuit capable of delivering not more than X Arms (see below) symmetrical amperes, Y volts maximum, when protected by Ultra-fast Semiconductor Fuses.

Туре	Х	Y
16 - 45A 460 - 575V	5,000	575
60 - 85A 460 - 575V	10,000	575
16 - 60A 220 - 440V	5,000	440
85A 220 - 440V	10,000	440

3.2.2 - Location of the power/ grounding/fans connection

UPPER CONNECTION (LINE)

LOWER CONNECTION (MOTOR)

Figure 3.5- Location of the power/grounding connection

3.2.3 - Signal and Control Connections

The signal (digital inputs/outputs by relay) are performed through the following connectors of the Control Board CCS4.0X (see location in Figure 2.3).

X2: Digital input and output by relayX1: Electronics and Fan supplyXC2: connection to HMI-3P

X3: connection to serial communication

NOTE!

Soft-starters types 60A and 85A the fan current pass also through the connector X1. Thus the total current is: 274.5mA for 110Vac or 140mA for 220Vac.

3.2.3.1 - Description of the X2 Connector

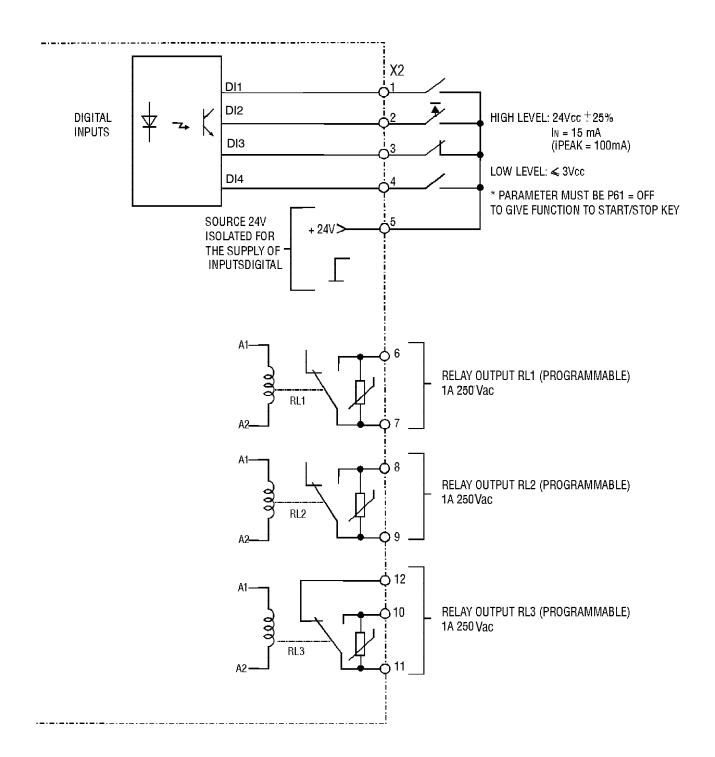


Figure 3.6 - Description of the X2 (CCS4.00 or CCS4.01 connector)

When installing the signal and control wiring, please note the following:

- Cable cross-section: 0.5...1.5mm²;
- 2 Relays, contactors, solenoid valves or breaking coils installed near to Soft-Starters can generate interferences in the control circuit. To eliminate this, you must install RC supressors connected in parallel with the coils of these devices, when fed by alternate current and free wheel diodes when fed by direct current.
- When an extern HMI is used, the connection cable to the Soft-Starter should be passed through the slot at the bottom of the Soft-Starter. This cable must be laid separate from the other cables existing in the installation, maintaining a distance of 100mm (3.94in) each other.
- **4** Max. recommended torque in the terminals X2 and X1: Maximum 0.4 Nm or 3.5lb.in.
- **⑤** The control wiring (X2:1...5) must be laid separate from the power wiring.

3.2.4 - FAN CONNECTIONS

The fan connections must be done through X1:1 and X1:2 connector according to the voltage defined by the Soft-Starter code:

Ex.: SSW-04. 60/220-440/ Electronic / fan voltage:

1 = 110Vac
2 = 220Vac

3.2.5 - Combination drive "A" - Operation by HMI-3P

With the factory standard programming, you can operate the Soft-Starter with the minimum connection shown in Figure 3.7.

This operation mode is recommended for users who operate the Soft-Starter by first time, as initial training form.

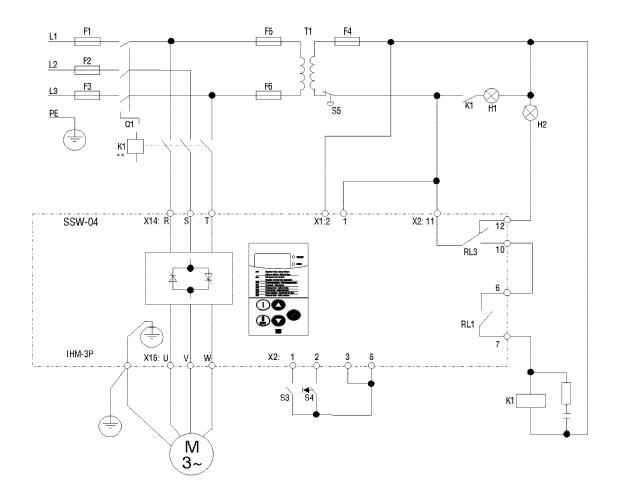


Figure 3.7 - Minimum connections for operation through HMI

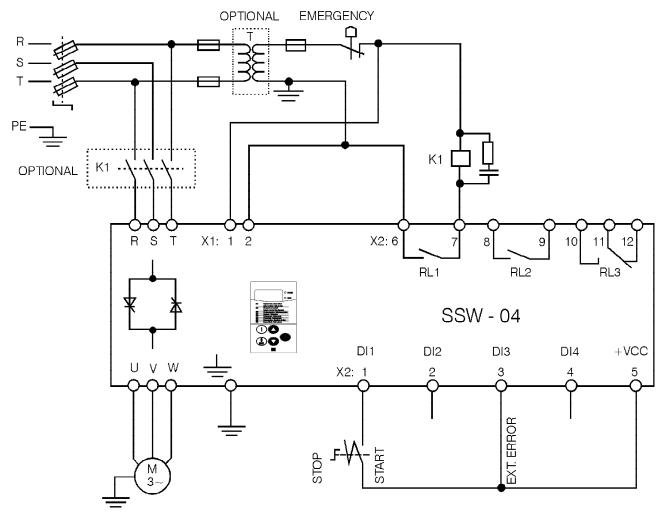
Note: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Rapid fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

The isolation contactor "K1" is optional, and is not necessary for the SSW-04 operation. However due to protection and safety reasons it's recommended. In case

of maintenance the input fuses must be removed for a complete disconnection of the SSW-04 from the line. For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.

NOTE!


Contactor "K1" is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

For Start-up according this operation mode, follow chapter 4.

3.2.6 - Combination Drive "B" -Operation through Terminals

Shown in Figure 3.8 is an example of a typical combination drive circuit . For other application needs, we recommend the following:

- **☑** to analyse the application
- ☑ to study the SSW-04 programming possibilities
- ☑ to define the electrical connection diagram
- ☑ to perform the electrical installation
- ☑ to start-up (programming the Soft-Starter correctly)

Figure 3.8- Combination Drive "B" Operation through Terminals

Note: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Rapid fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized

The transformer "T" is optional and must be utilized when the line voltage is different to the electronics

and fan voltage.

The isolation contactor "K1" is optional, and is not necessary for the SSW-04 operation. However due to protection and safety reasons it's recommended. In case of maintenance, the input fuses must be removed for a complete disconnection of the SSW-04 from the line.

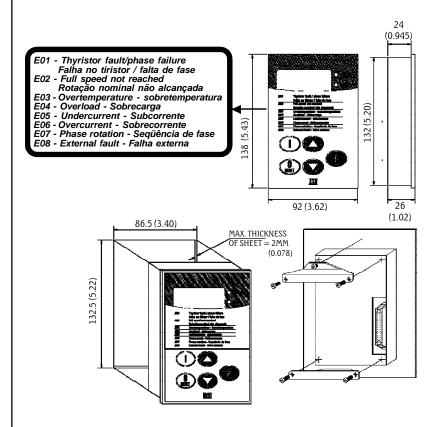
For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (D13) from SSW-04 must be connected to $\pm Vdc$.

NOTE!

Contactor "K1" is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

Programm P61 to "OFF" for operation through terminals.

3.3 - INSTALLATION OF OPTIONAL DEVICES


3.3.1 - HMI-3P AT THE PANEL DOOR

3.3.1.1 - Mechanical installation

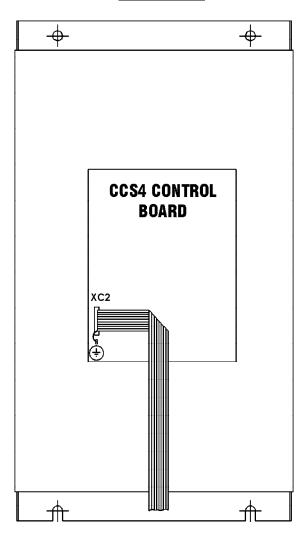
When installed on the panel door, the following is recommended:

- Arr temperature within the range of 0°C to 55°C (32°F to 131°F).
- ☑ environment free of corrosive vapour, gas or liquids.
- ☑ air free of dust or metallic particles.
- ☑ avoid to exposing the key pad to direct sunlight, rain or moisture.

For mounting, see Figure 3.9.

Figure 3.9 - Dimensions/Fastening of the HMI-3P All dimensions in mm (inches)

3.3.1.2 - Electrical installation


The connection of the HMI-3P to the Soft-Starter is made through shielded flat cable connected to XC2 on the CCS4.0X control board. The shielding must be connected through a Faston type terminal near to XC2, as shown in Figure 3.10.

This cable must be laid separately from the other wirings at a minimum distance of 100mm (3.94in).

OPTIONS:

- \bullet HMI-3P + 1m (3.28ft) cable
- \bullet HMI-3P + 2m (6.56ft) cable
- \bullet HMI-3P + 3m (9.84ft) cable

FRONT VIEW

OUTLET THROUGH THE AVALIABLE SLOT AT THE BOTTOM

Figure 3.10 - HMI-3P Cable Connection

This Section deals with the following:

- ☑ How to check and prepare the Soft-Starter before power-up.
- ✓ How to power-up and check if the power-up has been succesful.
- ☑ How to operate the soft-starter according to the combination drives "A" and "B" after it has been installed. (See Electrical Installation).

The Soft-Starter shall be installed according to the Section 3 - Installation. If the driving design is different from the suggested combination drives "A" and "B", you must follow the procedures below:

4.1 - POWER-UP PREPARATIONS

DANGER!

Disconnect always the power system before making any connection

1) <u>Check all connections</u>

Check if all power, grounding and control connections are correct and well tightened.

2) Clean the inside of the Soft-Starter

Remove all material residues from inside of the Soft-Starter.

3) Check the motor

Check all motor connections and verify if its voltage, current and frequency meet the Soft-Starter ones.

4) <u>Mechanically decouple the load from the motor</u>

If the motor can not be decoupled, be sure that the direction of rotation (forward, reverse) can not cause damage to the machine or person.

