
Hazardous Area Motors

- Manual de Instruções
- Instructions Manual

- W22Xdb B/C/M 315
- W22Xdb B/C/M 355
- W22Xdb B/C/M 400
- W22Xdb B/C/M 450
- W22Xdb B/C/M 500
- W22Xdb B/C/M 560

Manual de Instruções

Motores e geradores assíncronos trifásicos antideflagrantes

Instructions Manual

Three-phase asynchronous flameproof motors and generators

Schedule Drawing

No modifications allowed without reference to the Approved Body

Name: Luis A	raujo	
Signature:		

Responsible Engineer

UK Declaration of Conformity

WEGeuro - Indústria Eléctrica, S.A.

Headquarters: Rua Eng. Frederico Ulrich, Zona Industrial da Maia Sector V 4470-605 – Maia – Portugal www.weg.net/pt

Branch – Santo Tirso: Rua António Joaquim Campos Monteiro, 510 4780-165 – Santo Tirso – Portugal www.weg.net/pt

<u>Authorised Representative in the UK:</u> WEG (UK) Ltd

Broad Ground Road, Lakeside, Redditch, Worcestershire B98 8YP Contact person: Patrick O'Neill (Single Contact Point) www.weg.net/uk

The manufacturer declares under sole responsibility that WEG electric motors and components used for following motor lines:

W22Xdb...

when installed, maintained and used in applications for which they were designed, and in compliance with the relevant installation standards and manufacturer's instructions, comply with the provisions of the following relevant UK statutory requirements, wherever applicable:

Equipment and Protective Systems Intended for use in Potentially Explosive Atmospheres Regulations 2016; The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012; The Ecodesign for Energy-Related Products and Energy Information (Amendment) (EU Exit) Regulations 2020* (from July 1st, 2021); Supply of Machinery (Safety) Regulations 2008**; Electromagnetic Compatibility Regulations 2016 (electric motors are considered inherently benign in terms of electromagnetic compatibility).

The fulfilment of the safety objectives of the relevant UK statutory requirements has been demonstrated by compliance with the following designated standards, wherever applicable:

EN IEC 60079-0:2018 / EN 60079-1:2014 / EN IEC 60079-7:2015 + A1:2018 / EN 60079 31:2014 / EN 60079-11:2012 / EN 60204-1:2018 / EN 60204-11:2019 / EN IEC 63000:2018 / EN 60034-2-1:2014 / EN 60034-30-1:2014 and EN 60034-25:2018

- * Electric motors with a voltage rating higher than 1000V are not under the scope.
- ** Electric motors are considered partly completed machinery and are supplied with a "Declaration of Incorporation".

Declaration of Incorporation:

The products above cannot be put into service until the machinery into which they have been incorporated has been declared in conformity with the Supply of Machinery (Safety) Regulations 2008.

A Technical Documentation for the products above is compiled in accordance with part B of Annex VII (Part 7 of Schedule 2) of Supply of Machinery (Safety) Regulations 2008.

We undertake to transmit, in response to a reasoned request by the national authorities, relevant information on the partly completed machinery identified above through WEG authorised representative established in the United Kingdom. The method of transmission shall be electronic or physical method and shall be without prejudice to the intellectual property rights of the manufacturer.

The Approved Bodies listed below performed the applicable conformity assessment procedures set out in ATEX Directive and issued the following certificates:

Motor Line/Frame Size	Marking	Certificate No.	Approved Body/No.
W22Xdb CFrame sizes 315-560	II 2 G Ex db/Ex db eb IIC T4T3 Gb II 2 G Ex db ia/Ex db eb ia IIC T4T3 Gb II 2 G Ex db ia/Ex db eb ia IIC T4T3 Gb II 2 G Ex db ib/Ex db eb ib IIC T4T3 Gb II 2 D Ex tb IIIC T125°CT135°C Db II 2 D Ex ia tb IIIC T125°CT135°C Db II 2 D Ex ib tb IIIC T125°CT135°C Db	CML 21UKEX11268X	CML/2503
W22Xdb B /MFrame sizes 315- 560	II 2 G Ex db/Ex db eb IIB T4T3 Gb II 2 G Ex db ia/Ex db eb ia IIB T4T3 Gb II 2 G Ex db ib/Ex db eb ib IIB T4T3 Gb II 2 G Ex db ib/Ex db eb ib IIB T4T3 Gb II 2 D Ex tb IIIC T125°CT135°C Db II 2 D Ex ia tb IIIC T125°CT135°C Db II 2 D Ex ib tb IIIC T125°CT135°C Db I M2 Ex db/Ex db eb I Mb I M2 Ex db ia/Ex db eb ia I Mb I M2 Ex db ib/Ex db eb ib I Mb	CML 21UKEX11269X	CML/2503

The Quality System for the certificates described above is approved by SGS Baseefa (AB1180) under the Quality Assurance Notification SGS UKEX 3862 (WEGeuro – Indústria Eléctrica S.A.).

Signed for and on behalf of the manufacturer:

Uncontrolled copy

Luís Filipe Araújo Industrial Director

Índice / Index

1	NOTAS PRÉVIAS	7
2	INSPEÇÃO GERAL	9
3	SEGURANÇA	10
4	TRANSPORTE E ARMAZENAMENTO	10
5	INSTALAÇÃO	13
6	COLOCAÇÃO EM SERVIÇO	15
7	PROTEÇÕES	23
8	MANUTENÇÃO	24
9	MONTAGEM E DESMONTAGEM	25
10	MARCAÇÃO	26
11	PEÇAS DE RESERVA	31
12	INFORMAÇÕES ADICIONAIS	31
13	DECLARAÇÃO DE CONFORMIDADE	31
ΑN	EXO I	32
1.	PRELIMINARY NOTES	35
2.	GENERAL INSPECTION	37
3.	SAFETY INSTRUCTIONS	37
4.	TRANSPORTATION AND STORAGE	38
5.	INSTALLATION	40
6.	START UP	42
7.	MOTOR PROTECTIONS	50
8.	MAINTENANCE	51
9.	ASSEMBLING AND DISASSEMBLING	52
10.	MARKING	53

11.	SPARE PARTS	57
12.	ADDITIONAL INFORMATION	58
13.	DECLARATION OF CONFORMITY	58
ANN	EX I	59

Manual de Instruções

Motores e Geradores Assíncronos Trifásicos Antideflagrantes

1 NOTAS PRÉVIAS

1.1 Obrigado por terem mostrado a vossa pela preferência por motores WEGeuro.

Para que deles se possam tirar os melhores resultados aconselhamos que sigam as instruções seguintes que são especialmente importantes para motores instalados em áreas perigosas. O seu não cumprimento compromete a segurança do produto e da sua instalação.

- 1.2 As operações de Instalação e Manutenção devem ser executadas por pessoas devidamente qualificadas e com formação certificada para intervir neste tipo de motores. As pessoas envolvidas nestas operações devem estar familiarizadas com as regras de segurança e exigências em vigor e, nomeadamente com o conceito de proteção.
- 1.3 Para reduzir ao mínimo os riscos de ignição devido à presença de material elétrico em zonas perigosas, deve ser garantida a inspeção e a manutenção eficazes do material.
- 1.4 Os motores WEG são concebidos para serem montados, postos em funcionamento e utilizados de acordo com as regras deste Manual de Instruções o qual deve ser lido conjuntamente com as normas:

EN 60079-14 : 2014	
EN 60079-17 : 2014	
EN 60079-19 : 2019	

Nenhuma responsabilidade poderá ser imputada à WEGeuro pelo seu não cumprimento.

1.5 Os motores WEG têm a marcação UKCA e cumprem o Requisito Estatutário do Reino Unido SI 2016 No. 1107. Estão previstos para serem utilizados em atmosferas explosivas – Categorias 2G, 2D, 2GD, 3G, 3D, 3GD ou M2 – Zonas 1 e 2; 21 e 22.

- 1.6 O utilizador deve assegurar-se da compatibilidade entre as indicações constantes da placa de características, a atmosfera explosiva presente, a zona de utilização e as temperaturas ambiente e de superfície. A correta classificação da área de instalação e das características do ambiente é da responsabilidade do utilizador.
- 1.7 Os motores antideflagrantes WEG são fornecidos, na execução padrão, com caixas de terminais antideflagrantes "Ex db". Em opção, podem ser fornecidos com caixas de terminais de segurança aumentada "Ex eb". Neste caso a designação do tipo de protecção do motor é "Ex db eb".
- 1.8 Os motores "Ex db" são fabricados de acordo com as normas EN IEC 60079-0:2018 e EN 60079-1:2014. Os motores "Ex db eb" estão, para além destas, conformes também à norma EN IEC 60079-7:2015/A1:2018. Os motores com equipamento de segurança intrínseca "Ex i" estão também de acordo com a norma EN 60079-11:2012. O grupo de gases será IIB, IIC ou I consoante o tipo de motor.
- 1.9 A instalação deve estar em conformidade com as normas EN 60079-14:2014 e EN 60079-25:2017 para segurança intrínseca.
- 1.10 As juntas antideflagrantes dos motores WEG podem ter valores mais restritos do que os valores mínimos impostos pelas normas EN 60079-1. Assim, os reparadores autorizados, sempre que necessitem de informações detalhadas relativamente a estas juntas, deverão contatar o Serviço Após Venda da WEG. Para motores do grupo I (minas), o utilizador deve ter em consideração que estes foram sujeitos apenas a um impacto correspondente a uma energia de baixo risco.
- 1.11 Os motores com protecção IP65 ou IP66, concebidos para serem utilizados em atmosferas explosivas com poeiras combustíveis (Ex tb IIIC T125°C ou T135°C Db), estão também em conformidade com a norma EN 60079-31:2014.
- 1.12 Os motores podem ser equipados com intercalares, montados no topo das carcaças ou noutros intercalares, permitindo a montagem de caixas de terminais adicionais em diferentes posições. Os intercalares podem ter proteção antideflagrante "Ex db" ou de segurança aumentada "Ex eb" e permitem montar caixas de terminais antideflagrantes "Ex db" ou de segurança aumentada "Ex eb".
 - No caso de motores equipados com caixas de terminais de fases segregadas ou fases isoladas com protecção de segurança aumentada "Ex eb", a montagem é feita

num intercalar com proteção de segurança aumentada "Ex eb" e podem ser utilizadas em temperaturas ambiente até -20°C.

1.13 Sempre que os motores são equipados com componentes de segurança intrínseca "Ex i", para proteção térmica da bobinagem e/ou rolamentos e deteção e/ou controlo de vibrações, os seus circuitos, nas caixas de terminais auxiliares, estão separados dos circuitos que não são de segurança intrínseca. Estes circuitos são visualmente diferentes (com terminais na cor azul) e estão devidamente identificados, devendo ser conectados a barreiras de segurança adequadas em função dos parâmetros de entrada destes componentes.

Os componentes de segurança intrínseca são ligados, no interior das caixas de terminais auxiliares, a terminais montados em calha DIN com o cabo de terra devidamente conectado ao terminal de terra existente para esse efeito.

1.14 Quando os motores são equipados com componentes de segurança intrínseca "Ex i", deverá ser consultada a informação sobre os parâmetros de entrada destes componentes, referida no Anexo I deste manual, necessária para a definição da barreira zener de segurança intrínseca.

Ver **Anexo I** para detalhes.

2 INSPEÇÃO GERAL

- 2.1 Verificar se as caraterísticas do motor, indicadas na chapa de caraterísticas, estão de acordo com o pedido na encomenda. Deve ser dada atenção especial ao tipo de proteção e/ou EPL (nível de proteção do equipamento) do motor. Se forem detetadas não-conformidades, estas devem ser reportadas de imediato aos Serviços Comerciais da WEG.
- 2.2 Estes motores são fabricados para funcionar num ambiente que apresente risco de explosão. É portanto, indispensável controlar rigorosamente, durante a receção do material, todas as peças exteriores (carcaça, tampa, chumaceira, caixa de terminais e tampa da caixa de terminais).
- 2.3 Qualquer anomalia detetada deve ser assinalada, comunicada aos Serviços Comerciais da WEG e devidamente analisada, de forma a garantir que os motores possam funcionar sem risco neste ambiente. Se necessário, devem substituir-se as

peças danificadas ou que possam vir a apresentar qualquer risco, mesmo que a longo prazo.

3 SEGURANÇA

- 3.1 Os motores para áreas classificadas são especialmente projetados para atender às regulamentações oficiais referentes aos ambientes em que serão instalados. Uma aplicação inadequada, conexão errada ou outras alterações, por menores que sejam, podem colocar em risco a fiabilidade do produto e a segurança da instalação.
- 3.2 Qualquer componente adicionado ao motor pelo utilizador, como por exemplo, bucim, tampão, encoder, etc., deve ser selecionado em conformidade com o tipo de proteção do invólucro, o "nível de proteção de equipamento" (EPL) e o grau de proteção do motor, de acordo com as normas indicadas no certificado do produto.
- 3.3 O símbolo "X" junto ao número do certificado, informado na placa de certificação do motor, indica que o mesmo requer condições especiais de instalação, utilização e/ou manutenção do equipamento, sendo estas descritas no certificado e fornecidas na documentação do motor. A não observação destes requisitos compromete a segurança do produto e da instalação.
- 3.4 Para motores do Grupo IIC é necessário ter atenção à espessura total de tinta que tem de ser inferior ou igual a 200µm. Se o esquema de pintura selecionado exceder este valor, é colocada no motor uma placa de aviso , com a informação de que existe o risco de cargas eletrostáticas (ver 8.6).

No caso de motores para os grupos IIB, I e IIIC não existe esta limitação porque a espessura total de tinta pode ter até 2mm.

4 TRANSPORTE E ARMAZENAMENTO

- 4.1 Os motores não deverão ser submetidos a ações prejudiciais durante o transporte e armazenamento.
- 4.2 Na receção do motor, verificar se ocorreram danos durante o transporte. Na ocorrência de qualquer dano, registar por escrito junto do agente transportador, e comunicar imediatamente à companhia seguradora e à WEG. A não comunicação pode resultar no cancelamento da garantia.

- 4.3 Todos os motores com rolamentos de rolos cilíndricos e com rolamentos de esferas de contacto oblíquo são equipados com um dispositivo de bloqueamento do veio para o transporte, colocado em regra no lado dianteiro. Alguns motores poderão ter dois dispositivos de travamento, um no lado dianteiro e outro no lado traseiro. Para o motor poder operar é necessário remover o dispositivo, que deve ser reinstalado, no caso de o motor ser sujeito a qualquer manipulação e/ou transporte.
- 4.4 Na receção do motor devem ser removidos os dispositivos de travamento do veio que deve ser rodado manualmente para verificar se roda livremente. Caso o motor seja para armazenar, deverão colocar-se novamente os dispositivos de travamento do veio.
- 4.5 A armazenagem deverá ser feita num local limpo, seco e sem vibrações. Se o motor não for instalado de imediato, deve ser armazenado num local limpo, seco e sem vibrações, com uma humidade relativa não excedendo 60% e uma temperatura ambiente entre 5°C e 40°C, sem variações rápidas de temperatura, sem poeiras, gases ou agentes corrosivos. O motor deve ser armazenado na posição horizontal a menos que tenha sido projetado para operar na vertical.
- 4.6 Se bem que as superfícies trabalhadas ponta de veio, face da flange, etc. estejam protegidas com uma camada de produto anticorrosivo (ANTICORIT BW 366 da FUCHS, ou equivalente), se for previsto um armazenamento prolongado, essas superfícies deverão ser examinadas e, se necessário, aplicada nova camada.
- 4.7 As superfícies das juntas antideflagrantes devem ser protegidas com uma camada de massa anti-corrosão que não endureça com o envelhecimento e não contenha solventes (MOBIL Polyrex EM, Lumomoly PT/4, Molykote 33 ou outra equivalente recomendada pela WEG). Estas superfícies devem ser examinadas periodicamente e, se necessário, nova camada deve ser aplicada nomeadamente nas juntas das caixas de terminais, se estas já foram abertas.
- 4.8 Para períodos de armazenamento longos recomenda-se que o rotor seja rodado periodicamente para evitar a deterioração dos rolamentos.
- 4.9 Se o motor for equipado com chumaceiras deve ser armazenado na sua posição original de funcionamento, e com óleo nos mancais. O nível do óleo deve ser respeitado, permanecendo na metade do visor de nível. Durante o período de

armazenamento, deve-se retirar o dispositivo de travamento do veio e, mensalmente, rodar o veio manualmente 5 voltas (e a 30 rpm, no mínimo), para recircular o óleo e conservar o mancal em boas condições de operação. Caso seja necessário movimentar o motor, o dispositivo de travamento do veio deve ser reinstalado. Para motores armazenados por mais de seis meses, os mancais devem ser relubrificados, antes da entrada em operação. Caso o motor fique armazenado por período maior que o intervalo de troca de óleo, ou não seja possível rodar o seu veio, o óleo deve ser drenado e aplicada uma proteção anticorrosiva e desumidificadores.

- 4.10 Se o motor estiver equipado com resistências anti-condensação, estas devem estar ligadas durante o período de armazenamento.
- 4.11 A resistência de isolamento do motor deve ser medida periodicamente (ver valores em 6.1) durante o período de armazenamento e antes de o ligar pela primeira vez. Verificar os procedimentos e valores na secção 6 deste manual.
- 4.12 A movimentação do motor deve ser feita utilizando os olhais de suspensão conforme indicado na figura:

4.13 Levantar o motor sempre pelos olhais de suspensão, que foram projetados para suportar apenas o peso do motor. Estes nunca devem ser usados para levantamento de cargas adicionais acopladas. Os olhais de suspensão dos componentes, como caixa de ligação, tampa defletora, etc., devem ser utilizados apenas para manusear estas peças quando desmontadas. Informações adicionais sobre os ângulos máximos

de suspensão estão indicados no manual geral disponível no website da WEG, em www.weg.net.

5 INSTALAÇÃO

- 5.1 Durante a instalação, os motores devem estar protegidos contra arranques acidentais. Confirmar o sentido de rotação do motor, ligando-o em vazio antes de acoplá-lo à carga.
- 5.2 Os motores só devem ser instalados em aplicações, ambientes e forma construtiva informados na documentação do produto. Deve ser respeitado o tipo de proteção e o EPL indicado na chapa de identificação do motor, de acordo com a classificação da área onde o motor será instalado.
- 5.3 O dispositivo de travamento do veio deverá ser retirado durante a montagem do motor.
- 5.4 Os rotores dos motores são equilibrados dinamicamente com meia-chaveta. Por esta razão, o acoplamento a montar na ponta de veio deve também ser equilibrado com meia-chaveta, de acordo com a norma IEC 60034-14.
 - Quando especificamente solicitado, os motores poderão ser equilibrados com chaveta inteira.
- 5.5 Para a montagem do acoplamento na ponta de veio, aquecer o acoplamento a cerca de 80°C.
 - Se necessário, a montagem pode ser feita com o auxílio de um parafuso que é roscado no furo da ponta de veio.
 - Nota Nunca fazer a montagem do acoplamento com recurso a pancadas, pois podem danificar os rolamentos.
- 5.6 No caso de acoplamento direto, o motor e a máquina acionada devem ser alinhados respeitando os valores de alinhamento, paralelo e angular, preconizados pelo fabricante do acoplamento. Não esquecer que quanto mais rigoroso for o alinhamento mais longa será a vida dos rolamentos.
 - No caso de uma transmissão por correias, estas terão que ser, anti-estáticas e dificultar a propagação da chama. Não deverão ser utilizadas polias de diâmetro muito

pequeno ou de largura superior ao comprimento da ponta de veio. Ter em atenção que a tensão das correias não deve ultrapassar os valores de cargas radiais recomendadas para os rolamentos. Se estas recomendações não forem respeitadas existe o risco de danificar os rolamentos ou de fraturar o veio.

5.7 Os motores WEGeuro para os grupos IIB e I (minas) podem operar em temperaturas ambiente entre -55°C e +80°C. Os motores para o grupo IIC podem operar em temperaturas ambiente entre -55°C e +60°C.

Salvo indicação em contrário na chapa de caraterísticas, os motores estão preparados para funcionar a uma temperatura ambiente de -20°C a +40°C.

Para temperaturas fora do intervalo anterior, a WEGeuro deverá ser consultada para verificar se são requeridas execuções e/ou certificações especiais.

- 5.8 Salvo indicação em contrário, as potências nominais fornecidas pelos motores são para operação em serviço contínuo S1 de acordo com as normas IEC/EN 60034-1 nas condições seguintes:
 - Temperatura ambiente de -20°C a +40°C;
 - Altitudes até 1000 m acima do nivel do mar.

Para temperaturas de operação acima de +40°C e até +80°C, os fatores de correção indicados na tabela abaixo deverão ser aplicados à potência nominal do motor para determinar a potência de saída disponível (Pmax).

Pmax = Pnom x factor de correção

Tamb. (°C)	40	45	50	55	60	65	70	75	80
Fator de correção da potência nominal do motor	1	0.95	092	0.88	0.83	0.77	0.70	0.62	0.53

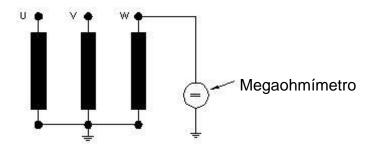
Para altitudes acima de 1000 m, haverá também uma redução da potência fornecida. Neste caso, consultar a fábrica para indicação do fator de correção a aplicar.

5.9 Não cobrir ou obstruir a ventilação do motor. Manter uma distância mínima livre de ¼ do diâmetro da entrada de ar da defletora em relação à distância das paredes. O ar utilizado para refrigeração do motor deve estar à temperatura ambiente, limitada ao

intervalo de temperatura indicado na placa de identificação do motor (quando não indicado, considerar de -20°C a +40°C).

- 5.10 Para evitar acidentes, garantir, antes de ligar o motor, que o aterramento foi realizado conforme as normas vigentes e que a chaveta está bem fixa.
- 5.11 Conectar o motor corretamente à rede elétrica através de contatos seguros e permanentes, observando sempre os dados informados na placa de identificação, como tensão nominal, esquema de ligação, etc.
- 5.12 Quando utilizado terminal, todos os fios que formam o cabo multifilar devem estar presos dentro da luva. O isolamento dos cabos dos acessórios deve ser mantido até 1mm do ponto de conexão do conector.

6 COLOCAÇÃO EM SERVIÇO


6.1 Se o motor teve um armazenamento prolongado ou se, após montagem, esteve por um longo período de tempo fora de serviço, aconselha-se a medida da resistência de isolamento antes do arranque.

A resistência de isolamento deve ser medida utilizando um Megaohmímetro. A tensão de ensaio dos enrolamentos do motor deve ser a indicada na tabela abaixo, conforme a norma IEEE 43.

Tensão nominal dos enrolamentos do motor (V)	Tensão contínua para ensaio da resistência de isolamento (V)
< 1000	500
1000 – 2500	500-1000
2501 – 5000	1000 – 2500
5001 - 12000	2500 – 5000
> 12000	5000 – 10000

Estas medidas deverão ser feitas antes de se ligarem os cabos de alimentação.

Um possível esquema para efetuar a medida da resistência de isolamento é o que se mostra na figura abaixo, devendo efectuar-se a leitura do Megaohmímetro 1 minuto após a aplicação da tensão contínua.

Os valores mínimos recomendados para a resistência de isolamento, de acordo com a norma IEEE 43, corrigidos para a temperatura de 40°C, são os seguintes:

- 5 MΩ, para motores de baixa tensão (U ≤ 1,1kV)
- 100 MΩ, para motores de média tensão (1,1kV < U < 11kV)

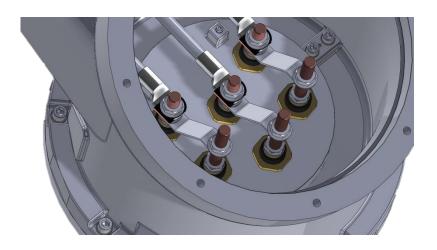
O valor da resistência de isolamento varia, principalmente em função da temperatura do enrolamento conforme se mostra no quadro seguinte:

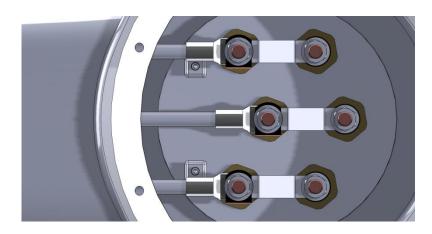
TEMPERATURA DE ENROLAMENTO	TENSÃO DE SERVIÇO			
TEMPERATURA DE ENROLAMIENTO	<u><</u> 1,1 kV	> 1,1kV		
20° C	20 ΜΩ	400 MΩ		
30° C	10 ΜΩ	200 ΜΩ		
40° C	5 ΜΩ	100 ΜΩ		

Se o valor da resistência de isolamento for inferior aos valores indicados, verificar primeiramente se o isolamento da bobinagem do motor está afetado por humidade ou depósito de poeiras. Se necessário, limpar os enrolamentos da bobinagem e secar o motor a uma temperatura inferior a 100°C. Se estas medidas não forem suficientes deve ser solicitada ajuda técnica especializada.