5) Close the Soft-Starter covers

4.2 - POWER-UP

After the Soft-Starter has been prepared it can now be powered-up:

1) Check the supply voltage:

Measure the line voltage and check if it is within the permitted range (rated voltage + 10% / -15%).

2) <u>Power-up the input and switch on the control</u> voltage:

Close the input circuit breaker.

3) <u>Check if the power-up has been succesful:</u>

The HMI-3P display will show:

Now the Soft-Starter will run some self-diagnosis routines and if there is no problem, the display will show:

This means that the Soft-Starter is rdy=ready to be operated.

4) <u>Follow the commissioning procedures</u>

For combination drive "A" - Operation by HMI-3P - follow Item 4.3.2.

For combination drive "B" - Operation by terminals - follow Item 4.3.3.

For other configurations that require the change of several parameters (different standards), read first Chapter 6 - Detailed description of the parameters.

4.3 - COMMISSIONING

This Section describes the commissioning of the two characteristic combination drives describe above:

☑ Combination drive "A" - Operation through HMI-3P

☑ Combination drive "B" - Operation through Terminals

4.3.1 - Preparation

DANGER!

Even after disconnectiong the supply, high voltage can be present.

Wait at least 3 minutes after switching OFF the equipment to allow full discharge of the capacitors.

- ☑ The Soft-Starter must be installed and powered up as described in section 3 and 4.
- ☑ The user must have read Section 5 and 6 and be acquainted with the use of the HMI-3P and with the parameter organization.
- ☑ The user must also understand how to localize and to change the parameters.

4.3.2 - Commissioning and operation via HMI-3P

Connections according to Figure 3.7.

ACTION		RESULT	INDICATION
	☑ Soft-S	tarter powered-up	O START
Press	☑ Motor	s starts	• START
	☑ After	start time has been	• START
Press	P04 is	hing Off by ramp provided s set by parameter 04 = 20; P03 = 80	O START
	☑ Soft-S	tarter energized	O START

4.3.3. - Commissioning and Operation via Terminals

Connections according to figure 3.8.

		·
ACTION	RESULT	INDICATION
Power-up the driving Start/Stop = open	Soft-Starter realizes self-diagnosis Soft-Starter ready to be programmed.	O START
Press P		O START
Press	✓ It permits changing of parameters	O START
Press P		O START
Press		O START
Press		O START
Press	☑ To program operation via terminal	O START
Press		O START O RUN
Press	☑ To change the parameters, it is necessary to set P00 = ON	O START
Press		START
Press	☑ Reading parameter of the current in percentage (%l _N)	O START
Press	☑ Soft-Starter ready to be operated	O START

ACTION	RESULT	INDICATION
Close X2:1-5	☑ Motor starts	● START
	☑ After starting time has been	START RUN
Open X2:1-5	✓ Switch Off by ramp provided P04 is set by parameters. P04 = 20s; P03 = 80%	○ START → RUN
	☑ Soft-Starter is powered up.	O START

NOTES:

- 1) Symbol of the LEDs Start/Run
 - LED ON

 - O LED OFF
- 2) If the direction of rotation of the motor is not correct, switch OFF the Soft-Starter and change two output cables of the Soft-Starter.

4.4 - SETTINGS DURING THE COMMISSIONING

Although the factory standard parameters are chosen in such a way to meet most application conditions, even so can be necessary to make some parameters settings during the commissioning.

Follow the Parameter Quick Reference Table, checking the need to set each of the parameters.

Make the setting according to the specific application and record the last value in the corresponding column for the User's Setting.

These remarks can be important to clear up any questions.

Minimum Parameters to be set

P11 - Current Limitation:

Select the current limitation during the starting Standard: OFF (inactive)

P21 -Motor Current Setting:

Motor overload protection (Standard: OFF)

This setting is set OFF at factory. This means that it is disabled and there is no motor overload protection. For an efficient motor protection, set as described in Section 6.5.1 of this manual.

P25 - Thermal classes of the overload protection:

Selects the class of the overload protection suitable for the motor application (Factory Setting: 30)

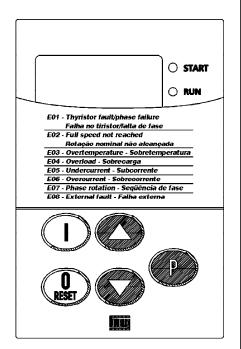
According to the thermal class curves in Section 6.5.2. Class 30 takes the longest time to activate the motor overload protection.

To achieve a correct setting of this thermal class, proceed as follows:

1. Verify the motor data sheet the locked rotor time and the starting current (I_p/I_n) for DOL starting. Select a thermal class that in this condition trips in a time shorter (Section 6.5.2 - Figure 6.10) than the indicated motor data.

Check also, if the selected thermal class, as described above, allows to start with reduced current. In this case, the actuation time, according to chart in Figure 6.10 - Item 6.5.2 - must be longer than the starting time of this motor with soft-starter.

P26 - Motor service factor:


Also applied for motor overload protection (Standard: 1.00), obtained from motor nameplate.

This Section describes the Human-Machine Interface (HMI-3P) and the programming mode of the Soft-Starter, giving the following information:

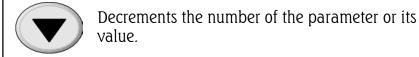
- ☑ General description of the HMI-3P
- ☑ Use of the HMI-3P
- ☑ SSW-04 Parameter Organization
- ☑ Access to the parameters of the Soft-Starter
- ✓ Parameter changing (programming)
- ☑ Description of the Status and Signalling Indications

5.1 - DESCRIPTION OF THE HMI-3P IN-TERFACE

The HMI-3P consists in 4 digits, seven segment LED display, 2 signalling LEDs and 5 keys. Figure 5.1 describes the HMI-3P.

Figure 5.1 - HMI-3P Description

START Indicates that the Soft-Starter has received a start or stop command. (motor driven)


RUN Indicates the switch status; if at acceleration / deceleration ramp or at rated voltage.

Enables motor via ramp.

Disables the Soft-Starter via ramp (when programmed). Resets the Soft-Starter after an error has occured.

P Changes display between the parameter number and its value.

Increments the number of the parameter or its value.

USE OF THE HMI

5.2 - USE OF THE HMI-3P

The HMI-3P is a simple interface wich permits the operation and the programming of the Soft-Starter. It permits the following functions:

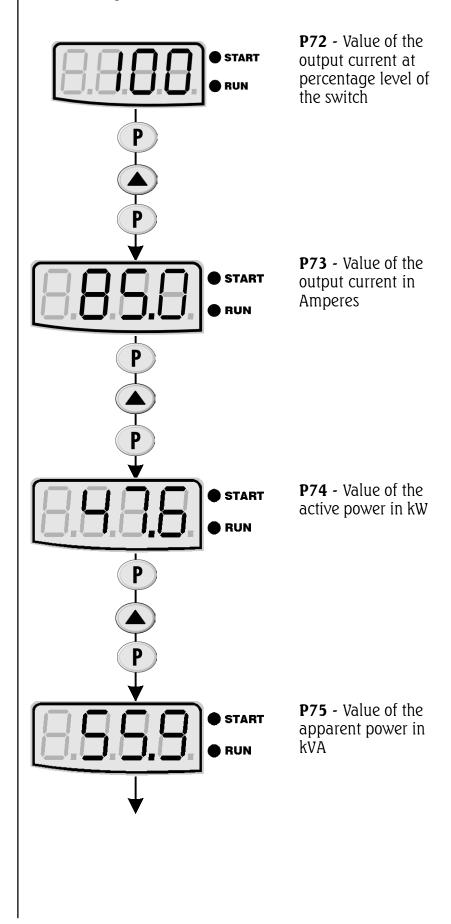
- ☑ Display of the Soft-Starter operation status, as well as the main variables
- Error display
- ☑ Display and changing of the adjustable parameters
- Soft-Starter operation through the keys ON ("I") and OFF ("O")

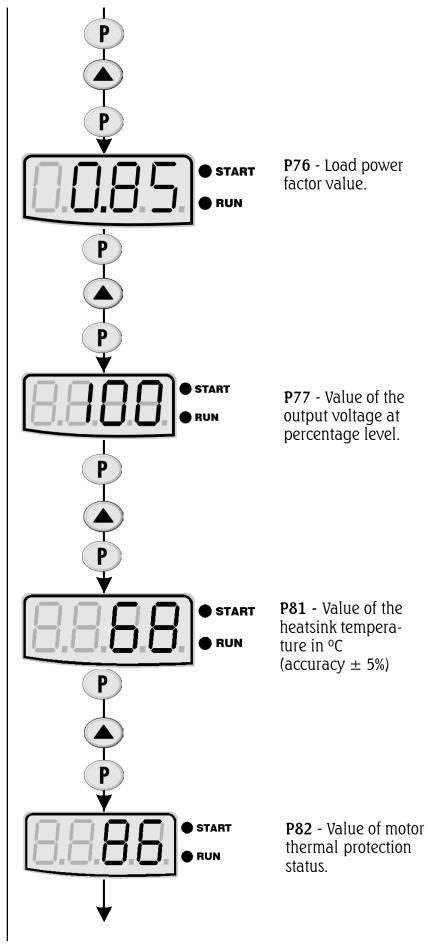
5.2.1 - Use of the HMI-3P for operation

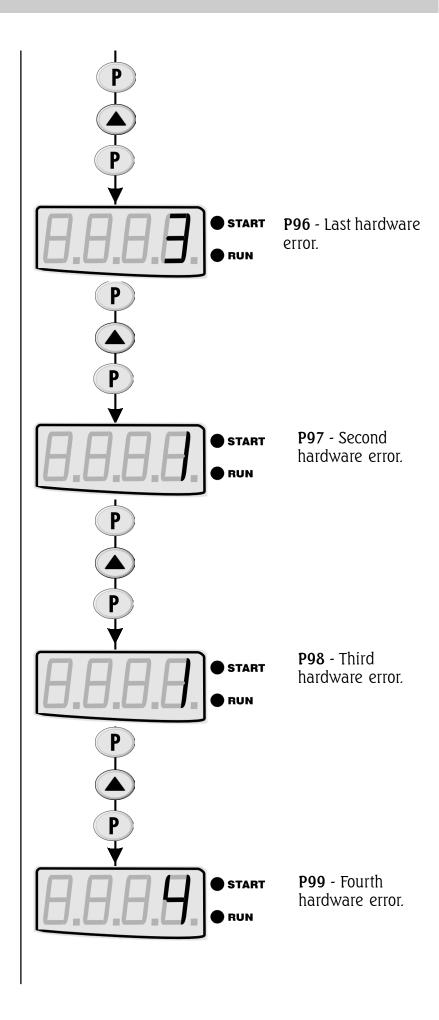
All functions relating to the Soft-Starter operation (enabling (ON - "I") disabling (OFF "O"); increment/decrement (values/parameters) can be performed through the HMI-3P. This is made through standard factory programming of the Soft-Starter. These functions ON, OFF and Reset can also be executed individually by means of digital inputs. So it is necessary to program the parameters relating to these correspondent functions and inputs. Find below the key description of the HMI-3P used for

Find below the key description of the HMI-3P used for operation, when the Soft-Starter is Standard factory programmed:

When programmed P61 = ON It functions as "I" (ON), "O" (OFF) the motor






The motor accelerates and decelerates according to the set ramps.