A tensão de ensaio para as resistências anti-condensação, protectores térmicos e outros acessórios é de 500 $V_{\rm CC}$.

6.2 Verificar se a tensão indicada na chapa de caraterísticas é a mesma da rede onde será ligado o motor. Respeitar sempre os esquemas de ligação incluídos na caixa de terminais face à tensão disponível e/ou velocidades pretendidas.


Ver esquemas de ligação mais comuns no final deste manual.


6.3 Os enrolamentos dos motores estão ligados de tal modo que o motor roda no sentido dos ponteiros do relógio, quando se vê o motor do lado da ponta de veio principal, e quando a ordem alfabética das extremidades do enrolamento do motor (U,V,W) corresponde à ordem de sucessão das fases no tempo (L1, L2, L3). Para rodar no sentido contrário devem permutar-se dois dos três cabos de alimentação.

No caso de o motor apenas poder rodar num único sentido terá uma placa com uma seta a indicar esse sentido.

- 6.4 Nos motores com caixas de terminais "**Ex eb**", os isoladores deverão ser equipados com cerra-cabos ou com chapas de travamento para manter o cabo sempre na posição inicial fixada durante o seu aperto.
- 6.5 Como padrão, os isoladores nas caixas de terminais "**Ex eb**" são equipadas com chapas de travamento. A utilização das chapas de travamento não altera a capacidade de curto-circuito (I_{cc}) das caixas de terminais.

Nos isoladores com chapa de travamento é necessário garantir um alinhamento entre a chapa e o terminal olhal que permita a correta saída dos cabos de ligação, tal como representado nas figuras seguintes.

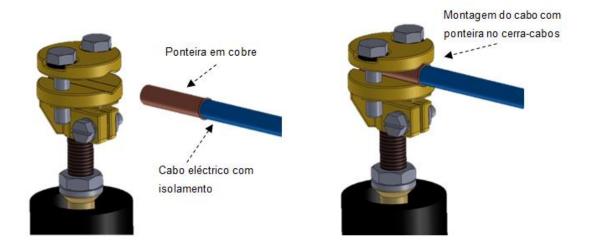
Exemplo de uma montagem Ex eb com chapas de travamento.

Para a correta saída dos cabos de ligação, a face de bloqueio da chapa de travamento em conjunto com a porca baixa imediatamente abaixo, devem estar paralelos ao terminal olhal onde o cabo de ligação é cravado.

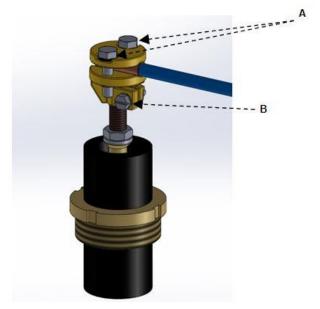
Detalhe do alinhamento entre a chapa de travamento e a saída do cabo de ligação

Os binários de aperto para a parte superior dos terminais isoladores são:

Rosca	Mínimo [<i>N.m</i>]	Máximo [<i>N.m</i>]	
M10	8	13	
M12	15	30	


M16	30	50
M20	50	80
M24	130	186

6.6 Opcionalmente, os motores com caixas de terminais "Ex eb", podem ser equipados com cerra-cabos distintos das chapas de travamento. Neste caso deve ser garantido um aperto perfeito do cerra-cabos ao isolador e do cabo no interior do cerra-cabos.


Nestas caixas, as pontes de ligação (shunts) devem ser desmontadas ou montadas cuidadosamente conforme as instruções fornecidas no final deste manual, sem que o posicionamento dos cerra-cabos seja alterado.

Nas caixas equipadas com cerra-cabos, a capacidade de curto-circuito (Icc) é reduzida face à capacidade de curto-circuito da mesma caixa com isoladores sem cerra-cabos.

6.7 Para fazer a ligação do cabo de alimentação ao cerra-cabos deve aplicar-se uma ponteira no cabo descarnado e de seguida fazer o aperto no cerra cabos, conforme as imagens seguintes.

Para os parafusos dos cerra-cabos, recomenda-se que sejam utilizados os seguintes valores de binário:

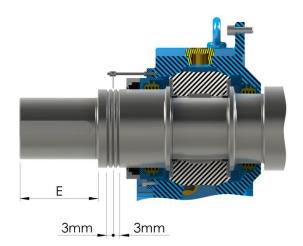
Binário de aperto (Nm)			
A - Parafusos aperto do cabo no cerra-cabos	B - Parafuso aperto do cerra-cabos ao terminal		
50	25		

- 6.8 Junto a cada orifício roscado previsto para entrada de cabos é colocada uma placa com o tipo de rosca e respetivas dimensões.
- 6.9 Os cabos e bucins utilizados devem ser compatíveis com a temperatura ambiente indicada na placa de certificado sempre que o seu valor é superior a 80°C.
 - 6.9.1 Quando os bucins são fixados na caixa de terminais:
 - 90°C para temperatura ambiente de 50°C
 - 100°C para temperatura ambiente de 60°C
 - 110°C para temperatura ambiente de 70°C
 - 120°C para temperatura ambiente de 80°C
 - 6.9.2 Quando os bucins são fixados na placa de obturação em motores alimentados por cabos soltos:
 - 100°C para temperatura ambiente de 40°C
 - 110°C para temperatura ambiente de 50°C
 - 120°C para temperatura ambiente de 60°C

- 130°C para temperatura ambiente de 70°C
- 140°C para temperatura ambiente de 80°C
- 6.10 Os bucins a utilizar devem ter a mesma certificação UKEX dos motores e protecção (Ex db IIB, Ex db IIC, Ex eb II, Ex db I ou Ex eb I) idêntica à da caixa de terminais, e um grau de proteção mecânica IP pelo menos igual ao da caixa de terminais.
- 6.11 Antes de fechar as caixas de terminais, garantir que o interior está completamente livre de poeiras.
- 6.12 Os binários recomendados para os parafusos de aperto das tampas das caixas de terminais às suas caixas de terminais e das tampas do motor ao mesmo são os seguintes:

		Binário (Nm)				
Tipo	Aço carbono / classe 12.9		Aço inox / Classe 70/80			
	Min	Máx.	Min.	Máx.		
M8	14	30	14	19		
M10	28	60	28	40		
M12	45	105	45	60		
M14	75	110	75	100		
M16	115	170	115	170		
M20	230	330	225	290		
M24	400	510	400	510		

- 6.13 Antes da entrada em funcionamento, verificar que as ligações foram efectuadas de acordo com os esquemas constantes neste manual ou fornecido na caixa de terminais, tendo em consideração o tipo de motor e enrolamento.
- 6.14 As entradas de cabos não utilizadas da caixa de terminais de potência, da caixa auxiliar e das caixas das proteções de rolamentos/chumaceiras devem ser sempre


obturadas com tampões roscados com certificação UKEX e com proteção (Ex db IIB, Ex db IIC, Ex eb II, Ex db I ou Ex eb I) idêntica à da caixa de terminais.

- 6.15 A ligação de motores com cabo(s) solidário(s) (sem caixa de terminais) deve ser realizada fora da zona com atmosfera explosiva ou protegida por um tipo de proteção normalizado.
- 6.16 Os motores equipados com rolamentos de contato oblíquo não deverão rodar sem carga axial e apenas usados na posição de montagem prevista (ver IM na placa de caraterísticas).
- 6.17 Motores com chumaceiras lisas (não previstos para o grupo IIC) devem ser acoplados diretamente à máquina acionada. Os acoplamentos polia/correia não são recomendados para este tipo de motor. Estes motores não podem ser utilizados para temperaturas ambiente superiores a +60°C.

Quando o motor estiver acoplado à máquina acionada, verificar os deslocamentos axiais da chumaceira do motor e da máquina acionada, bem como a folga axial máxima do acoplamento.

Os motores com este tipo de chumaceira não podem, em circunstância alguma, funcionar com forças axiais nas chumaceiras pois não estão preparados para as suportar.

Motores com chumaceiras devem ser acoplados garantindo-se o alinhamento axial do seu rotor. O design padrão possui um jogo axial máximo de ± 3 mm, quando a seta indicadora aponta para a marcação central do veio (conforme imagem abaixo).

O sistema de acoplamento com a máquina acionada deve permitir a expansão térmica do veio mas travar o passeio axial do mesmo.

7 PROTEÇÕES

- 7.1 Recomenda-se que, pelo menos, os motores estejam protegidos contra sobrecargas e sobreintensidades.
- 7.2 Não esquecer a ligação da massa do motor à terra, utilizando os terminais de terra disponíveis, quer na caixa de terminais quer sobre o invólucro do motor.
- 7.3 A instalação dos motores deve ser feita segundo as normas EN 60079-14. A sua inspeção e manutenção deverão ser feitas conforme as normas EN 60079-17.
- 7.4 Se os motores estiverem equipados com proteções térmicas, estas <u>podem ser</u> <u>ligadas</u> como proteção adicional e fonte de informação para manutenção. No caso de Pt100 ou termopares, a temperatura de disparo deve ser regulada para os valores indicados pela WEG.
- 7.5 Se as proteções térmicas não forem ligadas, o utilizador deve assegurar que a instalação e a manutenção são realizadas de forma adequada de modo a que sejam evitadas eventuais falhas nos rolamentos que podem resultar na ocorrência de uma fonte de ignição.
- 7.6 Quando necessário, e dependendo das condições de instalação e operação da máquina, devem ser tomadas precauções, como o monitoramento continuo da temperatura nos rolamentos lado ataque e lado oposto ao ataque, para proteger contra quaisquer efeitos originados pela presença de correntes circulantes.
- 7.7 Os motores alimentados por variação de frequência, devem estar equipados com sondas térmicas na bobinagem e, eventualmente, nos rolamentos. A ligação destas proteções <u>é obrigatória</u>. Estes motores são sempre equipados com caixas de terminais antideflagrantes "Ex db".
 - Nos motores de 2 velocidades com 2 enrolamentos, os 2 enrolamentos devem ser protegidos individualmente (proteção individual em cada um dos enrolamentos).
- 7.8 Se existirem resistências anti-condensação, estas não devem, em caso algum, ser ligadas senão quando o motor estiver frio e não alimentado.

7.9 Nos motores equipados com ventilação forçada, um dispositivo deve impedir o funcionamento do motor principal na ausência de ventilação.

Para evitar que a temperatura máxima de superfície seja excedida, as proteções térmicas do motor principal e do motor auxiliar devem ser ligadas a equipamento adequado e, no caso de Pt100 ou termopares, a temperatura de disparo deve ser regulada para os valores indicados pela WEG.

8 MANUTENÇÃO

- 8.1 Para motores à prova de explosão ou com proteção por invólucro, somente abrir a caixa de ligação e/ou desmontar o motor quando a temperatura superficial do invólucro estiver à temperatura ambiente.
- 8.2 Para os rolamentos, o tipo de massa lubrificante, a quantidade de massa e os períodos de relubrificação são indicados na chapa de caraterísticas para as condições de funcionamento normais. A adição de massa deve ser feita com o motor em funcionamento e respeitando as condições de segurança.
 - Para condições de trabalho difíceis, tais como graus de humidade e poluição elevados, cargas importantes nos rolamentos ou níveis de vibração excessivos, recomenda-se a redução dos intervalos de relubrificação.
- 8.3 A cada dois anos os motores devem ser abertos e os rolamentos examinados e, se necessário, substituídos. Durante a inspeção retirar toda a massa antiga acumulada nas peças envolventes dos rolamentos.
 - Para condições de trabalho difíceis, este período deve ser reduzido.
- 8.4 As entradas de ar, as passagens de ar e as superfícies de arrefecimento devem ser limpas periodicamente. Os períodos dependem do grau de poluição e acumulação de poeira presente na atmosfera envolvente.
- 8.5 Inspecionar periodicamente o funcionamento do motor segundo a sua aplicação, assegurando um livre fluxo de ar. Inspecionar as vedações, os parafusos de fixação, os mancais, os níveis de vibração e de ruído, as purgas, etc.
- 8.6 Motores que possuem risco potencial de acumulação de cargas electrostáticas, fornecidos devidamente identificados com uma placa de aviso, devem ser limpos de

maneira cuidadosa recorrendo, por exemplo, à utilização de um pano húmido, para evitar a geração de descargas electrostáticas.