5.2.2 - Signalling/ Indications of the HMI-3P (Display)

a) Monitoring Variables:

USE OF THE HMI

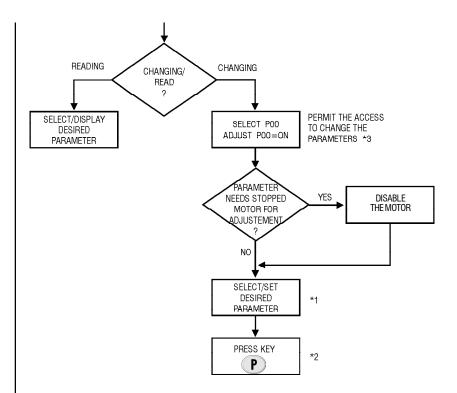
b) Flashing Display

Display flashes in the following conditions:

- ☑ Changing attempt of one non permitted parameter (see Item 5.3.1)
- Soft-Starter in fault condition (see Section: Maintenance)

5.3 - PARAMETER CHANGING

All information exchange between the Soft-Starter and the user is made through parameters. The parameter are shown on the display through the letter "**P**" followed by a number:


Each parameter is related to a numeric value or a function.

The parameter values define the Soft-Starter programming or the value of a variable (for instance, current, voltage, power).

To programm the Soft-Starter you must change the parameter(s) content(s).

5.3.1 - Selection/Changing Parameters

ACTION	DISPLAY	COMMENTS
Use the keys	O START	Localize the parameter P00
Press key P	O START O RUN	Numeric value associated with the parameter
Press key	O START	Permit changing the parameters value
Press key	O START	
Use the keys	O START O RUN	Localize the desired parameter
Press key	O START O RUN	Numeric value associated with the parameter
Use the keys	O START O RUN	Adjust the new desired value *1
Press Key P	O START O RUN	*1,*2

Figure 5.2 - Flowchart for read/changing of parameters

*1 The parameters which can be changed with a running motor, the Soft-Starter begins to use the new set value immediately, after pressing key P.

The parameter, which can be changed with stopped motor only, the motor must be disabled, now set the new parameters and press the key P.

NOTE!

If it is not possible to change a parameter with running motor, the display will indicate the parameter content by flashing.

- *2 By pressing the key p after the adjustment, the last adjusted value will be stored automatically and this value will remain stored until new changes are made.
- *3 The disabling of the parameter changing access is made by setting P00 at "OFF" or de-energizing/energizing the soft-starter electronics.

This section describes in detail all the Soft-Starter parameters. In order to facilitate the description, the parameters were grouped by characteristics and functions.

Read Parameters	Variables which can be seen on the display, but they can not be changed by the user.
Regulation Parameters	They are adjustable values and used according to the Soft-Starter function.
Configuration Parameters	They define the Soft-Starter characteristics, the functions to be executed, as well as the input/output functions.
Motor Parameters	It defines the rated motor characteristics.

6.1- STANDARD PARAMETER SET AT FACTORY

The standard factory parameters are predefined values, with which the Soft-Starter is programmed at factory. The set of values is so selected to meet most applications, thus reducing the reprogramming during the start-up. If necessary, the user can change each parameter individually according to this application. At any time the user can return to the standard parameter set at factory, adopting the following procedures:

All set parameters will be lost (replaced by the factory standard)

- 1) Disabling the Soft-Starter
- 2) Setting P00 = ON
- 3) Setting P46 = ON
- 4) Pressing Key P
- **5)** The display indicates "EPP" in the time of the "default" values are loading.

DETAILED PARAMETER DESCRIPTION

6.2- READ PARAMETERS - P71...P77, P81, P82, P96...P99

- 6.2.1 P71 Software Version
- 6.2.2 P72 Motor Current
- 6.2.3 P73 Motor Current
- 6.2.4 P74 Active Power

- 6.2.5 P75 Apparent Power
- 6.2.6 P76 Load power factor

6.2.7 - P77 - Output voltage

- 6.2.8 P81- Heatsink temperature
- 6.2.9 P82 Motor thermal protection status

- ☑ It indicates the Software Version contained in the CPU (integrated circuit D1 CCS4.0X).
- \square It indicates the output current of the Soft-Starter in percentage of the switch (In-%). (Accuracy of $\pm 10\%$).
- \square It indicates directly the Soft-Starter current in Ampere. (Accuracy of $\pm 10\%$).
- \square It indicates the active power required by the load, values in kW. (Accuracy of $\pm 10\%$).

NOTE!

OFF will be displayed when by-pass contactor or energy save is used.

- \square It indicates the apparent power required by the load, values in kVA. (Accuracy of $\pm 10\%$).
- ☑ It indicates the load power factor, without by considering the harmonic currents generated the load switching.

NOTE!

OFF will be displayed when by-pass contactor or energy save is used.

☑ It indicates the Soft-Starter output voltage about the load, without carring the Back-EMF from the motor.

NOTE!

When the contactor by-pass is used for current or apparent power reading, the current transformer must be connected externally after the by-pass connection.

- ☑ It indicates the Heatsink temperature from the thyristors in °C. Overtemperature protection actuate in 90°C (194°F).
- ☑ It indicates the status from motor thermal protection in percentage (0 ... 250).

Note: 250 is the value of the motor thermal protection tripping, and display indicates E04.

DETAILED PARAMETER DESCRIPTION

6.2.10 - Last errors

P96 - Last hardware error

P97 - Second hardware error

P98 - Third hardware error

P99 - Fourth hardware error

- ☑ They indicate the codes of the last, second, third and fourth error. The register indicates the last 4 Soft-Starter errors or faults.
- ☑ Register systematic:

EXX \(\Lambda\) P96 \(\Lambda\) P97 \(\Lambda\) P98 \(\Lambda\) P99 \(\Lambda\) The former content of P99 is lost

6.3 - REGULATION PARAMETERS - P00... P15,P22...P42, P45, P47

6.3.1 - P00-Parameter access

☑ It releases the access to change the parameters.

P00	ACCESS
OFF	Reading of Parameter
ON	Changing of Parameter

6.3.2 - P01- Initial Voltage (% UN)

- ☑ It adjusts the initial voltage value (%UN) which will be applied to the motor according to Figure 6.1.
- ☑ This parameter must be set at the minimum value that starts the motor.

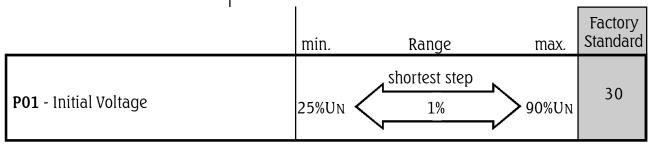


Figure - 6.1 - Acceleration Ramp

DETAILED PARAMETER DESCRIPTION

6.3.3 - P02-Time of the Acceleration Ramp

- ☑ If defines the time of the voltage ramp, as shown in figure 6.1, provided the soft-starter does not enter in current limitation (P11).
- oxdots When in current limitation, P02 acts as protection time against locked rotor.

	min.	Range	max.	Factory Standard
P02 - Time of the Acceleration Ramp	1s	shortest step 1s	240s	20

NOTE!

When motors are run without load or with small loads, the acceleration time will be shorter than the time programmed at PO2, due to the back-emf generated by the motor.

6.3.4 - P03 - Voltage steps during Deceleration (%U_N)

Set the voltage (%UN) that will be applied to the motor instantaneously when the Soft-Starter receives the command for deceleration by ramp.

NOTE!

In order to enable this function, PO4 must be set by parameter at time according to Figure 6.2.

	min.	Range	max.	Factory Standard
P03 - Voltage step during deceleration	100%Un<	shortest step 1%	40%UN	100

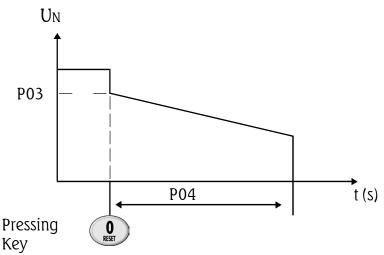


Figure - 6.2 - Deceleration Ramp

6.3.5 - P04-Time of the deceleration ramp

☑ It defines the time of the deceleration ramp that will be effected at the level set at PO3 up to the thyristor locking voltage which is approx. 30% of the Un. As shown in Figure 6.2, this ramp is mainly beneficial for pump application.

NOTE!

This function is used to lengthen the normal load deceleration time and not to force a time shorter than that imposed by the load.

	min.	Range	max.	Factory Standard
P04 - Time of the deceleration ramp	OFF, 2s <	shortest step 1s	240s	OFF

6.3.6 - P11 - Current Limitation (%In of the switch)

It sets the max.current value that will be supplied to the motor (load) during the acceleration.

The current limitation is used for loads with high or constant starting torque.

The current limitation must be set at a level that permits the motor acceleration, otherwise the motor will not start.

DETAILED PARAMETER DESCRIPTION

NOTE!

- 1) If the full voltage is not reached at the end of the acceleration ramp time (PO2), the error EO2 will be displayed and the motor will be disabled.
- 2) The thermal thyristor protection, inclusive during the current limitation, is carried through thermistor NTC of the Soft-Starter.

	mín.	Range	max.	Factory Standard
P11 - Current limitation	OFF, 150%IN	shortest step 1%	500%In	OFF

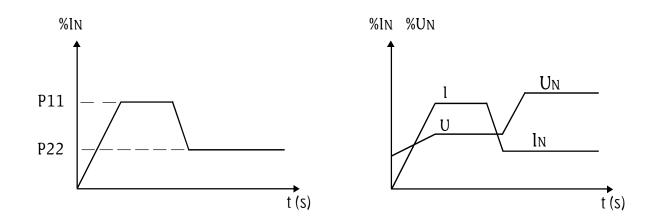


Figure - 6.3 - Current Limitation

P11- Calculation example for setting of current limitation

 \square To limit the current at 2.5 x In of the motor

In of the switch = 60AIn of the motor = 52A

 l_{LIM} =250% of the l_N of the motor 2.5x 52A =130A

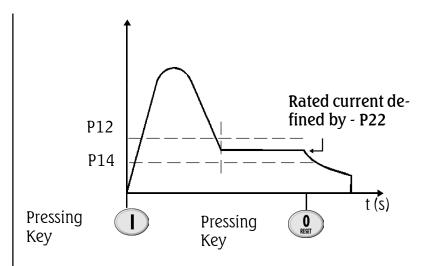
 $\frac{130A}{l_N \text{ of the switch}} = \frac{130A}{60A} = 2.17 \text{ x ln of the switch}$

P11=217% of the ln of the switch =2.5x ln of the motor.

Note:

This function (P11) does not active when the voltage pulse is enabled during the start (P41).

6.3.7- P12-Immediate overcurrent (%In of the switch)


☑ It adjusts the instantaneous overcurrent level that the Soft-Starter permits during a time preset at P13, after then the switch is switched Off, indicating E06, as shown in Figure 6.4.

NOTE!

This function is activated only at full voltage after the motor has started.

	min.	Range	max.	Factory Standard
P12 - Immediate Overcurrent	32%ln	shortest step 1%	200%In	120

Figure - 6.4 - Protection against over/undercurrent at duty

DETAILED PARAMETER DESCRIPTION

P12- Calculation example for setting of immediate overcurrent.

☑ Maximum Current equal to 1.4 x ln of the motor

In of the switch =60AIn of the motor =52A

1.4x 52A = 72.8A

 $\frac{72.8A}{ln \text{ of the switch}} = \frac{72.8A}{60A} = 1.21 \text{ x ln of the switch } 60A$

P12 = 121% of the ln of the switch = 140% of the ln of the motor

6.3.8 - P14-Immediate undercurrent (%In of the switch)

☑ It adjust the minimum undercurrent level that the equipment (load) can operate without problems. This protection actuates when the current of load (Figure 6.4) goes to value lower than set in P14; and for a time equal or higher than preset in P15, indicating error E05.

NOTF

This function is activated only at full voltage after the motor has started.

	min.	Range	max.	Factory Standard
P14 - Immediate undercurrent	20%ln	shortest step 1%		70

P14- Calculation example for setting of immediate undercurrent (%IN of the switch)

☑ Minimum Current equal to 70% of the IN of the motor

In of the switch = 60AIn of the motor = 52A

70% of the $52A = 0.7 \times 52A = 36.4A$

 $\frac{36.4A}{ln \text{ of the switch}} = \frac{36.4A}{60A} = 0.61 \text{ x ln of the switch } 60A$

P14 = 61% of the ln of the switch = 70% of the ln of the motor

DETAILED PARAMETER DESCRIPTION

6.3.9 - P13 - Immediate Overcurrent Time(s)

This parameter determines the maximum time that the load can operate with overcurrent, as set in P12.

	min.	Range	max.	Factory Standard
P13 - Immediate Overcurrent Time	OFF, 1s <	shortest step 1s	2 0s	OFF

6.3.10 - P15 - Immediate undercurrent Time(s)

Through this parameter is determined the maximum time that the load can operate with undercurrent, as set in P14. Typical application for this function is in pumping systems that benefit when they are dry operated.

	mín.	Range	max.	Factory Standard
P15 - Immediate undercurrent Time	OFF, 1s	shortest step 1s	30s	OFF

6.3.11 - P22 - Rated current of the Soft-Starter (A)

☑ It function is to adjust the Software to certain conditions of the hardware, being used as base of the following functions: starting current limitation (P11); immediate overcurrent (P12) at duty; undercurrent at duty (P14).

	Possible Values	Factory Standard
P22 - Rated current of the Soft-Starter	16, 30, 45, 60, 85A	According to the type

DETAILED PARAMETER DESCRIPTION

6.3.12 - P23 - Rated voltage of the Soft-Starter (V)

☑ The function is to calculate the power supplied to the load.

	Possible Values	Factory Standard
P23 - Rated voltage of the Soft-Starter	220, 230, 240, 380, 400, 415, 440, 460, 480, 525, 575V	380

6.3.13 - P31 - Phase rotation (ON = RST; OFF = any sequence)

☑ This function can be enabled or disabled, but when enabled its function is to protect the loads that can not be driven in both direction of rotation.

NOTE!

The phase sequence is only detected at the first time when the power part is activated after the electronic part has been energized. Thus a new phase sequence can only be detected when the electronic part is switched OFF or reset.

	Possible Values	Factory Standard
P31 - Phase rotation	OFF, ON	OFF

6.3.14 P33 - Voltage level of the JOG function

☑ This parameter realizes the acceleration ramp up to the set value of the JOG voltage during the time at which the digital Input (DI4) is closed. After opening, DI4 realizes the deceleration via ramp, provided this function has been enabled at PO4.

NOTE!

- 1) The maximum activation time of the JOG function is determined by the time set at PO2. After the elapsing this time, it disables the thyristor firing and indicates the Error "EO2".
- 2) Thus P55 = 4.

	min.	Range	max.	Factory Standard
P33 - JOG voltage level	25% UN	shortest step 1%	>50% Un	25

DETAILED PARAMETER DESCRIPTION

6.3.15 -P34 - DC braking time (s)

- This parameter sets the DC braking time, provided P52=3. This function is only possible with the aid of a contactor that must be connected according to Item 9.6 Typic DC braking connection diagram.
- ☑ This function must be used when reduction of the deceleration time imposed by the load to the system is desired.

NOTE!

Wherever this function is used, you must consider a possible thermal overload on the motor windings. The protection against SSW overload does not operate at DC braking.

	min.	Range	max.	Factory Standard
P34 - DC braking time	OFF, 1s	Shortest step 1s	10s	OFF

6.3.16 - P35 - DCbraking voltage level (%U_N)

This parameter sets the AC line voltage, that is converted directly into DC-voltage and applied on the motor terminals during the braking time.

	mín.	Range	max.	Factory Standard
P35 - DC braking voltage level (%U _N)	30%U _N	shortest step 1%	> 50%Un	30

6.3.17 - P41 - Voltage pulse time at the start (Kick Start)

The voltage pulse at the start, when enabled, defines the time during which this voltage pulse (P42) will be applied to the motor, so that the motor succeeds to accelerate the initial moment of inertia of the load coupled to its shaft, as shown in Figure 6.5.

NOTE!

Use this function only for specific applications, where break away torque is needed.

	min.	Range	max.	Factory Standard
P41 - Voltage pulse time at the start (Kick Start)	OFF, 0.2s	shortest step 0.1s	> 2s	OFF

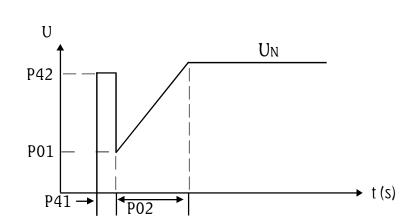


Figure - 6.5 - Voltage pulse at the start

6.3.18 - P42 - Voltage pulse level at the start (Kick Start).

This function determines the voltage level applied to the motor, so it is able to accelerate the inertia process of the load, as shown in Figure 6.5.

NOTE: This function, when enabled, does not permit the activation of the current limitation during the start.

	min.	Range	max.	Factory Standard
P42 - Voltage pulse level at the start	70%UN 〈	shortest step 1%	90%UN	70

6.3.19 - P45 - Pump Control ✓ Weg has developed for a special algorithm for application with centrifugal pumps.
 This special algorithm is used to minimize pressure overshoots in the hydraulic pipeline that can cause ruptures or excessive wear.

When P45 set at "On" and key "P" is pressed, the display indicates "PuP" and the following parameters will be set automatically:

P02 = 15 s (acceleration time)

P03 = 80% UN (voltage step during deceleration)

P04 = 15 s (deceleration time)

P11 = OFF (Current Limit)

P14 = 70% In (switch undercurrent)

P15 = 5s (Undercurrent Time)

The other parameters continue with their previous values.

NOTE!

Although the values that are set automatically meet the most applications, they can be improved to meet the requirements of your application.

Please find below a procedure to improve the performance of the control of pumps.

End setting of the pump control function:

NOTE!

This setting must be used only to improve the performance of the pump control and when the pump is already installed and able to operate at full-load.

- 1. Set P45 (Pump control) at "On".
- 2. Set P14 (undercurrent) or set P15 (Undercurrent Time) at "OFF" until the set has finished. After then, program it again.
- 3. Check the correct direction of rotation of the motor, as indicated ON the pump frame.
- 4. Set P01 (initial voltage % U_N) to the level so the motor starts to run without vibration.
- 5. Set PO2 (Acceleration Time [s]) to the starting time required by the load. With the manometer in the pipeline, check the pressure increase that must be continuous until the max. required level is reached without overshoots.

If overshoots occur, increase the acceleration time to reduce this pressure overshoots at maximum.

6. P03 (Deceleration voltage ramp - $\%U_N$) use this function to cause an immediate pressure drop or a more linear pressure drop during the motor deceleration.

DETAILED PARAMETER DESCRIPTION

7. P04 (deceleration time) during the motor deceleration check with manometer the pressure drop that must be continuous until the minimum level is reached without the presence of hydraulic ram when the non-return valve is closed. If this occurs, increase the deceleration time until the oscillations are reduced at maximum.

NOTE!

If no manometer is installed in the pipelines, the hydraulics ram can be observed through the pressure relief valves.

NOTE!

Excessive acceleration or deceleration times can cause motor overheating. Program them for your application as short as possible.

	Possible Values	Factory Standard
P45 - Pump Control	OFF, ON	OFF

6.3.20 P47 - Auto-Reset Time (s)

When an error occurs, except E01, E02 and E07 or E2x, the Soft-Starter can realize an automatic reset after the programmed time at P47 has been elapsed. If P47=OFF, the Auto-Reset will not occur. After the Auto-Reset time has been elapsed and the same error occurs three consecutive times (*), the Auto-Reset Function will be disabled. Thus, if an error occurs four consecutive times, this error remains on the display (and the Soft-Starter will be disable).

(*) an error will be considered consecutive, if it occurs within 60 seconds after has been executed the last Auto-Reset.

	min.	Range	max.	Factory Standard
P47 - Auto-Reset Time	OFF, 10s	shortest step 1s	> 600s	OFF

DETAILED PARAMETER DESCRIPTION

6.4 - CONFIGURATION PARAMETERS - P43, P44, P46, P50... P55, P61, P62

6.4.1 - P43 - By-Pass relay

- This function, when enabled, permits activates full voltage indication by means of RL1 or RL2 (P51 or P52) in order to energise a by-pass contactor.
- The main function of the Soft-Starter By-Pass is to eliminate the losses in the form of heat generated by the Soft-Starter.

NOTE!

- 1) This function must always be programmed when a bypass contactor is used.
- 2) To keep the protections relating to motor current reading, use external current transformers. See item 9.5.
- 3) When P43 is set to "On", the parameters P74 and P76 become inactive "OFF".

	Possible Values	Factory Standard
P43 - By-Pass relay	OFF, ON	OFF

6.4.2 - P44 - Energy Save

☑ This function can be enabled or disabled. When enabled, its function is to reduce the losses in the motor air gap when motor runs without load or only drives a partial load.

NOTE!

- 1) The total energy save depends on the load which is driven by the motor.
- 2) This function generates undesired harmonic currents in the network due to the conduction angle for the voltage reduction.
- 3) When P44=ON, the parameters P74 and P76 are disabled "OFF".
- 4) Not possible to enable with by-pass (P43 = ON).
- 5) Run led is flashing when energy save is enabled.

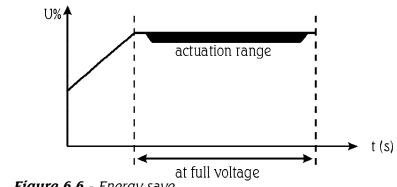


Figure 6.6 - Energy save

· 	Possible Values	Factory Standard
P44 - Energy save	OFF, ON	OFF

6.4.3 - P46 - Default values (it loads factory parameters)

When this function is enabled, it resets the parameters to $\overline{\mathbf{V}}$ the factory default values, excepting parameter "P22" and "P23".

	Possible Values	Factory Standard
P46 - default values	OFF, ON	OFF

6.4.4 - P50 - Function of the Relay RL3

- It enables the Relay RL3 to operate according to the $\sqrt{}$ parameters set below:
- The N.O. contact from RL3 is closed when the SSW-04 does not have a fault condition.
- 2 -The N.O. contact from RL3 is closed when the SSW-04 have a fault condition.