- 8.7 A manutenção dos motores antideflagrantes é particularmente importante porque:
 - Ao nível dos rolamentos, uma alteração pode:
 - o aumentar rapidamente a temperatura provocando risco de explosão
 - aumentar o interstício de travessia do veio devido à fricção do veio na placa de fecho; uma combustão interna pode transmitir-se para o exterior e provocar uma explosão.
 - Ao nível da ventilação exterior, um mau arrefecimento aumenta a temperatura de superfície que pode atingir valores superiores aos permitidos pela classe de temperatura definida.
 - É necessário verificar na chapa de certificado a classe de temperatura, a qual indica a máxima temperatura como se segue:

T3 ou T4 ou T135°C ou T125°C

- 8.8 Todos os motores à prova de explosão são fornecidos com produto anticorrosivo nos encaixes e parafusos. Antes de montar os componentes com faces maquinadas (por exemplo, tampas da caixa de ligação de motores antideflagrantes), limpar as superfícies e aplicar uma nova camada deste produto.
 - Para motores antideflagrantes, utilizar nos encaixes somente os seguintes produtos anticorrosivos: Polyrex EM (fabricante Mobil) ou Lumomoly PT/4 (fabricante Lumobras) para a faixa de temperatura ambiente -20°C a +80°C, ou Molykote DC 33 (fabricante Dow Corning) para a faixa de -55°C a +80°C.
- 8.9 Para motores à prova de explosão, deve ser tomado cuidado adicional com as superfícies maquinadas de passagem de chama, de maneira a não conter rebarbas, riscos, etc., que reduzam seu comprimento e/ou aumentem a folga da passagem de chama.

9 MONTAGEM E DESMONTAGEM

Estes motores exigem cuidados especiais.

9.1 Na montagem e desmontagem de peças é necessário verificar o bom estado das juntas. As dimensões das juntas são o seu comprimento e o interstício, os quais são controlados a 100% durante a fabricação dos motores. As juntas não podem ser modificadas.

É necessário:

- Assegurar que os encaixes não estão danificados e não têm golpes ou riscos. Se isso acontecer, as peças devem ser substituídas.
- Todos os parafusos devem ser bem apertados. Um parafuso mal apertado altera a resistência do invólucro. Se for necessário substituir um parafuso, é imperativo que a qualidade e comprimento do parafuso sejam mantidos.
- Durante a manutenção, não trocar as peças intermutáveis.
- 9.2 Os parafusos de aperto dos invólucros do motor e caixas de terminais deverão ter uma resistência à tração igual ou superior a:
 - Classe 12.9 no caso de parafusos em aço.
 - Classe A2-70 ou A4-80 no caso de parafusos em aço inox em todos os motores e caixas de terminais até temperaturas de -55°C exceto no caso dos invólucros dos motores 500 e 560 em que podem ser utilizados até -40°C.

10 MARCAÇÃO

Todos os motores têm duas placas de marcação:

10.1 Placa de caracteristicas

Esta placa contém as informações pedidas pela norma IEC 60034-1 e outras tecnicamente úteis.

10.2 Placa de certificação

A placa de certificação deve estar de acordo com a atmosfera explosiva onde irá ser utilizado o equipamento ou de acordo com a sua certificação UKEX. A certificação UKEX inclui sempre a marca UKCA e o código do Organismo Aprovado que audita a fábrica e que emite o UKCA QAN. No caso da WEG este código é o seguinte:

Código do Organismo Marca Aprovado UKCA responsável pelo UKCA QAN

UK CA

1180

Adicionalmente esta placa pode conter as informações seguintes:

10.2.1 Marcação para atmosferas explosivas com gás

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção principal	Tipo de protecção adicional ¹	Grupo de gás²	Classe de Temp. ²	EPL
				Ex	db	eb	IIB	Т3	Gb
(Ex) II	2	G			ia	IIC	T4	
						ib			

Pode ser deixado em branco ou alguma combinação dos tipos de proteção

10.2.2 Marcação para atmosferas explosivas com poeiras

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção adicional ¹	Tipo de protecção principal	Grupo de poeira	Classe de Temp. ²	EPL
		2	D	Ex	ia	tb	IIIC	T125ºC	Gb
⟨£x	> II	2	D		ib			T135°C	

¹ Uma das opções ou em branco

Uma das opções

² Uma das opções

10.2.3 Marcação para atmosferas explosivas com gases e poeiras

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	Tipo de Protecão
⟨£x⟩	II	2	GD	Qualquer combinação das marcações de 10.2.1 e 10.2.2

10.2.4 Marcação para locais subterrâneos em minas

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção principal	Tipo de proteção adicional ¹	Grupo de gás	EPL
				Ex	db	eb	I	Mb
(Ex)) I	M2	-			ia		
			_			ib		

¹ Pode ser deixado em branco ou alguma combinação dos tipos de proteção

10.2.5 Número do certificado

CML ** UKEX ****X

CML	Nome do Organismo Aprovado para UKEX					
**	Ano de certificação					
UKEX	Designação da certificação segundo os requisitos estatutários do Reino Unido (atmosferas explosivas)					
***	Número do certificado					
X	Condições especiais de utilização especificadas no certificado					

10.2.6 Marcação complementar

10.2.6.1 Temperatura que deve suportar o cabo de alimentação do motor

Cabo de alimentação compatível com uma temperatura de ** °C

** °C - Os cabos de alimentação do motor, seleccionados pelo utilizador/instalador, devem ser adequados para esta temperatura.

10.2.6.2 Numero de série e ano de fabricação

Estas informações são indicadas na placa de caracteristicas do motor.

10.2.7 Endereço do fabricante

Fábrica da Maia:

WEGeuro INDÚSTRIA ELÉCTRICA, S.A.

Rua Eng.º Frederico Ulrich

Zona Industrial da Maia sector V

4470-605 Maia - Portugal

Fábrica de Santo Tirso:

WEGeuro INDÚSTRIA ELÉCTRICA, S.A.

Rua António Joaquim Campos Monteiro, 510

Santa Cristina do Couto

4780-165 Santo Tirso - Portugal

10.3 Marcação nas tampas das caixas de terminais

ATENÇÃO:

- NÃO ABRIR SOB TENSÃO
- NÃO ABRIR QUANDO UMA ATMOSFERA EXPLOSIVA POSSA ESTAR PRESENTE
- 10.4 Marcação adicional nas caixas de terminais separadas
- 10.4.1 Número de certificado

CML ** UKEX **X**

10.4.2 Marcação para atmosferas explosivas com gás

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção principal ¹	Tipo de protecção adicional ²	Grupo de gás ¹	Classe de Temp. ¹	EPL
<u></u>) II	2	G	Ex	db	ia	IIB	Т3	Gb
₹ 2	/ "	2	G		eb	ib	IIC	T4	

¹ Uma das opções

10.4.3 Marcação para atmosferas explosivas com poeiras

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

ı	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção adicional ¹	Tipo de protecção principal	Grupo de poeira	Classe de Temp. ²	EPL
<u></u>		2	D	Ex	ia	tb	IIIC	T125°C	Gb
⟨£ x ⟩	II	2	D		ib			T135°C	

¹ Pode ser deixado em branco ou alguma combinação dos tipos de proteção

10.4.4 Marcação para atmosferas explosivas com gases e poeiras

Marcação de acordo com o Requisito Estatutário do Reino Unido SI 2016 No.1107

Marcação relacionada com as normas usadas para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	Tipo de Protecão
(ξ _χ)	П	2	GD	Qualquer combinação das marcações de 10.4.2 e 10.4.3

10.4.5 Marcação para locais substerrâneos em minas

Marcação de acordo com o Requisito Estatutário do Reino

Marcação relacionada com as normas usadas

² Pode ser deixado em branco ou alguma combinação dos tipos de proteção

² Uma das opções

Unido SI 2016 No.1107

para a certificação UKEX

	Grupo do Equipamento	Categoria do Equipamento	Atmosfera Explosiva	-	Tipo de protecção principal ¹	Tipo de proteção adicional ²	Grupo de gás	EPL
<u></u>		MO		Ex	db	ia	I	Mb
(£x)	, 1	M2	-		eb	ib		

¹ Uma das opções

11 PEÇAS DE RESERVA

Para encomendar uma peça de reserva é necessário indicar:

- Tipo de motor.
- Número de série do motor.
- Designação da peça de reserva.

Ao entrar em contato com a WEG, ter em mãos a designação completa do motor, bem como seu número de série e data de fabrico, indicados na chapa de caraterísticas do motor.

As peças de reposição devem sempre ser adquiridas nos Centros de Serviço autorizados da WEG. O uso de peças de reposição não originais pode causar falha do motor, perda de desempenho e anular a garantia do produto.

12 INFORMAÇÕES ADICIONAIS

Para informações adicionais sobre transporte, armazenamento, manuseio, instalação, operação, manutenção e reparação de motores elétricos, aceder ao site http://www.weg.net.

13 UK DECLARAÇÃO DE CONFORMIDADE

A Declaração de Conformidade UK é fornecidas no inicio deste manual ou junto com os motores. Nos casos dos motores ou caixas de terminais cujos números de certificados tenham o sufixo "X", incluem também condições especiais de utilização, às quais deve ser dada especial atenção para uso do motor.

² Pode ser deixado em branco ou alguma combinação dos tipos de proteção

ANEXO I

Motores e Geradores Assíncronos Trifásicos Antideflagrantes equipados com componentes Ex i Parâmetros para definição da barreira de proteção de segurança intrínseca

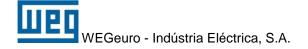
a) Sensores para proteção térmica e transmiters:

Os parâmetros de saída da barreira de proteção zener a usar pelo cliente ou instalador, devem estar de acordo com os parâmetros de entrada dos sensores usados nos motor. Estes parâmetos estão indicados no manual de instruções e nos certificados ATEX e/ou IECEx dos sensores.

Na tabela seguinte estão listados os protetores térmicos e transmiters Ex i, usados nos motores WEG, e os seus certificados ATEX e IECEx:

Tipo de Sensor	Fabricante	Modelo	Número do Certificado
	Fabro Mana	PR-SPA-EX-LTH	IBExU14ATEX1291X
Sensor de	Ephy Mess	(tolerance class B)	IECEx IBE14.0048X
temperatura	Wika	TR/TC For gas	TUV18ATEX211392X
		TR/TC For dust	IECEx TUN18.0012X
Transdutor de		T32.**.0IS/T32.1*.0IS-*) For gas	BVS08ATEXE019X
temperatura	Wika	T32.**.0IS/T32.1*.0IS-*) For dust	IECEx BVS08.0018X
		PT 2XEX(I) 24DC-ST	KEMA00ATEX1099X
Protector contra	Phoenix	DT 4EV(I) 24DC CT	KENIKOOKI EKIO99X
sobretensões	Contact	PT 4EX(I) 24DC-ST	IECEx KEM10.0063X

b) Sensores para deteção e controlo de vibrações:


Os parâmetros de saída da barreira de proteção zener, a usar pelo cliente ou instalador, devem estar de acordo com os parâmetros de entrada dos sensores usados no motor. Estes parâmetros estão indicados no manual de instruções e nos certificados ATEX e/po IECEx dos sensores.