	Possible Values	Factory Standard
P50 - Programming of the Relay RL3	1, 2	1

6.4.5 - P51 - Function of the relay RL1

It enables the Relay RL1 to operate according to the parameters set below:

- 1 Function "Operation", the relay is switched ON instantaneously with the order Switch ON of the Soft-Starter, switching Off only when the Soft-Starter receives an order of general switching Off, or by ramp when the voltage reaches 30% of the rated voltage, as shown in Figure 6.6.
- **2 -** Full voltage Function, the relay is only switched On after Soft-Starter has reached 100% of UN, and switched Off when the Soft-Starter receives a command for general switching Off, or by ramp, as shown in Figure 6.7.

NOTE!

The function of full voltage is used to activate the by-pass contactor, the parameter P43 must be set at "On".

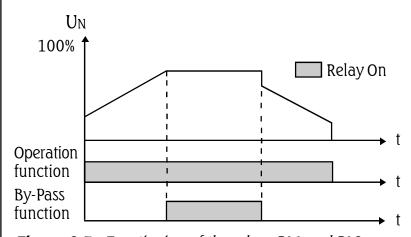


Figure 6.7 - Functioning of the relays RL1 and RL2

3 - Function direction of rotation. The relay is ON when digital input (D13) is closed, and OFF when digital input is open (D13).

The relay controls a contactor that must be connected at the SSW-04 output, which reverse the direction of rotation by inverting two motor phases - See Item 9.7 - Typical Application with Reversal.

NOTE!

For this function, the parameter P54 must be programmed at 4.

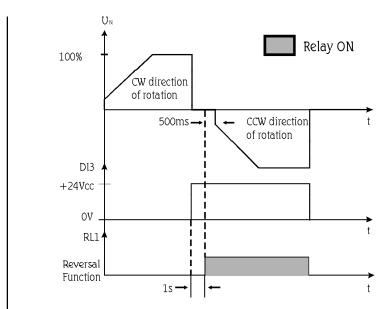
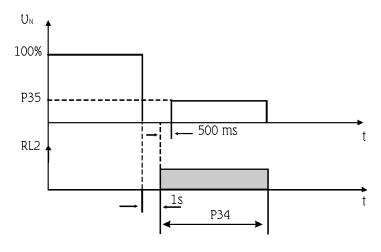



Figure 6.8 - Functioning of the reversal relay RL1

	Possible Values	Factory Standard
P51 - Function of the relay RL1	1, 2, 3	1

6.4.6 - P52 - Function of the relay RL2

- ✓ It enables the Relay RL2 to operate according to the parameters set bellow:
- 1-2 Enables the Relay RL2 to operate according to the parameters described in Item 6.4.5.
- 3 Function DC braking. The relay is ON when the Soft-Starter receives an OFF command. For this function an additional contactor must be used. See item 9.6 Typical diagram for DC bracking.

Figure 6.9 - Operating mode of the RL2 for the DC braking

DETAILED PARAMETER DESCRIPTION

NOTE!

Before starting programming, make all needed external connections.

	Possible Values	Factory Standard
P52 - Function of the relay RL2	1, 2, 3	2

6.4.7 - P53 - Programming of the Digital Input 2

■ Enable the digital input 2 (terminal X2:2) to operate according to described codes:

OFF = without function

- 1 Error Reset = it reset an error status every time the DI2 input is at +24Vdc (X2:5).
- 2 External Error = can be used as additional load protection. It acts when the input is open.
 Ex.: thermal protection for the motor by means of dry contact (without voltage) of a protection relay (thermostat).
- 3 General Enabling =X2:2 must be connected to +24Vdc (X2:5) for the Soft-Starter to operate. If it is not connected, the SCR's firing pulses are disabled.
- 4 Three Wire Control = allows control of the Soft-Starter through digital inputs: DI1 (X2:1) start input and DI2 (X2:2) stop input. According to item 9.3.

	Possible Values	Factory Standard
P53 - Programming of the Digital Input 2 (DI2)	OFF, 1, 2, 3, 4	1

6.4.8 - P54-Programming of the digital input 3

This parameter enables the digital input 3 (terminal $\overline{\mathbf{V}}$ X2:3) to operate according to the describe codes:

OFF = without function

- 1 "Error Reset" (As described in item 6.4.7).
- 2 "Extern Error" (As described in Item 6.4.7).
- 3 "General Enabling" (As described in Item 6.4.7).
- 4 "Direction of rotation". It enables the digital Input 3 (DI3), when connected to +24Vdc (X2:5), it drives the relay RL1 (as described in item 6.4.5) and realizes the reversal of the motor direction of rotation with the Soft-Starter. See Item 9.7 - Typic Application with Reversal.

NOTE!

For this function, the parameter P51 must be programmed

	Possible Values	Factory Standard
P54 - Programming of the Digital Input 3 (DI3)	OFF, 1, 2, 3, 4	2

6.4.9 - P55 - Programming of the digital input 4

 $\overline{\mathbf{V}}$ This parameter enables the digital input 4 (terminal X2:4) to operate according to the described codes:

OFF = Without Programming

- 1 "Error Reset" (As described in Item 6.4.7).
- 2 "Extern Error" (As described in Item 6.4.7).
- 3 "General Enabling" (As described in Item 6.4.7).
- 4 "JOG Function". It enables the Digital Input 4 (DI4), when connected to +24Vdc (X2:5), and enables the SSW-04 to apply the JOG voltage (P33) to the motor (as described in Item 6.3.14).

	Possible Values	Factory Standard
P55 - Programming of the Digital Input 4 (DI4)	OFF, 1, 2, 3, 4	OFF

6.4.10 - P61 - Control enabling

Table 6.1 - Command that depend on the P61 adjust

Comondo	P61 = OFF	P61 = ON		Description
Comands	Digital Input	HMI	Serial	Description
l/O	Х	Х	Х	Digital Input or HMI/Serial
JOG Function	Х		Х	Digital input 4 (D14) or Serial
Direction of rotation	Х		Х	Digital input 3 (D13) or Serial
General Enabling	Х		Х	Digital inputs 2, 3, 4 or serial

I/O (Start/Stop): When P61 = OFF, it enables via digital inputs (DI1 or DI1 and DI2) the motor start/stop.
 When P61 = ON, it enables the motor start/stop via HMI-3P and serial.
 When P61 = ON, the digital input "DI1" is without function.

NOTE!

To make the selection through HMI-3P/serial or digital input, the motor must locked, inclusive when the change is HMI-3P/serial to digital input (DI1), it must be open. If the digital input (DI1) is closed, the parametrization can not be processed and the display flashes.

- JOG Function: This function can be programmed at the Digital Input (DI4) if P61=OFF; or P61=ON it operates via serial input.
- Function of the change of the Direction of Rotation:
 This function can be programmed at the Digital Input (DI3) if P61=OFF, or P61=ON it operates via serial.
- General Enabling: This function can be used as

 "Emergency Stop" and it can be

 programmed for any of the following Digital Inputs D12, D13 or D14 and also via serial

 (provided P61=ON). If more than one

 Digital Input is programmed for this

 function, the first that opens will be the

 emergency stop. If the command is also

 enabled for serial operation (P61=ON), all

 Digital Inputs programmed to General

 Enabling must be closed.

DETAILED PARAMETER DESCRIPTION

Table 6.2 - Controls that do not depend on the setting of P61

Commands	Digital Input	нмі	Serial	Description
Extern Error	Х			Only at the Digital Input 2, 3 or 4.
Error Reset	Х	Х	Х	avaliable at any.

- External Error: It can be programmed for any Digital Input DI2, DI3 or DI4. If there is no external error, there is also no actuation. If more than one digital Input has been programmed for "External Error", any input will actuate, when disconnected from +24Vdc (X2:5).
- Error Reset: The Error Reset is accepted via HMI-3P, serial and Digital Inputs DI2, DI3 or DI4, when so programmed. If more than one Digital Input if programmed, any one can reset the error status, requiring only the receipt of a +24Vdc (X2:5) pulse.

	Possible Values	Factory Standard
P61 - Command Enabling	OFF, ON	ON

6.4.11 - P62 - Address of the Soft-Starter at the communication network

This parameter defines the address of Soft-Starter on the communication network. This is for use with the superdrive software.

	min.	Range m	ıax.	Factory Standard
P62 - Address of the Soft-Starter on the Communication Network	1	shortest step 1 3	30	1

6.5 - MOTOR PARAMETERS - P21, P25, P26, P27

6.5.1 - P21 - Motor Current Setting (% I_N of the switch)

- Sets the motor current value percentually relating to rated switch current.
- Monitors the overload condition according to the thermal class curve selected at P25, and protects the motor against overloads applied on the shaft. When the overload time is exceeded as defined by the thermal class protection, the firing will be disabled and the HMI-3P display will show error E04.
- Parameter P21, P25, P26 and P27 are part of the thermal protection.
- \blacksquare To disable the thermal protection, set P21=OFF.

Ex: How to set P21:

In of the switch = 60AIn of the motor = 52A

$$\frac{52A}{60A} = 0.867$$

$$P21 = 86.7\%$$

NOTE: The error E04, motor overload, remains in the memory, even if the CPU is reset, and when the CPU is switched Off, the last value is stored. The value is only decremented with the switch On and the motor Off.

	min.	Range	max.	Factory Standard
P21 - Adjust of the motor current	OFF, 30.0%I	shortest step 1%	2 00.0%IN	OFF

DETAILED PARAMETER DESCRIPTION

6.5.2 - P25 - Thermal Class of the Motor Protection

P25	Action
5	Class 5
10	Class 10
15	Class 15
20	Class 20
25	Class 25
30	Class 30

Table 6.3 - Thermal Classes

- ☑ The Soft-Starter SSW-04 is fitted with a Thermal Protection. This protection is very efficient for the motor protection. All Soft-Starter SSW-04 models are fitted with this protection and always it is activated, error E04 is displayed and the motor is switched off.
- This thermal protection has curves that simulate the motor heating and cooling. The calculation is performed through a sophisticated software that estimates the motor temperature by means of the current that is supplied to the motor.
- ☑ The actuation curves of the motor Thermal Protection are according to IEC 60947-4-2 standard.
- ☑ The motor heating and cooling curves are based on long experience of the company with its motors. These curves adopt a standard three-phase motor with IP55 degree of protection. These curves also consider if the motor is cooled during operation or not.
- ☑ The cooling time of the thermal image depends on the motor power, i. e., for each power, a different cooling time is considered. If a different cooling time is required, this setting can be made at P27.
- ☑ The estimated value for the motor temperature is saved in non-volatile memory always the control board is switched off. Thus, always the control board is switched on, the last saved value will be returned.

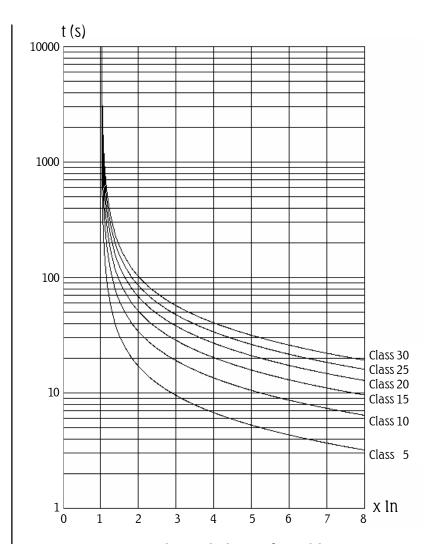


Figure 6.10 - Thermal Classes for Cold Motor Protection

If a Service Factor different from 1.00 is used, the nominal current for the chart (figure 6.10) has to be corrected by the S.F.. For example: a motor of ln=50A and ln=57.5A.

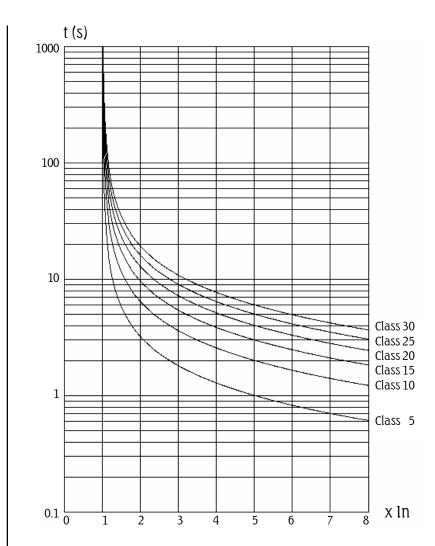


Figure 6.11 - Thermal Classes for Hot Motor Protection

To determine the actuation times for applications inbetween no load and full load condition a multiplication factor dependent on the percentage of the motor current has to be applied.

Current %In	Factor
0%	1
20%	0.84
40%	0.68
60%	0.51
80%	0.35
100%	0.19

Table 6.4 - Multiplication factor for the corrected Thermal Class times

☑ EXAMPLE:

Correction of the actuation time:

A motor operating at 80% In is switched off and switched on immediately.

The starting duty is 3xln @ 25s. The selected Thermal Class is Class 20 with 39s @ 3xln.

The correction factor for 80% In in the table 6.4 is 0.35. The corrected actuation time is: $0.35 \times 39s = 13.7s$, the actuation time is reduced from 39s at cold condition to 13.7s. This means that an immediate start is not possible before the thermal image of the motor has been cooled down.

NOTE!

For programming correctly the Thermal Class that should protect the motor against overheating, you must consider the allowed hot locked rotor time. This data is available in the catalog of the motor manufacturer.

☑ EXAMPLE:

Suggestions on how to program the Thermal Class correctly:

Motor data:

Power: 60hp Voltage: 380V

Rated current (In): 84.5A Service factor (S. F.): 1.00

lp/ln: 7.2

Locked rotor time: 20s at hot (Standard catalog informa-

tion)

Speed: 1775rpm

Data about the motor + load Starting:

Starting by Voltage Ramp, average starting current: 3 x the rated motor current during 25s (3 x In @ 25s).

1) In the cold chart Figure 6.10, we can find the minimum required Thermal Class that allows motor start with reduced voltage:

For 3 x In @ 25s, we select the next higher class: 15

2) In the hot chart Figure 6.11, we can find the maximum Thermal Class that the motor will withstand due to the hot locked rotor time:

For 7.2 x In @ 20s, we select the next lower Class: 30

Now it is known that Thermal Class 15 allows cold start and Thermal Class 30 is the upper limit. Thus you must select a Thermal Class between these two Thermal Classes by considering the number of starts per hour and the time interval between motor On-Off procedures.

With a smaller Class selected, the motor protection will increase but, less starts per hour are allowed and longer time intervals between motor On-Off procedures are required.

On the other hand with a higher Class selected, the motor might be operated closer to the limit, thus more starts per hour are allowed and shorter time intervals between motor On-Off procedures can be used.

If you are not sure which Thermal Class should be adopted between these two limits, adopt the lowest Thermal Class firstly, and only during practical tests at full load operation select the Class that is more suitable to your requirements, without exceeding the upper limit.

NOTE!

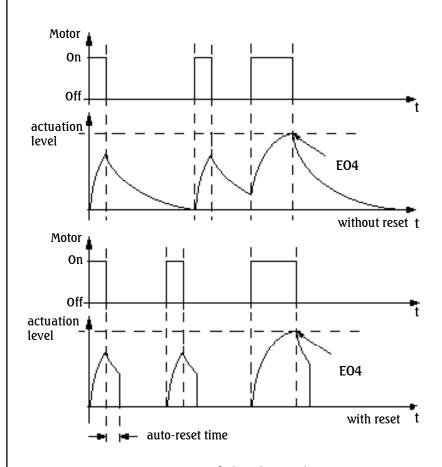
If several Thermal Classes can be applied, program one that is most suitable for your application, protecting your motor according to your duty requirements.

NOTE!

If the motor is equipped with a temperature sensor (PTC or Thermostat) which is used for thermal protection, the thermal class of the SSW-04 can be disabled by setting P21 = Off.

DETAILED PARAMETER DESCRIPTION

6.5.3 - P26 - Motor Service Factor


It sets the Motor Service Factor (SF) according to the motor nameplate data.

Tha value defines the load that the motor can drive.

	min.	Range	max.	Factory Standard
P26 - Motor Service Factor	0.80	shortest step 0.01	> 1.50	1.00

6.5.4 - P27 - Auto-reset of the Thermal motor image

It sets the time for the auto-reset of the thermal motor image. The thermal descrement of the thermal motor image simulates the motor cooling time with load and without load, ON and OFF. The algorithm that realizes this simulation is base on tests applied on WEG. IP55 is standard according to your power programmed in the soft-starter parameters. In application, where several starts per hour are required, you can use the auto-reset of the thermal image.

Figure 6.12- Auto-reset of the thermal memory

DETAILED PARAMETER DESCRIPTION

NOTE!

Please not that every time you use this function you can reduce the winding life of your motor.

	min.	Range	max.	Factory Standard
P27 - Auto-reset of the thermal memory	OFF, 1	shortest step 1s	> 600s	OFF

7.1 - ERROR AND POSSIBLE CAUSES

☑ The Soft-Starter can indicate an error of incorret programming (E24), serial errors (E2X) and Hardware errors (E0X).

7.1.1 - Programming error (E24)

- The error of incorrect programming (E24) does not permit that the value, changed incorrectly, be accepted. This error occurs when any parameter is changed with the motor OFF and under the following incompatibility conditions between the parameters.
 - •P11 current limiting with P41 kick start.
 - ●P41 kick start with P55=4 at Jog.
 - •P43 by-pass with P44 energy saving.
 - •P61 at Off with ED1 driven or P55 Jog driven.

To abandon this error condition, press keys P, I, O.

7.1.2 - Serial communication error

Serial communication errors (E2X) do not permit the changing of the value or that the incorrectly transmitted value be accepted.

For further info, see please Serial Communication Manual - SSW-04.

To abandon this error condition, press keys P, I, O.

7.1.3 - Hardware errors (E0X)

Hardware errors (EOX) disable the Soft-Starter.
To abandon this error condition, switch OFF the equipment and switch it again ON, or press RESET key.
Before doing this you must eliminate the source of the error.

NOTE!

Long connection cables between the Soft-Starter and the motor (longer than 150m (492ft)) or shielded cables can show a high reactance. This may cause error "E01".

Solution:

Connect a three-phase reactance in series with the motor supply line. In this case, contact the manufacturer.

Note: Actuation form of the errors:

All errors E01...E08 switch Off the relay RL3 and disable the thyristor firing and indicate the error on the display.

Error Led in the control board card CCS4.00 or CCS4.01 flashes.

MAINTENANCE

Table 7.1- Hardware errors

lable 7.1- Haluw	are errors	
ERROR	RESET	POSSIBLE CAUSE
E01	✓ Switch OFF/ON the electronics ✓ Or through key	 ☑ Phase-fault in the three-phase network ☑ Short-circuit or fault in the thyristor ☑ Motor is not connected ☑ Supply frequency with oscillation higher than 10%.
E02	☑ Or through digital input for reset	✓ The time of the ramp acceleration is shorter than the actual acceleration time since the function of the current limitation is activated.
E03	☑ Or through serial	 ✓ Ambient temperature higher than 40°C and current too high. ✓ Starting time with current limitation higher than specified by switch. ✓ Too many of successive starts. ✓ Fan is locked or defective.
E04		 ✓ Set of P21, P25 and P26 too low relating to the used motor ✓ Load on the motor shaft too high ✓ Too many of successive starts
E05		☑ Pump is dry operating ☑ Load decoupled from the motor shaft
E06		✓ Short-circuit between phases✓ Motor shaft is locked
E07		☑ Network phase sequence inverted at the input
E08		☑ Terminal board X2.3 and X2.5 is open (not connected to +24Vdc)

MAINTENANCE

 Table 7.2 Hardware errors and possible solutions

PROBLEM	POINT TO BE CHECKED	CORRECTIVE ACTION					
	☑ Wiring not correct	1.	Check all power and control connections. For instance, check the digital input of extern error that must be connected to +24V.				
Motor does not run	☑ Wrong programming	1.	Check if the parameter are correct programmed for the application.				
	☑ Error	1.	Check if the Soft-Starter is not disabled due to a detected error condition (see table above).				
Motor speed changes (oscillates)	☑ Loose connections	 Disable the Soft-Starter, switch OFF the suplly voltage and tighten all connections. Check if all intern Soft-Starter connections are tightened. 					
Motor speed too high or too low	☑ Motor nameplate data	1.	Check if the motor is used according to its application				
Display OFF	☑ HMI connections	1.	Check the HMI connections to the Soft-Starter (control board CCS4.0X)				
Display Off	Display OFF ☐ Check the supply voltage X1.1 and X1.2		The rated values must meet the following requirements: For 220-230Vac For 110-120Vac - Min.: 187V - Min.: 93.5Vac - Max. 253V - Max. 132Vac				
Jerk during deceleration	☑ Soft-Starter programming	1.	Decrease the deceleration time setting on the parameter P04.				

Table 7.3 - Periodical Inspections after the commissioning

COMPONENT	PROBLEM	CORRECTIVE ACTION			
Terminals, connectors	Loose screws	Tighten them (2).			
Terrimidis, connectors	Loose connectors	. rigitien them (2).			
	Fans are dirt	Clean them.(2)			
Fans (¹)/ cooling System	Abnormal acoustic noise	Replace the fan.			
rans (-// cooming system	Abnormal vibration	Replace life fail.			
	Dust in the air filter	Clean or replace it.(3)			
Printed circuit boards	Dust, oil, moisture accumulation, etc.	Clean them.(2)			
	Smell	Replace them.			
Power Module/ Power Connections	Dust, oil, moisture accumulation, etc.	Clean them.(2)			
rower connections	Connection screws are loose	Tighten them (2).			
Power Resistors	Discoloration	Davids as the sur			
TOWER RESISTORS	Smell	- Replace them.			

Note:

- (1) We recommend to replace the fans after each 40,000 hours of operation.
- (2) Every 6 months.
- (3) Twice per month.

7.2 - PREVENTIVE MAINTENANCE

DANGER!

Disconnect always the supply voltage before attempting to service any electric component of the Soft-Starter.

Even after switching OFF the Soft-Starter, during a certain time high voltages may be present. Thus wait 3 minutes to allow a complete discharge of the power capacitors. Always connect the equipment frame to the grounding (P.E) at the suitable point.

ATTENTION!

The electronic boards are fitted with components sensitive to electrostatic discharges.