Na tabela seguinte estão listados os sensores Ex i, para deteção e controlo de vibrações, usados nos motores WEG e os seus certificados ATEX e IECEx:

Tipo de Sensor	Fabricante	Modelo	Número do Certificado	
		3300 XL, 7200	BAS 99 ATEX 1101	
	Bently Nevada	3000, 3300/3300XL,7200	IECEx CSA 17.0001X	
Sensor de			Baseefa 03 ATEX 0204	
Proximidade		10000 series	IECEx BAS11.0065X	
	Metrix		Baseefa 12 ATEX 0049X	
		Mx2032, Mx 2033, Mx 2034	IECEx BAS 12.0032X	
		4=====	LCIE 07 ATEX 6101X	
		177230-XX	IECEx LCI 11.0056X	
		190501	LCIE 04 ATEX 6042X	
		330400, 330425	IECEx LC06.0003X	
Sensor de	Bently Nevada	330500, 330525	IECEx UL 19.0123	
Vibração		330450,330450S	LCIE 04 ATEX 6140X	
		330750,330750S, 330752, 330752S	IECEx LCI 11.0067X	
		350900	IEGEX EGI TT.0007X	
			LCIE 07 ATEX 6096X	
		200350	IECEx LCI 13.0070X	
	D (1.1)	000457	LCIE 04 ATEX 6028X	
	Bently Nevada	20015X	IECEx LCI 10.0047X	
		HS-100	Baseefa 07ATEX 0149X	
Aelerómetro		For group I(10 m cable)	IECEx BAS 07.0037X	
	Hansfor sensors	HS-100	Baseefa 07ATEX 0144X	
		For group II(10 m cable)	IECEx BAS07.0035X	
			Baseefa 08 ATEX 0268	
	SKF	CMPT23xxyy	IECEx BAS 08.0086	
	Bruel & Kjaer Vibro GmbH	ASA-06X	PTB 07 ATEX 2008 IECEx PTB 12.0033	
	-		LCIE 06 ATEX 6052X	
Transmiter de	Bently Nevada	990, 991	IECEx LCI 13.0046X	
Vibrações _			LCIE 02 ATEX 6244X	
	Metrix	ST5484E	IECEx LCI 10.0035X	
Transdutor de			Baseefa 10ATEX 0056X	
Velocidade	Metrix	5485C	IECEx BAS 10.0021X	

No fornecimento do motor serão enviados, junto com a documentação do motor, os manuais de instruções e os certificados ATEX ou IECEx, de acordo com a certificação do motor, dos componentes de segurança intrínseca que equipam o motor.

Instructions Manual

Three-Phase Asynchronous Flameproof Motors and Generators

1. PRELIMINARY NOTES

1.1 Thank you for showing a preference to use WEG motors.

To enable you to get the optimum performance from your motor it is recommended that the following instructions are observed. Their non-compliance will compromise the safety of the product and of the plant.

- 1.2 All the Installation and Maintenance operations shall be made by trained persons duly certified to make interventions in this type of motors and they must be familiarized with the requirements and safety rules in force, in particular with the concept of protection.
- 1.3 To reduce to the minimum the risks of ignition due to the electric material in dangerous areas, effective inspection and maintenance of the material must be assured.
- 1.4 WEG motors are designed to be installed, put into service and used in accordance with the characteristics included in this Instructions Manual. The following instructions must be read jointly with the standards:

EN 60079-14 : 2014	
EN 60079-17 : 2014	
EN 60079-19 : 2019	

The non-respect of these instructions could not engage WEG's responsibility.

- 1.5 WEG motors are UKCA marked and comply with the UK Statutory Requirement SI 2016 No. 1107. They are designed to be used in explosive atmospheres Categories 2G, 2D, 2GD, 3G, 3D, 3GD or M2 Zones 1 and 2; 21 and 22.
- 1.6 The user must ensure the compatibility between the nameplate indications and the surrounding hazardous atmosphere present, the classified zone of use and the surface and ambient temperatures. The correct classification of the installation area and the environment characteristics is responsibility of the user.

- 1.7 The WEG Flameproof Motors in its standard execution are supplied with flameproof terminal boxes "Ex db". As optional can be supplied with increased safety terminal boxes "Ex eb". In this case the description code for the motor protection is "Ex db eb".
- 1.8 "Ex db" motors are manufactured according to the Standards EN IEC 60079-0:2018 and EN 60079-1:2014. "Ex db eb" motors are according to the same standards and also with the standard EN IEC 60079-7:2015/A1:2018. The motors with equipment Ex i are also according to the standard EN 60079-11:2012. The gas group is IIB, IIC or I depending on motor type.
- 1.9 The instalation should be in accordance to the standards EN 60079-14:2014 and EN 60079-25:2017 for intrinsic safety.
- 1.10 Flameproof joints of WEG motors can have values more restricted than the minimum values indicated in the standard. The authorized repair shops must contact WEG After Sales Services every time they need detailed information concerning flameproof joints values. For using in group I (mines) the user will take into consideration that this equipment underwent only a shock corresponding to an energy of a low risk.
- 1.11 Motors with IP65 or IP66 protection degree, designed to be used on combustible dust environments (Ex tb IIIC T125°C or T135°C Db), are additionally in accordance with EN 60079-31:2014.
- 1.12 The motors may be equipped with adapters mounted on top of the frames or on other adapters, which allow the mounting of additional terminal boxes in different positions. The adapters may have flameproof protection "Ex db" or increased safety protection "Ex eb" and allow the mounting of flameproof terminal box "Ex db" or increased safety terminal boxes "Ex eb".
 - In the case of motors equipped with phase segregated or phase insulated terminal boxes with increased safety protection "Ex eb", the mounting is made on an adapter with increased safety protection "Ex eb" and can be used up to an ambient temperature of -20°C.
- 1.13 When the motors are equipped with intrinsic safety components "Ex i" for winding and/or bearing protection and for detections and/or control of vibrations, their circuits inside the terminal boxes are separated from the circuits that are not intrinsically safe.

These circuits are visually different (with terminals in blue colour) and are properly identified and should be connected to Zener barriers defined accordingly to the input parameters of the intrinsic safety components.

The intrinsically safe components are connected inside the terminal boxes, to terminals mounted on DIN rail with the earthing wire properly connected to the existing earthing terminal for this purpose

1.14 When the motors are equipped with intrinsically safety components "Ex i" the information related to the input parameters of these components referred in the Annex I, should be consulted by the installer/end user to define the Zener barrier of intrinsic safety.

See Annex I for details.

2. GENERAL INSPECTION

- 2.1 Check if nameplate data complies with the purchase order. Special attention shall be given to the type of protection and/or to the Equipment Protection Level (EPL). In case of non-compliance please contact WEG nearest Sales Office.
- 2.2 These motors have been designed to work in atmospheres that present a risk of explosion. It is therefore indispensable to carry out a very careful inspection of the material received, as well as the external parts of the motor (frame, endshields, terminal box and terminal box lid).
- 2.3 Any fault found has to be marked, reported to WEG Sales Office and analysed in order to ensure that the motors may function without any risk in this atmosphere. If necessary, the damaged parts or the parts that could present a risk in the future shall be replaced.

3. SAFETY INSTRUCTIONS

3.1 Motors for hazardous areas are specially designed to meet the government regulations regarding the environment in which they are installed. Misapplication, incorrect connection or other changes although small, may jeopardize product reliability.

- 3.2 Components added to the motor by the user, such as cable-glands, threaded plugs, encoder, etc. must meet the type of protection, the Equipment Protection Level EPL in accordance with the standards indicated on the product certificate.
- 3.3 The symbol "X" added to the certificate number, informed on the motor nameplate, denotes that motor requires special conditions for installation, use and/or maintenance, as described in the certificate. Failure to follow these requirements may affect the product and installation safety.
- 3.4 For Group IIC motors care must be taken to the total thickness of the painting because it shall be less or equal than 200μm. If the painting plan selected exceeds 200μm, an additional nameplate will be added to the motor informing about the risk of electrostatic discharges (see 8.6).

For Group IIB, I and IIIC motors there is no such limitation because the total thickness of the painting can be less or equal than 2 mm.

4. TRANSPORTATION AND STORAGE

- 4.1 The motors mustn't be exposed to destructive actions during transportation and storage.
- 4.2 The motor must be checked when received for any damage that may have occurred during the transportation. All damages must be reported in writing to the transportation company, to the insurance company and to WEG. Failure to comply with such procedures will void the product warranty.
- 4.3 All motors equipped with roller bearings and the motors equipped with angular contact ball bearings are fitted with a device to lock the rotor during transportation, generally fitted on drive end. Some motors may have two locking devices one on the drive end and other at the non-drive end. This device shall only be removed when the motor is ready for mounting.
- 4.4 Remove the shaft locking device (if any) and rotate the shaft by hand to ensure that it rotates freely. If the motor is going to be put in to storage the shaft locking device must be put on its place again.
- 4.5 If the motor is not installed immediately, it must be stored in a dry and clean environment, with relative humidity not exceeding 60%, with an ambient temperature

- between 5 °C and 40 °C, without sudden temperature changes, free of dust, vibrations, gases or corrosive agents. The motor must be stored in horizontal position, unless specifically designed for vertical operation, without placing objects on it.
- 4.6 All exposed machined surfaces (like shaft end and flange) are factory-protected with temporary rust inhibitor (ANTICORIT BW 366 from FUCHS or equivalent). A protective film must be reapplied periodically (at least every six months), or when it has been removed and/or damaged.
- 4.7 Flameproof joints are protected with a corrosion inhibiting grease that does not harden because of ageing and doesn't contain an evaporating solvent (MOBIL Polyrex EM, Lumomoly PT/4, Molykote 33 or other equivalent recommended by WEG). These surfaces shall be periodically checked and a protective film must be periodically reapplied, mainly on terminal box joints if they already have been opened.
- 4.8 For long storage periods is recommended that the rotor shaft shall be turned periodically to prevent bearings deterioration.
- 4.9 If the motor is equipped with sleeve bearings it must be stored in its original operating position and with oil in the bearings. Correct oil level must be ensured. It shall be in the middle of the sight glass. During the storage period, remove the shaft locking device and rotate the shaft by hand every month, at least 5 revolutions (and at 30 rpm), thus achieving an even oil distribution inside the bearing and maintaining the bearing in good operating conditions. Reinstall the shaft locking device every time the motor needs to be moved. If the motor is stored for a period of over six months, the bearings must be relubricated before starting the operation. If the motor is stored for a period longer than the oil change interval, or if it is not possible to rotate the motor shaft by hand, the oil must be drained and a corrosion protection and dehumidifiers must be applied.
- 4.10 If motors are fitted with anti-condensation heaters, these shall be connected during storage.
- 4.11 It is recommended that the winding insulation resistance shall be periodically measured (see values in 6.1) at regular intervals to follow-up and evaluate its electrical operating conditions. If any reduction in the insulation resistance values is recorded,

the storage conditions shall be evaluated and corrected, where necessary. Check the measuring procedures in section 6 of this Instructions Manual.

4.12 The lifting of the motor shall be made by using the eyebolts as shown in the picture:

4.13 Eyebolts provided on the frame are designed for lifting the machine only. Do not use these eyebolts for lifting the motor with coupled equipment such as bases, pulleys, pumps, reducers, etc. Never use damaged, bent or cracked eyebolts. Always check the eyebolt condition before lifting the motor. Eyebolts mounted on components, such as on end shields, forced ventilation kits, etc. must be used for lifting these components only. Do not use them for lifting the complete machine set. For the maximum allowed angle-of-inclination during the lifting please read the General Instructions Manual available on www.weg.net.

5. INSTALLATION

- 5.1 The motor must be disconnected from the power supply and be completely stopped before conducting any installation or maintenance procedures. Additional measures shall be taken to avoid accidental motor starting. Check the direction of motor rotation, starting the motor at no-load before coupling it to the load.
- 5.2 The type of protection and the Equipment Protection Level (EPL) indicated on the motor nameplate must be respected considering the explosive atmosphere where the motor will be installed.
- 5.3 Remove the shaft locking device (if any).

- 5.4 The rotors of the motors are dynamically balanced with half key. For this reason the coupling to be fitted to the motor shaft end also has to be balanced with half key, according to the standard IEC 60034-14. When specifically requested the rotors can be balanced with full key.
- 5.5 To fit the coupling on the shaft end extension, the coupling shall be heated up to approximately 80°C.
 - If necessary, this assembly operation can be aided by means of a screw in the threaded hole of the shaft end.
 - Note Never assemble the coupling by hitting, as it could cause serious damage to bearings.
- 5.6 In the case of direct coupling the motor and the driven machine shall be aligned according to the parallel and angular alignment values established by the coupling manufacturer, not forgetting that the more precise the alignment, the longer will be the life of the bearings.
 - In the case of belt drive transmissions they must be static conductive, flame resistant and self-extinguishing. The pulleys shall neither be too narrow or wider than the width of the shaft end. The tension of the pulleys shall also be taken into account; it shall not be higher than the values of radial loads recommended for bearings. If these specifications are not followed, there is a serious risk of collapse of the bearings or even the shaft.
- 5.7 The ambient temperature limit range of WEGeuro motors for gas group IIB and I (mines) is from -55°C to +80°C. The motors for gas group IIC can operate for ambient temperature between -55°C up to +60°C. Unless different engraved on nameplate, these motors are prepared to work on ambient temperatures from -20°C up to +40°C.
 - For temperatures out of the range -20°C to +40°C, the factory shall be contacted to analyse if a special execution and/or certification is required.
- 5.8 Unless otherwise specified, the rated power outputs of the motors are considered for continuous duty operation S1, according to IEC/EN 60034-1 Standards and under the following conditions:
 - For ambient temperatures from -20°C to +40°C;

- For altitudes up to 1000 meters above sea level.