Never touch the components or connectors directly. If this is necessary, touch before on the metallic frame or use a suitable grounding bracelet.

Never apply a high voltage test on the Soft-Starter!

If this is necessary, contact the manufacturer.

In order to avoid operation problems caused by unfriendly ambient conditions, such as high temperature, moisture, dirt, vibration or aging of the components, make periodical inspections on the Soft-Starter and installations.

7.2.1 - CLEANING INSTRUCTIONS

When it is necessary to clean the Soft-Starter follow these guidelines:

a) Cooling system:

- Switch OFF Soft-Starter power supply.
- Remove all the dust located on the ventilation openings of the enclosure using a plastic brush or flannel.
- Remove all the dust accumulated on the heatsink fins and fans using compressed air.

b)Printed circuit boards (PCBs):

- Switch OFF Soft-Starter power supply.
- Remove all the dust or moisture accumulated on the board using an anti-static brush and/or a compressed air ion gun (ex: charger buster ion gun (non-nuclear) Ref. A6030-6 from DESCO). If necessary remove PCBs from the Soft-Starter.

7.3 - CHANGING SUPPLY FUSE

1. Disconnect power supply of the Soft-Starter.

DANGER!

Disconnect always the supply voltage before attempting to service any electric component of the Soft-Starter. Even after switching OFF the Soft-Starter, during a certain time high voltages may be present. Thus wait 3 minutes to allow a complete discharge of the power capacitors.

- 2. Open the enclosure of the Soft-Starter.
- 3. Find the fuse on the board CCS4 and replace it by the type specified in the spare parts list.
- 4. Close the Soft-Starter.

7.4 - SPARE PART LIST

			Types	(Amper)	22044	10 Vac	
Name	Item	Specification	16	30	45	60	85
Nume	Nº			Units	per Soft-	Starter	
	0303.7541	Thyristor module 25A 1200V	3				
Thyristor	0303.8106	Thyristor module 56A 1200V		3			
Module	0303.7495	Thyristor module 90A 1200V			3	3	
	0303.8238	Thyristor module 160A 1200V					3
* Fan	0400.2571	Fan 120x120mm 110 Vac				1	1
run	0400.1494	Fan 120x120mm 220 Vac				1	1
Source Fuse	0305.5175	Glass Fuse 2A / 250V	1	1	1	1	1
HMI-3P	4160.0497	Human/Machine Interface HMI-3P	1	1	1	1	1
CCS4.00	4160.0942	Control Board	1	1	1	1	1
Current	0307.2673	CT 200/1A 1VA	2	2	2		
Transformer 0307.2681		CT 400/1A 1VA				2	2

			Types	(Amper)	46057	75 Vac	
Name	Item	Specification	16	30	45	60	85
Nume	Nº			Units	per Soft-	Starter	
	0303.9918	Thyristor module 25A 1600V	3				
Thyristor	0303.9900	Thyristor module 56A 1600V		3			
Module	0303.9896	Thyristor module 90A 1600V			3	3	
	0303.9617	Thyristor module 160A 1600V					3
* Fan	0400.2571	Fan 120x120mm 110 Vac				1	1
ran	0400.1494	Fan 120x120mm 220 Vac				1	1
Source Fuse	0305.5175	Glass fuse 2A/250V	1	1	1	1	1
HMI-3P	4160.0497	Human/Machine Interface HMI-3P	1	1	1	1	1
CCS4.01	4160.0950	Control Board	1	1	1	1	1
Current	0307.2673	CT 200/1A 1VA	2	2	2		
Transformer	0307.2681	CT 400/1A 1VA				2	2

* **Note:** a) The 220V fan is used in the SSW-04.XX/YYY-YYY/2 b) The 110V fan is used in the SSW-04.XX/YYY-YYY/1

TECHNICAL CHARACTERISTICS

8.1 - POWER DATA

☑ Line Voltage

→ Voltage: + 10%, -15% (with motor power loss)

Frequency: 50/60Hz±10%

Start Duty: 3xln for 20sec. 10 starts per hour.

☑ Overvoltage category III (EN61010/UL508).

☑ Transient voltages according to overvoltage category III.

8.2 - POWER / CURRENT TABLE

		40°C							40°C					
Type	Rated Current		Maximum Current for		22	0V	380	OV	44	0V	52	5V	57	5V
	(3x1N @ 20s.)	(4.5x1N @ 20s.)	Continuous Duty*	power	НР	kW	НР	kW	НР	kW	НР	kW	НР	kW
SSW-04.16	16A	11A	17.6A	73W	6	4.5	10	7.5	12.5	9.2	15	11	15	11
SSW-04.30	30A	20A	33A	123W	10	7.5	20	15	20	15	30	22	30	22
SSW-04.45	45A	30A	49.5A	177W	15	11	30	22	30	22	40	30	40	30
SSW-04.60	60A	40A	68A	250W	20	15	40	30	50	37	60	45	60	45
SSW-04.85	85A	57A	96A	340W	30	22	60	45	75	55	75	55	75	55

		55°C							55°C					
Type	Rated Current		Maximum Current for		22	0V	380	ΟV	44	OV	52	5V	57:	5V
	(3x1N @ 20s.)	(4.5x1N @ 20s.)	Continuous Duty*	power	НР	kW	НР	kW	НР	kW	НР	kW	НР	kW
SSW-04.16	16A	11A	17.6A	73W	6	4.5	10	7.5	12.5	9.2	15	11	15	11
SSW-04.30	27A	18A	29.7A	112.8W	10	7.5	15	11	20	15	25	18.5	25	18 <i>.</i> 5
SSW-04.45	38A	26A	41.8A	151.8W	12.5	9.2	25	18.5	30	22	30	22	30	22
SSW-04.60	52A	35A	58.9A	221.2W	20	15	30	22	40	30	50	37	50	37
SSW-04.85	80A	55A	90.3A	322W	30	22	50	37	60	45	75	55	75	55

^{*} Note: It's the maximum current that the Soft-Starter can have in continuous duty. For this current the Soft-Starter can only have 1 start per hour.

NOTF:

 \checkmark

The maximum indicated power above refer to WEG IV pole standard motors.

8.3 - MECHANICAL

✓ See figure

Finish: - Electrostatic Epoxy Powder Paint

- Colour: Cover - light-gray - RAL 7032 Cabinet - dark-gray - RAL 7022

TECHNICAL CHARACTERISTICS

8.4 - ELECTRONICS DATA / GENERAL

Control	Method	7	Voltage variation under load
Inputs	Digital	I	04 Galvanically isolated input (optocoupled), 24Vdc Programmable functions
Outputs	Relay	V V V	02 relays, NO contact, 250V/1A Programmable functions 01 relay, REV contact - 250V/1A specific for faults.
Safety	Protections	বেবেবেবের বেবেবের ব	Under/Overcurrent at the output of the Soft-Starter Phase fault for the supply Motor phase fault (motor non connected) Mains frequency with ± 10% oscillation Tyristor fault Inverted phase sequence (programmable) Overtemperature at the power stage Overload at the output (I²t). Extern fault CPU Error Programming error Error the serial interface
Communication	Serial Interface	Ø	RS 232
Human Machine Interface	HM1-3P (Destachable)		05 keys: ON, OFF, parameter content / increase, parameter / content / decrease, parameter / content. 04 Displays - 7 segment LEDs Permits access / changing of all parameters Display accuracy - Current: ± 10% - Power: ±5% Types for extern mounting: - HMI-3P.1 - 1 m (3.28ft) cable - HMI-3P.2 - 2 m (6.56ft) cable - HMI-3P.3 - 3 m (9.84ft) cable
Fulfilled Standards	UL 508 EN60947-4-2	V	Industrial Control Equipment. Low voltage switchgear - AC. motor controllers

APPENDIX

9.1 CONFORMITY

9.1.1 EMC and LVD Directives

The SSW-04 line, all models listed in this manual with 220-440V rated voltage were tested to meet the following:

EMC Directive 89/336/EEC (Electromagnetic Compatibility), using a Technical Construction File and the following standards:

EN60947-4-2: Low-voltage switchgear and controlgear Part 4, contactors and motor-starters Section 2. AC semiconductor motor controllers and starters.

Low Voltage Directive (LVD) 73/23/EEC

ATTENTION!

The SSW-04 line has been designed for class A equipment. Use of the products in domestic environments may cause radio interference, in which case the user may be required to employ additional mitigation methods.

NOTE!

The conformity of the Soft-Starter to any standard does not guarantee that the entire installation will conform.

Many other factors can influence the total installation. Only direct measurements can verify total conformity.

9.1.2 Requirements for conforming Installations

9.1.2.1 EMC Directive

The following items are required for CE conformance:

- 1. The Soft-Starters must be installed into closed metallic boxes or panels that have a door only able to be opened with a tool. A suitable cooling must be provided to ensure that the temperature will be within the allowed range. See item 3.1.1.
- **2.** Filters as called on table 9.1.
- **3.** Output cables (motor cables) must be armored, flexible armored or installed inside a metallic conduit or trunking with equivalent attenuation.
- **4.** Control (I/O) and signal wiring must be shielded or installed inside a metallic conduit or trunking with equivalent attenuation.
- **5.** The remote keypad (External HMI-3P) cable must be shielded or installed inside a metallic conduit or trunking with equivalent attenuation.
- **6.** Grounding as stated in this Manual item 3.2.1.

APPENDIX

9.1.2.2 Low Voltage Directive (LVD)

The following items are required for CE conformance:

- 1. The same as item 1 above.
- 2. The installation must provide a supply disconnecting (isolation) device. A hand-operated supply disconnecting device must be provided for each income supply and be near to the equipment. This device must disconnect the Soft-Starter from the supply when required (e. g. during work on the electrical equipment). See EN60204-1, 5.3. Specify the current and voltage of this disconnecting device according to the data given in the item 8.1 and 8.2.

DANGER!

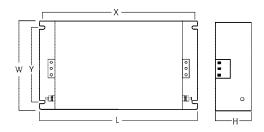

This equipment must not be used as an emergency stop mechanism (See EN60204, 9.2.5.4).

Table 9.1 - Types of Soft-Starters and filters

	Filter				
SSW-04 Model no	Power		Control		
	Model (WEG number)	Case Style	Model (WEG number)	Case Style	
16/220-440	RF3020-DLC (0208.1881)		RF103-1M	M1	
30/220-440	RF3040-DLC (0208.1903)	D			
45/220-440 60/220-440	RF3070-DLC (0208.1920)	F	(0208.1962)		
85/220-440	RF3100-DLC (0208.1938)	G			

Case Dimensions (mm)

Case Style	L	w	Н	Х	Υ	Mount
D	270	140	60	238	106	M6
F	350	180	90	338	146	M6
G	420	200	130	408	166	M6
M1	88	58	40	78	44	

APPENDIX

9.1.3 Filter Installation

DANGER! Filter grounding.

Using the line filter may result in relatively high ground leakage currents.

Ensure the following:

- The filter must be permanently installed and solid grounded (bonded).
- Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection.

Make sure to fulfill the requirements of the local security standards.

- **1.** The filter must be connected between the incoming AC supply line and the Soft-Starter input terminals. See Fig 9.1.
- **2.** The Soft-Starter and filter must be mounted to a common backplane with a positive electrical bond and in close proximity to one another.
- **3.** The lenght of the wiring among filter and Soft-Starter inputs and must be kept as short as possible.

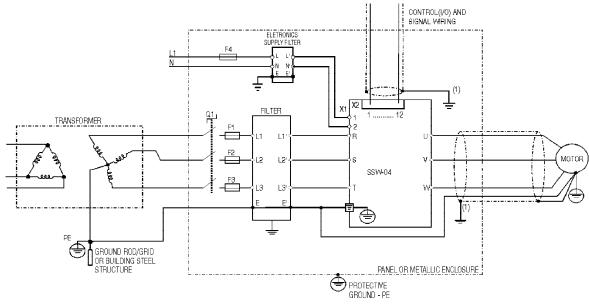
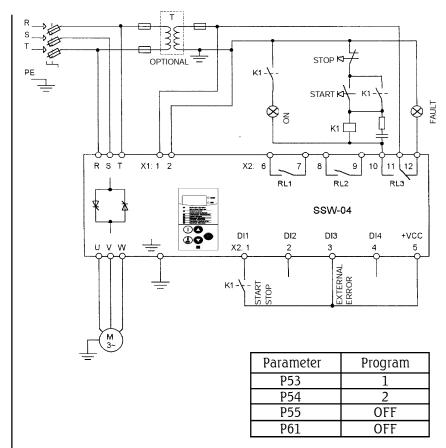



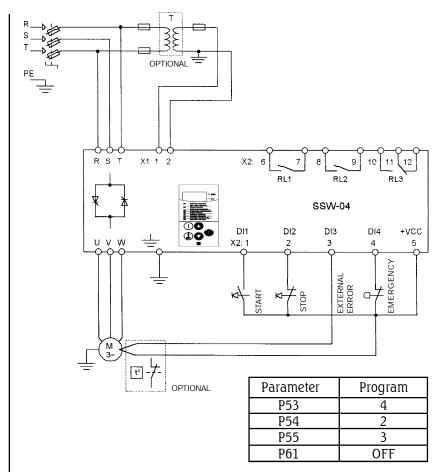
Figure 9.1 - Filter connection

(1) The cables shielding must be solidly connected to the common backplane, using preferably a bracket. The backplane must be electrically conductive (have no paint).

9.2 - RECOMMENDED APPLICATION WITH TERMINALS FOR TWO WIRE CONTROL

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.


For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (D13) from SSW-04 must be connected to +Vdc.

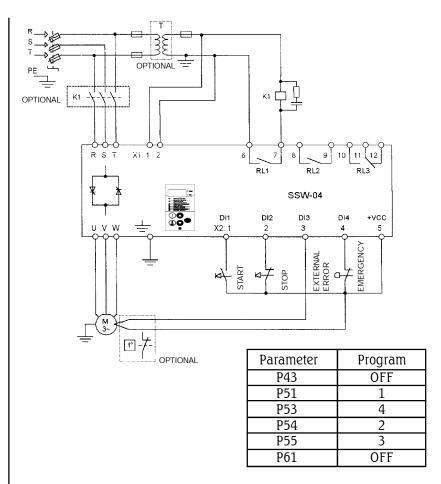
NOTE!

A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

9.3 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.


For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.

NOTE!

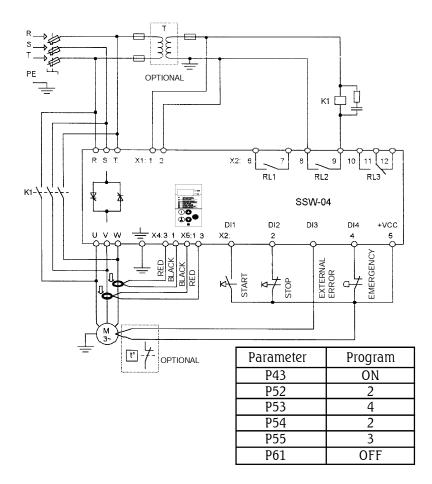
A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

9.4 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL AND POWER ISOLATION CONTACTOR

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

The isolation contactor "K1" is optional, and is not necessary for the SSW-04 operation. However due to protection and safety reasons it's recommended. In case of maintenance the input fuses must be removed for a complete disconnection of the SSW-04 from the line.


For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.

NOTE!

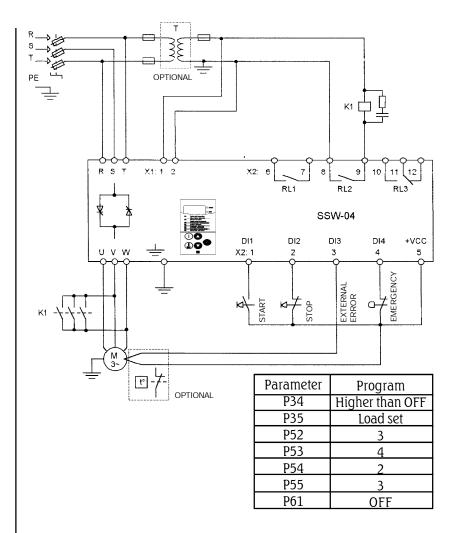
Contactor "K1" is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

9.5 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL AND BY-PASS CONTACTOR

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.



NOTE!

A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

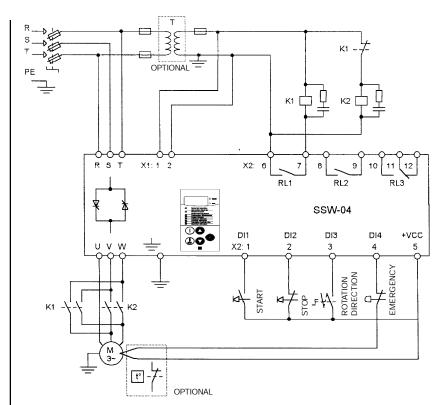
To maintain motor thermal protection after the Soft-Starter is by-passed, the Current Transformers (CT) must be connected in conformity with the diagram above.

9.6 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL AND DC BRAKING

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.



NOTE!

A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

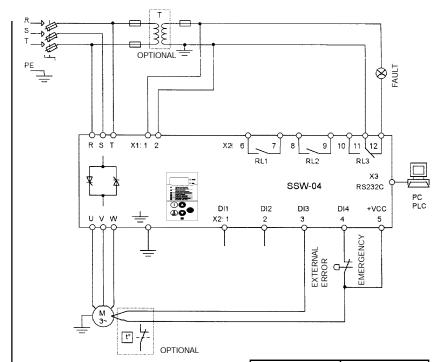
For DC braking you can select the contactor "K1" to use the three contacts in parallel.

9.7 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL AND MOTOR SPEED REVERSAL

Parameter	Program
P04	OFF
P51	3
P53	4
P54	4
P55	3
P61	OFF

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.


For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.

NOTE!

A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

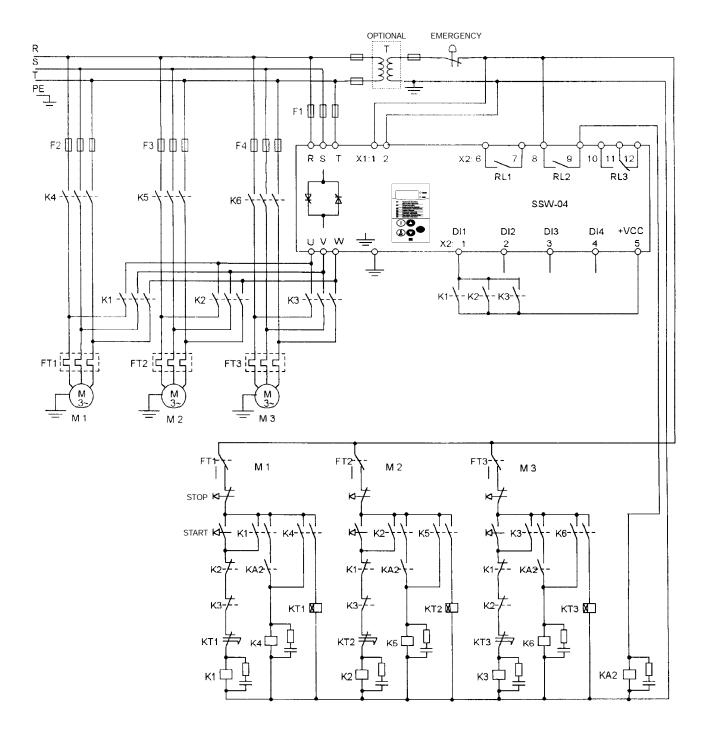
9.8 - RECOMMENDED APPLICATION WITH PC OR PLC COMMAND

Parameter	Program
P54	2
P55	3
P61	ON
P62	ADDRESS

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.



NOTE!

A contactor in the mains input (see 9.4) is necessary to protect the motor in case there is a phase failure which is caused by damage in the SSW-04 power circuit.

Connect the PC or PLC to control board via connector X3 (RS 232C).

9.9 - RECOMMENDED APPLICATION WITH TERMINALS FOR THREE WIRE CONTROL FOR SEVERAL MOTORS

Obs.: It's necessary to use normal fuses or breaker to protect the installation. Ultra-Fast fuses are not necessary for the SSW-04 operation, but they are recommended for SCR protection.

The transformer "T" is optional and must be utilized when the line voltage is different than the electronics and fan voltage.

For the integral motor protection it's recommended to install one or more thermostats in the motor. If the thermostat is not used, the external input error (DI3) from SSW-04 must be connected to +Vdc.

Motor fuses are normal. Install one overload relay to each motor. The Soft-Starter must be selected for a complete start cycle.

9.10 - SYMBOLS

Electrical Connection between two signals

Boundary Equipment

Terminals for Connection

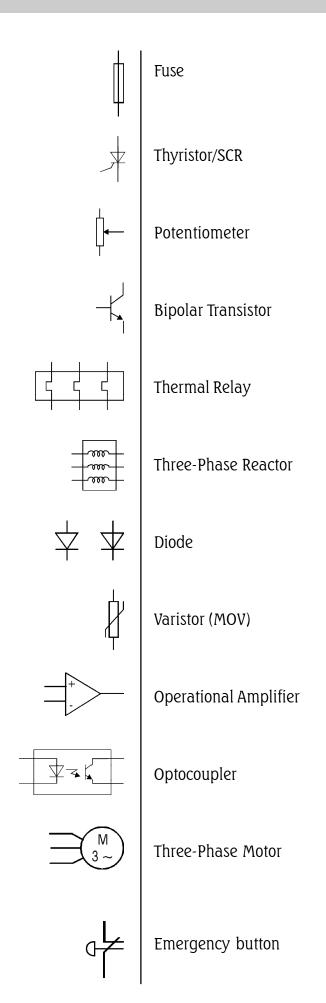
Signal Shielding

$$A + B = C$$

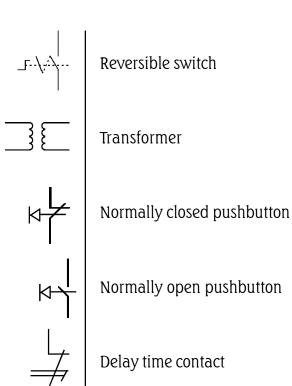
Coil - relay, contactor

Normally Open Contact (NO)

Normally Closed Contact (NC)


Indicator light

Resistor



Capacitor

9 A

APPENDIX