For operating temperatures above +40°C and up to +80°C, the correction factors indicated in the table below, must be applied to the nominal motor power rating in order to determine the derated available output (Pmax).

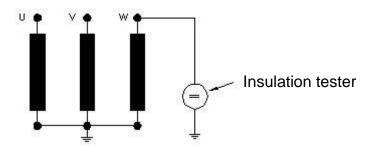
Ambient temperature (°C). 40 45 50 55 60 65 70 75 80 Correction factors to 0.88 derating the output power 1 0.95 092 0.83 0.77 0.70 0.62 0.53 of the motor

Pmax = Pnom x correction factor

For altitudes higher than 1000 meters above sea level, a correction factor for altitudes must be applied too, in order to determine the derated output (Pmax). The factory must be consulted to indicated the correction factor to be applied.

- 5.9 Ensure that the air inlet and outlet opening are not blocked. The minimum clearance to the nearest wall shall be at least ¼ of the fan cover diameter. The intake air temperature must be at ambient temperature, limited to the temperature range indicated on the nameplate of the motor (if not indicated, consider -20°C to +40°C).
- 5.10 To prevent accidents, check if motor has been solidly grounded in accordance with the applicable standards. Remove or fix the shaft key before starting the motor.
- 5.11 Connect the motor properly to the power supply by means of safe and permanent contacts, always observing the data on the nameplate, such as rated voltage, connection diagram, etc.
- 5.12 When terminal is used, all wires that form the multi-wire cable must be stuck inside the sleeve. The non-isolated part of the accessory cables shall not exceed 1 mm up to the connector.

6. START UP


6.1 If the motor has been out of service or stored for a long period of time, it is recommended that the winding resistance is measured before installation and start up.

The insulation resistance shall be measured using a Megohmmeter. The test voltage for the motors winding shall be according the table below in accordance with the standard IEEE43

Winding rated voltage (V)	Insulation resistance test direct voltage (V)			
< 1000	500			
1000 – 2500	500-1000			
2501 – 5000	1000 – 2500			
5001 - 12000	2500 – 5000			
> 12000	5000 – 10000			

These measurements shall be made before connecting the supply cables.

A possible diagram to measure the insulation resistance for complete winding is showed below. The measure must be taken 1 minute after apply the DC voltage with the insulation tester.

According to standard IEEE 43 the recommended minimum insulation resistance values at 40° C in M Ω are the following:

- 5 MΩ, for low voltage motors (U < 1,1kV)
- 100 MΩ, for medium voltage motors (1,1kV < U < 11kV)

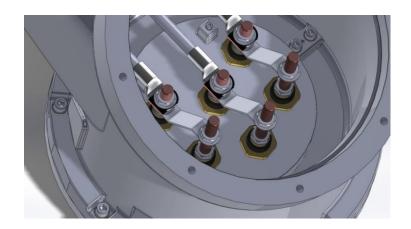
Insulation resistance depends mainly from the winding temperature as showed in the following table:

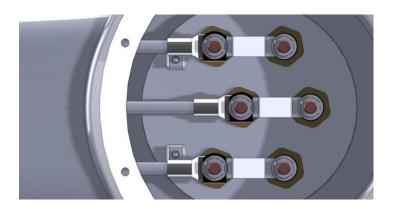
WINDING TEMPERATURE SERVICE VOLTAGE $\leq 1,1 \text{ kV} > 1,1 \text{kV}$

20° C	20 ΜΩ	$400~\text{M}\Omega$
30° C	10 ΜΩ	200 ΜΩ
40° C	5 ΜΩ	100 ΜΩ

If the insulation resistance values are lower than the values of the table above check if the winding is affected by dust and moisture problem. In this case the winding must be cleaned from dust and shall be oven dried carefully at a temperature lower than 100°C.

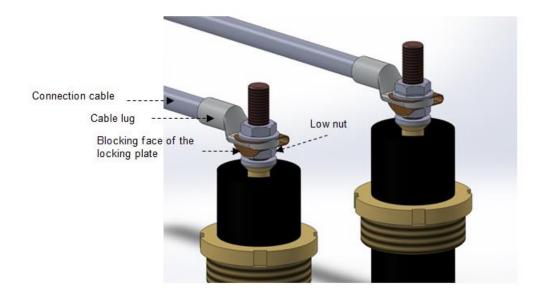
If these measures are not sufficient, expert help shall be requested.


The test voltage for space heaters, thermal protectors and other accessories is 500 VCC.


6.2 Ensure that the motor nameplate voltage is the same as the mains supply. The connection diagrams supplied inside the motor terminal box shall always be respected in function of available supply voltage and/or required speeds (2 speed motors).

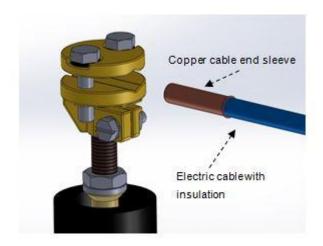
See the most common connection diagrams at the end of this instruction manual.

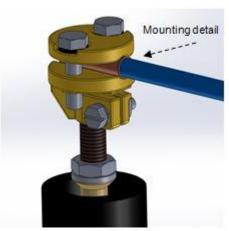
- 6.3 All motors are supplied with clockwise rotation, viewed from shaft end, when the alphabetical sequence of the terminal letters (U, V, W), corresponds with the time sequence or the phases (L1, L2, L3). To change the rotation of direction of the motor it is necessary to exchange 2 of the 3 supply cables.
 - Motors having unidirectional fan, have assembled an arrow label to indicate the direction of rotation of the motor.
- 6.4 If motors are equipped with "Ex eb" terminal boxes, the bushing insulators must be fitted with clamps or locking plates in such a way that the conductors cannot move out from the location fixed during their tightening.
- 6.5 As standard, "Ex eb" terminal boxes are equipped with bushing insulators with locking plate, maintaining the current fault rate level (I_{cc}) characteristics.


The bushing insulators with locking plate must be aligned with terminal lug in a way that allows the right connection of the cables, as represented in the following images:

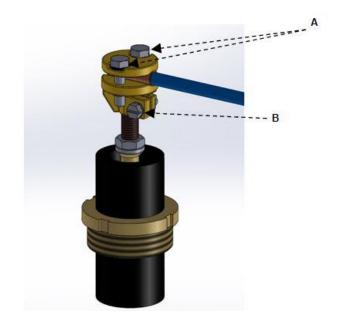
Example of an "Ex eb" arrangement with locking plate

In order to guarantee the correct arrangement of the connection cable, the blocking face of the locking plate, together with the low nut right below it shall be in a parallel position in relation to the cable lug.




Detail of the alignment between the stopping device and the connection cable

J		•	
	Maximum [<i>N.m</i>]	Minimum [<i>N.m</i>]	Thread
	13	8	M10
	30	15	M12
	50	30	M16
	80	50	M20
	186	130	M24


The torques for the superior nut of the insulator bushings are:

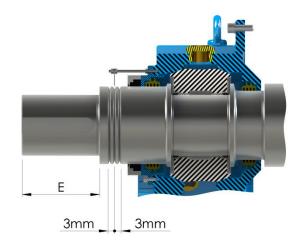
- 6.6 As an option, the motors with "Ex eb" terminal boxes, may be equipped with clamps. In this case, it's necessary to guarantee the correct tightening force between the clamp, insulator bushing and cable.
 - In these terminal boxes the shunts must be assembled or disassembled as indicated in the instructions given at the end of this manual, in order to avoid that the position of connecting clamps is modified.
 - In the terminal boxes equipped with clamps, withstand short-circuit current (lsc) is reduced comparing to the same terminal box when equipped with locking plates.
- 6.7 For the energy cable connection it's recommended to use a copper cable end sleeve on the end of the stripped cable, as represented in the following images:

For the clamp's screws, it's recommended to be used the following torque values:

Torque (Nm)					
A - Screws for tighten the cable inside the clamp	B - Screws for tighten the clamp to the bushing				
50	25				

- 6.8 Near each threaded hole in enclosures foreseen for conduit entries there's a plate with its dimensions and thread type.
- 6.9 Cables and cable-glands used must be compatible with the temperature indicated in the certificate plate whenever it's higher than 80°C.
 - 6.9.1 When the cables glands are fitted on the terminal box:
 - 90°C for ambient temperature 50°C
 - 100°C for ambient temperature 60°C
 - 110°C for ambient temperature 70°C
 - 120°C for ambient temperature 80°C
 - 6.9.2 When the cable glands are fitted on the blanking cover of motors supplied by flying leads:
 - 100°C for ambient temperature 40°C
 - 110°C for ambient temperature 50°C

- 120°C for ambient temperature 60°C
- 130°C for ambient temperature 70°C
- 140°C for ambient temperature 80°C
- 6.10 Cable glands must have the same certification UKEX of the motors, must have the same protection (Ex db IIB, Ex db IIC, Ex eb II, Ex db I or Ex eb I) of the terminal boxes and a IP ingress protection at least equal to that of the terminal boxes.
- 6.11 Before closing terminal boxes make sure that they are completely free from dust inside.
- 6.12 The recommended torques of the screws to fix the terminal box covers to the terminal boxes and the endshields to the frame are the following:


	Torque (Nm)						
Туре	Carbon steel	/ class 12.9	Stainless steel / Class 70/80				
	Min	Max.	Min.	Max.			
M8	14	30	14	19			
M10	28	60	28	40			
M12	45	105	45	60			
M14	75	110	75	100			
M16	115	170	115	170			
M20	230	330	225	290			
M24	400	510	400	510			

6.13 Before the motor start-up, the supply connection shall be checked if they have been made according to the diagrams of this manual or supplied inside terminal box, taking in consideration the type of motor and winding.

- 6.14 Unused cable entries of main terminal box, auxiliary terminal box and bearing thermal protections, must be closed with UKEX certified threaded plugs with the same protection (Ex db IIB, Ex db IIC, Ex eb II, Ex db I or Ex eb I) of the terminal boxes.
- 6.15 Motors with flying leads must be connected out of hazardous area or with an approved protection way or system.
- 6.16 Motors fitted with angular contact ball bearings should not be allowed to run at no load and must be used in the mounting form IM engraved on the nameplate (see IM in the nameplate).
- 6.17 Motors with sleeve bearings (not foreseen for IIC group) must be directly coupled to the driven machine. The pulley/belt drive system is not recommended for this type of motor. These motors cannot be used for ambient temperature higher than +60°C. When the motor is coupled to the driven machine take care to the axial float of the motor sleeve bearing, of driven machine as well as the maximum axial tolerance of the coupling.

This type of motors are not allowed in any circumstances to work with axial thrusts on the sleeve bearings as they are not designed to support this kind of loads.

In the standard motor design the rotor is not self-aligned and it has a maximum axial play of \pm 3mm from the mechanical centre. The mechanical centre is the midpoint between the rotor end float limits.

The rotor axial centre position shall be assured by the driven machine and coupling. This must be taken into consideration during the assembly of the motor together with the driven machine.

7. MOTOR PROTECTIONS

- 7.1 We recommend motor protection by using overloads and short-circuit relays.
- 7.2 Motors must be earthed, using either the grounding screw inside the terminal box and fixed to the motor frame.
- 7.3 Motor installation shall be done according to standards EN 60079-14. Inspections and maintenance shall be done according to standards EN 60079-17.
- 7.4 If motors are fitted with thermal protections, these <u>may be connected</u> as an additional protection and source of information for maintenance. In case of Pt100 or thermocouples, tripping temperature must be regulated to the values indicated by WEG.
- 7.5 If the thermal probes are not connected, the user must ensure that the installation and preventive maintenance are properly performed to avoid a bearing failure that may result in the occurrence of an ignition source.
- 7.6 Where necessary, and depending on the installation and operating conditions of the machine, provisions such as continuous temperature monitoring of the D.E. and N.D.E. bearings shall be taken to protect against any effects due to the presence of circulation currents.
- 7.7 Motors fed by variable Speed Drive must be fitted with thermal sensors on windings and, eventually, on the bearings. The connections of these thermal protections <u>are</u> <u>compulsory</u>. These motors are equipped with flameproof terminal boxes "Ex db" only.
 - On 2 speed motors with two windings, both windings shall be individually protected.
- 7.8 If anti-condensation heaters are fitted, they can't be connected unless the motor is switched off and cold.
- 7.9 In the case of motors with forced ventilation, a device must avoid motor running without ventilation.
 - To avoid that maximum allowed surface temperature is exceeded, thermal protectors of main and auxiliary motors must be connected to suitable protection devices and, if protectors are Pt100 or thermocouples, trip temperatures must be regulated to the values indicated by WEG.

8. MAINTENANCE

- 8.1 For explosion-proof motors or motors protected by enclosure, only open the terminal box and/or disassemble the motor when the surface temperature of the enclosure is at the ambient temperature.
- 8.2 The type, quantities of grease and the respective lubrication intervals for normal working conditions are shown on the nameplate. The addition of grease shall be carried out with the motor running and in compliance with safety procedures.
 - For heavy working conditions such as humidity and high levels of pollution, important bearing loads or excessive vibration levels, it is recommended to reduce the lubrication intervals.
- 8.3 Every two years the motors should be opened and the bearings should be checked, and replaced, if necessary. During this inspection remove the old grease from the grease outlet.
 - For heavy working conditions this interval should be shortened.
- 8.4 The air inlets and the cooling surfaces shall be cleaned periodically. The intervals depend on the degree of pollution/accumulation of dust in the air.
- 8.5 Periodically inspect the motor functioning according to its application ensuring a free flow of air. Inspect the seals, the fixing screws, the bearings vibration and noise levels, the draining devices, etc.
- 8.6 Motors which may have a potential risk of electrostatic charge accumulation, supplied duly identified with a warning plate, must receive proper cleaning and maintenance interventions, e.g. with the use of a damp cloth, avoiding electrostatic discharges.
- 8.7 The maintenance of flameproof motors is particularly important, as:
 - Any changing to the bearings could:
 - o cause a sudden temperature rise, thus presenting a risk of explosion
 - increase the clearance between the shaft and the bearing plate, due to friction of the shaft on the closing plate; an internal ignition may spread to the outside and can cause an explosion

Concerning external ventilation, a fault in the cooling system raises the surface temperature, which could reach values higher than those established for the temperature class.

The temperature class should be checked on the certification plate; this indicates the maximum temperature as follows:

T3 or T4 or T135°C or T125°C

- 8.8 All explosion-proof motors are supplied with an anti-corrosion product in the fittings and screws. Before assembling the components with machined surfaces (for example, terminal box covers of flameproof motors) machined surfaces must be cleaned and a new protective layer of this product shall be applied.
 - To protect the surface of flameproof joints one of the following protective greases recommended by WEG shall be used: Polyrex EM (manufacturer Mobil) or Lumomoly PT/4 (manufacturer Lumobras) for a temperature ambient range from -20°C to +80°C, Molykote 33 (manufacturer Dow Corning) for a temperature ambient range of -55°C to +80°C.
- 8.9 For explosion-proof motors care shall be taken with the flamepath machined surfaces in order to avoid the presence of burrs, scratches, etc., which reduce their flamepath length and/or increase the flamepath gap.

9. ASSEMBLING AND DISASSEMBLING

- 9.1 This type of motors requires a special care. Particularly when assembling and disassembling parts are carried out, the condition of the joints should be checked. The dimensions of the joints, i.e. length and clearance, have been 100% controlled during production of the motors. The joints must not be changed and you need to:
 - Ensure that the joints are not damaged and do not have cuts or dents.
 If this happens the parts should be replaced.
 - All the screws should be well tightened. A screw which is not tight enough changes the resistance of the enclosure. In case of replacement of a screw, it is imperative to keep its length and quality of material.
 - Do not change interchangeable parts during maintenance.

- 9.2 The yield stress of the fastener elements of motor and terminal boxes enclosures must be at least equal to:
 - Class 12.9 for steel screws.
 - Class A2-70 or A4-80 for stainless steel screws on all motors and terminal boxes for temperatures up to -55°C with exception of the motors frame sizes 500 and 560 which can only be used up to -40°C.

10. MARKING

All motors have two marking plates

10.1 Nameplate:

This nameplate contains information in compliance with the IEC 60034-1, as well as other useful technical information.

10.2 Certification Plate:

The certification plate must be in accordance with the explosive atmosphere where the equipment will be used or in accordance with its UKEX certification. The UKEX certification always includes the UKCA mark and the code of the Approved Body responsible for auditing the factory and issuing the UKEX QAN. In case of WEG, this code is as follows:

The certification plate must be in accordance with the explosive atmosphere in which the equipment will be used or in accordance with its UKEX certification

10.1.1 Marking for explosive atmospheres with gas

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	-	Main Type of Protection	Additional Type of Protection ¹	Gas Group ²	Temp. Class ²	EPL
				Ex	db	eb	IIB	Т3	Gb
⟨£x⟩	II	2	G			ia	IIC	T4	
			·			ib			

¹ May be blank or any combination of types of protection

10.1.2 Marking for explosive atmospheres with dust

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	-	Additional Type of Protection ¹	Main Type of Protection	Dust Group	Temp. Class ²	EPL
<u></u>	. 11	2	D	Ex	ia	tb	IIIC	T125°C	Gb
(Ex)	' 11	2	D -		ib			T135°C	

¹ May be blank or any combination of types of protection

10.2.3 Marking for explosive atmospheres with gas and dust

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	Type of Protection
€ χ >	II	2	GD	Any combination of markings from 10.2.1 and 10.2.2

10.2.4 Marking for underground parts of mines

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

Equipment Group	Equipment Category	Explosive Atmosphere	-	Main Type of Protection	Additional Type of Protection ¹	Gas Group	EPL

² One of the options

² One of the options

				Ex	db	eb	I	Mb	
$\langle E_{x} \rangle$	I	M2	-			ia			
						ib			
¹ May be	¹ May be blank or any combination of types of protection								

10.2.5 Certificate number

CML ** UKEX ****X

The name of the Approved Body

Year of Certification

Certification designation according to the UK Statutory
Requirements (explosive atmospheres)

Certificate number

X Special conditions for safe use specified in the certificate

10.2.6 Complementary Marking

10.2.6.1 Temperature to be supported by the supply cable

The connection cable must be compatible with a temperature of ** °C

 ** $^{\mathrm{o}}\mathrm{C}$ - The motor supply cable selected by the user/installer must be suitable for this temperature

10.2.6.2 Serial Number and year of manufacturing

These information are indicated on the motor's nameplate

10.2.7 Manufacturer address

Maia factory:

Rua Eng.º Frederico Ulrich

Zona Industrial da Maia sector V

4470-605 Maia

Portugal

Santo Tirso factory:

Rua António Joaquim Campos Monteiro 510

Santa Cristina do Couto

4780-165 Santo Tirso

Portugal

10.3 Marking on the terminal box covers

WARNINGS:

- DO NOT OPEN WHEN ENERGIZED
- DO NOT OPEN WHEN AN EXPLOSIVE ATMOSPHERE MAY BE PRESENT

10.4 Additional marking for separated terminal boxes

10.4.1. Motor certificate number

CML ** UKEX ****X

10.4.2. Marking for explosive atmospheres with gas

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	-	Main Type of Protection ¹	Additional Type of Protection ²	Gas Group ¹	Temp. Class ¹	EPL
<u></u>	. "	2		Ex	db	ia	IIB	T3	Gb
(£x)	' 11	2	G -		eb	ib	IIC	T4	

One of the options

10.4.3. Marking for explosive atmospheres with dust

² May be blank or any combination of types of protection

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	-	Additional Type of Protection ¹	Main Type of Protection	Dust Group	Temp. Class ²	EPL
		2	D	Ex	ia	tb	IIIC	T125°C	Gb
(Ex)	' 11	2	D -		ib			T135°C	

¹ May be blank or any combination of types of protection

10.4.4. Marking for explosive atmospheres with gas and dust

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	Type of Protection
⟨£x⟩	II	2	GD	Any combination of markings from 10.3.2 and 10.3.3

10.4.5. Marking for underground part of mines

Marking in accordance to the UK Statutory Requirement SI 2016 No.1107

Marking related to the standards used for UKEX certification

	Equipment Group	Equipment Category	Explosive Atmosphere	-	Main Type of Protection ¹	Additional Type of Protection ²	Gas Group	EPL
<u></u>	ı	Ma		Ex	db	ia	ı	Mb
⟨£ x ⟩	ı	M2			eb	ib		

¹ One of the options

11. SPARE PARTS

To order a spare part it is necessary to indicate:

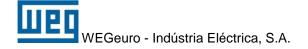
- Motor Type
- Motor Serial Number

² One of the options

¹ May be blank or any combination of types of protection

Designation of the spare part.

When contacting WEG, please have the complete designation of the motor, as well as the serial number and date of manufacture, indicated on its nameplate.


Spare parts must always be purchased from WEG authorized Service Centers. The use of non-original spare parts can cause motor failure, performance drop and void the product warranty.

12. ADDITIONAL INFORMATION

For additional information on transport, storage, handling, installation, operation, maintenance and repair or electric motors, please check the website www.weg.net.

13. DECLARATION OF CONFORMITY

The UK Declaration of Conformity is provided in the beginning of this manual or alternatively together with the motors. In the cases where the motor or terminal box certificate number have the suffix "X" is also included a special conditions for use for which special attention must be given to be respected on use.

ANNEX I

Three-Phase Asynchronous Flameproof Motors and Generators equipped with devices Ex i

Parameters to define the zener barrier of intrinsic protection

a) Sensors for thermal protection and transmitters:

The output parameters of the zener protection barrier to be used by the installer or the end user should be in accordance with the input parameters of the temperature sensors and transmitters used on the motor. These parameters are indicated in the Instructions Manual and in the ATEX and/or IECEx certificates of the sensors.

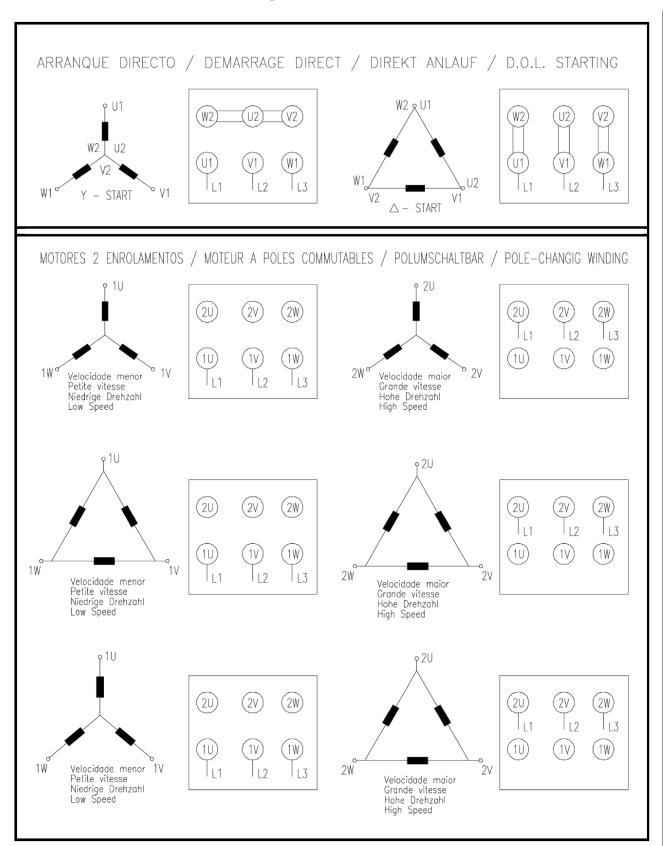
In the following table are listed the Ex i thermal protectors and transmitters, used on WEG motors and also its ATEX and IECEx certificates:

Sensor type	Manufacturer	Model	Certificate number	
	Ephy Mess		IBExU14ATEX1291X	
Temperature		PR-SPA-EX-LTH	IECEx IBE14.0048X	
Sensor	Wika	TR/TC For gas	TUV10ATEX555793X	
		TR/TC For dust	IECEx TUN10.0002X	
Temperature	Wika	T32.**.0IS/T32.1*.0IS-*) For gas	BVS08ATEXE019X	
Transmitter		T32.**.0IS/T32.1*.0IS-*) For dust	IECEx BVS08.0018X	
		PT 2XEX(I) 24DC-ST	V514100AT5V4000V	
Surgo protection	Phoenix		KEMA00ATEX1099X	
Surge protection	Contact	PT 4EX(I) 24DC-ST	IECEx KEM10.0063X	

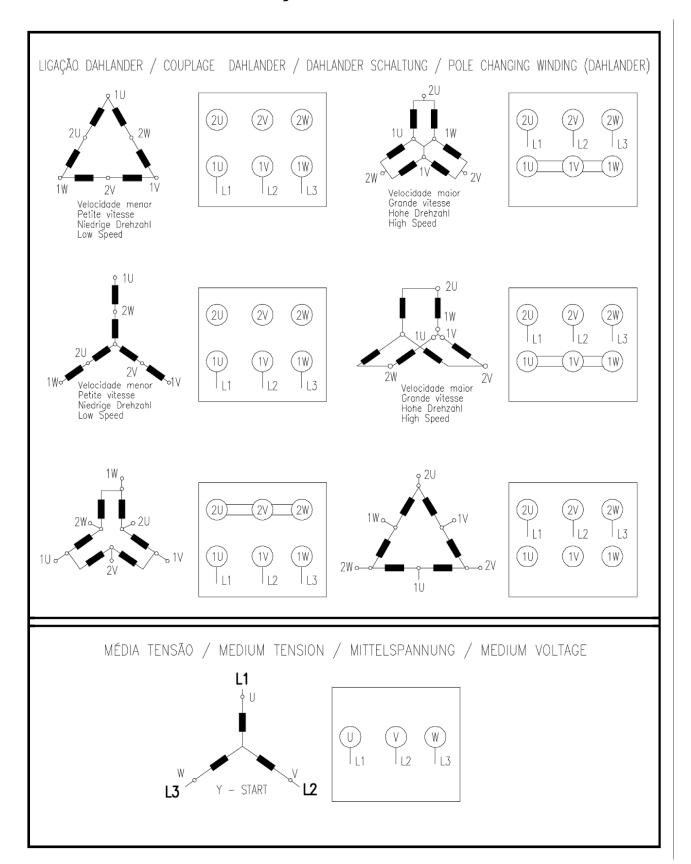
b) Sensors for detections and control of vibrations:

The output parameters of the zener protection barrier to be used by the installer or end user should be in accordance with the input parameters of the Ex i sensors used on the motor. These parameters are indicated in the Instructions Manual and also in the ATEX and/or IECEX certificates of the sensors. In the following table are listed the Ex i sensors, for detection and for vibrations control used on te WEG motors and also their certificates:

Sensor Type Manufacturer		Model	Certificate number	
		3300 XL, 7200	BAS 99 ATEX 1101	
	Bently Nevada	3000, 3300/3300XL,7200	IECEx CSA 17.0001X	
Proximity			Baseefa 03 ATEX 0204	
sensor	Metrix	10000 series	IECEx BAS11.0065X	
		Mx2032, Mx 2034	Baseefa 12 ATEX 0049X	
		Mx 2033	IECEx BAS 12.0032X	
	Bently Nevada	177230-XX	LCIE 07 ATEX 6101X	
			IECEx LCI 11.0056X	
		190501	LCIE 04 ATEX 6042X	
		330400, 330425	IECEx LC06.0003X	
		330500, 330525	IECEx UL 19.0123	
Vibration		330450,330450S Group IIC		
sensor		330750,330750S, 330752, 330752S Group IIC	LCIE 04 ATEX 6140X	
		350900 Group IIB	IECEx LCI 11.0067X	
		350900 Group IIC		
			LCIE 07 ATEX 6096X	
		200350	IECEx LCI 13.0070X	
	5	222474	LCIE 04 ATEX 6028X	
	Bently Nevada	20015X	IECEx LCI 10.0047X	
	Hansfor sensors	HS-100	Baseefa 07ATEX 0149X	
Acelerometer		For group I(10 m cable)	IECEx BAS 07.0037X	
		HS-100	Baseefa 07ATEX 0144X	
		For group II(10 m cable)	IECEx BAS07.0035X	
	015-	СМРТ23ххуу	Baseefa 08 ATEX 0268	
	SKF	For group I	IECEx BAS 08.0087	


Sensor Type	Manufacturer	Model	Certificate number
	Bruel & Kjaer Vibro GmbH		PTB 07 ATEX 2008
		ASA-06X	IECEx PTB 12.0033
	Bently Nevada		LCIE 06 ATEX 6052X
Vibration		990, 991	IECEx LCI 13.0046X
transmitter			LCIE 02 ATEX 6244X
	Metrix	ST5484E	IECEx LCI 10.0035x
Valacity Consor	Metrix		Baseefa 10ATEX 0056X
Velocity Sensor		5485C	IECEx BAS 10.0021X

In the motor shippment you'll find the instruction manual and the certificates ATEX or IECEx, according to the motor certification, for the intrinsic safety components which equiped the motor.



ESQUEMAS DE LIGAÇÕES / CONNECTION DIAGRAMS

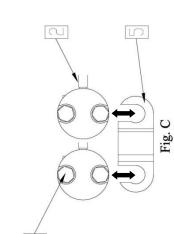
ESQUEMAS DE LIGAÇÕES / CONNECTION DIAGRAMS

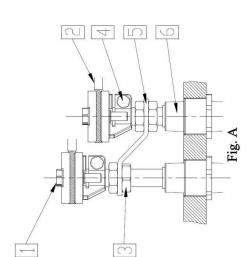
Ligação de Motores Ex db eb

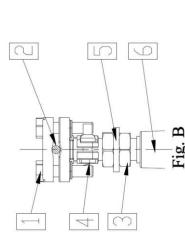
secção adequada ao cerra-cabos Seleccionar cabos de ligação com (ver indicação no cerra-cabos);

- cerra-cabos. Apertar novamente os Desapertar os parafusos [1] para fixar os cabos de ligação [2] parafusos [1];
- fig.C). Apertar novamente as porcas [3]. e retirar as pontes lateralmente (ver igação [5], desapertar as porcas [3] Para remover as pontes

Connection of Ex db eb Motors


- Select connection cables with a section compatible with the clamps (see indication in the top of clamps);
- Loosen the screws [1] to connect the cables [2] in the clamps. leave the screws [1] well tight;
- To remove the shunts [5], loosen the nuts [3] and remove the shunts aterally (see fig. C). Tight the nuts 3] again.




NUNCA DESAPERTAR OS PARAFUSOS DE IMOBILIZAÇÃO DO CERRA-CABOS [4] **NEVER UNSCREW CLAMP IMMOBILIZATION SCREWS [4]**

- 1 Parafuso de aperto do cerra-cabos / Clamp screw
- 2 Cabo de ligação / Connection cable 3 Porca de fixação da ponte de ligação / Shunt fixing nut
- 4 Parafuso de imobilização do cerra-cabos / Clamp immobilization screw 5 - Ponte de ligação / Shunt
 - 6 Isolador / Bushing Insulator

WEG Worldwide Operations

ARGENTINA

WEG EQUIPAMIENTOS ELECTRICOS San Francisco - Cordoba Phone: +54 3564 421 484 info-ar@weg.net www.weg.net/ar

WEG PINTURAS - Pulverlux Buenos Aires Phone: +54 11 4299 8000 tintas@weg.net

AUSTRALIA

WEG AUSTRALIA Victoria Phone: +61 3 9765 4600 info-au@weg.net www.weg.net/au

AUSTRIA

WATT DRIVE - WEG Group Markt Piesting - Vienna Phone: +43 2633 404 0 watt@wattdrive.com www.wattdrive.com

BELGIUM

WEG BENELUX Nivelles - Belgium Phone: +32 67 88 84 20 info-be@weg.net www.weg.net/be

BRAZIL

WEG EQUIPAMENTOS ELÉTRICOS Jaraguá do Sul - Santa Catarina Phone: +55 47 3276-4002 info-br@weg.net www.weg.net/br

CHILE

WEG CHILE Santiago Phone: +56 2 784 8900 info-cl@weg.net www.weg.net/cl

CHINA

WEG NANTONG Nantong - Jiangsu Phone: +86 0513 8598 9333 info-cn@weg.net www.weg.net/cn

COLOMBIA

WEG COLOMBIA Bogotá Phone: +57 1 416 0166 info-co@weg.net www.weg.net/co

FRANCE

WEG FRANCE Saint Quentin Fallavier - Lyon Phone: +33 4 74 99 11 35 info-fr@weg.net www.weg.net/fr

GERMANY

WEG GERMANY Kerpen - North Rhine Westphalia Phone: +49 2237 9291 0 info-de@weg.net www.weg.net/de

GHANA

ZEST ELECTRIC GHANA WEG Group Accra Phone: +233 30 27 664 90 info@zestghana.com.gh www.zestghana.com.gh

INDIA

WEG ELECTRIC INDIA Bangalore - Karnataka Phone: +91 80 4128 2007 info-in@weg.net www.weg.net/in

WEG INDUSTRIES INDIA Hosur - Tamil Nadu Phone: +91 4344 301 501 info-in@weg.net www.weg.net/in

ITALY

WEG ITALIA Cinisello Balsamo - Milano Phone: +39 02 6129 3535 info-it@weg.net www.weg.net/it

JAPAN

WEG ELECTRIC MOTORS JAPAN Yokohama City - Kanagawa Phone: +81 45 550 3030 info-jp@weg.net www.weg.net/jp

MALAYSIA

WATT EURO-DRIVE - WEG Group Shah Alam, Selangor Phone: 603 78591626 info@wattdrive.com.my www.wattdrive.com

MEXICO

WEG MEXICO Huehuetoca Phone: +52 55 5321 4231 info-mx@weg.net www.weg.net/mx

VOLTRAN - WEG Group Tizayuca - Hidalgo Phone: +52 77 5350 9354 www.voltran.com.mx

NETHERLANDS

WEG NETHERLANDS Oldenzaal - Overijssel Phone: +31 541 571 080 info-nl@weg.net www.weg.net/nl

PERU

WEG PERU Lima Phone: +51 1 472 3204 info-pe@weg.net www.weg.net/pe

PORTUGAL

WEG EURO Maia - Porto Phone: +351 22 9477705 info-pt@weg.net www.weg.net/pt

RUSSIA and CIS

WEG ELECTRIC CIS Saint Petersburg Phone: +7 812 363 2172 info-ru@weg.net www.weg.net/ru

SOUTH AFRICA

ZEST ELECTRIC MOTORS WEG Group Johannesburg Phone: +27 11 723 6000 info@zest.co.za www.zest.co.za

SPAIN

WEG IBERIA Madrid Phone: +34 91 655 30 08 info-es@weg.net www.weg.net/es

SINGAPORE

WEG SINGAPORE Singapore Phone: +65 68589081 info-sg@weg.net www.weg.net/sg

SCANDINAVIA

WEG SCANDINAVIA Kungsbacka - Sweden Phone: +46 300 73 400 info-se@weg.net www.weg.net/se

UK

WEG ELECTRIC MOTORS U.K. Redditch - Worcestershire Phone: +44 1527 513 800 info-uk@weg.net www.weg.net/uk

UNITED ARAB EMIRATES

WEG MIDDLE EAST Dubai Phone: +971 4 813 0800 info-ae@weg.net www.weg.net/ae

USA

WEG ELECTRIC Duluth - Georgia Phone: +1 678 249 2000 info-us@weg.net www.weg.net/us

ELECTRIC MACHINERY WEG Group Minneapolis - Minnesota Phone: +1 612 378 8000 www.electricmachinery.com

VENEZUELA

WEG INDUSTRIAS VENEZUELA Valencia - Carabobo Phone: +58 241 821 0582 info-ve@weg.net www.weg.net/ve

WEGeuro - Indústria Eléctrica, S.A. Rua Engº Frederico Ulrich, Sector V 4470-605 Maia - Portugal Phone: (+351) 229 477 700 info-pt@weg.net www.weg.net/pt

